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MEAN VALUES OF ARITHMETIC FUNCTIONS ON A SPARSE SET AND

APPLICATIONS

HENGCAI TANG & JIE WU

Abstract. Let f be an arithmetic function satisfying some simple conditions. The aim of this
paper is to establish some asymptotic estimates for quantities

ψf (x) :=
∑
n6x

Λ(n)f
([x
n

])
, πf (x) :=

∑
p6x

f
([x
p

])
for x → ∞, where Λ(n) is the von Mangoldt function and [t] is the integral part of t ∈ R. These
generalise or sharpen some recent results of Saito-Suzuki-Takeda-Yoshida. As an application, we
show that ∑

p6x, [ x
p
] is prime

1 ∼
x→∞

(∑
p

1

p(p+ 1)

) x

log x
·

1. Introduction

A fundamental question in the analytic number theory is to study the asymptotic behaviour of
counting summatory function of some arithmetic functions f , as x→∞. A typical example is the
Dirichlet divisor problem : let τ(n) be the number of divisors of n, then for x→∞, we have∑

n6x

τ(n) = x log x+ (2γ − 1)x+O(x1/2),

where γ is the Euler constant. Notice that

(1.1)
∑
n6x

τ(n) =
∑
n6x

[x
n

]
,

where [t] denotes the integral part of t ∈ R, it seems natural to consider a more general problem

Sf (x) :=
∑
n6x

f
([x
n

])
,

such that (1.1) corresponds the case of f = id (identical function, i.e., id(n) = n for all n ∈ N∗).
An interesting aspect of this problem is that the set

S(x) :=
{[x
n

]
: n ∈ N ∩ [1, x]

}
is sparse in N ∩ [1, x]:

|S(x)| ∼
x→∞

2
√
x.

Since the Euler function ϕ is the convolution of id and the Möbius function µ, i.e. ϕ = id ∗ µ,
we could consider that ϕ is rather close to id. Bordellès, Dai, Heyman, Pan and Shparlinski [2]
proposed to investigate the asymptotic behaviour of the summatory function Sϕ(x), as x → ∞,
and proved the following inequalities

(1.2)
(2629

4009
· 6

π2
+ o(1)

)
x log x 6 Sϕ(x) 6

(2629

4009
· 6

π2
+

1380

4009
+ o(1)

)
x log x.
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They also conjectured that

(1.3) Sϕ(x) ∼
x→∞

6

π2
x log x.

The bounds in (1.2) have been sharpened by Wu [15]. Recently Zhai [17] resolved the conjecture
(1.3) by the Vinogradov’s method, and a more general result has been established by Ma, Wu and
Zhao [8]. Let r1, r2, r3 be three non decreasing functions defined on [1,∞[ such that

(1.4) 1 6 rj(x)� xηj (x > 1, j = 1, 2, 3), r3(x) →
x→∞

∞,

where ηj ∈ [0, 1[ are constants. Let f = id ∗ g be an arithmetic function satisfying the following
conditions:

|f(n)| 6 nr1(n) (n > 1),(1.5) ∑
n6x

|g(n)| � xr2(x) (x > 1),(1.6) ∑
n6x

g(n) = Dgx+O(x/r3(x)) (x > 1),(1.7)

where Dg is a constant (eventually equal to 0). Ma, Wu and Zhao [8] proved that for any constant
A > 0,

(1.8) Sf (x) = Cfx log x+OA(xRS(x, z))

holds uniformly for x > 3 and 1 6 z 6 exp{A1/3(log x)2/3(log2 x)1/3}, where

(1.9) Cf :=
∞∑
n=1

g(n)

n2

and

RS(x, z) := (log x)2/3(log2 x)1/3r1(x) +
r2(x/z)

(log x)A
+
r2(x/z) log x

z
+

z log x

r3(
√
x/z)

·

When f = ϕ, we can take A = 1 and choose

r1(x) = r2(x) = 1, r3(x) = exp
(
− c(log x)3/5(log2 x)−1/5

)
, z = log x,

where logk is the k-fold iterated logarithm and c > 0 is a positive constant. Thus (1.8) gives Zhai’s
result (1.3).

For small arithmetic functions, i.e., f(n) � nθ (n > 1) with some θ ∈ [0, 1[, many authors also
studied the asymptotic behaviour of Sf (x), see [2, 16, 17, 20, 12, 3]. In particular, Wu [16] and
Zhai [17] proved independently

Sf (x) = cf x+O(x(1+θ)/2) (x→∞),

where

(1.10) cf :=

∞∑
n=1

f(n)

n(n+ 1)
·

Very recently Saito, Suzuki, Takeda and Yoshida [11] considered prime-analogue of Sf (x). Let
Ω(n) be the number of all prime factors of n, then it is well known that∑

n6x

Ω(n) =
∑
p6x

[x
p

]
= x log2 x+O(x) (x→∞).

Let Λ(n) be the von Mangoldt function and define

(1.11) ψf (x) :=
∑
n6x

Λ(n)f
([x
n

])
, πf (x) :=

∑
p6x

f
([x
p

])
.
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They [11, Theorems 7 and 9] proved that for x→∞,

(1.12) ψϕ(x) =
6

π2
x log x+O

(
x(log x)2/3(log2 x)1/3

)
and

(1.13)
2

π2
x log2 x+O(x log3 x) 6 πϕ(x) 6

( 2

π2
+

2

3

)
x log2 x+O(x log3 x).

In [11], Saito, Suzuki, Takeda and Yoshida also studied the asymptotic behaviour of ψf (x) and
πf (x) for small arithmetic functions. Suppose that f satisfies the following conditions:

(a) There is a constant α > 0 such that

(1.14)
∑
n6x

|f(n)|
n
� (log x)α (x > 2).

(b) There is a constant θ ∈ [0, 1
2 [ such that

(1.15) f(n)� nθ (n > 1).

Then they [11, Theorems 5 and 6] established that there is a positive constant c > 0 such that for
x→∞,

(1.16) ψf (x) = cfx+O(x exp(−c
√

log x))

and for any non-negative integer K,

(1.17) πf (x) =
x

log x

K∑
k=0

ak(f)

(log x)k
+OK

(
x

(log x)K+2

)
where cf is defined as in (1.10) and

(1.18) ak(f) :=

∫ ∞
1

f([u])(log u)k

u2
du.

