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A methodological study for the diagnosis of the
SARS-Cov-2 infection in human serum with a
macrocyclic sensor array†

Monica Swetha Bosco,ab Zeki Topçu,d Soumen Pradhan,fg Ariadne Sossah,a

Vassilis Tsatsaris,ac Christelle Vauloup-Fellous,e Sarit S. Agasti, fg

Yves Rozenholc‡d and Nathalie Gagey-Eilstein ‡*ab

This article reports the methodology and the proof of concept of a blood-based diagnostic strategy for the

SARS-CoV-2 infection. The proposed method relies on the non-specific/selective array-based sensing

strategy mimicking the human olfactory system using a cucurbit[7]uril macrocycle receptor conjugated

with a library of environmentally sensitive fluorophores. The study cohort includes 26 samples, i.e. 12 cases

and 14 controls. Statistical analysis methods such as linear discriminant and random forest were able to

successfully classify and discriminate the two groups with almost 90% accuracy. This diagnostic result

highlights the methodology and confirms the potential of this non-specific/selective sensing approach for

non-invasive clinical diagnosis.

1. Introduction

Since the end of 2019, the COVID-19 disease has been an
ongoing threat spreading worldwide, with more than 600
million infections and more than 6 million deaths.1 On March
11, 2020, it was classified as a global pandemic by the World
Health Organization (WHO). Therefore, its diagnosis is
considered indispensable to prevent and control the spreading
of the disease. Currently, two types of diagnostic tests, based
on nasopharyngeal or nasal swabs, are widely used: i) nucleic
acid amplification tests based on polymerase chain reaction
(PCR) technology that detect viral RNA; ii) antigen tests based
on lateral flow immunoassays (LFAs) that detect viral proteins

(i.e. spike, envelope or nucleotide proteins). The accuracy,
specificity, and sensitivity of a test as well as the time between
the test and results are the main criteria to control the
spreading of the disease. Antigen detection can provide results
within 15 min with low accuracy and is subject to delivering
false negatives, particularly when used in people with no signs
or symptoms of the infection (up to 45% of false negatives).2

This drawback results in high risk of virus dissemination.
Consequently, PCR tests are often used for the confirmation of
antigen tests and, therefore, might not suffer from false
negatives. Even if the analytical performance of PCR tests
approaches 100% by detecting 500–5000 RNA copies per mL,
clinical performance approaches only 80% sensitivity due to
biological and pre-analytical factors, particularly sample
collection. Nasal and nasopharyngeal swabs are partly
responsible for false negatives since the quality of specimen
collection may be low and viral loads in the sample are neither
homogeneous nor stable within the time of infection.
Moreover, the delay between sampling and results can extend
from 24 to 48 h due to time-consuming laboratory procedures
that require certified laboratories, trained operators, and
expensive equipment.3 While nasopharyngeal swabs are still
the widely used specimen, many works explore diagnosis
methods based on specimens from other types of samples such
as the upper respiratory tract (throat and deep throat saliva),
lower respiratory tract (sputum and bronchoalveolar lavage
fluid), nasopharynx, feces, and blood.4–11 Herein, we propose a
diagnostic strategy for the SARS-CoV-2 infection based on
blood samples whose sampling method, stability, and
homogeneity are highly controlled.
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Blood serologic tests to detect host-derived antibodies
against viruses (IgM and IgG) are not efficient for diagnosing
acute COVID-19 but rather previous infection and/or
vaccination. For initial diagnoses based on viral RNA
detection, the US-CDC does not recommend the use of blood
samples.12 However, SARS-CoV-2 infection is still responsible
for pronounced changes in the blood composition. Many
reviews investigate routine biochemical, immunological but
also inflammatory or nucleic acid biomarkers as a promising
avenue for early diagnosis and prediction of prognosis of
COVID-19.13–16 A proteomic and metabolomic study found
that 105 proteins and 373 metabolites were differentially
expressed in the sera of COVID-19 patients compared to the
control.17 However, no specific blood biomarker, even built
as a combination of expressions, has been still clinically
validated so far. Diagnostic strategy using proteomic or/and
metabolomic signatures would have been too expensive to
build for routine purpose. Routine blood parameters such as
hematological (lymphocyte and neutrophil count),
inflammatory (C-reactive protein), biochemical like (albumin,
lactate dehydrogenase, alanine and aspartate
aminotransferase and alkaline phosphatase) have been
described as dysregulated in SARS-Cov-2 infected patients.18

Combining appropriate cutoffs for certain of these blood
parameters could help in identifying COVID-19 positive
patients but with a low accuracy.3 Also, when used in a
machine learning model, they can help to differentiate the
status of patients with 82–86% accuracy and 92–95%
sensitivity.19 However, this strategy requires many blood
parameters to be measured and therefore remains slow and
expensive if transposed at the population level. Hence, the
“Chemical Nose” hypothesis-free machine learning
diagnostic strategy looking for global blood change
composition rather than changes of some specific
biomarkers or a combination of those will be suitable for a
low-cost blood-based diagnostic strategy.

