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The stability of an exponential current in water to infinitesimal perturbations in the presence of gravity and capillarity
is revisited and reformulated using the Weber and Froude numbers. Some new results on the generation of gravity-
capillary waves are presented which supplement the previous works of Morland, Saffman, and Yuen 1 and Young and
Wolfe 2 , namely in finite depth. To consider perturbations of much larger scales, a specific attention is paid to the
stability of the exponential current only in the presence of gravity.

I. INTRODUCTION

Generally, velocity profiles of currents existing in the ocean
are depth dependent. Wind effect at the sea surface generates
a vertically sheared current in water. Ebb and flood currents
due to the tide present velocity profiles varying vertically as
well as currents produced by river discharge in estuaries. Zip-
pel and Thomson 3 collected measurements of the velocity of
vortical currents in the water column, at the Mouth of the
Columbia River. The characteristic thickness of the vortical
layer induced by wind is generally very thin. Wind induced
shear currents are unstable to capillary and short gravity-
capillary waves. The characteristic thickness of the shear layer
due to tidal currents and river discharge is significantly larger
and concerns the regime of gravity waves. The stability of
shear currents due to wind is well documented whereas it is
not the case for larger characteristic shear layer thickness.
The generation of capillary and short gravity-capillary waves
on deep water due to the instability of the underlying cur-
rent of depth-dependent vorticity has been investigated by
many authors. Among them we can cite Stern and Adam 4 ,
Voronovich, Lobanov, and Rybak 5 , Caponi et al. 6 , Morland,
Saffman, and Yuen 1 , Shrira 7 , Miles 8 , Zhang 9 and Young
and Wolfe 2 .
Stern and Adam 4 were the first to show that the Rayleigh in-
flection point theorem (for rigid boundaries) is no more valid
with a free surface. They used a piecewise constant vorticity
profile to model the underlying current. Later, using the same
profile, Caponi et al. 6 showed that a necessary condition for
unstable modes is that u0s > cm where u0s is the surface ve-
locity and cm = (4gσ/ρ)1/4 is the minimum gravity-capillary
wave speed for a stagnant fluid. They also showed that unsta-
ble modes then exist when the characteristic thickness of the
vortical layer exceeds a critical value which depends on u0s.
Later on, Morland, Saffman, and Yuen 1 have addressed the
same problem using three distinct smooth profiles, in a fluid
of infinite depth, too. They used an exponential profile, the
error function profile and the integrated error function profile.
They came to the same conclusions. The transition to instabil-
ity, for the smooth profiles, is an exchange of stability corre-
sponding to the vanishing of the complex phase velocity, c, of
the perturbations. Shrira 7 , within the framework of 3D flows

derived an analytic approximate dispersion relation for linear
gravity-capillary waves travelling on arbitrary underlying cur-
rents. At first order, he considered as example the stability
of the exponential current in infinite depth to 2D infinitesimal
gravity-capillary waves. Young and Wolfe 2 found, in deep
water, that exponential currents are unstable to rippling per-
turbations due to an interaction between surface waves and a
critical layer in the water. Rippling instabilities concern cap-
illary waves of negative intrinsic phase velocity propagating
against the current and whose Doppler shifted phase velocity
by the surface current, u0s, matches the current velocity at the
critical depth. Note that for the exponential velocity profile the
marginal curve corresponding to c = 0 can be obtained analyt-
ically in infinite depth. Miles 8 using a variational formulation
revisited the work of Morland, Saffman, and Yuen 1 to con-
struct an analytical description of the linear unstable modes
for the exponential velocity profile. Zhang 9 considered linear
gravity-capillary waves propagating at the surface of wind in-
duced currents on finite depth. He investigated several profiles
including the exponential current in deep water. Nwogu 10

