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Balanced ICP for precise lidar odometry
from non bilateral correspondences

Matteo Azzini, Ezio Malis and Philippe Martinet

Abstract— In the field of lidar odometry for autonomous
navigation, the Iterative Closest Point (ICP) algorithm is a
prevalent choice for estimating robot motion by comparing
point clouds. However, ICP accuracy is strictly dependent on
the nature of the features involved, but also on the directional
choice of the extraction and matching, either from the current
to the reference point cloud or vice-versa. Point-to-line or
point-to-plane correspondences have been proven to provide
the more accurate odometry results. The matching is generally
done in a mono-directional framework: extract the features
(lines or planes) in the current point cloud and match them
to points in the reference point cloud. This paper introduces a
novel formulation, named Balanced ICP, that performs feature
extraction (lines or planes) in both point clouds and consequent
matching in both the directions. Therefore, the cost function
is designed to perform a simultaneous optimization of all
available data balancing the noise and extraction errors. The
experiments, conducted both on simulated and real data from
the KITTI dataset, reveal that our method outperform the
classical mono-directional formulations, in terms of robustness,
accuracy and stability.

I. INTRODUCTION

Nowadays, lidar sensors gained huge popularity thanks to
their ability to generate high-resolution 3D point clouds. Its
application in various domains, such as autonomous navi-
gation, robot manipulation or 3D reconstruction, and their
rapid development constantly require increasingly accurate
localization. To meet this need, in the context of lidar
odometry, the Iterative Closest Point (ICP) algorithm [1]
emerges as the most popular solution to estimate the motion
of the robot by comparing the current point cloud with the
previous one, or with a saved reference map. Even if it
is widely exploited, the accuracy of this method is strictly
dependent on the nature of the features involved, but also on
the directional choice of the extraction and matching, either
from the current to the reference point cloud or vice-versa.

To overcome these limitations different techniques were
attempted, either keeping the same algorithm formulation
while focusing on another block of the odometry pipeline [2],
or trying to work on the feature extraction. The most popular
example of this second approach is LOAM [3], which is
based on the extraction of lines and planes and on the match-
ing of those features. Inspired by the same idea, [4] insisted
on the same geometric features, but they tried to improve
accuracy by enriching the matching with ground constraints
and splitting into two odometry pipelines the pose estimation,
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for ground and not ground points. A similar philosophy is
followed by [5], but complexifying the features extraction in
order to classify the points in different categories (ground,
facade, pillar, beam, etc.) and use this information to weight
the matching in the cost function. Even more elaborated is
the approach of [6] where the authors proposed the couples
of points and normals as features, enriched also by semantic
classification obtained by RangeNet [7], used then to weight
the matching like [5].

Other works focused more on the cost function in order to
obtain a more precise estimation. For example, [8] proposed
a distribution-based feature extraction and a modified cost
function that takes into account the KL-divergence between
the two distributions. A different approach is the work
proposed by [9] where the authors presented a point-to-plane
formulation of the ICP, enriched by terms that constrain
the smoothness of the motion and the constant velocity
assumption.

All the previous works are based on the extraction of
features in the current point cloud and then matching in
the reference point cloud, therefore using a mono-directional
approach. Differently, the authors of [10] guessed the possi-
bility of exploiting a double matching information and they
proposed a method based on the bilateral correspondences,
namely when a point in the current point cloud is matched
with a point in the reference point cloud and that point is
matched with the other one uniquely in the first point cloud
(see Fig.1).

(a) Non bilateral matching (b) Bilateral matching

Fig. 1: Bilateral correspondences

In their case, they exploit the bidirectionality, in the sense
that the matching is performed in both directions, from the
current to the reference and vice-versa, and the bilateral
correspondences are used to weight the cost function. This
approach provides a more precise estimation of the motion,
but their formulation first applies just to point-to-point cor-
respondences and secondly, the minimization involves just
the transformation in one direction, from the current to the
reference point cloud.

