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Abstract

In this paper, we study a new type of SPDEs with reflection (called mean reflected SPDEs),
where the compensating reflection part depends not on the paths but on the law of the solution.
Focusing on solutions (u,K) with deterministic K, we obtain the well-posedness of such SPDE.
Utilising the weak convergence approach, we then establish the large deviation principles for
this type of SPDEs.
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1 Introduction

The aim of this paper is to study mean reflected SPDEs driven by a space-time white noise, which
are reflected SPDEs with a constraint on the law of the process u rather than on its paths. More
precisely, we mainly consider the following parabolic SPDE:

∂u(x,t)
∂t − ∂2u(x,t)

∂x2
+ f(x, t;u) = σ(x, t;u) Ẇ (x, t) + K̇(x, t), x ∈ [0, 1], t ≥ 0;

u(x, 0) = u0(x), x ∈ [0, 1];

u(0, t) = u(1, t) = 0, t ≥ 0,

(1.1)

satisfying
E[h(x, t, u(x, t))] ≥ 0, ∀x ∈ [0, 1], t ≥ 0. (1.2)

Here Ẇ denotes the space-time white noise defined on a complete probability space (Ω,F ,P). Set
Ft := σ{W (A) : A ∈ B([0, 1] × [0, t])} ∨ N , where N is the class of P-null sets of F . The initial
condition u0(x) is a non-negative continuous function, which vanishes at points 0 and 1. The
coefficients f and σ are measurable mappings from [0, 1]×R+×C([0, 1]×R+) into R. Moreover, K
is a measure which compensates reflections of the functional of u of the form E[h(x, t, u(x, t))] ≥ 0
for a given continuous function h.

∗The corresponding author. Email: lulinxiaguang@csu.edu.cn (J. Duan), ying.hu@univ-rennes1.fr (Y. Hu),
pengjun2015@csu.edu.cn (J. Peng)
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Reflection problems for SPDEs have been widely studied in recent years. In [26], Nualart
and Pardoux first established the existence and uniqueness of solution to the obstacle problem for
stochastic heat equation, driven by a space-time white noise with a constant diffusion coefficient.
This result was generalized by Donati-Martin and Pardoux in [11], in which both the drift and the
diffusion coefficients are nonlinear. They used penalization method to prove the existence of the
solution but did not obtain the uniqueness result. And then in 2009, Xu and Zhang [29] finally
established the uniqueness. Moreover, the reflected system of SPDEs have also been studied in
[25, 30, 31]. In all the above mentioned papers, they do not consider the case when the reflection
is on the law of the solution.

The notion of mean reflection is motivated by the mean field game theory. In this new type
of equations, the compensating reflection part depends not on the paths but on the law of the
solution. In [1], Briand, Elie and Hu studied a system being reflected according to the mean of
the process and called it a mean reflected Backward Stochastic Differential Equation (MR BSDE).
With quadratic generator and bounded or unbounded terminal condition, the well-posedness of
MR BSDE was generalized in [16, 17]. And then, [2] focused on the forward version (MR SDE) as
well as its approximation by an appropriate interacting particle system and numerical schemes. In
[4], the results of [1, 2] was enlarged to the multi-dimensional case and for rather general constraint
sets on the law in the backward and forward cases. MR SDE with jumps can be found in [3] and
MR BSDE by allowing a random measure in the diffusion part is considered in [15]. Recently, mean
reflection with two constraints for BSDEs and SDEs are solved in [13] and [12], respectively.

However, to the best of our knowledge, mean reflected SPDEs have not yet been considered
in the literature. The purpose of this paper is twofold. In the first part, we aim to establish
the existence and uniqueness of the deterministic flat solution, defined in Definition 2.3, for mean
reflected SPDEs (1.1). In our paper, the constraint depends on the distribution of u, and not the
pointwise values of the process u. For this reason, we have no comparison theorem and cannot
obtain the corresponding estimates as in penalized classical SPDEs. Our proof is mainly based
on the method of Picard iteration. Inspired by thoughts of [26, 29], it is possible to reduce the
problem to a completely deterministic obstacle problem (see (3.2) for linear mean reflection and
(4.1) for general mean reflection), for which one has existence and uniqueness for a large class of
driving functions. More importantly, we can control differences in the uniform norm of solution to
obstacle problem (3.2) by differences in the uniform norm of obstacles (see Lemma 3.2). Moreover,
based on the property (4.3) of operator Lx,t (defined in (4.2)) and the equivalence relation (4.4),
the differences in the uniform norm of solution to obstacle problem (4.1) can also be controlled by
the expectation of differences in the uniform norm of obstacles (see Lemma 4.3). In the second
part of the paper, we consider the small noise perturbation of (1.1):

∂uε(x,t)
∂t − ∂2uε(x,t)

∂x2
+ f(x, t;uε) =

√
εσ(x, t;uε) Ẇ (x, t) + K̇ε(x, t);

uε(x, 0) = u0(x);

uε(0, t) = uε(1, t) = 0,

satisfying E[h(x, t, uε(x, t))] ≥ 0 for all x ∈ [0, 1], t ≥ 0 and
∫∞

0

∫ 1
0 E[h(x, t, uε(x, t))]Kε(dx, dt) = 0.

We devote to establishing a large deviation principle (LDP) for {uε(·, ·)}ε>0 in C([0, 1] × [0, T ]),
the space of continuous functions in [0, 1] × [0, T ] endowed with the uniform topology. Our proof
is based on the weak convergence method, which provides a new perspective on this topic. The
key idea of this approach is to prove a certain variational representation formula about the Laplace
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transform of bounded continuous functionals, which then leads to the verification of the equivalence
between the LDP and the Laplace principle. In this paper, we use a new sufficient condition (see
Lemma 5.3) proposed in [24], which is a generalized version of classical weak convergence criteria by
Budhiraja et al.[6, 7]. This new sufficient condition has been widely applied (see [10, 14, 18–20, 28]
and so on).

The organization of this paper is as follows. In Section 2, we first give Example 2.1 which shows
that for the mean reflected SPDEs, it will lead to an infinite number of solutions if the reflection
term is allowed to be random. To ensure the uniqueness of the solution, we introduce the notion
of deterministic flat solution (see Definition 2.3). The main assumptions of the paper are stated at
the end of Section 2. Inspired by thoughts of [26, 29] and applying the method of Picard iteration,
we study the SPDE with linear mean reflection in Section 3 and extend the result to general mean
reflection in Section 4. In Section 5, we are concerned about the LDP for {uε(·, ·)}ε>0 , which is
proved in Theorem 5.7.

In this paper, we use the following notation. Denote by Gt(x, y) is the fundamental solution
of the heat equation with Dirichlet boundary condition. 〈·, ·〉 is the scalar product in L2(0, 1)
and | · |t∞ denotes the uniform norm in C([0, 1] × [0, t]). i.e. |ϕ|t∞ := supx∈[0,1],s∈[0,t] |ϕ(x, s)|, ϕ ∈
C([0, 1]× [0, t]). Let B((x0, t0), r) be the open ball, which is centered at (x0, t0) with radius r > 0.

2 Preliminaries and hypotheses

In order to establish the well-posedness of mean reflected SPDEs, we consider only deterministic
flat solution, which means that the process K is restricted to be non-random. This is because if the
reflection term is allowed to be random, it will lead to an infinite number of solutions to the SPDE
(see Example 2.1). Furthermore, we give the definition of deterministic flat solution to problem
(1.1). At the end of this section, some of the main assumptions of the paper are stated.

Example 2.1 Let us consider a special case where the coefficient σ is a positive constant and the
mean reflection is linear. Namely,

∂u(x,t)
∂t − ∂2u(x,t)

∂x2
= σ Ẇ (x, t) + K̇(x, t), x ∈ [0, 1], t ≥ 0;

u(x, 0) = u0(x), x ∈ [0, 1];

u(0, t) = u(1, t) = 0, t ≥ 0;

E[u(x, t)] ≥ y(x, t), x ∈ [0, 1], t ≥ 0,

(2.1)

with the Skorokhod condition∫ ∞
0

∫ 1

0

(
E[u(x, t)]− y(x, t)

)
K(dx, dt) = 0. (2.2)

It is well known that (2.2) makes it possible to qualify the solution as “flat” when satisfied. In (2.1),
y is a deterministic continuous map from [0, 1]×R+ to R, that is, a deterministic lower bound on the
expected value of the solution. Moreover, y(x, 0) = 0 for all x ∈ [0, 1] and y(0, t) = y(1, t) = 0. The
solution to (2.1) is the couple of (u,K), in which the process K need to ensure that the constraint
is satisfied in a minimal way according to the Skorokhod condition (2.2).
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Now, we are going to prove that the mean reflected SPDE (2.1) exists a deterministic flat
solution. In fact, several authors including Walsh [27] have shown that

z(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy + σ

∫ t

0

∫ 1

0
Gt−s(x, y)W (dy, ds),

is the weak solution of the parabolic SPDE:
∂z(x,t)
∂t − ∂2z(x,t)

∂x2
= σ Ẇ (x, t), x ∈ [0, 1], t ≥ 0;

z(x, 0) = u0(x), x ∈ [0, 1];

z(0, t) = z(1, t) = 0, t ≥ 0.

Define z̄ := u− z and ν(x, t) := E[z(x, t)]− y(x, t), then z̄ satisfies the following parabolic PDE
∂z̄(x,t)
∂t − ∂2z̄(x,t)

∂x2
= K̇(x, t), x ∈ [0, 1], t ≥ 0;

z̄(x, 0) = 0, x ∈ [0, 1];

z̄(0, t) = z̄(1, t) = 0, t ≥ 0.

(2.3)

It is worth pointing out that this process K is deterministic, which can be constructed by penal-
ization method (see (2.6) in Remark 2.2). This implies z̄ is also deterministic. Hence, we have

z̄(x, t) = E[z̄(x, t)] ≥ −ν(x, t), ∀x ∈ [0, 1], t ≥ 0, (2.4)

and ∫ ∞
0

∫ 1

0

(
z̄(x, t) + ν(x, t)

)
K(dx, dt) = 0. (2.5)

From [29, Proposition 2.1], it follows that the parabolic PDE (2.3) admits a unique solution (z̄, K)
satisfying (2.4) and (2.5). Based on the above observation, we finally deduce that the mean reflected
SPDE (2.1) has a unique deterministic flat solution with (u = z̄ + z,K).

Remark 2.2 Since the solution z̄ of (2.3)-(2.5) is deterministic, then by the penalization method
as in [26, Theorem1.4], we can construct a sequence z̄n to approximate z̄ as follows.

∂z̄n(x,t)
∂t − ∂2z̄n(x,t)

∂x2
= n

(
z̄n(x, t) + ν(x, t)

)−
,

z̄n(x, 0) = 0,

z̄n(0, t) = z̄n(1, t) = 0.