investigated numerically, in deep water, the modulational in-
stability of gravity waves travelling at the free surface of an
underlying current with an exponential profile. He found that
the modulational instability was enhanced in the presence of
following currents.
Most of the studies on the stability of a depth varying current
have considered its linear stability to capillary and gravity-
capillary waves in deep water. The goal of this paper is
twofold: (i) to extend to finite depth some previous results
on the stability of the exponential current in the presence of
surface tension and (ii) to investigate the stability of the expo-
nential current to gravity wave perturbations.
Note that the computation of steadily propagating nonlinear
water waves at the surface of a depth-dependent current re-
quires firstly to investigate its stability.
In section 2 the equations of the linear stability problem are
presented within the framework of incompressible and invis-
cid fluid. In section 3, the stability analysis focuses on the
exponential current in water. Two examples of exponential
currents measured in situ are presented. We extend some re-
sults of Morland, Saffman, and Yuen 1 obtained in deep water
to finite depth and reformulate the stability problem using the
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Froude and Weber numbers.

II. MATHEMATICAL FORMULATION

We consider water waves propagating at the free surface of
an inviscid and incompressible fluid governed by the follow-
ing equations

∇ ·u = 0, (1)
du
dt

=−∇p
ρ

+g, (2)

where u = (u,v) is the fluid velocity, p is the pressure, ρ is
the fluid density, g is the acceleration due to gravity, u and v
are the longitudinal and transverse components of the velocity,
respectively, and

d
dt

=
∂

∂ t
+u ·∇,

where t is the time and ∇ = (∂/∂x,∂/∂y), x and y are the lon-
gitudinal and vertical coordinates, respectively.
Equation (1) corresponds to mass conservation whereas equa-
tion (2) is the Euler equation.
The boundary conditions are

v =
∂η

∂ t
+u

∂η

∂x
on y = η(x, t), (3)

where η(x, t) is the free surface elevation,
and

pa − p =
σ

R
on y = η(x, t),

where pa is the atmospheric pressure at the interface and σ is
the surface tension coefficient. The curvature is

1
R
=

∂ 2η

∂x2

(1+( ∂η

∂x )
2)3/2

.

The atmospheric pressure pa is set to zero without loss of gen-
erality. Consequently, the jump of pressure at the interface
becomes

p =−σ

R
. (4)

In deep water

(u,v)→ (0,0) as y →−∞. (5)

In finite depth

v = 0 on y =−h, (6)

where h is the depth.
Equations (3), (4), (5) and (6) are the kinematic boundary con-
dition, the Laplace law and the bottom condition, respectively.

We consider the stability of the basic steady state
(u0(y), p0(y)) solution of the system of equations (1) and (2)
to small perturbations u′(x,y, t) = (u′,v′) and p′(x,y, t) where
u0(y) is the basic velocity profile and p0(y) =−ρgy the pres-
sure.
The continuity equation and linearized Euler equation read

∂u′

∂x
+

∂v′

∂y
= 0. (7)

{
∂u′
∂ t +u0

∂u′
∂x + v′ ∂u0

∂y =− 1
ρ

∂ p′
∂x ,

∂v′
∂ t +u0

∂v′
∂x =− 1

ρ

∂ p′
∂y .

(8)

The linearized boundary conditions read

∂η ′

∂ t
+u0s

∂η ′

∂x
= v′ on y = 0, (9)

where u0s = u0(0),
and

p′ = ρgη
′−σ

∂ 2η ′

∂x2 on y = 0. (10)

In deep water

(u′,v′)→ (0,0) as y →−∞, (11)

and in finite depth

v′(−h) = 0. (12)

The solution of the linearized problem is sought in the follow-
ing form

(u′,v′, p′,η ′) = (u1(y),v1(y), p1(y),η1)exp(ik(x− ct)),
(13)

where k is the perturbation wavenumber and c its complex
phase velocity.
The system of equations (7)-(12) reduces the the Rayleigh
equation

d2v1

dy2 − (k2 +

d2V
dy2

V
)v1 = 0, (14)

with the following boundary conditions

V 2(0)
dv1

dy
(0)− (

dV
dy

(0)V (0)+g+
σk2

ρ
)v1(0) = 0, (15)

where V (y) = u0 − c

v1 → 0 as y →−∞, (16)

in deep water and,

v1(−h) = 0, (17)

in finite depth.
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FIG. 1. Ebb and flood velocity profiles measured at the Mouth of the
Columbia River (dots). The solid lines are the exponential profiles
given by equation (18) that fit the current profiles measured in-situ by
Zippel and Thomson 3 . Ebb velocity profile (left) and flood velocity
profile (right).

