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Tracer diffusion beyond Gaussian behavior:
explicit results for general single-file systems

Aurélien Grabsch1 and Olivier Bénichou1
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Matière Condensée (LPTMC), 4 Place Jussieu, 75005 Paris, France

Single-file systems, in which particles diffuse in narrow channels while not overtaking each other, is
a fundamental model for the tracer subdiffusion observed in confined geometries, such as in zeolites
or carbon nanotubes. Twenty years ago, the mean squared displacement of a tracer was determined
at large times, for any diffusive single-file system. Since then, for a general single-file system, even the
determination of the fourth cumulant, which probes the deviation from Gaussianity, has remained
an open question. Here, we fill this gap and provide an explicit formula for the fourth cumulant of
an arbitrary single-file system. Our approach also allows us to quantify the perturbation induced by
the tracer on its environment, encoded in the correlation profiles. These explicit results constitute
a first step towards obtaining a closed equation for the correlation profiles for arbitrary single-file
systems.

Introduction.— The investigation of the dynamic prop-
erties of interacting particle systems in non-equilibrium
settings has been a prominent area of research in last
decades [1–5]. Among them, single-file diffusion, where
particles diffuse in narrow channels and cannot overtake
each other, plays an important role. Such geometri-
cal constraint results in a subdiffusive behavior of the
mean square displacement (MSD) of a tracer particle〈
X2
T

〉
∝ T 1/2 [6–8]. This theoretical prediction has been

verified across various scales, ranging from the diffusion
of molecules within zeolites [9] to the movement of col-
loids in confined narrow trenches [10, 11].

Beyond the scaling behavior of the MSD, the prefactor,
which contains the dependence on the mean density ρ̄ of
surrounding particles, has first been computed explicitly
for specific models: for instance for reflecting Brownian
particles [6], and later for the simple exclusion process
(SEP) [8]. Twenty years ago, Kollmann extended the re-
sult to any single-file system and showed that the MSD of
a tracer can be written at large times in terms of macro-
scopic properties of the system as [12]〈

X2
T

〉
≃

T→∞

σ(ρ̄)

ρ̄2
√
πD(ρ̄)

√
T . (1)

In this expression, D is the collective diffusion coefficient,
which controls the relaxation of the density, and σ the
mobility, which governs the fluctuations of current [13].
Note that in all these results, as well as throughout
this article, annealed (equilibrium) initial conditions have
been adopted.

Recently, there has been a growing interest in the char-
acterization of the statistical properties of various observ-
ables, and in particular the position of a tracer beyond
the MSD (also known as second cumulant) [14–28]. This
is typically done by studying higher order cumulants or
equivalently the atypical fluctuations using a large de-
viations framework. These methods give access to finer
properties of these observables, beyond the typical Gaus-
sian behavior encoded in the MSD.

More precisely, the higher order cumulants, or large
deviations, of the position of the tracer have only been
determined for a few specific models. For reflecting Brow-
nian particles the cumulants are known [17–20]. For the
SEP, all the cumulants have first been determined in the
high density limit [29]. At arbitrary density, the compu-
tation of the fourth cumulant was first achieved [18, 19]
and later all the cumulants have been determined [21, 22].
However, for a general single-file system, even the deter-
mination of the fourth cumulant, which probes the devi-
ation from Gaussianity, has remained an open question
since the work of Kollmann [12].

Here, we fill this gap and provide an explicit formula
for the fourth cumulant for an arbitrary single-file sys-
tem. We stress that, unlike previous results, which were
obtained for integrable models (essentially the SEP and
those mappable on it [30]) using tools like Bethe ansatz
or inverse scattering technique [19, 21, 22, 25–28], our
expression holds for any model, whether integrable or
not. Furthermore, beyond quantifying the deviation from
Gaussian behavior, our approach also allows us to quan-
tify the perturbation induced by the tracer on its en-
vironment, encoded in the correlation profiles [31]. We
show that these profiles exhibit a nonanalytic behavior
for nonintegrable models.

Macroscopic fluctuation theory.— Our starting point
to study the position of a tracer in a single-file system
relies on the macroscopic fluctuation theory (MFT) [5].
At large scales (long times and large distances), the MFT
gives the probability to observe a fluctuation of the den-
sity profile ρ(x, t) of a diffusive system in terms of the
two transport coefficients D(ρ) and σ(ρ) [3, 5, 32], for
which explicit expressions have been obtained for sev-
eral models. For instance, for the SEP, D(ρ) = 1 and
σ(ρ) = 2ρ(1 − ρ). Other paradigmatic models include
zero range processes (ZRP) [2, 33], the Kipnis-Marchioro-
Presutti (KMP) model [34], the Katz–Lebowitz–Spohn
(KLS) model [35, 36], and models with more realistic
pairwise interactions such as Brownian particles with
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Weeks-Chandler-Anderson (WCA) potential or dipole-
dipole interactions, as involved in experimental realisa-
tions of colloids confined in 1D [10]. The MFT is a pow-
erful approach, in which all the microscopic details of
the model are replaced by the two transport coefficients
D and σ only. Note however that one typically ends
up with nonlinear partial differential equations for the
time evolution of the density. Solving these equations is
a challenging task of current intense activity which has
recently led to important achievements [25–28, 37–39].

MFT has proved to be useful to study a wide range
of observables, including even a microscopic observable
such as the position XT of a single tracer, for which dif-
ferent approaches have been devised. (i) The first one
relies on expressing XT as a functional of the density of
particles XT = XT [ρ] [18, 19]. This can be done since
the tracer effectively “cuts” the system into two part, in
which the number of particles is conserved due to the
noncrossing condition. In practice, this is however tricky
due to the emergence of discontinuities in the density pro-
files at the position of the tracer [18, 19]. (ii) A second
approach that circumvents this issue consists in introduc-
ing a generalised current [21, 22] defined as the number
of particles crossing a fictitious moving wall. The tracer
is then located at the position where this current van-
ishes, again due to the noncrossing condition. (iii) An
alternative method, which we apply here, consists in us-
ing a mapping between different single-file systems, in
which the position XT of the tracer in the original model
is mapped onto (the opposite of) the integrated current
Q̃T through the origin in a dual model (see Fig. 1). More
precisely, the current is defined from the density ρ̃(x, t)
in the dual model as

Q̃T =

∫ ∞

0

[ρ̃(x, T )− ρ̃(x, 0)] dx , (2)

and the transport coefficients D̃ and σ̃ of the dual model
are written in terms of those of the original model as [30]

D̃(ρ) =
1

ρ2
D

(
1

ρ

)
, σ̃(ρ) = ρ σ

(
1

ρ

)
. (3)

The main benefit of this approach is that, with MFT, the
study of the current Q̃T is generally simpler than that
of XT [15]. However, this is often at the cost of han-
dling more complex transport coefficients (for instance,
the constant D(ρ) = 1 of the SEP is mapped onto the
non-constant D̃(ρ) = 1/ρ2). Here, since we aim to study
general single-file systems, and thus arbitrary D and σ,
this is not a limitation and we use this latter approach.