Leveraging a similar intuition, but with a different pro-
posal, the authors of [11] presented another version, called



Symmetric ICP. In this case, keeping a mono-directional
matching from the current to the reference, the symmetry
is given by the fact that the cost function is defined in order
to take into account the point-to-plane distances with the
normals extracted for both the matched points in the current
and in the reference point cloud. This formulation allows
the exploitation of higher precision of a point-to-plane ICP
with respect to the classic point-to-point formulation, but
also includes points that are consistent with a locally-second-
order surface centered between them. On the other hand, this
method doesn’t exploit the information that a bidirectional
matching can provide, consequently, the minimization still
involves just the transformation from the first to the second
point cloud.

In this work we present a novel formulation of the ICP
algorithm, named Balanced ICP, that, in contrast with the
other approaches, exploits the features extraction and match-
ing in both the point clouds to define a cost function, which
includes the motion estimation in both directions, reference
to current and vice-versa. By performing the simultaneous
optimization of all available data, our formulation is able
to balance the additional error inherited from the inevitable
dependency of the feature extraction and matching processes
on the noisy point cloud. To the best of our knowledge, this
is the first time that a method fully exploits the bi-laterality
of the scan registration.

II. THEORETICAL BACKGROUND

In this section, we recall the ICP algorithm for different
features that can be extracted from a 3D point cloud: points,
lines and planes.

A. Iterative Closest Point algortihms

We separate the algorithms into two categories. The first
category (see II-A.1) is obtained when considering bilateral
features in the reference and current point cloud: point-to-
point, line-to-line and plane-to-plane. The second category
(see II-A.2) is obtained by considering features of different
nature in the reference and current point cloud: point-to-line
and point-to-plane

1) Bilateral Features:
a) Point-to-point correspondences: When we have n

current noisy points mck, k ∈ {1, 2, ..., n} in correspondence
to n reference noisy points mrk, k ∈ {1, 2, ..., n} we look for
the transformation matrix rTc that minimizes the distances
between the reference points and the transformed current
points:

rTc = argmin
1

2

n∑
k=1

w2
k ∥rTcmck −mrk∥2 (1)

Note that one can also define the following problem that
minimizes the distances between the current points and the
transformed reference points:

cTr = argmin
1

2

n∑
k=1

w2
k ∥mck − cTrmrk∥2 (2)

These problems are naturally bilateral and the solutions of
the two separated minimizations are such that:

rTc =
cT−1

r

even in the presence of noisy data.
b) Line-to-line correspondences: When we have nr

current lines with origin the point ock and direction the
vector dck, in correspondence to n reference noisy lines
with origin the point ork and direction the vector drk, we
look for the transformation matrix rTc that minimizes the
distances between the reference points and the transformed
current points:

rTc = argmin
1

2

n∑
k=1

w2
k ∥rRcdck − drk∥2 +

+
1

2

n∑
k=1

w2
k ∥rRcock + rtc − ork∥2 (3)

Note that one can also define the following problem that
minimizes the distances between the current lines and the
transformed reference lines:

cTr = argmin
1

2

n∑
k=1

w2
k ∥dck − cRrdrk∥2 +

+
1

2

n∑
k=1

w2
k ∥ock − cRrork − ctr∥2 (4)

These problems are naturally bilateral and the solutions of
the two separated minimizations are such that:

rTc =
cT−1

r

even in the presence of noisy data.
c) Plane-to-plane correspondences: When we have n

current noisy planes πck, k ∈ {1, 2, ..., n} in correspondence
to n reference noisy planes πrk, k ∈ {1, 2, ..., n}, we
look for the transformation matrix rTc that minimizes the
distances between the reference planes and the transformed
current planes:

rTc = argmin
1

2

n∑
k=1

w2
k ∥rT−⊤

c πck − πrk∥2 (5)

Note that one can also define the following problem that
minimizes the distances between the current points and the
transformed reference points:

cTr = argmin
1

2

n∑
k=1

w2
k ∥πck − cT−⊤

r πrk∥2 (6)

These problems are naturally bilateral and the solutions of
the two separated minimizations are such that:

rTc =
cTr

−1

even in the presence of noisy data.
2) Non Bilateral Features: When the features extracted

from the reference and current point clouds are not bilateral,
the result of the optimization depends on the cost function.