III. LINEAR STABILITY OF THE EXPONENTIAL
CURRENT

Wind effect at the sea surface is twofold: it generates a ver-
tically sheared current in water and then short waves. Fol-
lowing Morland, Saffman, and Yuen 1 , Young and Wolfe 2 an
exponential velocity profile will be used to model the induced
current in water

u0(y) = u0s exp(δy), −h < y < 0, (18)

where 1/δ is the characteristic thickness of the shear layer.
Note that when u0s < cm the exponential current is stable.
Currents, in the upper ocean, of exponential profile type may
exist at very different spatial scales ranging from few millime-
ters to several ten meters. As an illustration, in Figure 1, the
exponential velocity profile is used to fit two tidal currents
measured in-situ by Zippel and Thomson 3 at the Mouth of
the Columbia River. The characteristic shear layer thickness
obtained is of O(18m) and O(13.5m) for the ebb and flood
currents, respectively. The stability of the exponential current
to infinitesimal capillary waves and gravity-capillary waves is
well documented and we will revisit and reformulate this sta-
bility using the Froude and Weber numbers. Additionally, we
will introduce, for the first time, finite depth effects.
Within the framework of the exponential velocity profile the

marginal curve corresponding to c = 0 can be obtained ana-
lytically in infinite depth. The works previously cited concern
studies where the current velocity varies between u0s and zero.
In finite depth the exponential current varies between u0s and
ubottom which does not vanish. Due to the semicircle theorem
of Howard c must lie in the semicircle for unstable waves and
consequently cannot vanish. The curve separating stable and
unstable domains can be only determined numerically. More
generally, in finite depth the term (1/V )d2V/dy2 of equation
(14) depends on y and consequently the marginal curve cannot
be determined analytically.

A. The Rayleigh equation and its analytical solution

Within the framework of the exponential velocity profile
in deep water, the Rayleigh equation can be integrated an-
alytically. Miles, in Appendix A of the paper by Morland
and Saffman 11 , gave the exact expression of the solution in
terms of the hypergeometric function F(a,b;α;β (y)). Con-
sequently, in deep water equation (14) admits the following
solution

v1(y) = exp(ky)F(a,b;α;β (y)), (19)

where a = K −
√

1+K2, b = K +
√

1+K2, α = 1 + 2K,
β (y) = u0s exp(δy)/c and K = k/δ .
The derivative is

dv1

dy
= k exp(ky)F(a,b;α;β (y)) (20)

− exp(ky)
α

F(a+1,b+1;α +1;β (y))
δu0s

c
exp(δy).

Equation (15) is rewritten as follows

(u0s−c)2 dv1

dy
(0)−(δu0s(u0s−c)+g+

σk2

ρ
)v1(0)= 0, (21)

with

dv1

dy
(0)= kF(a,b;α;u0s/c)− δu0s

αc
F(a+1,b+1;α+1;u0s/c)

(22)
and

v1(0) = F(a,b;α;u0s/c). (23)

The complex phase velocity c = cr + ici is obtained by solving
numerically, with the help of Mathematica, equation (21) with
v1y(0) and v1(0) given by equations (22) and (23). Note that
equation (21) is the dispersion relation of free surface waves
travelling on an exponential current in deep water.

With u0 given by (18) and c = 0, the Rayleigh equation admits
the following solution

v1(y) = exp(
√

k2 +δ 2y).

The boundary condition (15) with c = 0 becomes

u2
0s(

√
k2 +δ 2 −δ )−g− σk2

ρ
= 0.