(2.6)

It is easy to see that z̄n increases as n tends to infinity. However, when the coefficient σ is not
constant or the function f 6≡ 0 in (1.1), z̄ is random in these cases. Note that the constraint
depends on the distribution of u, and not the pointwise values of the process u. Hence, we cannot
ensure the penalized sequence z̄n will be increasing at this tme and this method fails. As can be seen
below, the existence of the solution can also be proved by iteration, and holds even for more general
SPDEs where the coefficients depend on the past.
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If the reflection term is allowed to be random, then below we show that mean reflected SPDE
(2.1) may has an infinite number of flat solutions (uα,Kα). Indeed, for any real α 6= 0, let
Mα
t := E[1{Y >0}|Ft] with Y =

∫∞
0 e−α

2s dBs, then it is easy to see that every Mα
t is a bounded

positive martingale. Moreover, according to [22, Example 7.5], we have

Mα
t = Φ

 ∫ t
0 e
−α2s dBs√∫∞

t e−2α2sds

 = Φ

(√
2|α| eα2t

(∫ t

0
e−α

2s dBs

))
,

and E[Mα
t ] = 1/2, where Φ is the cumulative distribution function of the standard normal dis-

tribution. Define the random process Kα(x, t) :=
∫ t

0

∫ x
0 (Mα

s + 1
2)K(dy, ds), where K is just the

deterministic reflection obtained above. Fix α and then given Kα, we consider

z̄α(x, t) :=

∫ t

0

∫ 1

0
Gt−s(x, y) dKα(y, s).

Since Gt(x, y) is the fundamental solution of the heat equation with Dirichlet boundary condition,
then we have z̄α satisfies the following parabolic equation{

∂z̄α(x,t)
∂t = ∂2z̄α(x,t)

∂x2
+ (Mα

t + 1
2) K̇(x, t),

z̄α(x, 0) = 0, z̄α(0, t) = z̄α(1, t) = 0.
(2.7)

Using the facts that E[Mα
t + 1

2 ] = 1 for all 0 ≤ t ≤ T and K is deterministic, we deduce

E[z̄α(x, t)] =

∫ t

0

∫ 1

0
Gt−s(x, y)

(
E[Mα

s ] +
1

2

)
K(dy, ds)

=

∫ t

0

∫ 1

0
Gt−s(x, y)K(dy, ds)

= z̄(x, t),

which implies that uα := z̄α + z satisfies E[uα(x, t)] = E[u(x, t)] for any real α 6= 0. Consequently,
from E[u(x, t)] ≥ y(x, t), ∀(x, t) ∈ [0, 1] × [0, T ] and E[u(x, t)] − y(x, t) = 0, dK(x, t)-a.e., we
conclude that for any T > 0,∫ T

0

∫ 1

0
(E[uα(x, t)]− y(x, t)) dKα(x, t) =

∫ T

0

∫ 1

0
(E[u(x, t)]− y(x, t)) (Mα

t + 1/2)K(dx, dt) = 0.

Thus for any real α 6= 0, (uα,Kα) is also a flat solution to mean reflected SPDE (2.1).

One way to overcome this difficulty is to turn to the consideration of minimal solution. Assume
that (û, K̂) is a minimal flat solution of mean reflected SPDE (2.1), that is û ≤ uα for any real α 6= 0,
where uα are just defined above. Clearly, there must exist a α 6= 0 such that û(x0, t0) < uα(x0, t0)
for some (x0, t0) ∈ [0, 1]× [0, T ]. Moreover, we claim that E[uα(x0, t0)] = y(x0, t0). In fact, if not,
then we have E[uα(x0, t0)] > E[û(x0, t0)] ≥ y(x0, t0). Since

E[uα(x, t)] = E[u(x, t)] = E[z(x, t)] + z̄(x, t), ∀(x, t) ∈ [0, 1]× [0, T ],

it yields E[z(x0, t0)] > y(x0, t0) and z̄(x0, t0) = 0. Meanwhile, we obtain E[(û − z)(x0, t0)] < 0,
which is a contraction with E[(û − z)(x, t)] ≥ 0 for any (x, t) ∈ [0, 1] × [0, T ]. Consequently, the
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equality E[uα(x0, t0)] = y(x0, t0) does hold. However, E[û(x0, t0)] < E[uα(x0, t0)] = y(x0, t0) at
this time and thus the constraint is not satisfied. Hence, we conclude from above displays that the
mean reflected SPDE (2.1) has no minimal solution.

Based on Example 2.1, in order to establish the well-posedness of mean reflected SPDEs, we
consider only the case where the reflection term is deterministic. Now, we give the definition of the
deterministic flat solution of mean reflected SPDE (1.1).

Definition 2.3 A pair (u,K) is said to be a deterministic flat solution of mean reflected SPDE
(1.1) if the process K is deterministic and

(i) u is a continuous random process on [0, 1] × R+; u(x, t) is Ft measurable and satisfies the
constraint (1.2).

(ii) K is a measure on (0, 1)×R+ such that K((ε, 1− ε)× [0, T ]) <∞ for every small ε > 0 and
T > 0.

(iii) (u,K) solves the parabolic SPDE in the following sense: ∀t ∈ R+, ϕ ∈ C2
0 ([0, 1]) with ϕ(0) =

ϕ(1) = 0,

〈u(t), ϕ〉 −
∫ t

0
〈u(s), ϕ′′〉 ds+

∫ t

0

∫ 1

0
f(x, s;u)ϕ(x)dx ds

= 〈u0, ϕ〉+

∫ t

0

∫ 1

0
σ(x, s;u)ϕ(x)W (dx, ds) +

∫ t

0

∫ 1

0
ϕ(x)K(dx, ds) a.s.

(iv) K increases only when needed. i.e.
∫∞

0

∫ 1
0 E[h(x, s, u(x, s))]K(dx, ds) = 0.

We next introduce the precise assumptions on the coefficients. f, σ are two measurable map-
pings,

f, σ : [0, 1]× R+ × C([0, 1]× R+) → R,

which satisfies

(I) for any u, v ∈ C([0, 1]× R+), (x, t) ∈ [0, 1]× R+ such that ut = vt,

f(x, t;u) = f(x, t; v)

σ(x, t;u) = σ(x, t; v),

where ut, vt denote the restriction of u, v to [0, 1]× [0, t] respectively.

(II) for any T > 0, there exist constants C(T ) and M(T ) depending only on T such that for any
x ∈ [0, 1], t ∈ [0, T ], u, v ∈ C([0, 1]× R+),

|f(x, t;u)− f(x, t; v)|+ |σ(x, t;u)− σ(x, t; v)| ≤ C(T ) |u− v|t∞, (2.8)

|f(x, t;u)|+ |σ(x, t;u)| ≤M(T )
(
1 + |u|t∞

)
. (2.9)

In addition, we consider some assumptions on the constraint function h.
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(H) The continuous function h : [0, 1] × R+ × R → R is a B([0, 1]) × B(R+) × B(R)-measurable
map satisfying

1. ∀t ≥ 0, h(0, t, 0) = h(1, t, 0) = 0 and y 7→ h(x, t, y) is strictly increasing.

2. ∀x ∈ [0, 1], h(x, 0, u0(x)) ≥ 0 and h(x, t,∞) > 0 for any (x, t) ∈ [0, 1]× R+.

3. ∀(x, t) ∈ [0, 1]× R+,∀y ∈ R, |h(x, t, y)| ≤ C1(1 + |y|) for some positive constant C1.

4. ∀(x, t) ∈ [0, 1] × R+, h is a bi-Lipschitz function in y: there exist positive constants
0 < ch ≤ Ch such that

ch|y − z| ≤ |h(x, t, y)− h(x, t, z)| ≤ Ch|y − z|, y, z ∈ R. (2.10)

It is worth noticing that the assumption (2.10) will imply a Lipschitz property of the operator Lx,t
(defined in (4.2)) for the L1-norm, uniformly in x and t (see Lemma 4.1). This plays a crucial role
in the proof of SPDE (1.1) with general mean reflection (1.2), which can be seen from the detailed
proof in Section 4. Some common functions satisfying these conditions include 2y − y+, sin y + 2y
and x(1− x)(−

√
y+ + 1 + y + 1).

3 SPDE with linear mean reflection

In this section, we mainly study a special case of (1.2) where the mean reflection is linear. i.e.
h : (x, t, Y ) 7→ Y − y(x, t). More precisely, the constraint condition is

E[u(x, t)] ≥ y(x, t), (x, t) ∈ [0, 1]× R+, (3.1)

where y is a deterministic continuous map from [0, 1] × R+ to R. Throughout this section, we
assume y(x, 0) = 0 and y(0, t) = y(1, t) = 0. The main result is Theorem 3.2, which states
that mean reflected SPDE (1.1) with constraint condition (3.1) admits a unique deterministic flat
solution (u,K).

Before giving the main result, we firstly consider the following deterministic parabolic obstacle
problem 

∂z̄(x,t)
∂t − ∂2z̄(x,t)

∂x2
= K̇(x, t);

z̄(x, t) ≥ −v(x, t);∫ T
0

∫ 1
0 (z + v)(x, t) dK(x, t) = 0, for all T > 0.

(3.2)

Here, the function v belongs to C([0, 1]× [0, T ]) and satisfies v(x, 0) = u0(x).

Definition 3.1 A pair (z̄, K) is called a solution to problem (3.2) if it satisfies the following con-
ditions

(1) z̄ is a continuous function on [0, 1]× [0, T ] satisfying z̄(x, 0) = 0 and z̄(0, t) = z̄(1, t) = 0.

(2) K is a measure on (0, 1)×R+ such that K
(
(ε, 1− ε)× [0, T ]

)
<∞ for every small ε > 0 and

T > 0.
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(3) z̄ weakly solves the PDE
∂z̄

∂t
=
∂2z̄

∂x2
+ K̇.

That is, for all t ≥ 0 and φ ∈ C2
0 ((0, 1)),∫ 1

0
z̄(x, t)φ(x) dx =

∫ t

0

∫ 1

0
z̄(x, s)φ

′′
(x) dx ds+

∫ t

0

∫ 1

0
φ(x)K(dx, ds).

(4)
∫ t

0

∫ 1
0 (z̄(x, s) + v(x, s))K(dx, ds) = 0.

The above obstacle problem on the compact interval [0, 1] was originally discussed in [26, Theo-
rem 1.4]. Based on thoughts of it, the following lemma has been given in [29, Proposition 2.1]. This
will be very helpful when proving estimates later, as it will allow us to control our mean reflected
SPDE by a SPDE without mean reflection.

Lemma 3.2 If v(x, 0) = u0(x) for all x ∈ [0, 1], v(0, t) = v(1, t) = 0 for all t ≥ 0, the obstacle
problem (3.2) admits a unique solution. Moreover, |z̄|T∞ ≤ |v|T∞.

Now, the main result of this section is given as follows.

Theorem 3.3 Under the assumptions (I) and (II), the parabolic SPDE (1.1) with linear mean
reflection (3.1) admits a unique deterministic flat solution. Moreover, E[(|u|T∞)p] <∞ for all p ≥ 1.

Proof: Let us first prove the existence of deterministic flat solution to mean reflected SPDE (1.1).
In view of the globally Lipschitz condition of the coefficients f and σ, it follows from [27] that

z1(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s;u0) dy ds

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;u0)W (dy, ds),

satisfying the SPDE
∂z1(x,t)
∂t − ∂2z1(x,t)

∂x2
+ f(x, t;u0) = σ(x, t;u0) Ẇ (x, t);

z1(x, 0) = u0(x);

z1(0, t) = z1(1, t) = 0.

Denote by (z̄1,K1) be the unique deterministic solution of obstacle problem (3.2) with v(x, t) =
E[z1(x, t)]− y(x, t). Set u1 := z1 + z̄1, then it is easy to verify that (u1,K1) is the unique solution
of the following mean reflected SPDE

∂u1(x,t)
∂t − ∂2u1(x,t)

∂x2
+ f(x, t;u0) = σ(x, t;u0) Ẇ (x, t) + K̇1;

u1(x, 0) = u0(x);

u1(0, t) = u1(1, t) = 0,
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with E[u1(x, t)] ≥ y(x, t) for any (x, t) ∈ [0, 1]× R+. We iterate this procedure and suppose un−1

has been defined. Let

zn(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s;un−1) dy ds

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;un−1)W (dy, ds),

and (z̄n,Kn) be the unique deterministic flat solution of obstacle problem (3.2) with v(x, t) =
E[zn(x, t)] − y(x, t). Define un := zn + z̄n, then (un,Kn) is the unique solution of the following
mean reflected SPDE

∂un(x,t)
∂t − ∂2un(x,t)

∂x2
+ f(x, t;un−1) = σ(x, t;un−1) Ẇ (x, t) + K̇n;

un(x, 0) = u0(x);

un(0, t) = un(1, t) = 0,

(3.3)

with E[un(x, t)] ≥ y(x, t) for any (x, t) ∈ [0, 1]×R+. Moreover, using the fact that z̄n is determin-
istic, it yields

E[un(x, t)] = E[zn(x, t)] + z̄n(x, t) ≥ y(x, t),

with the Skorokhod condition
∫ t

0

∫ 1
0 (E[un(x, t)]− y(x, t))Kn(dx, dt) = 0.