The “Chemical Nose” strategy mimics the human olfactory
system using a set of non-specific sensors to sense the
components of a simple or complex mixture, whose outputs
are the inputs of one machine learning algorithm. Each
sensor selectively binds to sample analytes based on
electrostatic, hydrophobic, H-bonding or host–guest
interactions. Recognition event between the sensor and the
analyte is translated into an optical signal through the
transduction element. It generates a pattern of outputs
(fingerprint) for each analyte. Finally, the patterns are
classified (unsupervised approach) and eventually identified
(supervised approach) using one machine learning
algorithm.20–22 This “Chemical Nose” strategy has been
successful applied in “fingerprinting” pure proteins, protein
folding states or cancerous cell lines among others, thus
allowing their classification and identification.23–27 It also
has the potential to be developed for clinical diagnostics.
Indeed, since the onset, progression and outcomes of a
disease modify the blood composition,28 sensing and
fingerprinting blood samples with the set of non-specific

sensors would allow samples classification/identification with
regard to their physiological or pathological status. Using a
set of fluorophore conjugated polymers, Rotello et al.
described the classification of healthy, mild or severe liver
fibrosis patients, from a cohort of blood samples, with
clinically relevant specificity and accuracy ([ROC-AUC] =
0.89).29 A FRET-based polymer sensor array has also been
used to discriminate cancerous or healthy mice by serum
fingerprinting.30 Recently, as a proof of concept, we
demonstrated the use of a set of fluorophore-conjugated
cucurbit[7]uril (CB[7]-FL) to discriminate the serum of
pregnant women vs. the control.25 Using a hydrophobic cavity
with orthogonal H-bonding and electro-static/dipolar
interaction utilizing two symmetry-equivalent uridyl carbonyl
portals, CB[7] is an interesting receptor scaffold for
examining biomolecules. Not only does it possess host–guest
binding property toward a wide range of guest molecules but
the H-bonding and electro-static/dipolar recognition
elements provides an additional target probing
mechanism.31–33 Moreover, these CB[7]-FL moieties offer a
good compatibility with biological media due to good water
solubility and strong fluorescence, easily detected in complex
media.

Given the reported blood biochemistry changes in blood
samples of SARS-CoV-2 infected patients, we hypothesized
that this CB[7]-FL sensor array could be efficient in
differentiating serum samples from patients infected or not
infected by SARS-CoV-2, with clinically relevant accuracy.
Herein, we propose, not only an additional proof-of concept
for potential clinical diagnosis but, above all, a step-by step
precise methodology to use this CB[7]-FL array-based sensor
to monitor and analyse the fluorescence signals and
fingerprints obtained from a small set of serum samples of
pregnant women infected or not infected by SARS-CoV-2
towards each CB[7]-FL (Scheme 1). This work can be of high
interest for researchers and clinicians who are interested in
the assessment of hypothesis-free chemical diagnosis for
clinical diagnosis with cohorts of large size.

2. Material and methods
2.1. Participants and samples

Cohorts. All blood samples were collected in the frame of
the COVIPREG study,34 with approval from the national
ethics comity, the CPP SUD MEDITERRANEE (No. 2020-
A00924-35) on April 23rd, 2020. The trial is recorded in the
clinical trial registry as NCT04355234. COVIPREG study is a
prospective study conducted in France in 9 maternities of
Paris area during the first two waves of COVID-19 pandemic
(inclusion between 04/28/2020 and 01/13/2021) and before
vaccine availability. All patients have signed a consent form
to the use of their serums for research purposes. Serum
samples were collected in pregnant women the same day they
declared a positive SARS-CoV-2 nasopharyngeal RT-PCR.

Protocol. After centrifugation of the blood (1000 × g for 15
min at 4 °C), supernatant was transferred into a clean
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polypropylene tube, aliquoted, frozen within 48 hours and
stored at −80 °C until analysis. The control serum samples
were used after one year of conservation in accordance with
French law.