Introducing the intrinsic phase velocity of linear gravity-
capillary waves on deep water c2

0 = g/k+σk/ρ we obtain√
k2 +δ 2 −δ = kc2

0/u2
0s,

K = 2
c2

0/u2
0s

1− c4
0/u4

0s
. (24)

Equation (24) is the analytic expression of the marginal curve
in the (K,c0/u0s) plane plotted in figure 2. Note that equa-
tion (24) applies to gravity-capillary waves as well as gravity
waves.
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FIG. 2. Stability diagram of surface waves on deep water in the plane
(c0/u0s,k/δ ) where c0 is the intrinsic phase velocity, u0s the surface
current, k the wavenumber of the perturbation and δ the inverse of
the characteristic thickness of the shear. The solid line is the marginal
curve and the dashed line the asymptote when k/δ goes to ∞

1. Stability of the exponential current to gravity-capillary
wave perturbations

The purpose of this subsection is not to develop a de-
tailed stability analysis of the exponential current to gravity-
capillary wave perturbations which has been done by Mor-
land, Saffman, and Yuen 1 and Young and Wolfe 2 in infinite
depth, but rather to reformulate their investigations using the
Froude and Weber numbers and to complete their investiga-
tions with some new results in finite depth.
Figure 3 shows the effect of the characteristic thickness 1/δ ,
in deep water, on the stability of the underlying current when
the surface current satisfies the necessary condition of insta-
bility, u0s > cm. Three values of 1/δ are introduced cor-
responding to stability (figure 3-a, 1/δ = 0.035λm, λm =

2π/km, km =
√

ρg/σ ), marginal stability (figure 3-b, 1/δc =
0.053λm) and instability (figure 3-c, 1/δ = 0.08λm), respec-
tively. The values of K+ and K− given by equation (27) with
u0s = 2cm and δ = 2km, are close to 2.8 and 0.5, respec-
tively. To each value of u0s is associated a critical charac-
teristic thickness of the shear 1/δc corresponding to the onset
of instability. When δ = δc the orange solid line is tangent to
the blue solid line. Consequently, rippling instability condi-
tions are u0s > cm and δ < δc. The analytic expression of δc
is

δc =
u2

0s − c2
m

2
√

σ/ρ
. (25)
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FIG. 3. Color on line. Effect of the characteristic thickness, 1/δ , of
the shear on the occurrence of instability in deep water with u0s =
2cm and δ = 4.5 km (a), δ = 3km (b), δ = 2km (c). km = (ρ g/σ)1/2

is the wavenumber corresponding to the minimum of the phase ve-
locity cm. The blue solid line is the marginal curve and the orange
solid line is the graph of the dimensionless linear dispersion relation
of gravity-capillary waves c0/u0s.
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The critical characteristic shear thickness corresponding to
the occurrence of rippling instability in water is O[(u2

0s −
c2

m)10−3 m−1]. Note that instability condition u0s > cm is in-
volved in equation (25), implicitly. The critical characteristic
thickness of the shear layer decreases as the surface velocity
u0s increases.
Introducing the Froude number, Fr, and the Weber number,
We, we obtain the following dimensionless form of equation
(24) √

1+K2 −1− 1
Fr2 − K2

We
= 0, (26)

with Fr =
√

δu2
0s/g, We = ρu2

0s/(δσ).

The positive roots of equation (26) are

K± =We

√
1
2
− 1

We
− 1

WeFr2 ±
√
(

1
2
− 1

We
)2 − 1

WeFr2 .

(27)
These roots correspond to the intersection points between the
marginal and dispersion curves as shown in figure 3-c. In-
stability occurs when K− < K < K+. When these intersec-
tion points merge, as shown in figure 3-b, the marginal and
dispersion curves are tangent and K+ = K− = Kmarginal =√

W 2
e /4−1.