The main steps of the computation of the fourth cu-
mulant of XT for general D and σ are as follows (see
Supplementary Material (SM) for details [40]). First, we
use the mapping described above that allows to obtain
the cumulants of XT from those of Q̃T in the dual model,
with D̃ and σ̃ given by (3). Explicitly, the cumulant gen-

FIG. 1. An example of mapping between two single-file sys-
tems. The SEP (top) is mapped onto a zero range process
(ZRP, below). This well-known mapping holds at the micro-
scopic level: the empty sites of the SEP becomes the particles
of the ZRP [2], while the position Xt of the tracer in the SEP

is mapped onto the integrated current through the origin Q̃t

in the ZRP. At the macroscopic level, such a mapping holds
for any single-file system [30]: the tracer in a system with
transport coefficient D(ρ) and σ(ρ) is mapped onto the cur-

rent in a system with D̃(ρ) and σ̃(ρ) given by (3).

erating functions are related by [30]

ψ̂(λ) = lim
T→∞

1√
T

ln
〈
eλXT

〉
= lim
T→∞

1√
T

ln
〈
e−λQ̃T

〉
= κ2

λ2

2
+ κ4

λ4

4!
+ · · · , (4)

with κn the nth cumulant of the position of the tracer.
Note that the odd order cumulants vanish by symmetry.
Second, we determine the first cumulants of Q̃T us-

ing the standard MFT formalism [5, 15]. Explicitly, this
requires to solve the MFT equations [15]

∂tq̃ = ∂x[D̃(q̃)∂xq̃]− ∂x[σ̃(q̃)∂xp̃] , (5)

∂tp̃ = −D̃(q̃)∂2xp̃−
1

2
σ̃′(q̃)(∂xp̃)

2 , (6)

p̃(x, T ) = −λΘ(x) , (7)

p̃(x, 0) = −λΘ(x) +

∫ q̃(x,0)

˜̄ρ

2D̃(r)

σ̃(r)
dr , (8)

where ˜̄ρ = 1/ρ̄ is the mean density in the dual model.
The function q̃(x, t) is the typical realisation of the time
evolution of the density ρ̃(x, t) that yields a given value of
the current Q̃T and fully controls the dynamics at large
times T . p̃(x, t) is a Lagrange multiplier that ensures the
conservation of the number of particles at every point in
space and time. The cumulants are then deduced from

the solution of these equations by dψ̂
dλ = −Q̃T /

√
T where

here Q̃T is given by (2) with ρ̃(x, t) replaced by its typical
fluctuation q̃(x, t). Third, we expand q̃ and p̃ in powers of
λ and solve (5-8) order by order, up to order 3 included
to compute κ4. The practical resolution requires to solve
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diffusion equations with source terms of increasing com-
plexity with the order in λ. Explicit results can be ob-
tained by isolating the dependence of the source terms
on D̃(ρ), σ̃(ρ) and their derivatives, and then relying on
a combination of changes of functions and successive in-

tegrations by parts.

Results.— Lengthy calculations, given in SM [40], fi-
nally provide an explicit formula for the fourth cumulant
of the position Xt of a tracer for any D(ρ) and σ(ρ),

κ4 =
3σ(ρ̄)3 (ρ̄D′(ρ̄) +D(ρ̄))

π3/2ρ̄6D(ρ̄)7/2
−
σ(ρ̄)

(
σ(ρ̄)σ′(ρ̄) (ρ̄D′(ρ̄) + 4D(ρ̄)) + 2σ(ρ̄)2D′(ρ̄)− ρ̄D(ρ̄)σ′(ρ̄)2

)
4
√
πρ̄5D(ρ̄)7/2

+
3σ(ρ̄)3

(
D′(ρ̄)2 −D(ρ̄)D′′(ρ̄)

)
8
√
πρ̄4D(ρ̄)9/2

+
3σ(ρ̄)3

(
2D(ρ̄)D′′(ρ̄)−D′(ρ̄)2

)
8π3/2ρ̄4D(ρ̄)9/2

+

(
3
√
2− 4

)
σ(ρ̄)2σ′′(ρ̄)

8
√
πρ̄4D(ρ̄)5/2

+
3
(√

2π − 2
√
3
)
σ(ρ̄)3

(
2D(ρ̄)D′′(ρ̄)− 3D′(ρ̄)2

)
16π3/2ρ̄4D(ρ̄)9/2

. (9)

This result constitutes the first step beyond the second
cumulant (1) for any single-file system and provides a
quantitative measure of the deviation from Gaussian be-
havior.

Several comments are in order. (i) The expression (9)
encompasses all previously known results on fourth cu-
mulants for specific single-file systems, for instance for
reflecting Brownian particles [17–20], for the SEP [18, 19]
and models that can be related to the SEP, such as
the KMP model, or the random average process [30].
These previous results were obtained for models that
can be mapped, at least at the macroscopic level, to the
SEP [30]. For all these models, the last term in (9) van-
ishes. (ii) More precisely, the last term in Eq. (9) van-
ishes if and only if D(ρ) = 1/(a + bρ)2, where a and b
are constants. This is the class of diffusion coefficients
corresponding to models that can be mapped onto a con-
stant diffusion coefficient (see SM [40] for details). In the
general case of a model that cannot be mapped onto a
constant D(ρ), as for paradigmatic models like the KLS
model or ZRP, or models with more realistic interactions
(like Brownian particles with WCA or dipole-dipole in-
teraction) this last term matters. Note that this term
is the only one that involves a

√
3. (iii) Finally, the re-

sult (9), also gives the fourth cumulant of the current Q̃T ,
in the dual model with D̃ and σ̃. Writing this expression
in terms of these dual transport coefficients thanks to (3),
gives this fourth cumulant of Q̃T for a general single-file
system (see Eq. (S60) of the SM).

Beyond the cumulants: correlation profiles.— On top
of the cumulants, our approach gives access to the re-
sponse of the bath of surrounding particles to the pertur-
bation induced by the displacement of the tracer. This
response is described by the bath-tracer correlation pro-
file introduced in [31], defined as

w(x, T ) ≡
〈
ρ(XT + x, T )eλXT

〉
⟨eλXT ⟩

=

∞∑
n=0

λn

n!
⟨ρ(XT + x, T )Xn

T ⟩c , (10)

which generates all the connected correlation functions
⟨ρ(XT + x, T )Xn

T ⟩c between the density field and the dis-
placement of the tracer. At large times T , these pro-
files display a diffusive scaling behavior w(x, T ) ≃ Φ(z =
x/

√
T ) [31, 41, 42]. The scaling function Φ, which thus

contains the full spatial structure of the bath-tracer cor-
relations in the long time limit, has been determined ex-
plicitly for the SEP and for models that can be related
to it [30, 41, 42]. Here, for arbitrary D(ρ) and σ(ρ), Φ is
derived from the solution of the MFT equation q̃(x, T ) at
final time (in the dual model with D̃ and σ̃) and mapped
back to the original model with D and σ. The details
of this mapping and the expressions of the correlation
profiles up to order 3 are given explicitly in SM [40],
Eqs. (S67-S69).

In parallel of this explicit calculation, an important
question concerns the existence of a closed equation sat-
isfied by Φ. Indeed, in the case of the SEP, these profiles
have been shown to satisfy a simple exact closed equa-
tion [41, 42]. This result has allowed the determination
of all the correlation profiles (10). Since the publica-
tion of this equation [41], several works have obtained
exact results for different observables for specific models
of single-file systems [25–28], which can all be recast into
a similar closed equation, making it a promising tool to
investigate various questions in single-file diffusion and
beyond.