a) Point-to-line correspondences: Consider nr lines in
the reference frame and for each line, with origin the point
ori and direction the vector dri, a corresponding point in
the current frame mci, where i ∈ {1, 2, ..., n}. We look for
the optimal transformation matrix rTc that minimizes the
following weighted least squares problem:

rTc = argmin
1

2

nr∑
i=1

w2
ri∥Dri(

rTcmci − ori)∥2 (7)

where wri are positive weights, and

Dr =

[
[dr]

2
× 0

0 0

]
If we also have nc lines in the current frame and for each

line, with origin the point ocj and direction the vector dcj ,
a point in the reference frame mrj , where j ∈ {1, 2, ..., nc}
we can also solve the following problem:

cTr = argmin
1

2

nc∑
j=1

w2
cj∥Dcj(

cTrmrj − ocj)∥2 (8)

where wcj are positive weights, and

Dc =

[
[dc]

2
× 0

0 0

]
In this case, the features are not bilateral and in general with
noisy data solving the two problems separately will give two
solutions such that:

rTc ̸= cTr
−1

b) Point-to-plane correspondences: Consider nr planes
in the reference frame and for each plane πri a corresponding
point in the current frame mci, where i ∈ {1, 2, ..., n}.
We look for the optimal transformation matrix rTc that
minimizes the following weighted least squares problem:

rTc = argmin
1

2

nr∑
i=1

w2
ri∥π⊤

ri
rTcmci∥2 (9)

where wri are positive weights.
If we also have nc planes in the current frame and for

each plane πcj a point in the reference frame mrj , where
j ∈ {1, 2, ..., nc} we can also solve the following problem:

cTr = argmin
1

2

nc∑
j=1

w2
ci∥π⊤

cj
cTrmrj∥2 (10)

In this case, the features are not bilateral and in general with
noisy data solving the two problems separately will give two
solutions such that:

rTc ̸= cTr
−1

III. BALANCED ICP FOR NON BILATERAL
CORRESPONDENCES

In this section, an approach to balance non-bilateral cor-
respondences is proposed by performing the simultaneous
optimization of all available data, both from reference and
current point clouds.

A. Cost function for non-bilateral correspondences

Consider nr features extracted in the reference frame,
along with their non bilateral matching in the current frame,
and nc features of the same nature extracted in the current
frame, along with their non bilateral matching in the current
frame. We look for the optimal transformation matrix T
that minimizes the following balanced weighted least squares
problem:

min
T

nr

nr + nc
∥er(T)∥2 + nc

nr + nc
∥ec(T)∥2 (11)

where er(T) and ec(T) are vectors containing the errors
of the features, respectively extracted in the reference and
the current frame, relative to their non-bilateral matching in
the other point cloud. The expression of er(T) and ec(T)
depends on the features and it is given in the following
paragraphs.

a) point-to-line correspondences: Consider nr lines
with origin the point ori and direction the vector dri in the
reference frame and for each line a point in the current frame
mci, where i ∈ {1, 2, ..., nr}. Consider nc lines with origin
the point ocj and direction the vector dcj in the current frame
and for each line a point in the reference frame mrj , where
j ∈ {1, 2, ..., nc}. Therefore the errors can be defined as:

er =


wr1Dr1(Tmc1 − or1)
wr2Dr2(Tmc2 − or2)

...
wrnr

Drnr
(Tmcnr

− ornr
)

 = (12)

=


wr1 [dr1]

2
× (Rmc1 + t− or1)

wr2 [dr2]
2
× (Rmc1 + t− or2)

...
wrnr [drnr ]

2
× (Rmcnr + t− ornr )


and

ec =


wc1Dc1(T

−1mr1 − oc1)
wc2Dc2(T

−1mr2 − oc2)
...

wcnc
Dcnc

(T−1mrnc
− ocnc

)

 = (13)

=


wc1Dc1(R

⊤mr1 −R⊤t− oc1)
wc2Dc2(R

⊤mr2 −R⊤t− oc2)
...