The marginal curve in the (Fr, We) plane is obtained by intro-
ducing the expression of the marginal wavenumber in equa-
tion (26)

We =
2

Fr2 (1+Fr2 +
√

1+2Fr2). (28)

Note that the necessary and sufficient condition for K+ and
K− to be real is

We ≥ 2
Fr2 (1+Fr2 +

√
1+2Fr2). (29)

In figure 4 is plotted the marginal curve in the (Fr, We) plane.
In infinite depth the velocity profile is stable ∀Fr when

We < 2. (30)

Remark: Within the framework of the stability of a thin
layer of inviscid fluid having a linear velocity profile, Miles 12

demonstrated that We = ρu2
0sh/σ < 3, where h is the depth

of the layer, is a sufficient condition for stability. Note that
the condition (30) has been obtained under different condi-
tions. In the following section we consider the stability of
a thin layer of inviscid fluid having an exponential shearing
flow.

IV. THE STABILITY OF A THIN INVISCID FILM OF
LIQUID IN AN EXPONENTIAL SHEARING FLOW

Miles 12 considered the stability of a thin film of invis-
cid liquid in a linear shear current. He inferred that We =

2 4 6 8 10
0

2

4

6

8

10

Fr

W
e

Stable

Unstable

FIG. 4. Stability diagram of gravity-capillary waves on deep water in

the plane (Fr, We) with the Froude number Fr =
√

δu2
0s/g and the

Weber number We = ρu2
0s/(δσ).

FIG. 5. Color online. Dimensionless growth rate of a thin film of
inviscid liquid in an exponential shearing flow, for several depths.
Here, σi = kci, hs = 1/δ , cm is the minimum intrinsic phase veloc-
ity of a gravity-capillary wave and λm its corresponding wavelength.
The surface velocity is u0s = 2.5 cm. The depths are (in units of λm):
h = 1.73 (red), 0.57 (blue), 0.35 (yellow), 0.22 magenta and 0.125
(green). Crosses correspond to infinite depth results obtained with
hypergeometric functions.

ρu2
0sh/σ < 3 is a sufficient condition for stability. The fact

that there can be no energy transfer between an inviscid shear
flow and a travelling wave disturbance, in the absence of pro-
file curvature, prevented Miles to draw a conclusion concern-
ing the instability for a linear shear, even for waves with
a phase velocity in the range of the shear velocity profile.
Within the framework of an exponential current, there is a pro-
file curvature. Therefore, we have studied the instability of a
thin liquid film in an exponential shearing flow. The results
are presented in figure 5. It is clear that (i) the dimensionless
growth rate increases as the depth decreases and (ii) the band-
width of the characteristic shear layer thickness corresponding
to instability decreases as the depth decreases (iii) for depths
greater than 1.73 λm, growth rates are like those obtained in
an infinite depth (when the surface velocity is equal to 2.5 cm).
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FIG. 6. Stability diagram of gravity capillary waves on finite depth
in the plane (c0/u0s,kh) where the depth h = 0.20m. δh = 5 (top)
and δh = 10 (bottom). Crosses correspond to deep water.

To sum up, we have considered the stability of a thin film
of liquid in an exponential shearing flow. We found that (i)
the dimensionless growth rate increases as the depth decreases
and (ii) the bandwidth of the characteristic shear layer thick-
ness corresponding to instability decreases as the depth de-
creases.

As mentioned previously, in finite depth the marginal curve
cannot be obtained analytically. In Appendix A is presented
the numerical approach to determine the marginal curve and
the complex phase velocity, c, of the perturbations. Figure 6
shows two marginal curves in the plane (c0/u0s,kh) for two
values of δh where h is the depth. The stable domain is lo-
cated above the marginal curve. The size of the stable domain
increases as the characteristic thickness of the shear decreases
for fixed values of the depth.

To summarize, our contributions to the problem of the lin-
ear stability of the exponential current to gravity-capillary
waves are (i) the derivation of an analytic expression of the
critical characteristic thickness of the shear (equation (25)) (ii)
a stability criterion in deep water when the Weber number We
is less than 2 independently of the Froude number Fr (iii) the
plots of stability diagrams in finite depth and (iv) the stability
of a thin film of liquid in an exponential shearing flow.