We investigate the possibility to obtain such an equa-
tion for Φ by following the approach of [41, 42]. It is
shown in SM [40] that in fact,
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∂z(D(Φ)∂zΦ) +
1

2
(z + ξ)∂zΦ =

λσ′′(ρ̄)

4ρ̄

∫ ∞

0

Φ′(z + u)Φ′′(−u)du

+

(
λσ(ρ̄)D′(ρ̄)

8
√
πρ̄D(ρ̄)3/2

− λ2σ(ρ̄)D′(ρ̄) (ρ̄σ′(ρ̄)− 2σ(ρ̄))

32
√
πρ̄3D(ρ̄)5/2

+
λ2σ(ρ̄)2D′(ρ̄)2

64
√
πρ̄2D(ρ̄)7/2

)
Φ′(z)

−
λ3σ(ρ̄)3

(
2D(ρ̄)D′′(ρ̄)− 3D′(ρ̄)2

)
512ρ̄3D(ρ̄)5

(
ye−

y2

2

√
2

π
erfc

(
y√
2

)
+

2

π3/2
∂y

∫ 1

0

dt√
1 + 2t

e−
(1+t)y2

(1−t)(1+2t)

)
+O(λ4) , (11)

where ξ = dψ̂
dλ , and we have denoted y = z

2
√
D(ρ̄)

to sim-

plify the notations. In the case of the SEP, corresponding
to constantD, only the first term on the r.h.s. of Eq. (11)
remains. We have written this term as a convolution, in-
stead of its explicit expression, because it was the key
step in [41, 42] that allowed to find a closed form for
the equation. Similarly, we have realized that the sec-
ond term in (11) can be expressed in terms of Φ′ only.
The only remaining task to obtain a closed equation is
to rewrite the last term in (11) in terms of Φ. Any-
how, Eq. (11) constitutes a first step towards obtaining
a closed equation for Φ for arbitrary D(ρ) and σ(ρ).

On top of its intrinsic interest, Eq. (11) allows us, as
we now discuss, to provide (i) a signature of the non-
integrable nature of general single-file models and (ii) a
shortcut to obtain the cumulants of Xt.

Relation with integrability.— First, it can be shown
that the last term in (11) is directly associated to the√
3 in the expression of κ4 (9), as discussed above. In

particular, both vanish for the specific choice D(ρ) =
1/(a + bρ)2, which is the class of diffusion coefficients
for which the nonlinear heat equation is integrable [43].
Second, this term displays a nonanalytic behavior with
respect to the distance to the tracer, with a logarithmic
singularity ∼ y ln y as y → 0. It shows that this term
introduces a completely new class of functions, compared
to the case of the SEP (and related models) in which only
analytic functions were present [41, 42]. Note that such
behavior was also observed in the correlation profile of a
driven tracer in the SEP [44], a model which is expected
to be not integrable. All these points indicate that the
presence of the last term in (11) is a signature of the
nonintegrability of a single-file model with arbitraryD(ρ)
and σ(ρ).

A conjecture for a shortcut to the cumulants.— First
of all, we remind that in the case of the SEP, boundary
conditions for Φ(0±) and Φ′(0±) have been obtained from
microscopic considerations [31, 41, 42]. These relations
are very useful, since together with the bulk equation (11)
written in the specific case of the SEP, they allow to fully
determine the profiles and the cumulants without solving
the MFT equations (5-8). Several of these relations have
recently been extended to any single-file system, and take

a simple physical form [39]

P (Φ(0+))− P (Φ(0−)) = λ , [∂zµ(Φ)]
0+

0− = 0 , (12)

where P (ρ) is the pressure, and µ(ρ) the chemical poten-
tial, given by P ′(ρ) = ρµ′(ρ) and µ′(ρ) = 2D(ρ)/σ(ρ).
We have used the notation [f ]ba = f(b) − f(a). The re-
maining boundary condition, obtained for the SEP in
[31, 41, 42], which has not yet been generalized to an
arbitrary single-file system [39], is a key relation allow-

ing to obtain ψ̂ directly from Φ(0±) and Φ′(0±) (which
are fully determined by the bulk equation (11) and the
boundary conditions (12) completed by Φ(±∞) = ρ̄), in-
stead of computing the integral (2), which is usually a
difficult task. We conjecture that, for arbitrary D and σ,
this last relation takes the form

ψ̂ = −2 ∂zµ(Φ)|z=0

∫ Φ(0+)

Φ(0−)

D(r)dr . (13)

This conjecture is supported by the following points. (i)
For D(ρ) = 1 and σ(ρ) = 2ρ(1 − ρ), it reduces to the
expression obtained for the SEP [31, 41, 42]. (ii) Fur-
thermore, from our above results on the profiles Φ and
the fourth cumulant κ4, we can check that this relation
holds up to order 4 in λ included. (iii) Finally, Eq. (13)
is invariant under the duality mapping (3) (see SM [40]).

Conclusion.— We have considered tracer diffusion (as
well as the current of particles) in general single-file sys-
tems at large times. We have determined an explicit ex-
pression for the fourth cumulant of Xt, which constitutes
the first extension of the result of Kollmann on the sec-
ond cumulant [12], for any D(ρ) and σ(ρ) and provides a
quantitative measure of the deviation from Gaussian be-
havior. On top of the cumulants of Xt, we have obtained
the response of the bath of surrounding particles to the
displacement of the tracer by determining the full spatial
structure of the bath-tracer correlation profiles (up to or-
der 4). These explicit results, which hold for any system,
allowed us to pinpoint the effect of nonintegrability, both
on the cumulants and the correlation profiles. This work
constitutes a first step towards obtaining a closed equa-
tion for the correlation profiles for arbitrary D(ρ) and
σ(ρ).
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I. MACROSCOPIC FLUCTUATION THEORY FOR A TRACER

In this Section, we summarise the main tools needed to study the position of a tracer at large times in a single-file
system.

A. The transport coefficients

At large times and large distances, a single-file system can be described by a density field ρ(x, t) which obeys a
stochastic diffusion equation [S1]

∂tρ = ∂x

[
D(ρ)∂xρ+

√
σ(ρ)η

]
, (S1)

where η is a Gaussian white noise in space and time, with ⟨η(x, t)η(x′, t′)⟩ = δ(x−x′)δ(t− t′). This equation involves
only two transport coefficients: the diffusion coefficient D(ρ) and the mobility σ(ρ). These quantities were first defined
for a lattice gas [S1], but they can be defined more intuitively for any single-file system by considering a finite system
of length L between two reservoirs at densities ρL and ρR [S2]. Consider the total number Qt transferred from the left
reservoir to the right one. The diffusion coefficient measures the average current in the presence of a small difference
of density,

lim
t→∞

⟨Qt⟩
t

=
D(ρ)

L
(ρL − ρR) , for ρR − ρL ≪ ρ ≡ ρR + ρL

2
. (S2)
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The mobility measures the fluctuations of current at a given density

lim
t→∞

⟨Qt⟩2

t
=
σ(ρ)

L
, for ρ = ρR = ρL . (S3)

These two coefficients fully describe the single-file system at the macroscopic level.