The existence part is divided into two steps.
Step 1. Now, we prove the sequence un(x, t) converges in Lp, uniformly with respect to (x, t).

Indeed, by a similar argument as in [26, Theorem 1.4] and Jensen’s inequality, we have

|z̄n − z̄n−1|T∞ ≤ sup
x∈[0,1],t∈[0,T ]

∣∣(E[zn(x, t)]− y(x, t)
)
−
(
E[zn−1(x, t)]− y(x, t)

)∣∣
≤ sup

x∈[0,1],t∈[0,T ]
E
[∣∣zn(x, t)− zn−1(x, t)

∣∣]
≤ E

[
|zn − zn−1|T∞

]
,

which implies

|un − un−1|T∞ ≤ |zn − zn−1|T∞ + |z̄n − z̄n−1|T∞
≤ |zn − zn−1|T∞ + E

[
|zn − zn−1|T∞

]
, (3.4)

almost surely. On the other hand, we obtain from Lemma 3.2 that

|z̄n|T∞ ≤
∣∣E[zn]− y|T∞ ≤ |y|T∞ + E

[
|zn|T∞

]
.

Hence,

|un|T∞ = |zn + z̄n|T∞ ≤ |y|T∞ + |zn|T∞ + E
[
|zn|T∞

]
, (3.5)

almost surely. Combined with the first step in the proof of [11, Theorem 3.1], there exists a constant
c(T, p, |u0|T∞) such that

E
[(
|u1|T∞

)p] ≤ 3p−1 · E
[(
|y|T∞

)p
+
(
|z1|T∞

)p
+
(
E
[
|z1|T∞

])p]
≤ 3p−1

{(
|y|T∞

)p
+ 2E

[(
|z1|T∞

)p]}
≤ c(T, p, |u0|T∞).
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Then if E[(|un−1|T∞)p] <∞, the same arguments as above can also yield

E
[(
|un|T∞

)p] ≤ 3p−1
{(
|y|T∞

)p
+ 2E

[(
|zn−1|T∞

)p]}
≤ c

(
T, p, |u0|T∞, E[(|zn−1|T∞)p]

)
< ∞. (3.6)

In view of (3.4) and by Jensen’s inequality, we deduce that

E
[(
|un − un−1|T∞

)p]
≤ E

[(
|zn − zn−1|T∞ + E

[
|zn − zn−1|T∞

])p]
≤ 2p−1 · E

[
(|zn − zn−1|T∞)p +

(
E
[
|zn − zn−1|T∞

])p]
≤ 2pE

[(
|zn − zn−1|T∞

)p]
≤ cpE

[(
sup

x∈[0,1],t∈[0,T ]

∣∣∣ ∫ t

0

∫ 1

0
Gt−s(x, y) [f(y, s;un−1)− f(y, s;un−2)] dyds

∣∣∣)p]
+cpE

[(
sup

x∈[0,1],t∈[0,T ]

∣∣∣ ∫ t

0

∫ 1

0
Gt−s(x, y) [σ(y, s;un−1)− σ(y, s;un−2)]W (dy, ds)

∣∣∣)p]
=: cpE[(|I1|T∞)p] + cpE[(|I2|T∞)p]. (3.7)

By (2.8) and Hölder’s inequality, it shows for any p > 6

E[(|I1|T∞)p] ≤
(

sup
x∈[0,1],t∈[0,T ]

∫ t

0

∫ 1

0
Gqt−s(x, y) dyds

) p
q

×Cp(T )E
[ ∫ T

0

(
|un−1 − un−2|t∞

)p
dt
]
,

where q := p/(p− 1) < 3. Since function G has the property (6.1) in Appendix, then it yields

E[(|I1|T∞)p] ≤ c(T, p)E
[ ∫ T

0

(
|un−1 − un−2|t∞

)p
dt
]
. (3.8)

Meanwhile,

E[|I2|p] = E

[∣∣∣∣ ∫ t

0

∫ 1

0
Gt−s(x, y) [σ(y, s;un−1)− σ(y, s;un−2)]W (dy, ds)

∣∣∣∣p]
≤ C(T )pE

[( ∫ t

0

∫ 1

0
G2
t−s(x, y) · (|un−1 − un−2|s∞)2 dyds

) p
2
]

≤ C(T )p
(

sup
x∈[0,1],t∈[0,T ]

∫ t

0

∫ 1

0
G

2p
p−2

t−s (x, y) dyds

) p−2
2

×E
[ ∫ t

0

∫ 1

0
(|un−1 − un−2|s∞)p dyds

]
≤ c(T, p)E

[ ∫ t

0

∫ 1

0
(|un−1 − un−2|s∞)p dyds

]
,
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where the property (6.1) in Appendix and the fact that 2p/(p − 2) < 3 have been used. So from
the same calculations as in [27, Corollary 3.4] or [11, Theorem 3.1], we have the following estimate,
again with p > 6 and s, t ≤ T ,

E[|I2(x, t)− I2(y, s)|p] ≤ c(T ) |(x, t)− (y, s)|
p
4
−3 · E

[ ∫ (t∨s)

0
(|un−1 − un−2|r∞)p dr

]
.

Choosing p > 20 and by a version of the famous Kolmogorov Lemma [11, Lemma 3.1], then there
exists a random variable Y (ω) satisfying

E[Y p] ≤ a c(T )

(
E
[ ∫ (t∨s)

0
(|un−1 − un−2|r∞)p dr

])
, (3.9)

such that

|I2(x, t)− I2(y, s)|p ≤ Y p(ω) · |(x, t)− (y, s)|
p
4
−5

(
log

(
γ

|(x, t)− (y, s)|

))2

, (3.10)

where a, γ, c(T ) are constants depending only on p and T . Note that I2(y, 0) = 0 and I2(x, t) = 0
once x takes the boundary point 0 or 1, then we have for any x, y ∈ (0, 1) and t ∈ (0, T ],

0 < t ≤ |(x, t)− (y, 0)| ≤
√
x2 + t2 < (1 + T 2)

1
2 ,

which implies

sup
x∈(0,1),t∈(0,T ]

|(x, t)− (y, 0)|
p
4
−5

(
log

(
γ

|(x, t)− (y, 0)|

))2

≤ (1 + T 2)
1
2

( p
4
−5) · 2

[
(log γ)2 +

( log(1 + T 2)

2

)2]
≤ c(T, p).

Consequently, it yields from (3.9) and (3.10) that

E[(|I2|T∞)p] ≤ c(T, p)E
[ ∫ T

0

(
|un−1 − un−2|t∞

)p
dt
]
. (3.11)

Combining (3.7), (3.8) and (3.11), we conclude that

E
[(
|un − un−1|T∞

)p]
≤ c(p, C, T )E

[ ∫ T

0

(
|un−1 − un−2|t∞

)p
dt

]
≤ c2(p, C, T ) ·

(∫ T

0
dt

∫ t

0
E
[(
|un−2 − un−3|s∞

)p]
ds

)
= c2(p, C, T ) ·

(∫ T

0
E
[(
|un−2 − un−3|s∞

)p]
(T − s) ds

)
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≤ · · · ≤ cn−1(p, C, T ) · E
[ ∫ T

0

(
|u1 − u0|s∞

)p · (T − s)n−2

(n− 2)!
ds

]
≤ cn−1(p, C, T ) · E

[(
|u1 − u0|T∞

)p] · (∫ T

0

(T − s)n−2

(n− 2)!
ds

)
=

(cT )n−1

(n− 1)!
· E
[(
|u1 − u0|T∞

)p]
,

where C is the parameter in (2.8) and the third step follows from changing the order of integration.
Therefore, for any m ≥ n ≥ 1,

E
[(
|um − un|T∞

)p] ≤ E[(|u1 − u0|T∞
)p] ·(m−1∑

k=n

(cT )k

k!

)
→ 0, (3.12)

as n and m tends to ∞. Thus there exists a random filed u(x, t) ∈ C([0, 1] × [0, T ]) satisfying
E[(|u|T∞)p] <∞ such that

lim
n→∞

E[(|un − u|T∞)p] = 0. (3.13)

Step 2. We next show that u satisfies the parabolic SPDE (1.1) with linear mean reflection
(3.1). Clearly, it is sufficient to verify the conditions (i)-(iv) of Definition 2.3 hold for u(x, t).

In view of (3.6), E[un(x, t)] ≥ y(x, t) and by the dominated convergence theorem, we have
E[u(x, t)] ≥ y(x, t), (x, t) ∈ [0, 1]×R+. For any ϕ ∈ C∞0 ((0, 1)×R+), let ϕ(s) denote the function
ϕ(·, s) and f(s, u) denote the function f(·, s;u). Then it follows from (3.3) that for all t ≥ 0,

〈un(t), ϕ(t)〉 −
∫ t

0

〈
un(s),

∂ϕ(s)

∂s

〉
ds−

∫ t

0
〈un(s), ϕ′′(s)〉 ds+

∫ t

0
〈f(s, un−1), ϕ(s)〉 ds

= 〈u0, ϕ(0)〉+

∫ t

0

∫ 1

0
σ(x, s;un−1)ϕ(x, s)W (dx, ds) +

∫ t

0

∫ 1

0
ϕ(x, s)Kn(dx, ds). (3.14)

By (2.8), (3.13) and the dominated convergence theorem, we can obtain∫ t

0

∫ 1

0
σ(x, s;un−1)ϕ(x, s)W (dx, ds)

L2

−−−→
n→∞

∫ t

0

∫ 1

0
σ(x, s;u)ϕ(x, s)W (dx, ds).

All the terms on the left-hand side of (3.14) converge a.s. to the corresponding terms with un
replaced by u (taking a subsequence, if necessary), as n tends to ∞. Hence, Kn converges in the
distributional sense to some positive distribution K on (0, 1)× [0,∞). It follows from its positivity
that K is a measure on (0, 1)× [0,∞). Taking n→∞ in (3.14), then we have

〈u(t), ϕ(t)〉 −
∫ t

0

〈
u(s),

∂ϕ(s)

∂s

〉
ds−

∫ t

0
〈u(s), ϕ′′(s)〉 ds+

∫ t

0
〈f(s, u), ϕ(s)〉 ds

= 〈u0, ϕ(0)〉+

∫ t

0

∫ 1

0
σ(x, s;u)ϕ(x, s)W (dx, ds) +

∫ t

0

∫ 1

0
ϕ(x, s)K(dx, ds).