The aim of this paper is to generalise and sharp these results.

Theorem 1.1. (i) Let f be an arithmetic function satisfying the conditions (1.5), (1.6) and (1.7).
Then for any A > 1, there exists a positive constant B = B(A) such that

(1.19) ψf (x) = Cfx log x+OA(xRψ(x, z))

holds uniformly for x > 3 and (log x)B 6 z 6 x1/12, where Cf is defined as in (1.9) and

(1.20) Rψ(x, z) := (log x)2/3(log2 x)1/3r1(x) +
r2(x/z)

(log x)A
+

log x

r3(x1/4/z)
+

z log x

r3(x/z)
·

Here the implied constant depends on A only.
(ii) Let f be an arithmetic function satisfying the condition (1.7) and there is a positive constant

c < 1 such that one of the following two conditions

(1.21) f(p− 1) < cf(1)p or f(p− 1) > c−1f(1)p > 0

holds for an infinity of prime numbers p. Then the error term of (1.19) is Ω(x).

As applications of Theorem 1.1, we consider four special arithmetic functions:

– the Euler function ϕ(n);

– the alternating sum-of-divisors function β(n);

– the sum-of-divisors function σ(n);

– the Dedekind function Ψ(n).
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We have the following relations:

(1.22) ϕ = id ∗ µ, β = id ∗ λ, σ = id ∗ 1, Ψ = id ∗ µ2,

where λ(n) := (−1)Ω(n) is the Liouville function and 1(n) = 1 for all n ∈ N∗. It is well known that
they verify the conditions (1.5), (1.6) and (1.7).

Corollary 1.2. (i) For x→∞, we have

ψϕ(x) =
6

π2
x log x+O(x(log x)2/3(log2 x)1/3),(1.23)

ψβ(x) =
π2

15
x log x+O(x(log x)2/3(log2 x)1/3),(1.24)

ψσ(x) =
π2

6
x log x+O(x(log x)2/3(log2 x)4/3),(1.25)

ψΨ(x) =
15

π2
x log x+O(x(log x)2/3(log2 x)4/3).(1.26)

(ii) The error terms of (1.23)-(1.26) are Ω(x).

The next theorem generalises Saito-Suzuki-Takeda-Yoshida’s (1.13).

Theorem 1.3. (i) Let f be an arithmetic function satisfying the conditions 0 6 f(n) 6 Cn (n > 1)
and (1.6) and (1.7). Then for any A > 1, there exists a positive constant B = B(A) such that

(1.27)
1

3
Cfx log2 x+OA(xRπ(x, z)) 6 πf (x) 6

1

3
(Cf + 2C)x log2 x+OA(xRπ(x, z))

holds uniformly for x > 3 and (log x)B 6 z 6 x1/12, where Cf :=
∑∞

n=1 g(n)n−2 and

(1.28) Rπ(x, z) := log3 x+
r2(x/z)

(log x)A
+

log x

r3(x1/4/z)
+

z log x

r3(x/z)
·

Here the implied constant depends on A only.

(ii) In particular, (1.13) is true and

(1.29)
π2

45
x log2 x+O(x log3 x) 6 πβ(x) 6

π2 + 30

45
x log2 x+O(x log3 x).

For small arithmetic functions, we have the following results which improve Saito-Suzuki-Takeda-
Yoshida’s (1.16) and (1.17).

Theorem 1.4. Let f : N→ C be an arithmetic function satisfying

(1.30) f(n)� nθ (n > 1)

with some constant θ ∈ [0, 1[.
(i) There exists a positive constant c1 > 0 such that for x→∞, we have

(1.31) ψf (x) = cfx+O
(
x exp(−c1(log x)1/3(log2 x)−1/3)

)
,

where cf is defined as in (1.10).
(ii) Furthermore, if f also verifies the condition (1.14), then the error term in (1.31) can be

replaced by O
(
x exp(−c1(log x)3/5(log2 x)−1/5)

)
.

Theorem 1.5. Let f : N→ C be an arithmetic function satisfying (1.30).
(i) There exists a positive constant c2 > 0 such that for x→∞, we have

(1.32) πf (x) = x

∫ x2/7

1

f([u])

u2 log(x/u)
du+O

(
x exp(−c2(log x)1/3(log2 x)−1/3)

)
.

Furthermore, if f verifies the condition (1.14), then the error term in (1.31) can be replaced by

O
(
x exp(−c2(log x)3/5(log2 x)−1/5)

)
.

(ii) For any non-negative integer K, the asymptotic formula (1.17) holds.



MEAN VALUES OF ARITHMETIC FUNCTIONS ON A SPARSE SET AND APPLICATIONS 5

As an application, we have the following result.

Corollary 1.6. For x→∞, we have

(1.33)

∑
p6x, [x

p
] is prime

1 = x

∫ x2/7

1

1P([u])

u2 log(x/u)
du+O

(
x exp(−c(log x)3/5(log2 x)−1/5)

)
=
(∑

p

1

p(p+ 1)

) x

log x

{
1 +O

( 1

log x

)}
,

where 1P is the characteristic function of the set of prime numbers P.

In the sum on the right-hand side of (1.33), we count prime numbers p with multiplicity. It
seems more interesting to count without multiplicity. For this we introduce

πS(x) :=
∑
p6x

∃n such that [x/n]=p

1 and πS,2(x) :=
∑
p6x

∃ p′ such that [x/p′]=p

1.

According to [6], we have

πS(x) ∼ 2x1/2/ log x as x→∞.

A stronger result can be found in [9].

Theorem 1.7. (i) For x→∞, we have πS,2(x)� x19/59/ log x.

(ii) Let π(x) be the number of primes 6 x and let ε be an arbitrarily small positive number.
Suppose that for y = (log x)2+ε, the inequality

(1.34) π(x+ y)− π(x)�ε y/ log x

holds for x→∞. Then we have πS,2(x)�ε x
1/2/(log x)2+ε.

Noticing that n and [x/n] are symmetric with respect to x1/2 logarithmically, it seems rather
interesting to compare Corollary 1.6 and Theorem 1.7 with Goldbach’s conjecture and the twin
prime conjecture: ∑

p6N,N−p is prime

1 ∼
even
N→∞

2
∏

2<p|N

p− 1

p− 2

∏
p>2

(
1− 1

(p− 1)2

)
N

(lnN)2
,

∑
p6x, p+2 is prime

1 ∼
x→∞

2
∏
p>2

(
1− 1

(p− 1)2

)
x

(lnx)2
·

About the hypothesis (1.34), we refer the reader to Granville-Lumley’s paper [5].