B. Mapping onto a dual problem of current

Our computations rely on a mapping between single-file systems. The density ρ(x, t) of the original single-file
system can be mapped onto another density

ρ̃(y, t) =
1

ρ(x(y, t), t)
, x(y, t) =

∫ y

0

ρ̃(y′, t)dy′ +Xt , (S4)

where we denote Xt the position of a tracer, initially at the origin X0 = 0. Under this transformation, the density ρ̃
describes another single-file system [S3],

∂tρ̃ = ∂y

[
D̃(ρ)∂yρ̃+

√
σ̃(ρ)η

]
, (S5)

with new transport coefficients

D̃(ρ) =
1

ρ2
D

(
1

ρ

)
, σ̃(ρ) = ρ σ

(
1

ρ

)
. (S6)

This is a generalisation of previously known mappings between specific models of single-file systems, such as between
the SEP and the zero range process [S4, S5], and between the random average process (RAP) and the Kipnis Marchioro
Presutti (KMP) model [S6]. The idea behind this transformation is that a given single-file system can be viewed in
two equivalent ways: (i) either by looking at the positions of particles, and thus their density ρ(x, t) (ii) or by looking
at the distances between the particles. In this second point of view, the variable y represents the ”label” of the
particle located at position x at time t, while ρ̃(y, t) is the distance between this particle and the next one. Although
equivalent, these two points of view give rise to two different models of single-file systems, with different transport
coefficients related by (S6).

In the original system, at t = 0 we start in an equilibrium configuration at mean density ρ̄. From the mapping (S4),
this becomes an equilibrium at mean density

˜̄ρ =
1

ρ̄
. (S7)

The position Xt of the tracer in the original system can equivalently be written in terms of the variation of the
distance between the particles, and thus reads in terms of the dual model [S3],

Xt = −
∫ ∞

0

[ρ̃(y, t)− ρ̃(y, 0)] dy ≡ −Q̃t , (S8)

where the r.h.s. is actually the (opposite of) the integrated current through the origin in the dual model (equivalently
given by the variation of the total density at the right of the origin). Therefore, the problem of studying the dynamics
of a tracer in a given single-file model reduces to the study of the current in the dual single-file system.

C. MFT equations for the study of the current

The MFT can be applied to study the statistical properties of the current Q̃T at a large time T in a single-file
system with arbitrary transport coefficients D̃ and σ̃ [S7]. We sketch here the main steps of the derivation of the
MFT equations. The moment generating function of the position XT of the tracer can be written as〈

eλXT
〉
=
〈
e−λQ̃T

〉
=

∫
Dρ̃(x, t)DH̃(x, t)

∫
Dρ̃(x, 0) e−λQT [ρ̃]−S[ρ̃,H̃]−F [ρ̃(x,0)] , (S9)
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where S is the MFT action (H̃ is a Lagrange multiplier that enforces the local conservation of particles)

S[ρ̃, H̃] =

∫ ∞

−∞
dx

∫ T

0

dt

[
H̃∂tρ̃+ D̃(ρ̃)∂xρ̃∂xH̃ − σ̃(ρ̃)

2
(∂xH̃)2

]
, (S10)

F gives the distribution of the initial condition picked from an equilibrium density ˜̄ρ,

F [ρ̃(x, 0)] =

∫ ∞

−∞
dx

∫ ρ̃(x,0)

˜̄ρ

dr [ρ̃(x, 0)− r]
2D(r)

σ(r)
, (S11)

and the functional QT gives the integrated current associated to the time evolution ρ̃(x, t),

QT [ρ̃] =

∫ ∞

0

[ρ̃(x, T )− ρ̃(x, 0)] . (S12)

Rescaling x by
√
T and t by T we obtain (with a slight abuse of notation, we keep the same names for the new fields

of rescaled variables),〈
eλXT

〉
=
〈
e−λQ̃T

〉
=

∫
Dρ̃(x, t)DH̃(x, t)

∫
Dρ̃(x, 0) e−

√
T (λQ[ρ̃]+S[ρ̃,H̃]+F [ρ̃(x,0)]) , (S13)

with now the time t belonging to [0, 1], i.e.,

S[ρ̃, H̃] =

∫ ∞

−∞
dx

∫ 1

0

dt

[
H̃∂tρ̃+ D̃(ρ̃)∂xρ̃∂xH̃ − σ̃(ρ̃)

2
(∂xH̃)2

]
, Q[ρ̃] =

∫ ∞

0

[ρ̃(x, 1)− ρ̃(x, 0)] . (S14)

Thanks to the factor
√
T in the exponential in (S13), the functional integrals can be evaluated by a saddle point

method. Let us denote (q̃, p̃) the fields (ρ̃, H̃) which minimize S + F + λQ. They satisfy the MFT equations [S7]

∂tq̃ = ∂x[D̃(q̃)∂xq̃]− ∂x[σ̃(q̃)∂xp̃] , (S15)

∂tp̃ = −D̃(q̃)∂2xp̃−
1

2
σ̃′(q̃)(∂xp̃)

2 , (S16)

with the final condition for p̃

p̃(x, 1) = −λΘ(x) , (S17)

and the initial condition for q̃

p̃(x, 0) = −λΘ(x) +

∫ q̃(x,0)

˜̄ρ

2D̃(r)

σ̃(r)
dr . (S18)

The cumulant generating function is given by

ψ̂(λ) ≡ lim
T→∞

1√
T

ln
〈
eλXT

〉
= lim
T→∞

1√
T

ln
〈
e−λQT

〉
= − (λQ[q̃] + S[q̃, p̃] + F [q̃(x, 0)]) . (S19)

In practice, it is simpler to compute the derivative of the cumulant generating function,

d

dλ
ψ̂ = −Q[q̃] (S20)

since q̃ and p̃ minimize the action. These are the equations (6-8) in the main text (up to the rescaling by
√
T ). Finally,

in [S7], it was noted that the MFT equations (S15-S18) have a time-reversal symmetry:

q̃(x, 1− t)|λ→−λ = q̃(x, t) . (S21)

This implies that the cumulant generating function (S20) can be expressed in terms of the profile at final time only:

d

dλ
ψ̂ = −

∫ ∞

0

[
q̃(x, 1)− q̃(x, 1)|λ→−λ

]
dx . (S22)

This will be useful to compute the cumulants below.
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II. PERTURBATIVE SOLUTION OF THE MFT EQUATIONS

We look for a perturbative solution by expanding the functions p̃ and q̃ in powers of −λ,

p̃ = −λp̃1 + λ2p̃2 − λ3p̃3 +O(λ4) , q̃ = ˜̄ρ− λq̃1 + λ2q̃2 − λ3q̃3 +O(λ4) . (S23)

For simplicity, all the results will be expressed in terms of the rescaled variable

y ≡ x√
4D̃(˜̄ρ)

. (S24)

A. First order

At first order in λ, the solution of the MFT equations is given by

p̃1(x, t) =
1

2
erfc

(
− y√

1− t

)
, (S25)

q̃1(x, t) =
σ̃(˜̄ρ)

4D̃(˜̄ρ)

[
erfc

(
y√
t

)
− erfc

(
y√
1− t

)]
. (S26)

B. Second order

At second order, the solution of the MFT equations reads

p̃2(x, t) =
σ̃(˜̄ρ)

16D̃(˜̄ρ)
erfc

(
y√
1− t

)
erfc

(
− y√

1− t

)
+
D̃′(˜̄ρ)σ̃(˜̄ρ)

D̃(˜̄ρ)2
Q2(y, 1− t) , (S27)

q̃2(x, t) =
σ̃(˜̄ρ)

2D̃(˜̄ρ)
p̃2(x, t) +

1

2

(
σ̃′(˜̄ρ)

σ̃(˜̄ρ)
− D̃′(˜̄ρ)

D̃(˜̄ρ)

)
q̃1(x, t)

2 +
σ̃′(˜̄ρ)σ̃(˜̄ρ)