Clearly, taking a non-negative function ϕ̃ ∈ C∞0 ((0, 1)× R+) satisfying ϕ̃(x, t) = 1 on (supp K) ∩
([ε, 1−ε]× [0, T ]) for every small ε > 0, it yields from above equality that K((ε, 1−ε)× [0, T ]) <∞
for every small ε > 0 and T > 0.
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Let {ũn > 0} := {(x, t) ∈ [0, 1] × [0, T ] : (E[un(x, t)] − y(x, t)) > 0} and {ũ > 0} similarly. To
prove condition (iv) of Definition 2.3, it is sufficient to prove for any T > 0,

{ũ > 0} ⊂ (supp K)c. (3.15)

Indeed, for any (x0, t0) ∈ {ũ > 0}, there exists a open ball B((x0, t0), r) and some positive constant
α such that ũ(x, t) ≥ 2α > 0, ∀(x, t) ∈ B((x0, t0), r). Since

lim
n→∞

|ũn − ũ|T∞ = lim
n→∞

(
sup

x∈[0,1],t∈[0,T ]

∣∣∣E[un(x, t)]− E[u(x, t)]
∣∣∣)

≤ lim
n→∞

E[|un − u|T∞]

= 0,

there exists a N0 such that ũn(x, t) ≥ α > 0, (x, t) ∈ B((x0, t0), r) holds for any n ≥ N0. Choose
a function φ ∈ C∞0 ([0, 1]× [0, T ]), which satisfies 0 ≤ φ ≤ 1 and

φ(x, t) =

{
1, (x, t) ∈ B

(
(x0, t0), r/2

)
,

0, (x, t) ∈ B
(
(x0, t0), r

)c
,

then

0 ≤
∫ T

0

∫ 1

0
φ(x, t)Kn(dx, dt) ≤

∫
B((x0,t0),r)

1Kn(dx, dt)

≤ 1

α

∫ T

0

∫ 1

0
ũn(x, t)Kn(dx, dt)

= 0.

This yields
∫ T

0

∫ 1
0 φ(x, t)Kn(dx, dt) = 0. Hence,

K
(
B
(
(x0, t0), r/2

))
≤
∫ T

0

∫ 1

0
φ(x, t)K(dx, dt) = lim

n→∞

∫ T

0

∫ 1

0
φ(x, t)Kn(dx, dt) = 0.

Consequently, K(B((x0, t0), r/2)) = 0 for any (x0, t0) ∈ {ũ > 0}, which implies (3.15).

It only remains to check conditions (iii) of Definition 2.3. We first consider a continuous s-
tochastic process v defined by

v(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy +

∫ t

0

∫ 1

0
Gt−s(x, y)σ(x, s;u)W (dy, ds).

That means v satisfies

〈v(t), ψ〉 −
∫ t

0
〈v(s), ψ′′〉 ds = 〈u0, ψ〉+

∫ t

0

∫ 1

0
σ(x, s;u)ψ(x)W (dx, ds),

for any C∞ function ψ with compact support in (0, 1). Thus, (u,K) is also the solution to a
problem similar to (3.2), which satisfies u0 = v0, (u− v)(0, t) = (u− v)(1, t) = 0 and for any t ≥ 0,

〈(u− v)(t), ψ〉 −
∫ t

0
〈(u− v)(s), ψ′′〉 ds+

∫ t

0
〈f(s, u), ψ〉 ds =

∫ t

0

∫ 1

0
ψ(x)K(dx, ds) a.s..
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Note that, Nualart and Pardoux in [26] have shown this problem has a unique solution for the given
function v. Hence applying their results, we can obtain for all ϕ ∈ C2([0, 1]) with supp ϕ ⊂ (0, 1),

〈u(t), ϕ〉 −
∫ t

0
〈u(s), ϕ′′〉 ds+

∫ t

0

∫ 1

0
f(x, s;u)ϕ(x)dx ds

= 〈u0, ϕ〉+

∫ t

0

∫ 1

0
σ(x, s;u)ϕ(x)W (dx, ds) +

∫ t

0

∫ 1

0
ϕ(x)K(dx, ds) a.s..

The proof of the existence is now complete.

Now we turn to the proof of uniqueness. Suppose that (u(1),K(1)) and (u(2),K(2)) are two
solutions of mean reflected SPDE (1.1) with linear constraint (3.1) and the associated Skorokhod
condition. Let

v(i)(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s;u(i)) dy ds

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;u(i))W (dy, ds), (3.16)

and z̄(i) := u(i) − v(i), then (z̄(i),K(i)) is the unique solution of obstacle problem (3.2) with v =

(E[v(i)]−y), i = 1, 2, respectively. Similar to (3.4), it yields |u(1)−u(2)|T∞ ≤ E[|v(1)−v(2)|T∞]+ |v(1)−
v(2)|T∞. Define a stopping time by τN := inf{t ≥ 0 : supx∈[0,1] |u(1)(x, t)|∨supx∈[0,1] |u(2)(x, t)| > N},
then τN tends to ∞ as N → ∞. Similar to the arguments of (3.7), (3.8) and (3.11), we can also
deduce that

E
[(
|u(1) − u(2)|T∧τN∞

)p]
≤ 2p · E

[(
|v(1) − v(2)|T∧τN∞

)p]
≤ c(p, C, T,N)E

[ ∫ T

0

(
|u(1) − u(2)|t∧τN∞

)p
dt

]
,

where C is the parameter in (2.8). This implies E[|u(1) − u(2)|T∧τN∞ ] = 0. Taking N → ∞, then

E[|u(1) − u(2)|T∞] = 0. Hence, we have u(1) = u(2), a.s., and therefore K(1) = K(2). This ends the
proof of the theorem. �

4 SPDE with general mean reflection

For general mean reflection, we first consider the following parabolic obstacle problem
∂z̄(x,t)
∂t − ∂2z̄(x,t)

∂x2
= K̇(x, t);

E
[
h
(
x, t, (z̄ + v)(x, t)

)]
≥ 0;∫ T

0

∫ 1
0 E

[
h
(
x, t, (z̄ + v)(x, t)

)]
dK(x, t) = 0, for all T > 0,

(4.1)

where v is a continuous Ft-adapted process taking values in C([0, 1] × [0, T ]) and E[|v|T∞] < ∞
for any T > 0 . Moreover, v(x, 0)≥ 0 and v(0, t) = v(1, t) = 0 for all x ∈ [0, 1], t ≥ 0. Firstly,
we focus on the existence and uniqueness of obstacle problem (4.1) (Theorem 4.2). It should be
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pointed that, with the help of the operator Lx,t (defined in (4.2)), the relation (4.4) holds and then
we can obtain the equivalence between obstacle problems (4.1) and (4.5). In addition, under the
assumption (H), the differences in the uniform norm of solution to obstacle problem (4.1) can be
controlled by the expectation of differences in the uniform norm of obstacles (Lemma 4.3), which
plays a crucial role in SPDEs with general mean reflection. Based on them, we finally show that
for general mean reflection, SPDE (1.1) admits a unique deterministic flat solution (Theorem 4.4).

Let S1 be the set of continuous Ft-adapted process on [0, 1]× [0, T ] with E[|v|T∞] <∞ for any
T > 0 and L1(Ft) denote the space of real valued Ft-measurable integrable random variables X,
for any (x, t) ∈ [0, 1]× [0, T ]. Define a operator

Lx,t : L1(Ft)→ [0,∞), X 7→ inf{m ≥ 0 : E[h(x, t,m+X)] ≥ 0}, (4.2)

for any (x, t) ∈ [0, 1] × [0, T ]. Under the assumption (H), it is easy to see that Lx,t is well defined
and equals to zero for any random variable X ≥ 0, a.s.. And more importantly, the operator Lx,t
has the following properties, which are highly crucial to establish inequality (4.7).

Lemma 4.1 Under the assumption (H), the operator Lx,t is Lipschitz continuous for the L1-norm,
uniformly in x and t. Namely, there exists a constant l ≥ 0 such that for any x ∈ [0, 1] and t ∈ [0, T ],

|Lx,t(X)− Lx,t(Y )| ≤ lE[|X − Y |], X, Y ∈ L1(Ft). (4.3)

Moreover, for the given random process v ∈ S1, Lx,t(v(x, t)) is continuous with respect to (x, t).

Proof: By an argument as in [1, Lemma 8], it is clear that (4.3) is satisfied as soon as the
constraint function h is a bi-Lipschitz function in y. Next, let us show that the operator Lx,t is
continuous with respect to (x, t).

In fact, observe first that the map m 7→ E[h(x, t,m+X)] is continuous and strictly increasing.
Moreover, since the constraint function h is continuous and has linear growth, then

E[h(x, t,m+X)] ≤ C1

(
1 + |m|+ E[|X|]

)
<∞,

for any x ∈ [0, 1] and t ∈ [0, T ], where the facts that m is finite and X ∈ S1 have been used.
If E[h(x, t, v(x, t))] ≤ 0, we have Lx,t(v(x, t)) ≥ 0. Thus for any m1 < Lx,t(v(x, t)) < m2, the
dominated convergence theorem yields

lim
(y,s)→(x,t)

E[h(y, s,m1 + v(y, s))] = E[h(x, t,m1 + v(x, t))] < E[h(x, t, Lx,t(v(x, t)) + v(x, t))] = 0

< E[h(x, t,m2 + v(x, t))] = lim
(y,s)→(x,t)

E[h(y, s,m2 + v(y, s))].

Consequently, when |(y, s)− (x, t)| is small enough, we obtain

E[h(y, s,m1 + v(y, s))] < 0 and E[h(y, s,m2 + v(y, s))] > 0,

which implies m1 < Ly,s(v(y, s)) < m2. On the other hand, if E[h(x, t, v(x, t))] > 0, then in this
case Lx,t(v(x, t)) = 0. Since lim(y,s)→(x,t)E[h(y, s, v(y, s))] = E[h(x, t, v(x, t))] > 0 and as long as
|(y, s)− (x, t)| is sufficiently small, we have E[h(y, s, v(y, s))] > 0 and Ly,s(v(y, s)) = 0. �
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Furthermore, it is worth noticing that the following equivalence relation

E
[
h
(
x, t, (z̄ + v)(x, t)

)]
≥ 0 ⇔ z̄(x, t) ≥ Lx,t(v(x, t)), (4.4)

holds, where Lx,t is the operator defined in (4.2). Indeed, since the constraint function h is strictly
increasing in y, then z̄(x, t) ≥ Lx,t(v(x, t)) gives

E
[
h
(
x, t, (z̄ + v)(x, t)

)]
≥ E

[
h
(
x, t, Lx,t(v(x, t)) + v(x, t)

)]
≥ 0.

Meanwhile, if E[h(x, t, (z̄ + v)(x, t))] ≥ 0 holds, then we obviously have z̄(x, t) ≥ Lx,t(v(x, t)) for
any x ∈ [0, 1] and t ∈ [0, T ] by the definition of operator Lx,t. This equivalence relation will play a
crucial role in Theorem 4.2 and Lemma 4.3.

Theorem 4.2 For the given random process v ∈ S1, if Assumption (H) about the constraint func-
tion h holds, then similar to (3.2), the obstacle problem (4.1) exists a unique pair (z̄, K), which
satisfies 

∂z̄(x,t)
∂t − ∂2z̄(x,t)

∂x2
= K̇(x, t);

z̄(x, t) ≥ Lx,t(v(x, t));∫ T
0

∫ 1
0

(
z̄(x, t)− Lx,t(v(x, t))

)
dK(x, t) = 0, for all T > 0.

(4.5)

Proof: We construct a solution by means of the well-known penalization method. Based on the
equivalence relation (4.4), it inspires us to take the penalty term to be n(z̄(x, t) − Lx,t(v(x, t)))−

instead of n(E[h(x, t, (z̄n + v)(x, t))])−, which is novel. Firstly, fix n and denote by z̄n the solution
of the following equation{

∂z̄n(x,t)
∂t − ∂2z̄n(x,t)

∂x2
= n (z̄n(x, t)− Lx,t(v(x, t)))− ,

z̄n(x, 0) = 0, z̄n(0, t) = z̄n(1, t) = 0.
(4.6)

Applying the inequality |a− − b−| ≤ |a− b|, we can obtain∣∣∣(z̄1(x, t)− Lx,t(v(x, t))
)− − (z̄2(x, t)− Lx,t(v(x, t))

)−∣∣∣ ≤ |z̄1 − z̄2|T∞.