2. Preliminary lemmas

In this section, we shall cite some lemmas, which will be needed later. The first one is the
Vaughan identity [14, formula (3)].

Lemma 2.1. There are six real arithmetical functions αk(n) verifying

|αk(n)| 6 τ(n) log(2n) (n > 1, 1 6 k 6 6)

such that, for all N > 100, N < N ′ 6 2N and any arithmetical function a(n), we have

(2.1)
∑

N<n6N ′

Λ(n)a(n) = S1 + S2 + S3 + S4,
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where τ(n) is the classical divisor function and

S1 :=
∑

`6N1/3

α1(`)
∑

N<`m6N ′

a(`m),

S2 :=
∑

`6N1/3

α2(`)
∑

N<`m6N ′

(logm)a(`m),

S3 :=
∑∑

N1/3<`,m6N2/3

N<`m6N ′

α3(`)α4(m)a(mn),

S4 :=
∑∑

N1/3<`,m6N2/3

N<`m6N ′

α5(`)α6(n)a(`m).

The second lemma is [4, Theorem A.6].

Lemma 2.2. Let ψ(t) := t− [t]− 1
2 for t ∈ R. For x > 1 and H > 1, we have

(2.2) ψ(x) = −
∑

16|h|6H

Φ
( h

H + 1

)e(hx)

2πih
+RH(x),

where e(t) := e2πit, Φ(t) := πt(1− |t|) cot(πt) + |t| and the error term RH(x) satisfies

(2.3) |RH(x)| 6 1

2H + 2

∑
06|h|6H

(
1− |h|

H + 1

)
e(hx).

The third lemma is an estimate of exponential sum of Vinogradov type.

Lemma 2.3. For any A > 1, there is a positive constant B = B(A) > 0 such that

(2.4)
∑

N6n<N ′

e(T/n)� N(log T )−A

holds uniformly for

(2.5) exp(B(log T )2/3(log2 T )1/3) 6 N 6 T (log T )−B and N < N ′ 6 2N,

where the implied constant depends on A only.

Proof. According to [19, Lemma 2.2], there is a positive constant c1 such that we have∑
N6n<N ′

e(T/n)� N exp
(
− c1(logN)3/(log T )2

)
uniformly for N 6 T 2/3. This implies (2.4) provided that exp(B(log T )2/3(log2 T )1/3) 6 N 6 T 2/3

with B = (A/c1)1/3.

Next we suppose that T 2/3 6 N 6 T (log T )−B with B = A. Applying the exponent pair (1
6 ,

4
6)

(see [4]), we get∑
N6n<N ′

e(T/n)� (T/N)1/6N4/6 + (T/N)−1N � (TN3)1/6 + T−1N2 � N(log T )−A.

Combining these, we obtain the required result with B = max(A, (A/c1)1/3). �

The fourth lemma is [19, Lemma 2.4].

Lemma 2.4. Assume that the arithmetic function f satisfies the conditions (1.6) and (1.7). Then

(2.6)
∑
n6x

f(n) =
1

2
Cfx

2 −Dgx
(z − [z])2 + [z]

2z
+O

(xr2(x/z)

z
+

xz

r3(x/z)

)
−∆g(x, z)
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holds uniformly for x > 2 and 1 6 z 6 x1/3, where the constant Cf is defined as in (1.9) and

(2.7) ∆g(x, z) := x
∑
d6x/z

g(d)

d
ψ
(x
d

)
.

Furthermore, for x > 2 we have

(2.8)
∑
n6x

f(n) =
1

2
Cfx

2 +O(x(log x)r2(x)).

3. Bound on an average of ∆g

The aim of this section is to prove the following Proposition 3.1, which will play a key role in
the proof of Theorems 1.1 and 1.3.

Proposition 3.1. Assume that the arithmetic function f satisfies the hypothesis (1.6) and (1.7).
Let δ ∈ {0, 1}, η > 12

11 , A > 1 and let B be the constant determined by Lemma 3.2 below. Define

(3.1) N0 := exp
(
B(log x)2/3(log2 x)1/3

)
.

Let ∆g(x, z) be defined by (2.7) of Lemma 2.4. Then we have

(3.2) ∆ψ
g,δ(x, z) :=

∑
N0<n6x1/η

Λ(n)∆g

(x
n
− δ, z

)
�A,η

xr2(x/z)

(log x)A
+

x log x

r3(x1−1/η/z)

and

(3.3) ∆π
g,δ(x, z) :=

∑
N0<p6x1/η

∆g

(x
p
− δ, z

)
�A,η

xr2(x/z)

(log x)A
+

x log x

r3(x1−1/η/z)

uniformly for x > 10 and (log x)B 6 z 6 x1/12.

In order to prove Proposition 3.1, we need to establish the following lemma. This lemma is
essentially due to Liu [7] (see also [13, Lemmas 6, 7, 12] and [11, Lemma 22]). For convenience, we
give a complete (and simpler) proof here.

Lemma 3.2. Let ψ(t) := t − [t] − 1
2 for t ∈ R and ι ∈ R. Then for any A > 1, there is a positive

constant B = B(A) > 2A+ 8 such that the inequalities

(3.4) Ξ(x;N,N ′) :=
∑

N6n<N ′

Λ(n)ψ
(x
n
− ι
)
�A N(log x)−(A+1)

and ∑
N6n<N ′

Λ(n)

n
ψ
(x
n
− ι
)
�A (log x)−A(3.5)

∑
N6p<N ′

1

p
ψ
(x
p
− ι
)
�A (log x)−A(3.6)

hold uniformly for

(3.7) x > 10, exp(B(log x)2/3(log2 x)1/3) 6 N 6 x(log x)−B and N < N ′ 6 2N.

The implied constants depend on A and are independent of ι.