32D̃(˜̄ρ)2
erfc

(
y√
t

)
erfc

(
− y√

t

)
+
D̃′(˜̄ρ)σ̃(˜̄ρ)2

2D̃(˜̄ρ)3
Q2(y, t) , (S28)

where Q2 is the solution of the equation

∂tQ2 −
1

4
∂2yQ2 =

y e−
y2

t

8
√
πt3/2

[
erfc

(
y√
t

)
− erfc

(
y√
1− t

)]
, Q2(y, 0) = 0 . (S29)

Explicitly, this function takes the form

Q2(y, t) = −e
− 2y2

t

2π
− e−

y2

t

8π
√
t
+
e−

y2

t − y2

1−t

8π

√
1− t

t

+
y e−

y2

t

8
√
π t

[
erfc

(
y√
t

)
− erfc

(
y√
1− t

)]
+

1

4
T

(
y

√
2

t
,

√
t

1− t

)
, (S30)

where T is the Owen-T function, defined by [S8]

T (h, a) =
1

2π

∫ a

0

e−
h2

2 (1+x2)

1 + x2
dx . (S31)
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C. Third order

Since we only need q̃3 at final time t = 1, we do not need to determine p̃3. We can obtain equations for q̃3 only by
writing it as

q̃3(x, t) =
σ̃(˜̄ρ)

2D̃(˜̄ρ)
p̃3(x, t) +

(
σ̃′(˜̄ρ)

σ̃(˜̄ρ)
− D̃′(˜̄ρ)

D̃(˜̄ρ)

)
q̃1(x, t)q̃2(x, t) +

σ̃′(˜̄ρ)2σ̃(˜̄ρ)

192D̃(˜̄ρ)3
erf

(
y√
t

)
erfc

(
y√
t

)
erfc

(
− y√

t

)
− q̃1(x, t)

3

6D̃(˜̄ρ)σ̃(˜̄ρ)2

[
2D̃(˜̄ρ)σ̃′(˜̄ρ)2 + σ̃(˜̄ρ)2D̃′′(˜̄ρ)− σ̃(˜̄ρ)

(
D̃(˜̄ρ)σ̃′′(˜̄ρ) + 2D̃′(˜̄ρ)σ̃′(˜̄ρ)

)]
+
σ̃′′(˜̄ρ)σ̃(˜̄ρ)

D̃(˜̄ρ)
Q3;σ̃′′(y, t)

+
D̃′′(˜̄ρ)σ̃(˜̄ρ)3

D̃(˜̄ρ)4
Q3;D̃′′(y, t) +

D̃′(˜̄ρ)σ̃′(˜̄ρ)σ̃(˜̄ρ)2

D̃(˜̄ρ)4
Q3;D̃′,σ̃′(y, t) +

D̃′(˜̄ρ)2σ̃(˜̄ρ)3

D̃(˜̄ρ)5
Q3;(D̃′)2(y, t) , (S32)

where all the dependence on D̃ and σ̃ has been extracted. The functions Q3;σ̃′′ , Q3;D̃′′(y, t), Q3;D̃′,σ̃′ and Q3;(D̃′)2

are solutions of different inhomogeneous diffusion equations, with source terms that are explicit thanks to the expres-
sions (S25),(S26),(S27),(S28) obtained at previous orders.

1. The term in σ̃′′

The function Q3;σ̃′′(y, t) is solution of

∂tQ3;σ̃′′(y, t)− 1

4
∂2yQ3;σ̃′′(y, t) =

e−
2y2

t

64πt

[
erfc

(
y√
t

)
− erfc

(
y√
1− t

)]
, Q3;σ̃′′(y, 0) = 0 . (S33)

The solution at final time Q3;σ̃′′(y, 1) has been determined in [S9, S10]. We recall here the steps leading to this result,
as a similar approach will be used for the other terms below. First, we notice that the first term in the r.h.s. of (S33)
is a function of y/

√
t only. We can thus look for a solution in the form of a scaling function g(y/

√
t),

∂tg

(
y√
t

)
− 1

4
∂2yg

(
y√
t

)
=
e−

2y2

t

64πt
erfc

(
y√
t

)
⇒ g′′(z) + 2zg′(z) = −e

−2z2

16π
erfc(z) , (S34)

from which we deduce

g(z) = a+ b erfc(z)− 1

384
erfc(z)3 . (S35)

Imposing g(±∞) = 0 so that g(y/
√
t) → 0 for t→ 0, this gives

g(z) =
1

96
erfc(z)− 1

384
erfc(z)3 . (S36)

We now perform the change of functions

Q3;σ̃′′(y, t) =
1

96
erfc

(
y√
t

)
− 1

384
erfc

(
y√
t

)3

+ Q̃3;σ̃′′(y, t) , (S37)

where Q̃3;σ̃′′ now verifies

∂tQ̃3;σ̃′′(y, t)− 1

4
∂2yQ̃3;σ̃′′(y, t) = −e

− 2y2

t

64πt
erfc

(
y√
1− t

)
, Q̃3;σ̃′′(y, 0) = 0 . (S38)

The solution can be written as a double convolution with the heat kernel. Since we are only interested in the solution
at final time t = 1, this gives,

Q̃3;σ̃′′(y, 1) = −
∫ ∞

−∞
dz

∫ 1

0

dt
e−

2z2

t

64πt
erfc

(
z√
1− t

)
e−

(z−y)2

1−t√
π(1− t)

. (S39)
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The integral over z can be computed using the table [S8], and gives

Q̃3;σ̃′′(y, 1) = −
∫ 1

0

dt

64π

e−
2y2

2−t√
t(2− t)

erfc

(
ty√

2(2− 3t+ t2)

)
, (S40)

from which we deduce

Q̃3;σ̃′′(0, 1) = − 1

128
, ∂yQ̃3;σ̃′′(y, 1)

∣∣∣
y=0

=

√
2− 1

32
√
2π

. (S41)

We have not been able to directly evaluate (S40), but we can compute

∂2yQ̃3;σ̃′′(y, 1) + 2y∂yQ̃3;σ̃′′(y, 1) =

∫ 1

0

dt

32
√
2π3/2t3/2

y
√
1− te−

1+t
2t y

2

, (S42)

after integration by parts. This last integral can be computed, and yields,

∂2yQ̃3;σ̃′′(y, 1) + 2y∂yQ̃3;σ̃′′(y, 1) =
e−y

2

32π
− y e−

y2

2

32
√
2π

erfc

(
y√
2

)
. (S43)

Solving this differential equation with the initial conditions (S41), we get,

Q̃3;σ̃′′(y, 1) =
1

128
erfc

(
y√
2

)2

− 1

64
erfc(y) . (S44)

Finally, this gives the result of [S9, S10],

Q3;σ̃′′(y, 1) =
1

128
erfc

(
y√
2

)2

− 1

192
erfc(y)− 1

384
erfc(y)3 for y > 0 . (S45)

2. The term in D̃′′

The function Q3;D̃′′(y, t) is solution of

∂tQ3;D̃′′(y, t)−
1

4
∂2yQ3;D̃′′(y, t) =

y e−
y2

t

128
√
π t3/2

[
erfc

(
y√
t

)
− erfc

(
y√
1− t

)]2
, Q3;D̃′′(y, 0) = 0 . (S46)

The solution can be written as a double convolution with the heat kernel, which at t = 1 takes the form,

Q3;D̃′′(y, 1) =

∫ ∞

−∞
dz

∫ 1

0

dt
z e−

z2

t

128
√
π t3/2

[
erfc

(
z√
t

)
− erfc

(
z√
1− t

)]2
e−

(y−z)2

1−t√
π(1− t)

. (S47)

The integrals over z can be computed explicitly using the table [S8]. After multiple integrations by parts on the
remaining time integral, we obtain for y > 0,

Q3;D̃′′(y, 1) =
e−y

2

64π
− 1

128
erfc(y)−

√
3

128π
erfc(y)− e−2y2

64π
erfc(y) +

y e−y
2

128
√
π
erfc(y)2

+
1

128
erfc

(
y√
2

)2

+

√
3

128π
erfc

(√
3 y
)
+

1

64
f(y) , (S48)

where the function f is given by

f(y) =

∫ 1

0

dt

 e
− y2

1−t2

π
√
1− t2

erf

(
ty√

(1− t2)(1 + 2t)

)
− y(2 + t)

(1− t)(1 + 2t)3/2π3/2
e−

(1+t)y2

(1−t)(1+2t)

 . (S49)
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In particular, we have that

f(0) = 0 , f ′(0) =

√
3− 1

π3/2
− 1

2
√
π
,

∫ ∞

0

f(y)dy =
1

4
√
π
− 3(

√
3− 1)

2π3/2
. (S50)

These values will be useful to compute the fourth cumulant κ4, and to check the guess (S85) of the cumulant generating
function.