Thus for each n, (4.6) admits a unique continuous solution z̄n belonging to L2((0, T );H1(0, 1)) ∩
C([0, 1]× R+).

Here, we give an outline only and the further details of the proof can be seen in Appendix 6.
Based on thoughts of [26] and Assumption (H), we firstly devote to proving that the solution z̄n of
PDE (4.6) increases as n tends to infinity. Define z̄(x, t) := supn z̄

n(x, t) for any (x, t) ∈ [0, 1]×[0,∞)
and

Kn(dx, dt) := n (z̄n(x, t)− Lx,t(v(x, t)))− dx dt.

Letting n → ∞, we obtain that Kn converges in distribution to some positive distribution K on
(0, 1) × [0, T ]. It follows from its positivity that K is a measure. Combined with the equivalence
relation (4.4) and by a similar arguments as in [26, Theorem 1.4] or [21, Theorem 2.6], one can
derive that (z̄, K) satisfies conditions (1)-(3) and (4.5), which implies that it is a deterministic flat
solution of obstacle problem (4.1). To prove the uniqueness, the equivalence relation (4.4) is very
important in the proof and more details can be referenced in Appendix 6. �
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Lemma 4.3 Let z̄i be the first component of the solution to obstacle problem (4.1) corresponding
to process vi ∈ S1, i = 1, 2, respectively. Then under the Assumption (H), we have for any T > 0,

|z̄1 − z̄2|T∞ ≤ lE[ |v1 − v2|T∞] (4.7)

where l is the constant in (4.3).

Proof: Let z̄1,n and z̄2,n be the solutions of (4.6) corresponding to v1 and v2, respectively. To
prove (4.7), it is sufficient to show that:

|z̄1,n − z̄2,n|T∞ ≤ lE[ |v1 − v2|T∞], (4.8)

In fact, for notational simplicity, let Ψ := z̄1,n− z̄2,n−supx∈[0,1],t∈[0,T ] |Lx,t(v1(x, t))− Lx,t(v2(x, t))|.
Testing the equation with Ψ+, then we obtain∫ T

0

〈∂Ψt

∂t
,Ψ+

t

〉
dt−

∫ T

0

〈∂2Ψt

∂x2
,Ψ+

t

〉
dt+

∫ T

0

∫ 1

0
n
( (
z̄2,n(x, t)− Lx,t(v2(x, t))

)−
−
(
z̄1,n(x, t)− Lx,t(v1(x, t))

)− )
Ψ+(x, t) dx dt = 0.

In view of the inequality a− − b− ≥ −(b− a)−, we have(
z̄2,n(x, t)− Lx,t(v2(x, t))

)−
−
(
z̄1,n(x, t)− Lx,t(v1(x, t))

)−
≥ −

((
z̄1,n(x, t)− Lx,t(v1(x, t))

)
−
(
z̄2,n(x, t)− Lx,t(v2(x, t))

))−
= −

((
z̄1,n − z̄2,n

)
(x, t)−

(
Lx,t(v1(x, t))− Lx,t(v2(x, t))

))−
. (4.9)

Since

(z̄1,n − z̄2,n)(x, t) > sup
x∈[0,1],t∈[0,T ]

|Lx,t(v1(x, t))− Lx,t(v2(x, t))| ≥ Lx,t(v1(x, t))− Lx,t(v2(x, t)),

holds for any (x, t) ∈ {(x, t) : Ψ(x, t) > 0}, it yields(
(z̄1,n − z̄2,n)(x, t)− (Lx,t(v1(x, t))− Lx,t(v2(x, t)))

)−
= 0.

Consequently, it follows from (4.9) that(
z̄2,n(x, t)− Lx,t(v2(x, t))

)− − (z̄1,n(x, t)− Lx,t(v1(x, t))
)− ≥ 0.

Thus the same calculation as in (6.5) implies Ψ+ = 0. Namely,

(z̄1,n − z̄2,n)(x, t) ≤ sup
x∈[0,1],t∈[0,T ]

|Lx,t(v1(x, t))− Lx,t(v2(x, t))|.

Interchanging z̄1,n and z̄2,n, then (z̄2,n − z̄1,n)(x, t) ≤ supx∈[0,1],t∈[0,T ] |Lx,t(v2(x, t))− Lx,t(v1(x, t))|
is actually true. Hence, we have

|(z̄1,n − z̄2,n)(x, t)| ≤ sup
x∈[0,1],t∈[0,T ]

|Lx,t(v1(x, t))− Lx,t(v2(x, t))|. (4.10)

17



Combined with (4.3) and by Jensen’s inequality, we therefore obtain

|z̄1,n − z̄2,n|T∞ ≤ l sup
x∈[0,1],t∈[0,T ]

E[|(v1 − v2)(x, t)|] ≤ lE[|v1 − v2|T∞],

which implies the inequality (4.8). �

Based on Theorem 4.2 and Lemma 4.3, by the method of Picard iteration, we can deduce the
following theorem for SPDE (1.1) with general mean reflection.

Theorem 4.4 Suppose Assumptions (I), (II) and (H) hold, then there exists a unique deterministic
flat solution of mean reflected SPDE (1.1). Moreover, E[(|u|T∞)p] <∞ for all p ≥ 1.

Proof: Following the same proof as Theorem 3.3, we will also use a Picard iteration to obtain
existence. However, in this case, it is noted that z̄i should be taken as the first component of the
solution to obstacle problem (4.1) with v = zi. That is,

zn(x, t) =

∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s;un−1) dy ds

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;un−1)W (dy, ds), n ∈ N+,

and (z̄n,Kn) is the unique deterministic solution of obstacle problem (4.1) with v = zn. Set
un := zn + z̄n, then (un,Kn) is the deterministic flat solution of the following SPDE

∂un(x,t)
∂t − ∂2un(x,t)

∂x2
+ f(x, t;un−1) = σ(x, t;un−1) Ẇ (x, t) + K̇n;

un(x, 0) = u0(x);

un(0, t) = un(1, t) = 0,

with the constraint (1.2). From the proof of [11, Theorem 3.1] (refer to the estimate (18) in
[11]), it follows that E[(|z1|T∞)p] < ∞,∀p ≥ 1. In view of (4.7), then we have E[(|u1|T∞)p] ≤
c(T, l, p)E[(|z1|T∞)p] <∞, where c(T, l, p) is some constant related to constants T, l and p. Without
loss of generality, we assume E[(|un−1|T∞)p] < ∞ for any p ≥ 1. Let p > 6 and 1/p + 1/q = 1, we
deduce that

E[(|zn|T∞)p] ≤ c

{∣∣∣ ∫ 1

0
Gt(x, y)u0(y)dy

∣∣∣p
+

(
sup

x∈[0,1],t∈[0,T ]

∫ t

0

∫ 1

0
Gqt−s(x, y) dyds

) p
q

E
[ ∫ T

0

∫ 1

0
|f(y, s;un−1)|pdx ds

]
+

(
sup

x∈[0,1],t∈[0,T ]

∫ t

0

∫ 1

0
G

2p
p−2

t−s (x, y) dyds

) p−2
2

E
[ ∫ T

0

∫ 1

0
|σ(y, s;un−1)|pdx ds

]}
≤ c(T,M, p)

(
1 +

∫ T

0
E
[

sup
y∈[0,1],s≤t

|un−1(y, s)|p
]
dt
)
,

where (2.9) and (6.1) have been used in the last step. Combined with Lemma 4.3, we claim that the
inequality (3.4) also holds. Hence, we can obtain the conclusion as (3.12): E[(|um−un|T∞)p]→ 0 as
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n,m tends to∞. Thus there exists a random filed u(x, t) ∈ C([0, 1]× [0, T ]) satisfying E[(|u|T∞)p] <
∞ such that limn→∞E[(|un − u|T∞)p] = 0. It is easy to see that u satisfies the SPDE (1.1) with
mean reflection (1.2) in full generality. Besides, following the similar argument as in the proof of
Theorem 3.3 and combining the uniqueness of obstacle problem (4.1), it implies the deterministic
flat solution is unique and we therefore omit the proof here. �

5 Large deviation principles

This section is concerned with the following small noise perturbation of (1.1):
∂uε(x,t)

∂t − ∂2uε(x,t)
∂x2

+ f(x, t;uε) =
√
εσ(x, t;uε) Ẇ (x, t) + K̇ε(x, t);

uε(x, 0) = u0(x);

uε(0, t) = uε(1, t) = 0,

(5.1)

satisfying E[h(x, t, uε(x, t))] ≥ 0 for all x ∈ [0, 1], t ≥ 0 and
∫∞

0

∫ 1
0 E[h(x, t, uε(x, t))]Kε(dx, dt) = 0.

We devote to establishing a large deviation principle for {uε(·, ·)}ε>0 in C([0, 1]× [0, T ]), the space
of continuous functions in [0, 1] × [0, T ] endowed with the uniform topology. In Subsection 5.1,
we introduce the weak convergence method. Subsection 5.2 mainly study the associated skeleton
equations. Finally, the large deviation principle is proved in Subsection 5.3 (Theorem 5.7).

5.1 Weak convergence approach

Now, we briefly recall the notions of large deviations. Let {Xε}ε>0 be a family of random variables
defined on a given probability space (Ω,F ,P) taking values in some Polish space E .

Definition 5.1 (Rate function) A function I : E → [0,∞] is called a rate function if I is lower
semi-continuous. Moreover, a rate function I is called a good rate function if the level set {x ∈ E :
I(x) ≤M} is compact for each M <∞.

Definition 5.2 (Large deviation principle) The sequence {Xε}ε>0 is said to satisfy the large de-
viation principle with rate function I if for each Borel subset A of E

− inf
x∈A◦

I(x) ≤ lim inf
ε→0

ε logP(Xε ∈ A) ≤ lim sup
ε→0

ε logP(Xε ∈ A) ≤ − inf
x∈Ā

I(x),

where A◦ and Ā denote the interior and closure of A in E, respectively.

The Cameron-Martin space associated with the Brownian sheet W (x, t), x ∈ [0, 1], t ∈ [0, T ] is
given by

H =

{
g =

∫ ·
0

∫ ·
0
ġ(x, s) dxds :

∫ T

0

∫ 1

0
ġ2(x, s) dxds <∞

}
.

Let ‖g‖H := (
∫ T

0

∫ 1
0 ġ

2(x, s) dxds)1/2 and BN := {g ∈ H : ‖g‖H ≤ N}, then the set BN is a compact
Polish space endowed with the weak topology of H. Define

A :=
{
φ : φ is an H-valued Ft-predictable processes

}
,
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and
AN := {φ ∈ A : φ(ω) ∈ BN , P-a.s.}.

A sufficient condition (see Lemma 5.3) for the LDP of the sequence Xε as ε→ 0, has been formu-
lated recently in [24, Theorem 3.2]. It is a generalized version of classical weak convergence criteria
by Budhiraja et al.[6, 7] and turns out to be more convenient in some applications. Intuitively,
as the parameter ε → 0, the disappearance of the small noise in (5.1) makes condition (II) of the
following Lemma 5.3 not difficult to check. This new sufficient condition is widely applied to prove
the LDP (refer to [10, 14, 18–20, 28] and so on).