Proof. Firstly we prove (3.4). Using (2.2) of Lemma 2.2, for any H > 1 we can write∑
N6n<N ′

Λ(n)ψ
(x
n
− ι
)

= −
∑

16|h|6H

Φ
( h

H + 1

) 1

2πih

∑
N6n<N ′

Λ(n)e
(hx
n
− hι

)
+

∑
N6n<N ′

Λ(n)R
(x
n
− ι
)
.
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In view of (2.3) of Lemma 2.2, it follows that

|Ξ(x;N,N ′)| 6
∣∣∣∣ ∑

16|h|6H

Φ
( h

H + 1

)e(−hι)
2πih

∑
N6n<N ′

Λ(n)e
(hx
n

)∣∣∣∣
+

1

2H + 2

∑
06|h|6H

(
1− |h|

H + 1

)
e(−hι)

∑
N6n<N ′

Λ(n)e
(hx
n

)
.

Noticing the fact that 0 < Φ(t) < 1 (0 < |t| < 1) and using the prime number theorem:

(3.8)
∑
n6x

Λ(n) = x+O(x exp(−c(log x)3/5(log2 x)−1/5)) (x > 3),

where c > 0 is a positive constant, we can derive that, for any H ∈ [1, N ],

(3.9) Ξ(x;N,N ′)� N

H
+

∑
16h6H

1

h

∣∣∣∣ ∑
N6n<N ′

Λ(n)e
(hx
n

)∣∣∣∣.
For the last inner sum, we apply the Vaughan identity (2.1) to write

(3.10)
∑

N6n<N ′

Λ(n)e
(hx
n

)
= S1 + S2 + S3 + S4,

where

S1 :=
∑

d6N1/3

α1(d)
∑

N<d`6N ′

e
(hx
d`

)
,

S2 :=
∑

d6N1/3

α2(d)
∑

N<d`6N ′

(log `)e
(hx
d`

)
,

S3 :=
∑∑

N1/3<d,`6N2/3

N<d`6N ′

α3(d)α4(`)e
(hx
d`

)
,

S4 :=
∑∑

N1/3<d,`6N2/3

N<d`6N ′

α5(d)α6(`)e
(hx
d`

)
.

The sums S1 and S2 are called as type I, S3 and S4 as type II.

A. Estimates of S1 and S2

Since N 6 x/(log x)B and d 6 N1/3 6 x1/3, then

hx/d > x/d > (N/d)(log x)B > (N/d)(log(x/d))B and hx/d > x2/3.

Thus, we can apply Lemma 2.3 and the inequality α1(`)� τ(`) log x to derive that

(3.11)

S1 �
∑

d6N1/3

|α1(d)|(N/d)(log(hx/d))−(A+5)

� N(log x)−(A+4)
∑

`6N1/3

τ(d)/d

� N(log x)−(A+2).

The same bound also holds for S2, since the factor logm in S2 can be removed by a simple partial
integration.

B. Estimates of S3 and S4
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We shall only bound S3, since S4 can be treated in the same way. For this, we shall use two
different methods according to the size of N :

exp(B(log x)2/3(log2 x)1/3) 6 N 6 x1/2 or x1/2 6 N 6 x(log x)−B.

Firstly we consider the first case. In view of the symmetry of the variables d and `, we can
suppose that N1/2 6 d 6 N2/3. Thus using the bound α3(`)� τ(`) log x, we can derive that

S3 � (log x)
∑

N1/26d6N2/3

τ(d)

∣∣∣∣ ∑
N/d<`6N ′/d

α4(`)e
(hx
d`

)∣∣∣∣
� (log x)2 max

N1/26D6N2/3

∑
d∼D

τ(d)

∣∣∣∣ ∑
N/d<`6N ′/d

α4(`)e
(hx
d`

)∣∣∣∣,
where the symbol d ∼ D means that D < d 6 2D. By the Cauchy’s inequality, it follows that

|S3|2 � (log x)5 max
N1/26D6N2/3

D
∑
d∼D

τ(d)

∣∣∣∣ ∑
N/d<`6N ′/d

α4(d)e
(hx
d`

)∣∣∣∣2
� (log x)7 max

N1/26D6N2/3
D

∑
`∼N/D

∑
`′∼N/D

τ(`)τ(`′)

∣∣∣∣ ∑
d∼D

τ(d)e
(h(`′ − `)x

d``′

)∣∣∣∣.
Separating the contribution of ` = `′ and ` 6= `′, we can find that

(3.12) |S3|2 � (log x)10 max
N1/26D6N2/3

D

(
N +

∑
`∼N/D

∑
`′∼N/D

`6=`′

τ(`)τ(`′)

∣∣∣∣ ∑
d∼D

τ(d)e
(h(`′ − `)x

d``′

)∣∣∣∣).
Noticing that τ(d) =

∑
d1d2=d 1 and using the symmetry of d1 and d2, we can suppose that d1 6 d2

and write

(3.13)

∑
d∼D

τ(d)e
(h(`′ − `)x

d``′

)
=

∑
D<d1d262D

e
(h(`′ − `)x

d1d2``′

)
� (log x) max

16D16D1/2

∑
d1∼D1

∣∣∣∣ ∑
d2∼D/d1

e
(h(`′ − `)x

d1d2``′

)∣∣∣∣.
Using the hypothesis N 6 x1/2 and ` 6= `′, it is easy to verify that

x4/3 > Dx >
∣∣∣h(`′ − `)x

d1``′

∣∣∣ > x

d1(N/D)2
>
(D
d1

)
x1/4.

Thus we can apply Lemma 2.3 to get that∑
d∼D

τ(d)e
(h(`′ − `)x

d``′

)
� (log x) max

16D16D1/2

∑
d1∼D1

D

d1
(log x)−(2A+30)

� D(log x)−(2A+28).

Inserting this bound into (3.12), we easily derive that

(3.14) S3 � N(log x)−(A+3).

The same bound holds for S4. Combining (3.11) and (3.14) with (3.10), it follows that∑
N6n<N ′

Λ(n)e
(hx
n

)
� N(log x)−(A+3).

Inserting it into (3.9) and taking H = (log x)A+1, we obtain the required result (3.4).
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Next we suppose that x1/2 6 N 6 x(log x)−B. In (3.13), applying the exponent pair (κ, λ) to
the inner sum over d and using the fact that `, `′ ∼ N/D with ` 6= `′, we obtain that∑

d∼D
τ(d)e

(h(`′ − `)x
d``′

)
� (log x) max

16D16D
1
2

∑
d1∼D1

(( h|`′ − `|x
D(D/d1)``′

)κ(D
d1

)λ
+
( h|`′ − `|x
D(D/d1)``′

)−1
)

� (log x)2

((h|`′ − `|x
N2

)κ
D(1+κ+λ)/2 +

(h|`′ − `|x
N2

)−1
)
.