V. GRAVITY WAVE INSTABILITIES

In this section, we revisit the linear stability of the expo-
nential current to gravity wave perturbations (We = ∞) and

conduct detailed investigations.
Rippling instabilities are generated at the surface of shear lay-
ers of few millimeters whereas, for instance, the length scale
of the characteristic thickness of shear layers due to discharge
from river estuaries or tidal currents is much larger. The char-
acteristic shear layer thickness at the Mouth of the Columbia
River is of O(18m) and O(13.5m) for the ebb and flood
currents, respectively. Consequently, we can expect that the
length scales of the unstable perturbations occurring on the
surface of currents at river estuaries belong to the class of
gravity waves. This oceanic current example has motivated
our investigation on the linear stability of the exponential cur-
rent to pure gravity wave disturbances.

The dimensionless equation (24) for gravity waves reads√
1+K2 −1− 1

Fr2 = 0, (31)

The analytic expression of the marginal curve in the (K,Fr)
plane is

Fr =
1√√

1+K2 −1
, (32)

and the dimensionless marginal wavenumber is

Kmarginal =

√
2

Fr2 +
1

Fr4 . (33)

In dimensional form the marginal wavenumber reads

kmarginal =

√
2gδ

u2
0s

+
g

u4
0s
. (34)

Figure 7 shows the contour lines corresponding to differ-
ent values of the dimensionless growth rate plotted in the
(k/δ ,Fr) plane. One can observe that the dimensionless
growth rate decreases as the Froude number decreases. Figure
8 shows the stability diagrams, in the (k/δ ,c0/u0s) plane, cor-
responding to the ebb and flood currents at the Mouth of the
Columbia River. The ebb and flood currents are unstable for
k/δ > 18.72 and k/δ > 30.5, respectively. Nevertheless, their
growth rates are extremely weak as shown in figure 9. To find
more unstable exponential currents we have to consider higher
values of the Froude number. For example, we have consid-
ered two series of values of the characteristic shear layer thick-
ness and surface velocity. For δ = 10 m−1 and δ = 20 m−1 the
surface velocity u0s increases by increment of 0.5 m.s−1 from
1 m.s−1 to 3.5 m.s−1. In figures 10 and 11 are plotted the
curves of the dimensional growth rate and dimensional phase
velocity as a function of the wavenumber for several values
of δ and u0s. The dimensional growth rate increases as the
surface velocity increases for fixed δ and its increases with
δ for fixed u0s. Note that kmax corresponding to the dimen-
sional growth rate maximum is roughly independent of the
surface velocity in the vicinity of k = δ . We can conclude that
the wavelength of the most unstable mode is approximately
2π/δ . The vanishing of the phase velocity cr corresponds to
the marginal wavenumber values which decrease as u0s in-
creases. The curves of the phase velocity present asymptotes
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FIG. 7. Color on line. Contour lines of dimensionless growth rates,
kci/(u0sδ ), plotted in the (k/δ ,Fr) plane. The thick black solid line
corresponds to the marginal curve given by equation (32).
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FIG. 8. Color online. Stability diagram of current velocity pro-
files measured at the Mouth of the Columbia River. Left: Ebb cur-
rent with (u0s,δ ) = (−3.17m.s−1,0.055m−1). Right: Flood current
with (u0s,δ ) = (2.12m.s−1,0.074m−1). The marginal wavenumber
is defined by the intersection of the marginal curve (in blue) with the
graph of the linear dispersion relation (in orange)

.

defined by lim cr as k → ∞ < u0s.
In this subsection we have focused our investigation on the
linear stability of the exponential current to pure gravity wave
perturbations. We found that (i) the dimensionless rate of
growth increases as the Froude number of the current in-
creases (ii) thinner the shear layer is, larger the growth rate is
for fixed surface velocity and (iii) the dimensional wavenum-
ber corresponding to the most unstable perturbation is close to
the inverse of the characteristic thickness of the shear layer.