wcnc
Dcnc

(R⊤mrnc
−R⊤t− ocnc

)


where wri and wcj are positive weights.

b) Point to plane correspondences: Consider nr planes
in the reference frame and for each plane πri a point in
the current frame mci, where i ∈ {1, 2, ..., nr}. Consider nc

planes in the current frame and for each plane πcj a point in
the reference frame mrj , where j ∈ {1, 2, ..., nc}. Therefore



the errors can be defined as:

er =


wr1(π

⊤
r1Tmc1)

wr2(π
⊤
r2Tmc2)
...

wrnr(π
⊤
rnr

Tmcnr
)

 = (14)

=


wr1(n

⊤
r1Rmc1 + n⊤

r1t+ dr1)
wr2(n

⊤
r2Rmc2 + n⊤

r2t+ dr2)
...

wrnr(n
⊤
rnr

Rmcnr
+ n⊤

rnr
t+ drnr

)


and:

ec =


wc1(π

⊤
c1T

−1mr1)
wc2(π

⊤
c2T

−1mr2)
...

wcnc
(π⊤

cnc
T−1mrnc

)

 = (15)

=


wc1(n

⊤
c1R

⊤mr1 − n⊤
c1R

⊤t+ dc1)
wc2(n

⊤
c2R

⊤mr2 − n⊤
c2R

⊤t+ dc2)
...

wcnc
(n⊤

cnc
R⊤mrnc

− n⊤
cnc

R⊤t+ dcnc
)


where wri and wcj are positive weights.

B. Iterative optimization

We optimise the cost function iteratively starting from an ini-
tial guess of the pose. We consider the optimization problem
as a virtual sensor-based control problem by considering the
error vectors er and ec. We have that:

ėr = Lrv

ėc = Lcv

where v ∈ R6 is the velocity of a virtual lidar and Lr and
Lc are called the interaction matrices. Stacking together both
errors and interaction matrices we get:

e =

[
er
ec

]

L =

[
Lr

Lc

]
and

ė = Lv

We choose as control law:

v = −λ(L⊤L)−1L⊤e

where λ is a constant positive scalar factor that tunes the
amplitude of the incremental step. Therefore, we get a Gauss-
Newton like minimisation approach. The new pose is then
computed as:

Tk+1 = Tk exp([v])

and the process is iterated until convergence.

a) point-to-line correspondences: In the specific case
of point-to-line correspondences, recalling the previously
defined notation, the interaction matrices Lr and Lc are
defined as:

Lr =


wr1

[
[dr1]

2
× R − [dr1]

2
× R [mc1]×

]
wr2

[
[dr2]

2
× R − [dr2]

2
× R [mc2]×

]
...

wrnr

[
[drnr

]
2
× R − [drnr

]
2
× R [mcnr

]×

]



Lc = −


wc1

[
[dc1]

2
× [dc1]

2
×
[
R⊤(t−mr1)

]
×

]
wc2

[
[dc2]

2
× [dc2]

2
×
[
R⊤(t−mr2)

]
×

]
...

wcnc

[
[dcnc

]
2
× [dcnc

]
2
×
[
R⊤(t−mrnc

)
]
×

]


b) Point to plane correspondences: In the specific case

of point-to-plane correspondences, recalling the previously
defined notation, the interaction matrices Lr and Lc are
defined as:

Lr =


wr1

[
n⊤
r1R −n⊤

r1R [mc1]×
]

wr2

[
n⊤
r2R −n⊤

r2R [mc2]×
]

...
wrnr

[
n⊤
rnr

R −n⊤
rnr

R [mcnr
]×

]


Lc =


wc1

[
−n⊤

c1 n⊤
c1

[
R⊤(mr1 − t)

]
×

]
wc2

[
−n⊤

c2 n⊤
c2

[
R⊤(mr2 − t)

]
×

]
...

wcnc

[
−n⊤

cnc
n⊤
cnc

[
R⊤mrnc

]
×

]


IV. EXPERIMENTS

The proposed Balanced ICP pose estimation is evaluated
qualitatively and quantitatively on both simulated, regardless
of environmental or sensor artifacts, and real data from
KITTI dataset [12]. For this purpose, our approach is com-
pared with the result of the iterative optimization considering
just the features extracted in the reference point cloud and
matched in the current one and with the result of the iterative
optimization considering just the features extracted in the
current point cloud and matched in the reference one. In this
section, we will refer to these methods as mono-directional.