From this, we deduce that

max
N1/26D6N2/3

D
∑

`∼N/D

∑
`′∼N/D

`6=`′

τ(`)τ(`′)

∣∣∣∣ ∑
d∼D

τ(d)e
(h(`′ − `)x

d``′

)∣∣∣∣
� (log x)6

(
(hx)κN (7−5κ+λ)/4 + (hx)−1N3

)
.

Inserting it into (3.12), it follows that

(3.15) S3 � (log x)8
(
N5/6 + (hx)κ/2N (7−5κ+λ)/8 + (hx)−1/2N3/2

)
.

The same bound also holds for S4. Combining (3.11), (3.15) with (3.9), it follows that

Ξ(x;N,N ′)� (log x)8
(
N5/6 +NH−1 + (x4κN7−5κ+λH4κ)1/8 + (x−1N3)1/2

)
for all H ∈ [1, N ]. Optimizing H over [1, N ] and using the hypothesis x1/2 6 N 6 x(log x)−B, we
find that

Ξ(x;N,N ′)� (log x)8
(
N5/6 + (x4κN7−κ+λ)1/(8+4κ) + (x4κN7−5κ+λ)1/8 + (x−1N3)1/2

)
� (log x)8

(
N5/6 +N (7+7κ+λ)/(8+4κ) +N (7+3κ+λ)/8 +N(log x)−B/2

)
.

Taking (κ, λ) = ( 1
30 ,

26
30), we obtain the required inequality (3.4). Then, a simple partial integration

implies that (3.5).
Finally we prove (3.6). Under the condtion (3.7), we have that∣∣∣∣ ∑

N6pν<N ′,ν>2

log p

pν
ψ
( x
pν
− ι
)∣∣∣∣ 6 ∑

N6pν<N ′,ν>2

log p

pν
� (logN)2

N

� exp(−(B/2)(log x)2/3).

Thus, under the same condition, we have∑
N6p<N ′

log p

p
ψ
(x
p
− ι
)

=
∑

N6n<N ′

Λ(n)

n
ψ
(x
n
− ι
)

+
(

exp(−(B/2)(log x)2/3)
)

�A (log x)−A.

From this, a simple partial integration gives us (3.6). �

Now we are ready to prove Proposition 3.1.

Proof of Proposition 3.1. By (2.7) of Lemma 2.3, we can write

(3.16)

∆ψ
g,δ(x, z) =

∑
N0<n6x1/η

Λ(n)
(x
n
− δ
) ∑
d6(x/n−δ)/z

g(d)

d
ψ
( x
dn
− δ

d

)
= x

∑
N0<n6x1/η

Λ(n)

n

∑
d6x/(nz)

g(d)

d
ψ
( x
dn
− δ

d

)
+O(|E1|+ |E2|),
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where the implied constant is absolute and

E1 :=
∑

N0<n6x1/η

Λ(n)
∑

d6(x/n−δ)/z

g(d)

d
ψ
( x
dn
− δ

d

)
,

E2 := x
∑

N0<n6x1/η

Λ(n)

n

∑
(x/n−δ)/z<d6x/(nz)

g(d)

d
ψ
( x
dn
− δ

d

)
.

In view of the prime number theorem and the hypothesis (1.6), we have

E1 �
∑

n6x1/η

Λ(n)
∑
d6x/z

|g(d)|
d
� x1/ηr2(x/z) log x.

Since δ/z < 1, the hypothesis (1.7) and the prime number theorem allow us to derive that

E2 6 x
∑

n6x1/η

Λ(n)

n

|g([x/(nz)])|
[x/(nz)]

� x
∑

n6x1/η

Λ(n)

n

1

r3([x/(nz)])
� x log x

r3(x1−1/η/z)
·

Inserting these into (3.16) and inverting the order of summations, we get

(3.17) ∆ψ
g,δ(x, z) = ∆ψ,†

g,δ (x, z) +O

(
x1/ηr2(x/z) log x+

x log x

r3(x1−1/η/z)

)
.

where

∆ψ,†
g,δ (x, z) := x

∑
d6x/(N0z)

g(d)

d

∑
N0<n6min{x1/η , x/(dz)}

Λ(n)

n
ψ
( x
dn
− δ

d

)
.

For 0 6 k 6 (log(min{x1/η, x/(dz)}/N0))/ log 2, let Nk := 2kN0 and define

Sk(d) :=
∑

Nk<n62Nk

Λ(n)

n
ψ
( x
dn
− δ

d

)
.

Noticing that N0 6 Nk 6 x/(dz) 6 (x/d)(log x)−B 6 (x/d)(log(x/d))−B, we can apply (3.5) of
Lemma 3.2 with ι = δ/d to derive that

Sk(d)� (log(x/d))−B � (log x)−A−2,

since log(x/d) > logN0 > B(log x)2/3. Note that the implied constant is independent from δ/d.

Inserting this into the expression of ∆ψ,†
g,δ (x, z) and using the condition (1.6), we can deduce that

(3.18)

∆ψ,†
g,δ (x, z)� x

∑
d6x/(N0z)

|g(d)|
d

∑
2kN06x/(dz)

|Sk(d)|

� x

(log x)A+1

∑
d6x/z

|g(d)|
d
� xr2(x/z)

(log x)A
·

Inserting (3.18) into (3.17), we obtain (3.2).
The inequality (3.3) can be proved in the same way (only difference is to apply (3.6) in place of

(3.5)) and we omit it. �

4. Proof of Theorem 1.1

Firstly, we divide the sum over n into three parts :

(4.1) ψf (x) = ψf,1(x) + ψf,2(x) + ψf,3(x),
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where

ψf,1(x) :=
∑
n6N0

Λ(n)f
([x
n

])
,

ψf,2(x) :=
∑

N0<n6x3/4

Λ(n)f
([x
n

])
,

ψf,3(x) :=
∑

x3/4<n6x

Λ(n)f
([x
n

])
.

Here N0 := exp(B(log x)2/3(log2 x)1/3) is defined as in (3.1).
In view of the hypothesis (1.5) and the prime number theorem (3.8), we have

(4.2) ψf,1(x) 6
∑
n6N0

Λ(n)
x

n
r1(x)� xr1(x) logN0.