VI. CONCLUSION AND PERSPECTIVE

Currents in the upper ocean exist at very different vertical
spatial scales. Wind action at the sea surface generates under-
lying shear currents of few millimeter thickness whereas tidal
currents or currents due to river discharge present shear layer

FIG. 9. Color on line. Stability of ebb and flood currents at the Mouth
of the Columbia River in the (k/δ ,Fr) plane with some contour lines
of dimensionless growth rates, kci/(u0sδ ). The red and green hori-
zontal lines correspond to Fr = 0.237 (ebb current) and Fr = 0.184
(flood current), respectively. Ebb and flood currents are unstable but
their growth rates are less than 10−9.

thicknesses much larger. Morland, Saffman, and Yuen 1 and
Young and Wolfe 2 investigated the stability of exponential
currents of very thin shear layers and consequently, restricted
their studies to rippling instabilities. To extend their studies
we have investigated the stability of much thicker exponential
shear currents to infinitesimal gravity wave perturbations. We
found that (i) the dimensionless growth rate increases with the
Froude number based on the characteristic shear layer thick-
ness and the surface velocity and (ii) the dimensional wave-
length of the most unstable mode is of order of the character-
istic shear layer thickness. Besides, within the framework of
gravity-capillary instabilities (i) we provided a sufficient con-
dition based on the Weber number based on the characteristic
shear layer thickness and the surface velocity for the stability
of the exponential current (ii) we have considered two stability
diagrams in finite depth demonstrating that the size of stable
domains increases as the characteristic thickness of the shear
layer decreases and (iii) we have considered the stability of a
thin film of liquid in an exponential shearing flow.
The next step is to compute nonlinear progressive water waves
of permanent form on a stable exponential current. Conse-
quently, it is crucial to check firstly the stability of the under-
lying current.

DATA AVAILABILITY STATEMENT

Data available on request from the authors
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FIG. 10. Color on line. Dimensional growth rates of gravity waves
(top) and phase velocities (bottom), against the wavenumber. For
δ = 10 m−1 and u0s increases from 1 m.s−1 to 3.5 m.s−1 by in-
crement of 0.5 m.s−1 (the Froude number varies from 1 to 3.5).
The lower curves (in the top and bottom figures) correspond to
u0s = 1 m.s−1.

Appendix A: Numerical method for the Rayleigh equation in
finite depth

A Newton method is used to solve the Rayleigh equation
with boundary conditions (15) and (17) and the dimensionless
boundary conditions v1(0) = 1 for the unknowns c and v1y(0).
At each iteration, the Rayleigh equation is integrated (with the
appropriate boundary conditions) as described in Abid, Bra-
chet, and Huerre 13 , Drazin 14 and Conte and Miles 15 . The
present numerical method is validated using comparisons with
the infinite depth results of Morland, Saffman, and Yuen 1 by
increasing h/λm in our code. Here λm is the wavelength of the
slowest capillary-gravity wave in calm water. The results of
the validation are presented in table I and a good agreement
is obtained as shown in the last line of the table. The numeri-
cal method was also validated using the results of Young and
Wolfe 2 in infinite depth. The validation is presented in fig-
ure 12. In this figure solid lines correspond to the results of
Young and Wolfe 2 . The dots correspond to numerical results
derived from our code in finite depth. Nevertheless, note that
h= 2.5λm corresponds in fact to deep water as shown in figure
5. Herein, a good agreement is obtained, too.
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FIG. 11. Color on line. Dimensional growth rates of gravity waves
(top) and phase velocities (bottom), against the wavenumber. For
δ = 20 m−1 and u0s increases from 1 m.s−1 to 3.5 m.s−1 by in-
crement of 0.5 m.s−1 (the Froude number varies from 1.43 to 5).
The lower curves (in the top and bottom figures) correspond to
u0s = 1 m.s−1.

cr/cm σiλm/cm h/λm
0.333312 0.0425762 0.57

0.3334 0.0433171 1.15
0.3334 0.0433172 1.72
0.3334 0.0433172 2.30
0.333 0.043 ∞ (Morland et al.)