Additionally, after a few final integrations by parts, we can show that the function f satisfies

f ′′(y) + 2yf ′(t) = − 2

π3/2
∂y

∫ 1

0

dt√
1 + 2t

e−
(1+t)y2

(1−t)(1+2t) . (S51)

3. The term in D̃′σ̃′

The function Q3;D̃′,σ̃′ also obeys a heat equation with a source term which is rather cumbersome, so we do not
write it explicitly here. This source term is the sum of several expressions, some of which are only functions of the
scaling variable y/

√
t. These parts can be solved by looking for a solution which is a function of this variable only.

The heat equation then reduces to an ordinary differential equation, which can be solved. From this procedure, we
obtain that,

Q3;D̃′,σ̃′ = −y e
− y2

t

64
√
πt

erf

(
y√
t

)2

− e−
y2

t

64π
√
t
erf

(
y√
t

)
− e−

2y2

t

64π
erf

(
y√
t

)
− 1

384
erf

(
y√
t

)3

+
1

384
erf

(
y√
t

)
+
ye−

y2

t

64
√
πt

+ Q̃3;D̃′,σ̃′(y, t) , (S52)

where Q̃3;D̃′,σ̃′ is solution of

∂tQ̃3;D̃′,σ̃′(y, t)−
1

4
∂2yQ̃3;D̃′,σ̃′(y, t) =

y
√
1− t

32π3/2t2
e−

(2−t)y2

t(1−t) − t− 2y2

64πt2
e−

2y2

t erf

(
y√
1− t

)
, Q3;D̃′,σ̃′(y, 0) = 0 . (S53)

The solution at t = 1 can again be written in terms of a double convolution with the heat kernel. Computing first
the spatial integrals using the table [S8], and then the time integral (using also integration by parts), we get

Q̃3;D̃′,σ̃′(y, t) =
e−y

2

64π
− e−2y2

64π
, for y > 0 . (S54)

4. The term in (D̃′)2

The last function to determine, Q3;(D̃′)2(y, t), also obeys a heat equation, with a cumbersome source term which
we do not reproduce here. In principle, one should be able to obtain explicitly Q3;(D̃′)2 using the same procedure as

above, but that would require lengthy computations. Instead, we use the fact that the general result (S32) for any
D̃(˜̄ρ) and σ̃(˜̄ρ) should reduce to the known expressions which are available for specific choices of D̃ and σ̃. Since we
are looking for the term in (D̃′)2, we cannot directly use the known results for the SEP, for which D̃′ = 0. However,
we can use the known results for the random average process, given in [S9, S10], corresponding to [S6, S11]

D̃(˜̄ρ) =
µ1

2˜̄ρ2
, σ̃(˜̄ρ) =

µ1µ2

µ1 − µ2

1
˜̄ρ
, (S55)

with µ1 > µ2 > 0. Indeed, in this case, the profile q̃3(x, 1) for the current in the RAP can be deduced from the
profile q3(x, 1) for the tracer in the dual model, which is the Kipnis-Marchioro-Presutti model, whose profiles are
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given in [S10]. The duality transformation (S4) gives the profile

q̃3,RAP(x, 1) =
1

8
erf(y)2 erfc(y) +

1

4
erf(y) erfc(y)− y2e−2y2

2π
erfc(y)− y2e−y

2

2π
erfc(y)− 3y e−y

2

4
√
π

erfc(y)2

+
y e−y

2

√
π

erfc(y) +
3e−2y2

4π
erfc(y) +

3e−y
2

4π
erfc(y) +

y3e−y
2

4
√
π

erfc(y)2 +
1

8
erfc

(
y√
2

)2

+
1

2π
erfc(y)− 7

24
erfc(y) +

y e−3y2

4π3/2
+
y e−2y2

2π3/2
+
y e−y

2

4π3/2
− e−2y2

π
− e−y

2

2π
. (S56)

Imposing that the function q̃3 (S32) reduces to (S56) for the specific choice (S55), we find that

Q3;(D̃′)2 = −y
2 e−2y2

64π
erfc(y)− y2e−y

2

64π
erfc(y)− 5y e−y

2

256
√
π

erfc(y)2 +
y e−y

2

64
√
π

erfc(y) +
e−2y2

32π
erfc(y) +

e−y
2

128π
erfc(y)

+
y3e−y

2

128
√
π
erfc(y)2 − 3

256
erfc

(
y√
2

)2

+
3
√
3

256π
erfc(y) +

1

64π
erfc(y) +

3

256
erfc(y)− 3

√
3

256π
erfc

(√
3y
)
+
y e−3y2

128π3/2

+
y e−2y2

64π3/2
+

y e−y
2

128π3/2
− e−2y2

64π
− 5e−y

2

128π
− 3

128
f(y) , (S57)

where f is the function defined by the integral representation (S49) above.

III. CUMULANTS AND PROFILES

A. Cumulants

1. Derivation of the general expression

The cumulants are obtained by expanding the generating function ψ̂ in powers of λ,

ψ̂ = κ2
λ2

2
+ κ4

λ4

4!
+ · · · . (S58)

Expanding (S22) in powers of λ, using (S23), we obtain,

κ2 = 2

∫ ∞

0

q̃1(x, 1)dx , κ4 = 12

∫ ∞

0

q̃3(x, 1)dx . (S59)

Using the expressions of Section II, we obtain,

κ2 =
σ̃(˜̄ρ)√
πD̃(˜̄ρ)

, (S60)

κ4 =
σ̃(˜̄ρ)σ̃′(˜̄ρ)

(
D̃(˜̄ρ)σ̃′(˜̄ρ)− σ̃(˜̄ρ)D̃′(˜̄ρ)

)
4
√
πD̃(˜̄ρ)7/2

−
3σ̃(˜̄ρ)3

(
D̃′(˜̄ρ)2 − 2D̃(˜̄ρ)D̃′′(˜̄ρ)

)
8π3/2D̃(˜̄ρ)9/2

+
3σ̃(˜̄ρ)3

(
D̃′(˜̄ρ)2 − D̃(˜̄ρ)D̃′′(˜̄ρ)

)
8
√
πD̃(˜̄ρ)9/2

+

(
3
√
2− 4

)
σ̃(˜̄ρ)2σ̃′′(˜̄ρ)