Noticing that d = [x/n] is equivalent to x/n − 1 < d 6 x/n and using Lemma 2.4, for any

(log x)B 6 z 6 x1/12 (6 (x/n)1/3), we can write

ψf,2(x) =
∑

N0<n6x3/4

Λ(n)
∑

x/n−1<d6x/n

f(d)

=
∑

N0<n6x3/4

Λ(n)

{
1

2
Cf

(2x

n
− 1
)
−Dg

(z − [z])2 + [z]

2z

+O

(
xz

nr3(x/z)
+
xr2(x/z)

nz

)
−∆g

(x
n
, z
)

+ ∆g

(x
n
− 1, z

)}
,

where ∆g(x, z) is defined by (2.7) of Lemma 2.4. With the help of the prime number theorem (3.8)
and (3.2) of Proposition 3.1 with η = 4

3 , we easily derive that

(4.3) ψf,2(x) =
3

4
Cfx log x+O

(
xr2(x/z)

(log x)A
+
xz log x

r3(x/z)
+

x log x

r3(x1/4/z)

)
,

where we have removed the term xr2(x/z) log x
z (since it can be bounded by xr2(x/z)

(log x)A
).

Finally we evaluate ψf,3(x). Write

ψf,3(x) =
∑

d6x1/4

f(d)
∑

max(x/(d+1),x3/4)<n6x/d

Λ(n) = ψ†f,3(x) + ψ]f,3(x),

where

ψ†f,3(x) :=
∑

d6x1/4

f(d)
∑

x/(d+1)<n6x/d

Λ(n),

ψ]f,3(x) :=
∑

x1/4−1<d6x1/4

f(d)
∑

x/(d+1)<n6x/d

Λ(n).

It is easy to bound ψ]f,3(x). In view of (1.5), we have

ψ]f,3(x)� x(log x)
∑

x1/4−1<d6x1/4

f(d)

d2
� x(log x)

f([x1/4])

[x1/4]2
� x3/4r1(x) log x.



MEAN VALUES OF ARITHMETIC FUNCTIONS ON A SPARSE SET AND APPLICATIONS 13

In order to estimate ψ†f,3(x), firstly we recall Huxley’s prime number theorem in short intervals (see

[10]): For any ε > 0,∑
x<n6x+y

Λ(n) = y
{

1 +O
(

exp(−c(log x)1/3(log2 x)−1/3
)}
,(4.4)

∑
x<p6x+y

1 =

∫ x+y

x

dt

log t

{
1 +O

(
exp(−c(log x)1/3(log2 x)−1/3

)}
(4.5)

hold uniformly for x > 3 and x7/12+ε 6 y 6 x. When d 6 x1/4, we have x/d > x3/4 and

x/(d(d+ 1)) > (x/(d+ 1))3/5. Thus we can apply (4.4) to derive that

ψ†f,3(x) =
∑

d6x1/4

f(d)
x

d(d+ 1)

{
1 +O

(
exp(−c(log x)1/3(log2 x)−1/3

)}
.

On the other hand, by (2.8) of Lemma 2.4, it follows that∑
d6x1/4

f(d)

d(d+ 1)
=
∑

d6x1/4

f(d)

d2
−
∑

d6x1/4

f(d)

d2(d+ 1)

=

∫ x1/4

1−
t−2 d

(
1
2Cf t

2 +O(tr2(t) log t)
)

+O(1)

=
1

4
Cf log x+O(1).

Combining these estimates, we find that

(4.6) ψf,3(x) =
1

4
Cfx log x+O(x+ x3/4r1(x) log x).

Now the required result (1.19) follows from (6.1), (4.2), (4.3) and (4.6).

Finally we prove the second assertion. Let E(x) be the error term of (1.19), i.e.

ψf (x) = Cfx log x+ E(x),

and define E∗(x) := max{|E(x)|, |E(x− 1)|}.
Putting d = [x/n], we have x/n− 1 < d 6 x/n and x/(d+ 1) < n 6 x/d. Thus,

ψf (x) =
∑
d6x

f(d)
∑

x/(d+1)<n6x/d

Λ(n) =
∑
dn6x

f(d)Λ(n)−
∑

(d+1)n6x

f(d)Λ(n).

Setting f(0) = 0, we can write

(4.7) ψf (x) =
∑
dn6x

(f(d)− f(d− 1))Λ(n) =
∑
m6x

∑
d|m

(f(d)− f(d− 1))Λ
(m
d

)
.

Firstly we suppose that

(4.8) f(p− 1) < cf(1)p

holds for an infinity of primes p. In view of (4.7), for each prime p we can write∑
d|2p

(f(d)− f(d− 1))Λ

(
2p

d

)
= ψf (2p)− ψf (2p− 1)

= Cf
(
2p log(2p)− (2p− 1) log(2p− 1)

)
+ E(2p)− E(2p− 1)

6 2E∗(2p) +O(log p).
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On the other hand, our hypothesis (4.8) and (1.7) allow us to deduce that∑
d|2p

(f(d)− f(d− 1))Λ

(
2p

d

)
= (f(p)− f(p− 1)) log 2 + (f(2)− f(1)) log p

= (g(1)p+ g(p)f(1)− f(p− 1)) log 2 + (f(2)− f(1)) log p

> (1− c)f(1)p log 2 +O(p/r3(p))

> 1
2(1− c)f(1)p

for an infinity of primes p. Combining these, we find that

E∗(2p) > 1
5(1− c)f(1)p

for an infinity of primes p.
Next we suppose that

(4.9) f(p− 1) > c−1f(1)p > 0

holds for an infinity of primes p. As before, for each prime p we can write∑
d|2p

(f(d)− f(d− 1)) > −2E∗(p) +O(log p).

On the other hand, our hypothesis (4.9) and (1.7) allow us to deduce that∑
d|2p

(f(d)− f(d− 1)) 6 −1
2(c−1 − 1)f(1)p

for an infinity of primes p. Combining these, we find that

E∗(p) > 1
5(c−1 − 1)f(1)p > 0

for an infinity of primes p. �

5. Proof of Corollary 1.2

5.1. Proof of (1.23) and (1.24).

Since ϕ = id ∗ µ and β = id ∗ λ, we have g = µ or g = λ and the following well-known bound∑
n6x

g(n)� x exp
(
− c(log x)3/5(log2 x)−1/5

)
(x > 2).