Lemma 5.3 For each ε > 0, Γε : C([0, 1]× [0, T ])→ E is a measurable map and let Xε := Γε(W ).
Suppose that there exists a measurable mapping Γ0 : C([0, 1] × [0, T ]) → E such that the following
two items hold:

(I) For every N < +∞ and any family {gε}ε>0 ⊂ BN that gε converges to some element g in BN
as ε→ 0, Γ0(

∫ ·
0

∫ ·
0 ġ

ε(x, s) dxds) converges to Γ0(
∫ ·

0

∫ ·
0 ġ(x, s) dxds) in the space E.

(II) For every N < +∞, any family {gε}ε>0 ⊂ AN and δ > 0,

lim
ε→0

P(d(Y ε, Zε) > δ) = 0,

where Y ε := Γε
(
W (·, ·) + 1√

ε

∫ ·
0

∫ ·
0 ġ

ε(x, s) dxds
)
, Zε := Γ0

( ∫ ·
0

∫ ·
0 ġ

ε(x, s) dxds
)

and d(·, ·)
stands for the metric in the space E.

Then the family {Xε}ε>0 satisfies a large deviation principle in E with the following good rate
function I defined by

I(ϕ) := inf
{g∈H;ϕ=Γ0(

∫ ·
0

∫ ·
0 ġ(x,s) dxds)}

{
1

2

∫ T

0

∫ 1

0
ġ2(x, s) dxds

}
, ∀ϕ ∈ E .

By convention, I(ϕ) =∞, if {g ∈ H; ϕ = Γ0(
∫ ·

0

∫ ·
0 ġ(x, s) dxds)} = ∅.

5.2 Skeleton equation

Fix g ∈ H, we consider the skeleton equation associated with (5.1), that is the following determin-
istic PDE:

∂ug(x,t)
∂t − ∂2ug(x,t)

∂x2
+ f(x, t;ug) = σ(x, t;ug) ġ(x, t) + K̇g(x, t), x ∈ [0, 1], t ≥ 0;

ug(x, 0) = u0(x), x ∈ [0, 1];

ug(0, t) = ug(1, t) = 0, t ≥ 0,

(5.2)

satisfying h(x, t, uε(x, t)) ≥ 0 for all x ∈ [0, 1], t ≥ 0 and
∫∞

0

∫ 1
0 h(x, t, uε(x, t))Kε(dx, dt) = 0.

In this subsection, the main purpose is to show that the skeleton equation (5.2) admits a unique
solution for every g ∈ BN (Theorem 5.4) and the continuity of the skeleton equation (Theorem
5.5).

Analogously to Definition 2.3, a pair of (ug,Kg) is said to be a solution of problem (5.2), if it
satisfies
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(i) ug is a continuous process on [0, 1]× R+ and h(x, t, ug(x, t)) ≥ 0.

(ii) Kg is a measure on (0, 1)× R+ such that
∫ t

0

∫ 1
0 h(x, t, ug(x, t))Kg(dx, ds) = 0.

(iii) (ug,Kg) solves the parabolic PDE in the following sense: for every t ∈ [0,∞) and ϕ ∈ C2([0, 1])
with ϕ(0) = ϕ(1) = 0,

〈ug(t), ϕ〉 −
∫ t

0
〈ug(s), ϕ′′〉 ds+

∫ t

0

∫ 1

0
f(x, s;ug)ϕ(x)dx ds

= 〈u0, ϕ〉+

∫ t

0

∫ 1

0
σ(x, s;ug)ϕ(x) ġ(x, s) dxds+

∫ t

0

∫ 1

0
ϕ(x)Kg(dx, ds).

Firstly, we will prove the existence and uniqueness of solutions to problem (5.2) for any g ∈ BN .
The proof is similar to Theorem 3.3. But it should be noted that when dealing with the heat kernel
G, we try to obtain the forms (6.2)-(6.4) in Lemma 6.1 instead of form (6.1) in Appendix.

Theorem 5.4 Assume that the assumption (H) holds and f, σ satisfy the conditions (I),(II), then
for any g ∈ BN , problem (5.2) admits a unique solution.

Proof: Let us first prove the existence of problem (5.2). Similar to the proof of Theorem 4.4, we
use a Picard argument to prove the existence of the solution to (5.2). Let

zg1(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s;u0) dyds

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;u0) ġ(y, s) dyds,

and (z̄g1 ,K
g
1 ) be the solution of (4.1) with v = zg1 . We denote ug1 := zg1 + z̄g1 , then (ug1,K

g
1 ) is a

solution of the following PDE
∂ug1(x,t)

∂t − ∂2ug1(x,t)

∂x2
+ f(x, t;u0) = σ(x, t;u0) ġ(x, t) + K̇g

1 (x, t),

ug1(x, 0) = u0(x),

ug1(0, t) = ug1(1, t) = 0,

satisfying h(x, t, uε1(x, t)) ≥ 0 for all (x, t) ∈ [0, 1] × R+ and
∫∞

0

∫ 1
0 h(x, t, uε1(x, t))Kε

1(dx, dt) = 0.
Generally, set

zgn(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s;ugn−1) dyds

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;ugn−1) ġ(y, s) dyds,

and define (z̄gn,K
g
n) as the solution of (4.1) with v = zgn−1. Hence, we deduce that (ugn := zgn+z̄gn,K

g
n)

is the solution of the following PDE
∂ugn(x,t)

∂t − ∂2ugn(x,t)
∂x2

+ f(x, t;ugn−1) = σ(x, t;ugn−1) ġ(x, t) + K̇g
n(x, t),

ugn(x, 0) = u0(x),

ugn(0, t) = ugn(1, t) = 0,
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satisfying h(x, t, uεn(x, t)) ≥ 0 for all (x, t) ∈ [0, 1]× R+ and
∫∞

0

∫ 1
0 h(x, t, uεn(x, t))Kε

n(dx, dt) = 0.
In view of (4.7), then we can obtain

|ugn − u
g
n−1|

T
∞

= |(zgn + z̄gn)− (zgn−1 + z̄gn−1)|T∞
≤ (1 + l)|zgn − z

g
n−1|

T
∞

≤ (1 + l) sup
x∈[0,1],t∈[0,T ]

∣∣∣∣∫ t

0

∫ 1

0
Gt−s(x, y)

(
f(y, s;ugn−1)− f(y, s;ugn−2)

)
dyds

∣∣∣∣
+(1 + l) sup

x∈[0,1],t∈[0,T ]

∣∣∣∣∫ t

0

∫ 1

0
Gt−s(x, y)

(
σ(y, s;ugn−1)− σ(y, s;ugn−2)

)
ġ(y, s) dyds

∣∣∣∣
=: (1 + l)|I1|T∞ + (1 + l)|I2|T∞,

where l is the constant in (4.3). By (2.8) and Hölder’s inequality, it yields for any p > 4,

(I1(x, t))p ≤ C(T )

∣∣∣∣∫ t

0
|ugn−1 − u

g
n−2|

s
∞

(∫ 1

0
Gt−s(x, y) dy

)
ds

∣∣∣∣p
≤ C(T ) · t

p
2

[∫ t

0

(
|ugn−1 − u

g
n−2|

s
∞

)2(∫ 1

0
G2
t−s(x, y) dy

)
ds

] p
2

≤ C(T ) · t
p
2

[∫ t

0

(∫ 1

0
G2
t−s(x, y) dy

) p
p−2

ds

] p−2
2

·
[∫ t

0

(
|ugn−1 − u

g
n−2|

s
∞

)p
ds

]
.

Combined with the estimate (6.2) for function G, we have

(|I1|T∞)p

≤ C(T, p)

 sup
x∈[0,1]

[∫ T

0

(∫ 1

0
G2
t−s(x, y) dy

) p
p−2

ds

] p−2
2

 ·
[∫ T

0

(
|ugn−1 − u

g
n−2|

s
∞

)p
ds

]

≤ C(T, p) · T
p−4
4

[∫ T

0

(
|ugn−1 − u

g
n−2|

s
∞

)p
ds

]
, (5.3)

where C(T, p) is a constant depending on T and p. Meanwhile, in view of ‖g‖H ≤ N and from
above similar arguments, it follows that

(|I2|T∞)p

≤ C(T ) sup
x∈[0,1],t∈[0,T ]

∣∣∣∣∫ t

0

∫ 1

0
G2
t−s(x, y)

(
|ugn−1 − u

g
n−2|

s
∞

)2
dyds

∣∣∣∣
p
2

·
∣∣∣∣∫ t

0

∫ 1

0
ġ2(y, s) dyds

∣∣∣∣
p
2

≤ C(T )

 sup
x∈[0,1]

[∫ T

0

(∫ 1

0
G2
t−s(x, y) dy

) p
p−2

ds

] p−2
2

 ·
∣∣∣∣∫ t

0

∫ 1

0
ġ2(y, s) dyds

∣∣∣∣
p
2

·
[∫ T

0

(
|ugn−1 − u

g
n−2|

s
∞

)p
ds

]
≤ C(T, p) ·NpT

p−4
4

[∫ T

0

(
|ugn−1 − u

g
n−2|

s
∞

)p
ds

]
. (5.4)
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Therefore, we conclude from above displays that(
|ugn − u

g
n−1|

T
∞

)p
≤ C(T, p, l, N) ·

∫ T

0

(
|ugn−1 − u

g
n−2|

s
∞

)p
ds

≤ Cn−1(T, p, l, N)

∫ T

0

∫ t1

0
. . .

∫ tn−2

0

(
|ug1 − u0|tn−1

∞

)p
dtn−1 . . . dt2 dt1

≤ Cn−1(T, p, l, N)
Tn−1

(n− 1)!
· (|ug1 − u0|T∞)p, (5.5)

where C(T, p, l, N) is some constant depending on T, p, l and N . Then it implies for any m ≥ n ≥ 1,

|ugm − ugn|T∞ ≤ |u
g
1 − u0|T∞ ·

m−1∑
k=n

(
Ck(T, p, l, N)T k

)
k!

) 1
p

→ 0,

as m,n→∞. Therefore, {ugn}n≥1 is a Cauchy sequence in C([0, 1]× [0, T ]) and denote its limit by
ug(x, t).

By Assumptions (H), then we have |h(x, t, ugn(x, t))| ≤ C(1 + |ugn|T∞) < ∞, which implies
limn→∞ h(x, t, ugn(x, t)) = h(x, t, ug(x, t)). On the other hand, in view of h(x, t, ugn(x, t)) ≥ 0, we
can obtain that h(x, t, ug(x, t)) ≥ 0. Let

zg(x, t) :=

∫ 1

0
Gt(x, y)u0(y) dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s;ug) dyds

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;ug) ġ(y, s) dyds,

and ũ := zg + z̄g, where (z̄g,Kg) solves the parabolic obstacle problem (4.1) with v = zg. Conse-
quently,

〈ũg(t), ϕ〉 −
∫ t

0
〈ũg(s), ϕ′′〉 ds+

∫ t

0

∫ 1

0
f(x, s; ũg)ϕ(x)dx ds

= 〈u0, ϕ〉+

∫ t

0

∫ 1

0
σ(x, s; ũg)ϕ(x) ġ(y, s) dyds+

∫ t

0

∫ 1

0
ϕ(x)Kg(dx, ds),

holds for any ϕ ∈ C2([0, 1]) with ϕ(0) = ϕ(1) = 0. From a similar arguments as in (5.5), it yields
that

(|ugn − ũg|T∞)p ≤ C(T, l, p)(|ugn−1 − u
g|T∞)p → 0,

as n tends to infinity. Hence we finally have ũg = ug. Just as the proof in Theorem 3.3, one can
similarly prove the uniqueness of solution to (5.2) and we therefore omit it here. The proof of this
is complete. �

In view of Theorem 5.4, we can define a mapping Γ0 : C([0, 1]× [0, T ])→ C([0, 1]× [0, T ]) by

Γ0(g) :=

{
ug if g ∈ H,
0 otherwise,

(5.6)
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where ug is the first component of the solution to equation (5.2). Next, we are going to prove
the continuity of the mapping Γ0. Namely, let ugn denote the solution of (5.2) with ġ replaced
by ġn and we will show that ugn converges to the solution ug of the skeleton equation (5.2) in
C([0, 1]× [0, T ]), if gn → g weakly in BN .