A. Simulated data

In the experiments with simulated data, 10000 experiments
are performed, each one randomly generating a pair of point
clouds. For each point cloud, 100 lines and 100 planes
are extracted coherently with the points distribution and
matched. Then, both the features and the points are perturbed
with a Gaussian noise with mean zero and standard deviation
σ. After the data generation, the tests are carried out with
different values of σ and with different ratios of matching
features reference-to-current/current-to-reference.



(a) ϵt with ratio 40/60 (b) ϵr with ratio 40/60

(c) ϵt with ratio 50/50 (d) ϵr with ratio 50/50

(e) ϵt with ratio 60/40 (f) ϵr with ratio 60/40

Fig. 2: Mean and std deviation of translation (a), (c), (e) and
rotation (b), (d), (f) errors in point-to-line correspondences.

(a) ϵt with ratio 40/60 (b) ϵr with ratio 40/60

(c) ϵt with ratio 50/50 (d) ϵr with ratio 50/50

(e) ϵt with ratio 60/40 (f) ϵr with ratio 60/40

Fig. 3: Mean and std deviation of translation (a), (c), (e) and
rotation (b), (d), (f) errors in point-to-plane correspondences.

In particular, the noise values considered are σ ∈
{0.01m; 0.02m; 0.05m; 0.10m} and the ratios are 40/60,
50/50 and 60/40 in percentage.

The results, for both for point-to-line and point-to-plane
correspondences, are shown in Fig. 2 and Fig. 3. The plots,
organized by distinguishing the matching ratio, illustrate
the mean error ϵt and ϵr, respectively in translation and
rotation, along with the standard deviation. Both sets of
experiments demonstrate that the proposed algorithm is more
precise than the mono-direction approaches, with a natural
decrease of the precision with the increase of the noise. In
particular, the algorithm brings a bigger improvement when
the number of points is balanced, while obviously tends to
the result of the best direction when the number of points
is unbalanced, but still with higher accuracy. Additionally,
the proposed balanced approach exhibits higher stability,
consistently showing lower values of standard deviation.

B. Real data

These experiments were conducted on real data from the
KITTI benchmark [12]. The dataset provides a set of 11
sequences in different driving scenarios recorded with a
Velodyne HDL-64E laser scanner mounted on a car and the
corresponding ground truth poses from GPS/IMU measure-
ments. In order to evaluate the contribution of our method
for a lidar odometry pipeline, we consider a simple scan-to-
scan implementation, downsampling the point clouds with a
voxel grid at 0.50 meters. Furthermore, we rely on point-
to-plane correspondences since the dataset offers peri-urban
areas where there is a lack of line features.

For each dataset scene, three methods are tested. The
first method uses the classic point-to-plane ICP formulation
extracting the planes in the reference scan. The second,
uses the classic point-to-plane ICP formulation extracting
the planes in the current scan. Finally, using the proposed
method, the Bilateral ICP, extracting the planes both in the
current and reference scan.

Fig. 4: Trajectory in the XY plane

A qualitative result is shown in Fig. 4, by plotting the
estimated trajectory on the XY plane. The higher precision
in the scan-to-scan registration provided by the Balanced ICP



produces a trajectory that is much closer to the ground truth
than trajectories produced by the other approaches.

A quantitative evaluation of our method is shown, in
tables I and II, in terms of mean µ and standard deviation
σ of scan-to-scan motion estimation error in translation and
rotation, respectively noted as δt and δr. The results are
presented for all the 11 KITTI scenes with ground truth and
lowest, thus the best, values are highlighted in bold text.