Subsampling. Our subsampling of the cohort is composed
of 26 samples. The case group is composed of 12 samples
whereas the control group is composed of 14 samples,
collected from pregnant women in the pre-pandemic period
(January 2019). Case vs. control were chosen to be aligned on
gestational age. The baseline characteristics of the patients
are provided in Table 1 and detailed characteristics for each
patient are given in Table S1.†

2.2. CB[7]-FL synthesis

Conjugated cucurbit[7]urils were synthesized as described in
previous publications.25,35

2.3. Array methodology

100 nM solution of each CB[7]-FL was freshly prepared in 10
mM sodium phosphate buffer (pH 7.4). The concentration of
the stock solution is controlled by Beer–Lambert law before
further dilution. In the wells of a white, half-well, non-
binding-surface plate (Corning®, Product Number: 3642), 25
μL of the desired CB[7]-FL solution was added. Fluorescence
emission at the respective emission wavelength in each well
(I(S−)) was recorded on a microplate reader (PerkinELmer®,
EnSpire) by exciting the fluorophores at their respective
excitation wavelength. Emission and excitation wavelengths

for each CB[7]-FL are given in Table S2.† Next, 5 μL of pure
serum was added to each fluorophore solutions, except in the
control wells where 5 μL of PBS were added instead.
Subsequently, after orbital stirring in the microplate reader
and temperature control (25 °C), fluorescence emission (I(S+)
for sample wells and I(PBS+) for control wells) was recorded
using the same excitation/emission wavelengths. Six
consecutive measurements (each 5 min apart) were taken.
Experiments were performed as replicates of four for each
serum sample.

2.4. Data and feature extraction

R codes were written to 1/ read and arrange the raw data in a
.csv file; 2/ build the “before and after serum addition”
variation of fluorescence tables for each CB[7]-FL and 3/
combine theses tables into one dataset made of 26 samples
(12 cases and 14 controls) and 8 variables (the sample status
and the 7 CB[7]-FL features with FL = Cy3, Cy5, TMR, SiR,
Coum, Fluo, Bdp). These codes can be found in Annex 1 of
ESI.† They are named respectively ‘lecture-raw-data.R’, ‘read-
plate-data.R’ and ‘build-data.R’.

2.5. Data statistical analysis

The 7 variables for each sample in the two groups were
compared and analyzed using different strategies of
statistical analysis. Homemade R code (https://cran.r-project.
org) was used and can be found in Annex 2 of ESI† (‘Covid
_analysis.R’).

Scheme 1 CB[7]-FL encoded library for fingerprinting serum samples of pregnant women infected or not infected by SARS-CoV-2. Analysis of the
obtained serum-based fingerprints via machine learning algorithms to enable the differentiation of disease or healthy states.

Table 1 Baseline clinical and pathological characteristics of the infected and control groups

Confirmed infected group Control group

n 12 14
Gestational age
Mean (std) 36.5 (4.3) 37.4 (3.4)
Median (range) 38.5 (28–40) 38 (28–41)
Days of infection before sampling N (std) 6.08 (6.05) Not applicable
Breathing symptoms 8 yes, 4 no Not applicable
Hospitalization with oxygen and ICU 2 yes, 10 no Not applicable
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3. Results and discussions

The hypothesis-free approach using the CB[7]-FLs sensor
array was exploratorily tested to determine whether it could
“fingerprint” SARS-Cov2 infection in serum sample and later
provide a potentially clinically PoC relevant assay. To this
aim, we explored this sensor array-based diagnosis strategy
by assessing a precise methodology, including the choice of
clinical samples, careful design of experiments, observation
and calculation of the fluorescence change, automatized data
extraction and organization as well as statistical method
comparison for serum samples' discrimination.

3.1. Clinical samples

Serum samples of pregnant women from the COVIPREG
cohort34 were used, among which we selected 12 infected by
SARS-Cov-2 and 14 healthy controls. For the proof-of-concept
of our strategy and since we do not have access to a large
number of samples, we selected patients showing good
clinical homogeneity in order to reduce inter-individual
variability and therefore highlight variations in the blood
composition, which could be expected from SARS-Cov2-
infection. Therefore, we selected samples from women that
were not known to suffer from other diseases and that were
in their third trimester of pregnancy (36 ± 4.3 week of
gestation (WG) for the infected group and 37.4 ± 4.3 of WG
for the control group). Among the SARS-Cov2 infected group,
66.5% (8 over 12) were symptomatic with breathing
symptoms and 17% (2 over 12) needed hospitalization.
Clinical and biological data of the 26 patients of the two
groups are presented in Table 1 (see also Table S1† for
individual data).