Theorem 5.5 Under assumptions in Theorem 5.4, ug is a continuous mapping from g ∈ BN into
C([0, 1]× [0, T ]).

Proof: Let gn, g ∈ BN be such that gn converges weakly to g as n tends to infinity. To prove the
theorem, it is sufficient to show that

lim
n→∞

|ugn − ug|T∞ = 0, (5.7)

where ugn and ug are the first component of the solutions to (5.2) associated with gn and g,
respectively. Define

zgn(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s;ugn) dyds

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;ugn) ġn(y, s) dyds,

and

zg(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s;ug) dyds

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;ug) ġ(y, s) dyds,

then it is easy to see that (ugn − zgn) and (ug − zg) are the solutions of obstacle problem (4.1)
associated with zgn and zg, respectively. Using the estimate (4.7) and by the fact that zgn and zg

are deterministic, then it yields

|ugn − ug|T∞ ≤ (1 + l)|zgn − zg|T∞

≤ (1 + l) sup
x∈[0,1],t∈[0,T ]

∣∣∣ ∫ t

0

∫ 1

0
Gt−s(x, y) [f(y, s;ugn)− f(y, s;ug)] dyds

∣∣∣
+(1 + l) sup

x∈[0,1],t∈[0,T ]

∣∣∣ ∫ t

0

∫ 1

0
Gt−s(x, y) [σ(y, s;ugn)− σ(y, s;ug)] ġn(y, s) dyds

∣∣∣
+(1 + l) sup

x∈[0,1],t∈[0,T ]

∣∣∣ ∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;ug) [ġn(y, s)− ġ(y, s)] dyds

∣∣∣
=: (1 + l)[|I1|T∞ + |I2|T∞ + |I3|T∞],

where l is the constant in (4.3). Similar to (5.3) and (5.4), we can obtain that for any p > 4,

(|I1|T∞)p ≤ C(T, p)
∫ T

0 (|ugn − ug|s∞)pds and (|I2|T∞)p ≤ C(T, p,N)
∫ T

0 (|ugn − ug|s∞)pds. Hence,

(|ugn − ug|T∞)p ≤ C

∫ T

0
(|ugn − ug|s∞)pds+ 3p−1 · [((1 + l)|I3|T∞)]p.
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Denote

Fn(x, t) :=

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s;ug) [ġn(y, s)− ġ(y, s)] dy ds.

Combined with Gronwall’s inequality, (5.7) will be satisfied if we can prove

lim
n→∞

|Fn|T∞ = 0. (5.8)

The rest of the proof is to establish (5.8). Note that for any fixed x ∈ [0, 1] and t ∈ [0, T ],∫ t

0

∫ 1

0
G2
t−s(x, y)σ2(y, s;ug) dyds

≤ M2(T )(1 + |ug|T∞)2

(∫ t

0

∫ 1

0
G2
t−s(x, y) dyds

)
< ∞.

Since gn converges weakly to g in H, we have limn→∞ Fn(x, t) = 0 for any fixed x ∈ [0, 1] and t ∈
[0, T ]. Therefore, we just remain to prove that {Fn(x, t)}n≥1 is relatively compact in C([0, 1]×[0, T ]).
In fact,

sup
n
|Fn|T∞ ≤ M(T )(1 + |ug|T∞) ·

(
sup

x∈[0,1],t∈[0,T ]

∣∣∣∣∫ t

0

∫ 1

0
G2
s(x, y) dyds

∣∣∣∣
) 1

2

·
(∫ T

0

∫ 1

0
|ġn(y, s)− ġ(y, s)|2 dyds

) 1
2

< ∞,

where the fact that ‖gn‖H and ‖g‖H are bounded by N has been used. On the other hand, we
claim that {Fn(x, t)}n≥1 is also equi-continuous. Indeed, for every 0 ≤ s ≤ t ≤ T and x, y ∈ [0, 1],
we have for any p > 4,

|Fn(x, t)− Fn(s, y)|p

=

∣∣∣∣ ∫ t

s

∫ 1

0
Gt−r(x, z)σ(z, r;ug) (ġn(z, r)− ġ(z, r)) dzdr

+

∫ s

0

∫ 1

0
(Gt−r(x, z)−Gs−r(y, z))σ(z, r;ug) (ġn(z, r)− ġ(z, r)) dzdr

∣∣∣∣p
≤ 3p−1 ·

∣∣∣∣∫ t

s

∫ 1

0
Gt−r(x, z)σ(z, r;ug) (ġn(z, r)− ġ(z, r)) dzdr

∣∣∣∣p
+3p−1 ·

∣∣∣∣∫ s

0

∫ 1

0
(Gt−r(x, z)−Gs−r(x, z))σ(z, r;ug) (ġn(z, r)− ġ(z, r)) dzdr

∣∣∣∣p
+3p−1 ·

∣∣∣∣∫ s

0

∫ 1

0
(Gs−r(x, z)−Gs−r(y, z))σ(z, r;ug) (ġn(z, r)− ġ(z, r)) dzdr

∣∣∣∣p .
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By (2.8), Hölder’s inequality and the estimate (6.2), it yields∣∣∣∣∫ t

s

∫ 1

0
Gt−r(x, z)σ(z, r;ug) (ġn(z, r)− ġ(z, r)) dzdr

∣∣∣∣p
≤

∣∣∣∣∫ t

s

∫ 1

0
G2
t−r(x, z)σ

2(z, r;ug) dzdr

∣∣∣∣
p
2

·
∣∣∣∣∫ t

s

∫ 1

0
(ġn(z, r)− ġ(z, r))2 dzdr

∣∣∣∣
p
2

≤ (2N)pM(T )2

∣∣∣∣∫ t

s

(∫ 1

0
G2
t−r(x, z) dz

)
(1 + |ug|r∞)2 dr

∣∣∣∣
p
2

≤ C(T,N, p)

[∫ t

s

(∫ 1

0
G2
t−r(x, z) dz

) p
p−2

dr

] p−2
2

·
[∫ t

s

(
|1 + |ug|r∞

)p
dr

]
≤ C(T,N, p) |t− s|

p−4
4
(
|1 + |ug|T∞

)p
.

Using the estimates (6.3) and (6.4) for function G and by similar arguments as above, we can also
obtain ∣∣∣∣∫ s

0

∫ 1

0
(Gt−r(x, z)−Gs−r(x, z))σ(z, r;ug) (ġn(z, r)− ġ(z, r)) dzdr

∣∣∣∣p
≤ C(T,N, p) |t− s|

p−4
4
(
|1 + |ug|T∞

)p
,

and ∣∣∣∣∫ s

0

∫ 1

0
(Gs−r(x, z)−Gs−r(y, z))σ(z, r;ug) (ġn(z, r)− ġ(z, r)) dzdr

∣∣∣∣p
≤ C(T,N, p) |x− y|

p−4
2
(
|1 + |ug|T∞

)p
.

Consequently, we conclude that for every p > 4,

|Fn(x, t)− Fn(s, y)|p ≤ C(T,N, p)
(
|1 + |ug|T∞

)p (|x− y| p−4
2 + |t− s|

p−4
4
)
,

holds for any 0 ≤ s ≤ t ≤ T and x, y ∈ [0, 1]. Applying Arzelà-Ascoli theorem, we finally deduce
that {Fn(x, t)}n≥1 is relatively compact in C([0, 1]× [0, T ]). The theorem is proved. �

5.3 Large deviation principles

After the preparations in above subsections, we are ready to state and prove the large deviation re-
sult (Theorem 5.7). In this subsection, based on the Lemma 5.3, we mainly apply weak convergence
approach to establish a LDP for the solution of mean reflected SPDE (5.1) with the constraint (1.2)
and the associated Skorokhod condition.

Under Assumptions (I), (II) and (H), it yields from Theorem 4.4 that for every ε > 0, there
exists a unique deterministic flat solution (uε,Kε) to mean reflected SPDE (5.1) with the constraint
(1.2). Therefore, there exists a Borel measurable map

Γε : C([0, 1]× [0, T ])→ C([0, 1]× [0, T ]),
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such that uε could be represented by uε(·, ·) = Γε(W (·, ·)). For any {gε}ε>0 ⊂ AN and let ūε :=
Γ0(gε). According to the definition of Γ0 in (5.6), we deduce from Theorem 5.4 that ūε solves the
following PDE 

∂ūε(x,t)
∂t − ∂2ūε(x,t)

∂x2
+ f(x, t; ūε) = σ(x, t; ūε) ġε(x, t) + ˙̄Kε(x, t);

ūε(x, 0) = u0(x);

ūε(0, t) = ūε(1, t) = 0,

(5.9)

which satisfies h(x, t, ūε(x, t)) ≥ 0 for all (x, t) ∈ [0, 1]×R+ and
∫∞

0

∫ 1
0 h(x, t, ūε(x, t)) K̄ε(dx, dt) =

0. Fixed gε ∈ AN , set

dQg,ε

dP
:= exp

{
− 1√

ε

∫ T

0

∫ 1

0
ġε(x, s)W (dx, ds)− 1

2ε

∫ T

0

∫ 1

0
(ġε)2(x, s) dxds

}
.

It is well known that Qg,ε is obviously a probability measure, which is mutually absolutely contin-
uous with respect to P. Applying Girsanov’s theorem, the process

W̃ := W +
1√
ε

∫ ·
0

∫ ·
0
ġε(x, s) dxds,

is a Brownian sheet under the measure Qg,ε. Let (ũε(·, ·) := Γε(W̃ (·, ·)), K̃ε) be the unique solution

of (5.1) with W̃ under the measure Qg,ε. Then it is easy to see that (ũε, K̃ε) is the unique
deterministic flat solution of the mean reflected SPDE

∂ũε(x,t)
∂t − ∂2ũε(x,t)

∂x2
+ f(x, t; ũε) =

√
εσ(x, t; ũε) Ẇ (x, t) + σ(x, t; ũε) ġε(x, t) +

˙̃
K
ε

(x, t);

ũε(x, 0) = u0(x);

ũε(0, t) = ũε(1, t) = 0,

(5.10)

with E[h(x, t, ũε(x, t))] ≥ 0 for any (x, t) ∈ [0, 1]× R+.

According to Lemma 5.3 (a sufficient condition for the LDP) and Theorem 5.5, we only need
to prove the following result to establish the large deviation principle for {uε(·, ·)}ε>0 in C([0, 1]×
[0, T ]).

Theorem 5.6 For every N <∞ and let {gε}ε>0 ⊂ AN , then∣∣∣∣Γε(W (·, ·) +
1√
ε

∫ ·
0

∫ ·
0
ġε(x, s) dxds

)
− Γ0

(∫ ·
0

∫ ·
0
ġε(x, s) dxds

)∣∣∣∣T
∞
→ 0 in probability.

Proof: Recall that ũε(·, ·) := Γε(W (·, ·)+ 1√
ε

∫ ·
0

∫ ·
0 ġ

ε(x, s) dxds) is the first component of solution of

the mean reflected SPDE (5.10). Moreover, ūε := Γ0(
∫ ·

0

∫ ·
0 ġ

ε(x, s) dxds) is the the first component
of solution of the skeleton equation (5.9). In the following, we aim to prove |ũε − ūε|T∞ → 0 in
probability as ε→ 0. To achieve that, we define

z̃ε(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s; ũε) dy ds

+
√
ε

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s; ũε)W (dx, ds)

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s; ũε) ġε(y, s) dy ds,
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and

z̄ε(x, t) :=

∫ 1

0
Gt(x, y)u0(y)dy −

∫ t

0

∫ 1

0
Gt−s(x, y) f(y, s; ūε) dy ds

+

∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s; ūε) ġε(y, s) dy ds.