8
√
πD̃(˜̄ρ)5/2

+
3
(√

2π − 2
√
3
)
σ̃(˜̄ρ)3

(
2D̃(˜̄ρ)D̃′′(˜̄ρ)− 3D̃′(˜̄ρ)2

)
16π3/2D̃(˜̄ρ)9/2

. (S61)

In this form, the cumulants are expressed in terms of the transport coefficients D̃ and σ̃ of the dual model, and
the mean density ˜̄ρ in this model. It thus corresponds to the cumulants of the integrated current Q̃T . To obtain
the cumulants of the tracer, we rewrite these expressions in terms of the coefficients D and σ of the original model
using (S6), and the mean density ρ̄ using (S7). This gives,

κ2 =
σ(ρ̄)

ρ̄2
√
πD(ρ̄)

, (S62)
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κ4 =
3σ(ρ̄)3 (ρ̄D′(ρ̄) +D(ρ̄))

π3/2ρ̄6D(ρ̄)7/2
−
σ(ρ̄)

(
σ(ρ̄)σ′(ρ̄) (ρ̄D′(ρ̄) + 4D(ρ̄)) + 2σ(ρ̄)2D′(ρ̄)− ρ̄D(ρ̄)σ′(ρ̄)2

)
4
√
πρ̄5D(ρ̄)7/2

+
3σ(ρ̄)3

(
D′(ρ̄)2 −D(ρ̄)D′′(ρ̄)

)
8
√
πρ̄4D(ρ̄)9/2

+
3σ(ρ̄)3

(
2D(ρ̄)D′′(ρ̄)−D′(ρ̄)2

)
8π3/2ρ̄4D(ρ̄)9/2

+

(
3
√
2− 4

)
σ(ρ̄)2σ′′(ρ̄)

8
√
πρ̄4D(ρ̄)5/2

+
3
(√

2π − 2
√
3
)
σ(ρ̄)3

(
2D(ρ̄)D′′(ρ̄)− 3D′(ρ̄)2

)
16π3/2ρ̄4D(ρ̄)9/2

. (S63)

This is the result (9) announced in the main text.

2. Recovering known results in specific cases

From our general expression of κ4 (S63), we easily check that we properly reproduce all previously known expressions
of the fourth cumulant of the position of a tracer for specific models. We list below a few models, and the corresponding
expression of κ4 which coincides with those given in [S3] (see [S12] for the first determination of κ4 for the SEP)

Model D(ρ) σ(ρ) κ4

Simple exclusion process D0 2D0ρ(1− ρ)
2
√
D0(1− ρ̄)

π3/2ρ̄3

(
12(1− ρ̄)2 − π(3− 3(4−

√
2)ρ̄+ (8− 3

√
2)ρ̄2)

)
Random average process

µ1

2ρ2
1

ρ

µ1µ2

µ1 − µ2

6µ3
2

(µ1 − µ2)3ρ̄4

√
µ1

π

Kipnis-Marchioro-Presutti D0 σ0ρ
2 σ3

0

12 + π(3
√
2− 8)

4D
5/2
0 π3/2

Hard Brownian particles D0 2D0ρ
6
√
D0(4− π)

π3/2ρ̄3

Hard rod gas
D0

(1− ℓρ)2
2D0ρ

6
√
D0(4− π)(1− ℓρ̄)3

π3/2ρ̄3

Double exclusion process
D0

(1− ρ)2
2D0ρ(1− 2ρ)

1− ρ

2
√
D0(1− 2ρ̄)

π3/2ρ̄3

(
12(1− 2ρ̄)2 − π((23− 6

√
2)ρ̄2 − 3(6−

√
2)ρ̄+ 3)

)
We briefly describe the models listed in this table. In the simple exclusion process (SEP), each particle can hop

onto a neighbouring site if it is empty. The random average process describes particles on a continuous line which can
hop to a random fraction of the distance to a neighbouring particle. The Kipnis-Marchioro-Presutti describes a lattice
in which each site hosts a continuous variable (a mass). At random times the total mass of two neighbouring sites
is randomly redistributed between them. The hard Brownian particles is a model of hardcore particles performing
Brownian motion, with the constraint that they remain in the same order. The hard rod gas is similar, but the
particles have a finite length ℓ and cannot overlap. Finally, the double exclusion process is similar to the SEP, but
the particles occupy two neighbouring sites and can only hop by one unit if the site in the randomly chosen direction
is empty.

B. Correlation profiles

The correlation profiles can be obtained from the MFT [S13] of the dual model using the mapping (S4),

w(x, T ) ≡
〈
ρ(XT + x, T )eλXT

〉
⟨eλXT ⟩

=

〈
1

ρ̃(Yx[ρ̃],T )e
−λQ̃T

〉
〈
e−λQ̃T

〉 , Yx[ρ̃] =

∫ x

0

ρ̃(y′, T )dy′ . (S64)
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Using the formalism of Section IC, we can write this profile as (after rescaling space by
√
T and time by T ),

w(x
√
T , T ) =

∫
Dρ̃(x, t)DH̃(x, t)

∫
Dρ̃(x, 0) 1

ρ̃(Yx[ρ̃], 1)
e−

√
T (λQ[ρ̃]+S[ρ̃,H̃]+F [ρ̃(x,0)])∫

Dρ̃(x, t)DH̃(x, t)

∫
Dρ̃(x, 0) e−

√
T (λQ[ρ̃]+S[ρ̃,H̃]+F [ρ̃(x,0)])

. (S65)

These integrals can again be evaluated by a saddle point method for large T . The prefactor in the numerator does
not change the saddle point, and thus,

w(z
√
T , T ) ≃

T→∞

1

q̃(Yz[q̃], 1)
≡ Φ(z) , Yz[q̃] =

∫ z

0

q̃(y, 1)dy . (S66)

Using the above expressions for q̃(y, 1) at lowest orders in λ, we can perform this mapping explicitly to get

Φ(z) = ρ̄+ λΦ1(z) + λ2Φ2(z) + λ3Φ3(z) +O(λ4) , (S67)

where, for z > 0,

Φ1(z) =
σ(ρ̄)

4ρ̄D(ρ̄)
erfc

(
y =

z

2
√
D(ρ̄)

)
, (S68)

Φ2(z) =
σ(ρ̄)σ′(ρ̄)

16ρ̄2D(ρ̄)2
erfc(y)− σ(ρ̄)2

4πρ̄3D(ρ̄)2
e−y

2

+
σ(ρ̄)2D′(ρ̄)

32πρ̄2D(ρ̄)3

[
πerf(y) erfc(y) + 2

√
πe−y

2

y erfc(y)− 2(e−2y2 + e−y
2

)
]
, (S69)

Φ3(z) =
σ(ρ̄)3

16π3/2ρ̄5D(ρ̄)3

(√
πerfc(y) + 2e−y

2

y
)
+
σ(ρ̄)σ′(ρ̄)2

96ρ̄3D(ρ̄)3
erfc(y)− σ(ρ̄)2σ′(ρ̄)

96ρ̄4D(ρ̄)3

(
erfc(y) +

6e−y
2

π

)

+
σ(ρ̄)2σ′′(ρ̄)

384ρ̄3D(ρ̄)3

(
3erfc

(
y√
2

)2

− 2erfc(y)

)
− σ(ρ̄)2D′(ρ̄)σ′(ρ̄)

192ρ̄3D(ρ̄)4

(
−6e−y

2

yerfc(y)√
π

+ 3erfc(y)2 − erfc(y) +
6e−2y2

π

)

+
σ(ρ̄)3D′(ρ̄)