3.2. Design of experiments

To run the sensing experiment, each of the seven element of
the CB[7]-FL sensor array were mixed individually towards
each serum sample in the wells of a microplate.

Initially, the complete emission spectra of each CB[7]-FL
was recorded on the addition of serum and serum spiked
with biologically relevant proteins (1.6 mg mL−1). In some
cases, significant fluorescence decrease was observed, with a
more pronounced sensitivity of BDP, TMR, Cy5 and SiR.
These modifications highlight the ability of CB[7]-FLs to
detect subtle changes in complex matrix such as serum
(Fig. S1†).

The choice of a half-well microplate has been made to
minimize the needed volume of CB[7]-FL as well as serum.
Indeed, with seven CB[7]-FLs to be tested, with
measurements in quadruplicate, and with 26 sera to assess,
the needed volume of each serum is 140 μL and the volume
of 100 nM solution of CB-FL was more than 2.5 mL. The
concentration of 100 nM has been fixed after preliminary
studies and provide sufficient fluorescent signal, even after
addition of the serum. For reproducibility concerns, this
concentration has to be carefully controlled before

experiments.25 Non-binding microplates were preferably used
to avoid the adsorption of hydrophobic CB[7] on the well
surface. To assess this phenomena, six consecutive
measurements (each 5 min apart) were taken. The signal was
stable overtime, as shown in Fig. S3.† Therefore, the mean of
the six measurements overtime was used for the analysis. To
test all the samples in quadruplicate, two microplates were
necessary for each CB[7]-FL. To avoid an artificial
discrimination due to samples position on the microplate,
COVID+ and control samples were positioned on both plates,
as shown in Fig. S4.†

3.3. Calculation of fluorescence change

Fluorescence signals of the fluorophore (FL) registered in
quadruplicate before and after serum addition constitutes
the output, and combining all the FL fluorescence changes
later provides the fluorescence pattern for each sample. For
each sample and each CB[7]-FL, the output, ΔI , is calculated
as the mean over the quadruplicate of the changes in
fluorescence at emission wavelength after and before serum
addition in each well as given by the formula

ΔI ¼ mean ΔIð Þ ¼ mean I Sþð Þ −mean I S−ð Þ
� �� �

¼ mean I Sþð Þ
� �

−mean I S−ð Þ
� �

where I(S+) is the fluorescence intensity in each well after

addition of serum, I(S−) is the fluorescence intensity before
addition of serum in the corresponding well, and mean(I(S−))
is the mean of the fluorescence intensities of the
quadruplicate corresponding well before addition of serum.
The generated data table is given in the ESI† (Table S3).

Obviously, it is impossible to discriminate two groups of
samples (COVID+ vs. control) only by looking at the
fingerprint on the heatmap plot (Fig. 1a). However, we
observe that the mean of CB[7]-Cy5 for each of the two groups
are significantly different (p < 0.05) (Fig. 1b). Individual
values for each serum in each group are also plotted on
Fig. 1c and S5.† These graphs offer a better visualization of
the fluorescence variation and particularly differences
between the two groups for CB[7]-Cy5. We can also observe
the good reproducibility between the four replicates.

3.4. Statistical method for serum samples discrimination

Based on the data of fluorescence variations for each CB[7]-
FL (Table S3†), statistical analysis methods have been
evaluated towards the discrimination of the two groups of
samples.

3.4.1. Random Forest analysis. Initially, Random Forest
was used. Due to the low number of samples, splitting the
data into train and test subset of data was not pertinent.

Using all features (7 CB[7]-FL), the classification rate for
the 26 samples (12 COVID+ and 14 COVID−) evaluated using
the out-of-the-bag strategy is 84.6%, with a predictive positive
value of 74.5% and a negative predictive value of 92.9%.
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Thanks to the use of Random Forest, we get an estimation of
the feature importance in the classification: CB[7]-Cy5 brings

the highest contribution, followed by CB[7]-SiR and CB[7]-
TMR (Fig. 2a).