Then, it is noted that (ũε − z̃ε, K̃ε) and (ūε − z̄ε, K̄ε) are the solutions to obstacle problem (4.1)
with v = z̃ε and v = z̄ε, respectively. From Lemma 4.3, it follows that |ũε − ūε|T∞ ≤ |z̃ε − z̄ε|T∞ +
l E[|z̃ε − z̄ε|T∞] almost surely. Consequently,

E[|ũε − ūε|T∞] ≤ (1 + l)E[|z̃ε − z̄ε|T∞]

≤ (1 + l)E

[∣∣∣ ∫ t

0

∫ 1

0
Gt−s(x, y) [f(y, s; ũε)− f(y, s; ūε)] dyds

∣∣∣T
∞

]
+(1 + l)

√
εE

[∣∣∣ ∫ t

0

∫ 1

0
Gt−s(x, y)σ(y, s; ũε)W (dy, ds)

∣∣∣T
∞

]
+(1 + l)E

[∣∣∣ ∫ t

0

∫ 1

0
Gt−s(x, y) [σ(y, s; ũε)− σ(y, s; ūε)] ġε(y, s) dyds

∣∣∣T
∞

]
=: (1 + l)E[I1,ε + I2,ε + I3,ε].

Similar to the estimate of (5.3) and (5.4), we deduce from Lemma 6.1 that for any p > 4,

E[(I1,ε)
p] ≤ C(T, p)E

[ ∫ T

0
(|ũε − ūε|s∞)p ds

]
,

and

E[(I3,ε)
p] ≤ C(T, p,N)E

[ ∫ T

0
(|ũε − ūε|s∞)p ds

]
.

Then Gronwall’s inequality yields that E[(|ũε− ūε|T∞)p] ≤ 3p−1 (1 + l)pE[(I2,ε)
p] eCT . On the other

hand, applying (2.9) and Burkhölder’s inequality, we obtain for any p > 4,

E[(I2,ε)
p] ≤ ε

p
2 ·MpE

[(∫ T

0

∫ 1

0
G2
t−s(x, y) (1 + |ũε|s∞) dyds

) p
2

]

≤ ε
p
2 ·Mp

[∫ T

0

(∫ 1

0
G2
t−s(x, y) dy

) p
p−2

ds

] p−2
2

· E
[∫ T

0

(
|1 + |ũε|s∞

)p
ds

]
≤ C(T, p,M) ε

p
2 E

[∫ T

0

(
|1 + |ũε|s∞

)p
ds

]
→ 0, as ε→ 0,

where the estimate (6.2) and fact that E[(|ũε|T∞)p] <∞ have been used. By Chebyshev’s inequality,
we have |ũε − ūε|T∞ tends to 0 in probability as ε→ 0. We complete the proof of this theorem. �

Combined with Theorem 5.5 and Theorem 5.6, we now are in a position to give the main result
of Section 5.
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Theorem 5.7 The family {uε}ε>0 satisfies a large deviation principle with the good rate function
Ī defined by

Ī(ϕ) :=
1

2
inf

{g∈H;ϕ=Γ0(
∫ ·
0

∫ ·
0 ġ(x,s) dxds)}

{∫ T

0

∫ 1

0
ġ2(x, s) dx ds

}
,

where infimum over an empty set is taken as ∞ and Γ0 is the map defined in (5.6).

6 Appendix

Recall that the function G is the Dirichlet heat kernel on [0, 1]. By the appendix in [8, 9, 21], it
has the following expression

Gt(x, y) =
1√
4πt

∞∑
n=−∞

[
exp

(
−(x− y + 2n)2

4t

)
− exp

(
−(x+ y + 2n)2

4t

)]
.

Now, we give some estimates for function G, which have been proved in [21, Proposition A.4]. They
play a crucial role in the whole proof of this section.

Lemma 6.1 Fix T > 0, we have that

(i)

sup
x∈[0,1],t∈[0,T ]

∫ t

0

∫ 1

0
Grt−s(x, y) dyds <∞, ∀ 0 < r < 3, (6.1)

(ii) For every t, s ∈ [0, T ] and for any p > 4,

sup
x∈[0,1]

(∫ t

s

[∫ 1

0
G2
t−r(x, y) dy

]p/(p−2)

dr

) p−2
2

≤ Cp|t− s|(p−4)/4. (6.2)

(iii) For every t, s ∈ [0, T ] and for any p > 4,

sup
x∈[0,1]

(∫ s

0

[∫ 1

0

(
Gt−r(x, y)−Gs−r(x, y)

)2
dy

]p/(p−2)

dr

) p−2
2

≤ Cp|t− s|(p−4)/4. (6.3)

(iv) For every x, y ∈ [0, 1] and for any p > 4,

sup
s∈[0,T ]

(∫ s

0

[∫ 1

0

(
Gs−r(x, z)−Gs−r(y, z)

)2
dz

]p/(p−2)

dr

) p−2
2

≤ Cp|x− y|(p−4)/2. (6.4)

Proof of Theorem 4.4: Define ψ := z̄n − z̄m, (m > n). We are now going to prove the solution
z̄n of PDE (4.6) increases as n tends to infinity. Actually, it is sufficient to show ψ+ = 0. Indeed,
since {

∂ψ
∂t −

∂2ψ
∂x2

+
[
−n (z̄n(x, t)− Lx,t(v(x, t)))− +m (z̄m(x, t)− Lx,t(v(x, t)))−

]
= 0,

ψ(x, 0) = 0, ψ(0, t) = ψ(1, t) = 0,
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testing above equation with the positive part of ψ implies∫ T

0

〈∂ψt
∂t

, ψ+
t

〉
dt−

∫ T

0

〈∂2ψt
∂x2

, ψ+
t

〉
dt+

∫ T

0

∫ 1

0

(
− n (z̄n(x, t)− Lx,t(v(x, t)))−

+m (z̄m(x, t)− Lx,t(v(x, t)))−
)
ψ+(x, t) dx dt = 0, (6.5)

for all T > 0. It should be pointed that the last term on the left hand side of (6.5) is non-negative.
In fact, for (x, t) ∈ {(x, t) : ψ(x, t) > 0}, we have z̄n(x, t) > z̄m(x, t). Since the function x− is
non-increasing, it leads to

(z̄n(x, t)− Lx,t(v(x, t)))− ≤ (z̄m(x, t)− Lx,t(v(x, t)))−,

from which it follows that(
− n (z̄n(x, t)− Lx,t(v(x, t)))− +m (z̄m(x, t)− Lx,t(v(x, t)))−

)
ψ+(x, t)

= −n
(

(z̄n(x, t)− Lx,t(v(x, t)))− − (z̄m(x, t)− Lx,t(v(x, t)))−
)
ψ+(x, t)

+(m− n) (z̄m(x, t)− Lx,t(v(x, t)))− ψ+(x, t)

≥ 0.

Note that ψ+ is zero at time t = 0 and vanishes at points x = 0 and x = 1. On the other hand,
from integrating by parts, (6.5) can deduce

1

2
‖(ψT )+‖2L2([0,1]) +

∫ T

0

∥∥∥∂(ψt)
+

∂x

∥∥∥2

L2([0,1])
dt+ Non-negative Part = 0.

Based on above displays, we conclude that for all (x, t) ∈ [0, 1]× [0, T ], ψ+ = 0, i.e. z̄n ≤ z̄m. By
choosing v2 = 0 and using the fact that the operator Lx,t equals to zero for any random process
X ≥ 0, a.s., we have z̄2,n = 0, where z̄2,n is the unique solution of (4.6) corresponding to v2. In
view of v ∈ S1 and by (4.8), then the solution z̄n of PDE (4.6) is upper bounded.

We next show the uniqueness. Let (z̄1,K1) and (z̄2,K2) be two solutions to obstacle problem
(4.1) with random obstacle v ∈ S1. Set Φ(x, t) := z̄1(x, t)− z̄2(x, t) and fix some φ(x) ∈ C∞c ((0, 1)).
Since function Φ is not regular enough, we need a smooth approximation and then take a limit. Let
ε be a symmetric, smooth, non-negative definite function which is supported on [−1, 1] and so that∫ 1
−1 ε(x) = 1. Define εn,m(x, t) := εn(x)εm(t) with εn(x) := nε(nx), then a smooth approximation

of Φ(x, t)φ2(x) can be given by
dn,m := [(Φφ) ∗ εn,m]φ,

where ∗ denotes the convolution on [0, 1]2. That is,

dn,m(x, t) =

(∫ ∞
0

∫ 1

0
Φ(y, s)φ(y)εn(x− y)εm(t− s) dyds

)
φ(x)

=

(∫ (t+1/n)

(t−1/n)+

∫ 1

0
Φ(y, s)φ(y)εn(x− y)εm(t− s) dyds

)
φ(x).
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Then, testing the equation for Φ against this function implies∫ 1

0
dn,m(x, T )Φ(x, T ) dx =

∫ T

0

〈∂dn,m(t)

∂t
,Φ(t)

〉
dt+

∫ T

0

〈∂2dn,m(t)

∂x2
,Φ(t)

〉
dt

+

∫ T

0

∫ 1

0
dn,m(x, t)

(
K1(dx, dt)−K2(dx, dt)

)
. (6.6)

We now take the limit for each term of (6.6) as n and m tends to infinity. As n,m → ∞,
applying the dominated convergence theorem yields∫ 1

0
dn,m(x, T )Φ(x, T ) dx→

∫ 1

0
Φ2(x, T )φ2(x) dx.

In addition, the limit of the combination of the reflection terms is at most zero. In fact, we have

lim
n,m→∞

∫ T

0

∫ 1

0
dn,m(x, t) (K1(dx, dt)−K2(dx, dt))

=

∫ T

0

∫ 1

0
Φ(x, t)φ2(x) (K1(dx, dt)−K2(dx, dt)). (6.7)

Combined with the fact that z̄i(x, t)−Lx,t(v(x, t)) is zero on the support of Ki and from (4.4), we
deduce that (6.7) is equal to

−
∫ T

0

∫ 1

0

(
z̄2(x, t)− Lx,t(v(x, t))

)
φ2(x)K1(dx, dt)

−
∫ T

0

∫ 1

0

(
z̄1(x, t)− Lx,t(v(x, t))

)
φ2(x)K2(dx, dt) ≤ 0,

where the inequalities z̄i(x, t) ≥ Lx,t(v(x, t), i = 1, 2 have been used. On the other hand, by a
same argument as in [21, Lemma B.4], we can also obtain∫ T

0

〈∂dn,m(t)

∂t
,Φ(t)

〉
dt → 1

2

∫ 1

0
Φ2(x, T )φ2(x) dx,

and

lim sup
n→∞

lim
m→∞

∫ T

0

〈∂2dn,m(t)

∂x2
,Φ(t)

〉
dt ≤ 1

2

∫ T

0

∫ 1

0
Φ2(x, s)(φ2)′′(x) dx.

Consequently, we conclude from above displays that∫ 1

0
Φ2(x, T )φ2(x) dx ≤

∫ T

0

∫ 1

0
Φ2(x, s)(φ2)′′(x) dx, (6.8)

for any time T > 0 and function φ ∈ C∞c ((0, 1)). Finally, following the proof of [26], we can obtain
Φ ≡ 0 and then by (6.6), K1 = K2. We refer the reader to [21, 26] for more details. This completes
the proof of the theorem.
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