TABLE I. Validation of the numerical method. The validation is done
for many values of u0s and δ . Only the case with u0s/cm = 2 and
δλm = 7 is shown. Our results are compared with those of Morland,
Saffman, and Yuen 1 , in deep water, by increasing h/λm in our code.
A good agreement is found between our numerical results and those
of Morland, Saffman, and Yuen 1 as shown in the last line of the
table. In the table, cr is the absolute phase speed and σi = kci is the
growth rate. Herein, λm is the wavelength of the slowest capillary-
gravity wave in calm water and cm its phase speed.

1L. C. Morland, P. G. Saffman, and H. C. Yuen, “Waves generated by
shear layer instabilities,” Proceedings: Mathematical and Physical Sciences
, 441–450 (1991).

2W. R. Young and C. L. Wolfe, “Generation of surface waves by shear-flow
instability,” J. Fluid Mech. 739, 276–307 (2014).

3S. Zippel and J. Thomson, “Surface wave breaking over sheared currents:
Observations from the mouth of the columbia river,” Journal of Geophysical
Research: Oceans 122, 3311–3328 (2017).



water-waves generated by instability of an exponential shear flow 9

1 2 3 4 5 6 7 8

0.0

0.5

1.0

1.5

2.0

2.5

k/δ

10
0
c i
/u
0
s

FIG. 12. Color online. Validation of the numerical method using the
results of Young and Wolfe 2 for We = 100 corresponding to their
figure 4(e) in deep water for Fr = 2.83 (red), Fr = 2 (green) and
Fr = 1.41 (blue). Dots correspond to finite depth results obtained
numerically using our method with h = 2.5λm.

4M. E. Stern and Y. A. Adam, “Capillary waves generated by a shear cur-
rent in water,” Mémoires Société Royale des Sciences de Liège , 179–185

(1973).
5A. G. Voronovich, E. D. Lobanov, and S. A. Rybak, “On the stability of
gravitational-capillary waves in the presence of a vertically nonuniform cur-
rent,” Izv. att. Ocean Phys. 16, 220–222 (1980).

6E. A. Caponi, H. C. Yuen, F. A. Milinazzo, and P. G. Saffman, “Water wave
instability induced by a drift layer,” J. Fluid Mech. , 207–213 (1991).

7V. I. Shrira, “Surface waves on shear currents: solution of the boundary-
value problem,” J. Fluid Mech. 252, 565–584 (1993).

8J. W. Miles, “A note on surface waves generated by a shear flow instability,”
J. Fluid Mech. 447, 173–177 (2001).

9X. Zhang, “Short surface waves on surface shear,” J. Fluid Mech. 541, 345–
370 (2005).

10O. G. Nwogu, English“Interaction of finite-amplitude waves with vertically
sheared current fields,” Journal of Fluid Mechanics 627, 179 (2009).

11L. C. Morland and P. G. Saffman, “Effect of wind profile on the instability
of wind blowing over water,” Journal of Fluid Mechanics 252, 383–398
(1993).

12J. W. Miles, “The hydrodynamic stability of a thin film of liquid in uniform
shearing motion,” Journal of Fluid Mechanics 8, 593–610 (1960).

13M. Abid, M. Brachet, and P. Huerre, “Linear hydrodynamic instability of
circular jets with thin shear layers,” Eur. J. Mech., B/Fluids 12 (5), 683–693
(1993).

14P. G. Drazin, Hydrodynamic Stability (Cambridge University Press, 1981).
15S. D. Conte and J. W. Miles, “On the numerical integration of the Orr-

Sommerfeld equation,” J. Soc. Ind. Appl. Math. 7 (4), 361–366 (1959).