Fig. 1 a/ Heatmap plot fingerprinting each serum sample. b/ Means of fluorescence response of each CB[7]-FL against the two groups COVID+
(blue) and control (light purple). The symbol * indicates p value for the t-test used for comparison of the means smaller than 0.05. c/ Individual ΔI
value (y axis) for each replicate (black, red, green and blue circles) of each serum and each CB[7]-FL for the two plates and dispatched such as 1–6:
COVID samples, 7–13: control samples, 14: control well.
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We next used Random Forest with combinations of these
3 most important features. It appears that the couple of
features Cy5 and SiR or Cy5 and TMR offers estimated
classification rate of 88.5% of error of discrimination and a
predictive positive value of 83.4% and a negative predictive
value of 92.9% (Fig. 2b and c). Stabilizations of the error rates
with the number of trees are shown in Fig. S6.†

As an additional evidence toward the use of this type of
non-specific sensor array for clinical sample classification, we
also combined this dataset with the previous dataset
discriminating pregnant and non-pregnant samples.25

Pregnant samples from these two different data sets are
discriminated with 97.1% of discrimination. Then, the
samples of pregnant women infected by SARS-COV-2 were
tested along with the pregnant and non-pregnant groups.
When keeping the most important features (Cy5, Bdp, SiR,
TMR, Cy3), only 6.9% of error of discrimination was obtained
with a positive predictive value of 75% (Fig. S6 and Table
S4†). These results provide additional evidence that the

sensor array strategy may be suitable for clinical diagnosis
even if it is, of course, still mandatory to have access to big
size clinical cohorts.

LDA analysis. We also used linear discriminant analysis
(LDA) model combined with leave-one-out strategy for
discrimination rate estimation. The histogram showing the
LDA scores distribution within the two groups is given in Fig.
S8.† When using all the features, the two groups can be
discriminated with 77% accuracy (to compare with the 84.6%
of the Random Forest) (Fig. 3a). Again, coefficients of linear
discriminant analysis confirmed that Cy5, SiR and TMR have
the highest weight in the discrimination. Using these three
variables, the accuracy of discrimination is improved to 85%
(88.5% for Random Forest) (see Fig. 3b). As for the Random
Forest, the predictive positive value is better than the predictive
negative value. We carefully looked to the misassigned COVID+
samples and tried to correlate the results to clinical data from
Table S1.† However, no correlation was observed whatever the
considered clinical data (Fig. 3c).

Fig. 2 a/ Confusion matrix for random forest on the whole variables and importance of each feature in the random forest algorithm of
discrimination. b/ Error rate of discrimination for random forest run with the most important variables. c/ Confusion matrix for the random forest
runs with Cy5 and SiR features.

Fig. 3 a/ Confusion matrix for LDA runs with the whole variables and b/ runs with the most important variables. c/ Prediction table for individual
samples. Misclassified samples are highlighted in red.
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4. Conclusion

With a small case-control cohort of SARS-CoV-2 infected
serum samples, this work highlights the strategy of training a
non-specific sensing array to discriminate clinical samples. It
offers the proper methodology, including the design of
experiments, data extraction, treatment and analysis to run
these types of chemical nose experiments and alert the
readers to the particular points of attention to take care of
when using chemical nose sensor array. From a statistical
point-of-view, even if with the small size of our cohort, we
demonstrate that a such strategy is efficient to discriminate
SARS-CoV-2 infected samples from control samples. By
implementing a step-by-step protocol, the methodology can
be easily adapted to extract and take into account relevant
experimental variables on large cohorts. Linear discriminant
analysis clearly shows some lack of performance; however,
more machine learning oriented strategy such as Random
Forest seems to be well adapted to implement a strategy of
training a non-specific sensing array, thanks to its flexibility,
the out-of-the-bag error rate estimation, which does not
require a train/test approach, and opportunity to retrieve
feature (sensor) importance. Despite the higher expected
variability in larger cohort, one can anticipate that these
properties of the Random Forest will help to keep high
discrimination performances. The available R-codes to extract
and process from raw data is made available and can be
easily tuned to new clinical samples. From a chemical point-
of-view, our first results shows the promising efficacy of the
macrocyclic-based non-specific CB[7]-FL sensor array to
discriminate the two health states between SARS-CoV-2
infected serum and control and that such an approach may
constitute a strategy of diagnosis based on blood-serum
samples. Interestingly, starting from a fixed size sensor array,
using the knowledge regarding importance of each feature
could ultimately lead to the reduction of the sensor array
dimension, providing a cheaper and easier point-of-care test.
From a clinical point-of-view, we can point out that two (over
the 3) false negative patients were asymptomatic (see Fig. 3c)
and therefore wonder about the result of the SARS-Cov2 PCR
test that may be subjected to some error. To conclude, we
would like to point out that within a larger and clinically
well-documented cohort, the proposed strategy could be used
not only to diagnose the clinical binary status but also more
complex disease outcomes like severity and eventual
complications.
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