Reference Current Balanced
Scene µ(δtr)± σ(δtr) µ(δtc)± σ(δtc) µ(δtb)± σ(δtb)

0 0.024 ± 0.022 0.024 ± 0.030 0.023 ± 0.021
1 0.299 ± 0.694 0.306 ± 0.724 0.203 ± 0.562
2 0.058 ± 0.179 0.066 ± 0.351 0.047 ± 0.147
3 0.032 ± 0.044 0.031 ± 0.022 0.027 ± 0.017
4 0.081 ± 0.257 0.053 ± 0.178 0.036 ± 0.118
5 0.016 ± 0.012 0.016 ± 0.012 0.015 ± 0.010
6 0.016 ± 0.013 0.016 ± 0.012 0.015 ± 0.012
7 0.018 ± 0.012 0.017 ± 0.012 0.016 ± 0.011
8 0.033 ± 0.039 0.033 ± 0.053 0.030 ± 0.038
9 0.034 ± 0.081 0.037 ± 0.101 0.026 ± 0.019

10 0.027 ± 0.061 0.026 ± 0.033 0.024 ± 0.041

TABLE I: Mean and standard deviation of translation error

Reference Current Balanced
Scene µ(δrr)± σ(δrr) µ(δrc)± σ(δrc) µ(δrb)± σ(δrb)

0 0.082 ± 0.109 0.082 ± 0.113 0.078 ± 0.107
1 0.075 ± 0.143 0.076 ± 0.213 0.058 ± 0.104
2 0.082 ± 0.086 0.081 ± 0.091 0.077 ± 0.080
3 0.065 ± 0.045 0.065 ± 0.042 0.062 ± 0.041
4 0.038 ± 0.023 0.037 ± 0.023 0.035 ± 0.022
5 0.052 ± 0.044 0.051 ± 0.043 0.049 ± 0.042
6 0.037 ± 0.021 0.037 ± 0.021 0.036 ± 0.020
7 0.056 ± 0.051 0.054 ± 0.048 0.050 ± 0.044
8 0.068 ± 0.059 0.069 ± 0.060 0.063 ± 0.055
9 0.062 ± 0.049 0.064 ± 0.050 0.057 ± 0.036

10 0.079 ± 0.083 0.076 ± 0.067 0.071 ± 0.065

TABLE II: Mean and standard deviation of rotation error

It is noteworthy that upon close examination, the pro-
posed method consistently attains lower mean errors and
exhibits reduced standard deviations across all evaluated
scenes. This commendable performance prompts a closer
investigation into the efficacy of the method in alleviating
potential errors arising from both the feature extraction and
matching processes or some sensor artifact. Thus, the method
demonstrates a notable capability in mitigating the impact of
those additional sources of noise, which could potentially
introduce cumulative errors in either direction during the
pose estimation process.

Furthermore, observing the results of the first two ap-
proaches, we can conclude that a favorite point cloud to
perform the features extraction cannot be identified, since is
not always the same to reach a better result with respect to
the other. This suggests that the proposed Balanced ICP is a
better solution considering that in the applications there is no
a priori knowledge available that could suggest considering
the features in the reference scan and not in the current one,
or vice-versa.

Finally, a timing study was conducted to evaluate the
computational cost of the proposed method. The better
accuracy of our method is paid in higher computational time.

In fact, computing the average execution time per outer loop
iteration over all the scenes, the Balanced ICP takes 2.34
times more than the monodirectional formulations of the
ICP. This can be addressed by the fact that the number of
matching considered is roughly doubled, but also by the
fact that, having a more complex minimization function,
the optimization process takes on average 2.69 iterations to
converge against 1,82 of the monodirectional formulations.

V. CONCLUSIONS

This work presents a new approach for the ICP, named
Balanced ICP, which extended the classic formulation lever-
aging the bidirectionality in the point cloud registration prob-
lem. Exploiting the feature extraction and matching those in
both the point clouds, the Balanced ICP is able to balance
the additional errors inevitably inherited. Simulated and
experimental results have shown that the proposed method
outperforms the classical monodirectional approaches for
robustness, accuracy and stability. However, better perfor-
mances are paid in higher computational complexity in our
current Matlab implementation. For this reason, future works
will focus on the matching selection, to reduce the number
while still considering the features from both point clouds.
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