Thus ϕ and β verify the conditions (1.5), (1.6) and (1.7) with Dg = 0 and

r1(x) = 1, r2(x) = 1, r3(x) = exp
(
− c4(log x)3/5(log2 x)−1/5

)
.

The asymptotic formulas (1.23)-(1.24) follow from Theorem 1.1 with the choice of A = 1 and

z = logB(1)(3x).

5.2. Proof of (1.25) and (1.26).

In this case, we have g = 1 or µ2 and∑
n6x

g(n) =

{
x+O(1) if g = 1,

(6/π2)x+O(
√
x) if g = µ2.

Thus the function σ(n) and Ψ(n) verify the conditions (1.5), (1.6) and (1.7) with D1 = 1 or
DΨ = 6/π2 and

r1(x) = C log2(3x), r2(x) = 1, r3(x) =
√
x.

where C > 0 is a positive constant. The asymptotic formulas (1.25) and (1.26) follow from Theorem

1.1 with the choice of A = 1 and z = logB(1)(3x).
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5.3. Proof of the second assertion.

Firstly we verify that functions ϕ, σ, β and Ψ satisfy the condition (1.21) of Theorem 1.1.
For each odd prime p, we can write p− 1 = 2νm with 2 - m. Thus

ϕ(p− 1) = ϕ(2ν)ϕ(m) 6 2ν−1m < 1
2p

for all odd primes p.

For all primes p and integers ν > 1, we have

β(pν) =
∑

06j6ν

(−1)ν−jpj =
pν+1 + (−1)ν

p+ 1
6

{
3
42ν if p = 2,

pν otherwise.

For each odd prime p, we can write p− 1 = 2νm with 2 - m. Thus

β(p− 1) = β(2ν)β(m) 6 3
4(p− 1) 6 3

4p

for all odd primes p.

For all odd primes p, we have

σ(p− 1) > (p− 1) + 1
2(p− 1) + 1 > 5

4p.

For all primes p and integers ν > 1, we have

Ψ(pν) = pν + pν−1 >

{
3
22ν if p = 2,

pν otherwise.

For each odd prime p, we can write p− 1 = 2νm with 2 - m. Thus

Ψ(p− 1) = Ψ(2ν)Ψ(m) > 3
2(p− 1) > 5

4p

for all odd primes p > 7.
Thus Theorem 1.1(ii) implies that the error terms of (1.23)-(1.26) are Ω(x). �

6. Proof of Theorem 1.3

Firstly we divise the sum over n into three parts :

(6.1) πf (x) = πf,1(x) + πf,2(x) + πf,3(x),

where

πf,1(x) :=
∑
p6N0

f
([x
p

])
, πf,2(x) :=

∑
N0<p6x3/4

f
([x
p

])
, πf,3(x) :=

∑
x3/4<p6x

f
([x
p

])
.

Since 0 6 f(n) 6 Cn (n > 1), the prime number theorem allows us to derive that

0 6 πf,1(x) 6 C
∑
p6N0

x

p
=

2

3
Cx log2 x+O(x log3 x),(6.2)

πf,3(x) 6 C
∑

x3/4<p6x

x

p
� x.(6.3)

Noticing that d = [x/p] is equivalent to x/p− 1 < d 6 x/p, for (log x)B 6 z 6 x1/12 (6 (x/p)1/3)
we can apply Lemma 2.4 to write

πf,2(x) =
∑

N0<p6x3/4

∑
x/p−1<d6x/p

f(d)

=
∑

N0<p6x3/4

{
1

2
Cf

(2x

p
− 1
)
−Dg

(z − [z])2 + [z]

2z

+O

(
xz

pr3(x/z)
+
xr2(x/z)

pz

)
−∆g

(x
p
, z
)

+ ∆g

(x
p
− 1, z

)}
,
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where ∆g(x, z) is defined by (2.7) of Lemma 2.4. By the prime number theorem and (3.3) of
Proposition 3.1 with η = 4

3 , we easily derive that

(6.4) πf,2(x) =
1

3
Cfx log2 x+O

(
xr2(x/z)

(log x)A
+
xz log x

r3(x/z)
+

x log x

r3(x1/4/z)
+ x

)
,

where we have removed the term xr2(x/z) log x
z (since it can be bounded by xr2(x/z)

(log x)A
). Now the

required result (1.27) follows from (6.1), (6.2), (6.3) and (6.4).

Next we prove the second assertion. In the proof of Corollary 1.2, we have seen that ϕ and β verify
the conditions (1.6) and (1.7) with Dg = 0, r2(x) = 1 and r3(x) = exp(−c(log x)3/5(log2 x)−1/5).
On the other hand, we have trivially ϕ(n) 6 n and β(n) 6 n for all n > 1. Thus the first assertion
gives immediately the second. �

7. Proof of Theorem 1.7

7.1. Proof of the first assertion.

Write

(7.1) ψf (x) = ψ†f (x) + ψ]f (x),

where

ψ†f (x) :=
∑

n6x5/7

Λ(n)f
([x
n

])
, ψ]f (x) :=

∑
x5/7<n6x

Λ(n)f
([x
n

])
.

In view of the hypothesis (1.30) and the prime number theorem (3.8), we have

(7.2) ψ†f (x)� xθ
∑

n6x5/7

Λ(n)

nθ
� x(5+2θ)/7.

On the other hand, noticing that m = [x/n] ⇔ x/(m+ 1) < n 6 x/m, we can write

ψ]f (x) =
∑

m6x2/7

f(m)
∑

max(x5/7, x/(m+1))<n6x/m

Λ(n)

=
∑

m6x2/7

f(m)
∑

x/(m+1)<n6x/m

Λ(n) +O(x(5+2θ)/7),

where we have used the following bound∑
x2/7−1<m6x2/7

f(m)
∑

x5/7<n6x/m

Λ(n)�
∑

n62x5/7

Λ(n)
∑

x2/7−1<m6x2/7

f(m)

� x2θ/7
∑

n62x5/7

Λ(n)� x(5+2θ)/7.

On the other hand, it is easy to verify that for m 6 x2/7 we have x/m2 > (x/m)3/5. Applying
Huxley’s prime number theorem in short intervals of the form (4.4), we can derive that

(7.3) ψ]f (x) =
∑

m6x2/7

f(m)
x

m(m+ 1)

{
1 +O

(
exp(−c(log x)1/3(log2 x)−1/3

)}
+O(x(5+2θ)/7).

Using the hypothesis (1.30), we have∑
m6x2/7

|f(m)|
m(m+ 1)

�
∞∑
m=1

1

m2−θ � 1,

x
∑

m6x2/7

f(m)

m(m+ 1)
= cfx+O

(
x(5+2θ)/7

)
.
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Inserting these into (7.3), it follows that

(7.4) ψ]f (x) = cfx+O
(
x exp(−c1(log x)1/3(log2 x)−1/3

)
.

Now the required result follows from (7.1), (7.2) and (7.4).

7.2. Proof of the second assertion.

Now suppose that f also verifies the hypothesis (1.30). In place of (7.3), we have, thanks to the
prime number theorem (3.8) and (1.30),

ψ]f (x) =
∑

m6x2/7

f(m)

{
x

m(m+ 1)
+O

(
x

m
exp

(
− c(log x)3/5(log2 x)−1/5

))}
+O(x(5+2θ)/7)

= cfx+O
(
x exp(−c1(log x)3/5(log2 x)−1/5

)
.

Now the required result follows from this, (7.1) and (7.2). �

8. Proof of Theorem 1.5

8.1. Proof of the first assertion.

In view of the hypothesis (1.30), we have∑
p6x5/7

f
([x
p

])
� xθ

∑
p6x5/7

1

pθ
� x(5+2θ)/7

log x
·

Thus, we can write that

(8.1) πf (x) = π]f (x) +O(x(5+2θ)/7/ log x),

where

π]f (x) :=
∑

x5/7<p6x

f
([x
p

])
.

Using Huxley’s prime number theorem in short intervals of the form (4.5), we have

(8.2)

π]f (x) =
∑

m6x2/7

f(m)
∑

max(x5/7, x/(m+1))<p6x/m

1

=
∑

m6x2/7

f(m)
∑

x/(m+1)<p6x/m

1 +O

(
x(5+2θ)/7

log x

)

=
∑

m6x2/7

f(m)

∫ x/m

x/(m+1)

dt

log t

{
1 +O

(
e−c(log x)1/3(log2 x)−1/3

)}
+O

(
x(5+2θ)/7

log x

)
.

Inverting the order of summation, it follows that∑
m6x2/7

f(m)

∫ x/m

x/(m+1)

dt

log t
=

∫ x

x/(x2/7+1)

∑
x/t−1<m6min(x2/7,x/t)

f(m)
dt

log t

=

∫ x

x5/7

∑
x/t−1<m6x/t

f(m)
dt

log t
+O

(
x(3+2θ)/7

log x

)
,

=

∫ x

x5/7

f([x/t])

log t
dt+O

(
x(3+2θ)/7

log x

)
.

Inserting this into (8.2) and making the changement of variables u = x/t, it follows that

(8.3) π]f (x) = x

∫ x2/7

1

f([u])

u2 log(x/u)
du+O

(
x exp(−c(log x)1/3(log2 x)−1/3)

)
.

Now the required result (1.32) follows from (8.1) and (8.3).
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Next we suppose that f also verifies the hypothesis (1.14). As before, in place of (8.2) and (8.3),
we have

(8.4)

π]f (x) =
∑

m6x2/7

f(m)

{∫ x/m

x/(m+1)

dt

log t
+O

( x
m

e−c(log x)3/5(log2 x)−1/5s
)}

+O

(
x(5+2θ)/7

log x

)
.

= x

∫ x2/7

1

f([u])

u2 log(x/u)
du+O

(
xe−c2(log x)3/5(log2 x)−1/5

)
.

From (8.1) and (8.4), we can obtain the required result.

8.2. Proof of the second assertion.

We have

x

∫ x2/7

1

f([u])

u2 log(x/u)
du =

x

log x

∫ x2/7

1

f([u]) du

u2(1− (log u)/ log x))

=
x

log x

∫ x2/7

1

{ K∑
k=0

(log u)k

(log x)k
+O

(
(log u)K+1

(log x)K+1

)}
f([u])

u2
du

=
x

log x

{ K∑
k=0

ak(f)

(log x)k
+O

(
1

(log x)K+1

)}
,

where we have used the hypothesis (1.30) to get∫ ∞
x2/7

f([u])(log u)k

u2
du�

∫ ∞
x2/7

(log u)k

u2−θ du� (log x)k

x2(1−θ)/7 ,∫ x2/7

1

f([u])(log u)K+1

u2
du�

∫ ∞
1

(log u)K+1

u2−θ du� 1.

Combining these we can obtain that

(8.5) π]f (x) =
x

log x

{ K∑
k=0

ak(f)

(log x)k
+O

(
1

(log x)K+1

)}
.

Inserting (8.5) into (8.1), we obtain the desired result. �

9. Proof of Corollary 1.6

Clearly the characteristic function of P verifies the hypothesis (1.30) with θ = 0 and (1.14) with
α = 1. Thus Theorem 1.7 gives us the required result by noticing that

a0 =

∫ ∞
1

1P([u])

u2
du =

∑
p

∫ p+1

p

1

u2
du =

∑
p

1

p(p+ 1)
·

10. Proof of Theorem 1.7

Firstly we note that

S(x) =
{
p ∈ P : ∃ n ∈ [1, x] such that

[x
n

]
= p
}
.

Further, if
[
x
p′

]
= p ∈ P, then x/(p+ 1) < p′ 6 x/p. Thus we can write

πS,2(x) =
∑
p6x

1
(
([x/p]− [x/(p+ 1)]) ∩ P 6= ∅

)
.
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For p 6 x19/59, we have [x
p

]
−
[ x

p+ 1

]
>

x

p(p+ 1)
− 1 >

1

2

(x
p

)21/40
.

According to Baker-Harman [1, Theorem 1], for p 6 x19/59 we have

([x/p]− [x/(p+ 1)]) ∩ P 6= ∅.
Thus

πS,2(x) > π(x19/59).

For p 6 x1/2/(log x)1+ε, we have x/p(p+ 1) > (log(x/p))2+ε. Thus under the hypothesis (1.34), we
have that

πS,2(x) > π(x1/2/(log x)1+ε). �
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