192π3/2ρ̄4D(ρ̄)4

(
−12

√
πe−y

2

y2erfc(y) + 18
√
πe−y

2

erfc(y)− π3/2erfc(y) + 12
√
πerfc(y) + 12e−2y2y + 12e−y

2

y − 12
√
πe−y

2
)

+
σ(ρ̄)3D′(ρ̄)2

256ρ̄3D(ρ̄)5

(
− 4e−2y2y2erfc(y)

π
− 4e−y

2

y2erfc(y)

π
+

4e−y
2

yerfc(y)√
π

+
6e−y

2

erfc(y)

π
+

2e−y
2

y3erfc(y)2√
π

− 2erfc(y)2

+
4erfc(y)

π
+

2e−3y2y

π3/2
+

4e−2y2y

π3/2
+

2e−y
2

y

π3/2
− 4e−2y2

π

)

+
σ(ρ̄)3

(
2D(ρ̄)D′′(ρ̄)− 3D′(ρ̄)2

)
256ρ̄3D(ρ̄)5

(
−e

−y2yerfc(y)2√
π

−
√
3erfc(y)

π
− erfc(y) + erfc

(
y√
2

)2

+

√
3

π
erfc

(√
3y
)
+

2e−y
2

3π
+ 2f(y)

)

−
σ(ρ̄)3

(
D(ρ̄)D′′(ρ̄)− 3D′(ρ̄)2

)
384ρ̄3D(ρ̄)5

(
−6e−y

2

yerfc(y)2√
π

+
6e−2y2erfc(y)

π
+ erfc(y)3 − 4e−y

2

π

)
, (S70)

where f is the function (S49). Finally, Eqs. (S68-S70) give the expression of the bath-tracer correlation profiles up to
order 3.

C. An equation for the profiles?

In Refs. [S9, S10], the derivation of the lowest orders Φn of the correlation profile for the SEP allowed for the
determination of a simple closed equation satisfied by the profile Φ at all orders in λ. The starting point was the
equation verified by the profiles of the SEP in the low density limit [S13],

Φ′′(z) +
1

2
(z + ξ)Φ′(z) = 0 , with ξ =

dψ̂

dλ
, for the SEP with ρ̄→ 0 . (S71)
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The approach used in Refs. [S9, S10] relied on three steps: (i) look for an equation with the same l.h.s., and compute
the new r.h.s. using the expressions of Φn obtained by MFT; (ii) rewrite this r.h.s. in a closed form in terms of Φ only
and finally (iii) infer the general structure from the lowest orders of this equation. This led to a guess for a simple
closed equation, that was later proved from MFT [S14].

We investigate here, for arbitrary D(ρ) and σ(ρ), the possibility to write such an equation by following the same
procedure. Since the SEP was for constant diffusion coefficient, we modify the l.h.s. of (S71) to include D(ρ) in the
first term (which comes from the diffusion equation (S15)). For step (i), we compute (for z > 0, the case z < 0 can
be deduced from the symmetry z → −z, λ→ −λ),

∂z(D(Φ)Φ′) +
1

2
(z + ξ)Φ′(z) = λ2

σ(ρ̄)2D′(ρ̄)

32πρ̄2D(ρ̄)3
e−y

2

− λ3
σ(ρ̄)2σ′′(ρ̄)

256πρ̄3D(ρ̄)3

(√
2πe−

y2

2 y erfc

(
y√
2

)
− 2e−y

2

)
+ λ3

σ(ρ̄)3
(
2D(ρ̄)D′′(ρ̄)− 3D′(ρ̄)2

)
512ρ̄3D(ρ̄)5

(
−
√

2

π
y e−

y2

2 erfc

(
y√
2

)
+ f ′′(y) + 2yf ′(y)

)

+ λ3
σ(ρ̄)3D′(ρ̄)2

256π3/2ρ̄3D(ρ̄)5

(
2
√
πe−y

2

y2 erfc(y)− 3
√
πe−y

2

erfc(y)− 2ye−2y2 − 2ye−y
2

+ 2
√
πe−y

2
)

+ λ3
σ(ρ̄)3D′(ρ̄)

64π3/2ρ̄4D(ρ̄)4
e−y

2 (√
π − 2y

)
+O(λ4) , (S72)

again with y = z

2
√
D(ρ̄)

. A key step in [S9, S10], in which only the term in σ′′(ρ̄) was present, was to notice that this

term can be written in a closed form using∫ ∞

0

du Φ′′(−u)Φ′(z + u) = −λ2 σ(ρ̄)2

64πρ̄2D(ρ̄)3

(√
2πe−

y2

2 y erfc

(
y√
2

)
− 2e−y

2

)
+O(λ3) . (S73)

Here, we go further by noticing that several terms in (S72) can be written in terms of Φ′(z), so that

∂z(D(Φ)∂zΦ) +
1

2
(z + ξ)∂zΦ =

λσ′′(ρ̄)

4ρ̄

∫ ∞

0

Φ′(z + u)Φ′′(−u)du

+

(
λσ(ρ̄)D′(ρ̄)

8
√
πρ̄D(ρ̄)3/2

− λ2σ(ρ̄)D′(ρ̄) (ρ̄σ′(ρ̄)− 2σ(ρ̄))

32
√
πρ̄3D(ρ̄)5/2

+
λ2σ(ρ̄)2D′(ρ̄)2

64
√
πρ̄2D(ρ̄)7/2

)
Φ′(z)

−
λ3σ(ρ̄)3

(
2D(ρ̄)D′′(ρ̄)− 3D′(ρ̄)2

)
512ρ̄3D(ρ̄)5

(
ye−

y2

2

√
2

π
erfc

(
y√
2

)
+

2

π3/2
∂y

∫ 1

0

dt√
1 + 2t

e−
(1+t)y2

(1−t)(1+2t)

)
+O(λ4) , (S74)

where we have used (S51) to rewrite the last term. This is the equation (11) given in the main text. The open
challenge is to rewrite the last two terms in terms of Φ only. This result (S74) is the first step towards obtaining a
closed equation for Φ for arbitrary D(ρ) and σ(ρ).

D. Models that can be mapped onto constant diffusion coefficient

The last term in (S74) vanishes if and only if

2D(ρ)D′′(ρ)− 3D′(ρ)2 = 0 . (S75)

Solving this differential equation yields

D(ρ) =
1

(a+ bρ)2
, (S76)

with a and b two integration constants. This corresponds to the class of diffusion coefficients that can be mapped
onto constant D(ρ) by an extension of the mapping (S4). The most general type of mapping between two single-file
systems was discussed in [S3]. If b = 0, then (S76) already constant. If b ̸= 0, we define

ρ̃(y, t) = c+
1/b

a+ bρ(x(y, t), t)
, x(y, t) =

∫ y

0

ρ̃(y′, t)dy′ +Xt . (S77)

Under this mapping, the single-file with D(ρ) (S76) and any σ(ρ) maps onto a new single-file system, with [S3]

D̃(ρ) = 1 , σ̃(ρ) = b(c− ρ)ρ σ

(
1 + ab(c− ρ)

b2(ρ− c)

)
. (S78)
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E. A conjecture for the cumulant generating function

In the case of the SEP, with D(ρ) = D0 and σ(ρ) = 2D0ρ(1− ρ), it was shown that (for D0 = 1
2 ) [S9, S10, S13],

1− Φ(0−)

1− Φ(0+)
= eλ , Φ′(0±) = ∓ 1

2D0

ψ̂

e±λ − 1
Φ(0±) , (S79)

where we have reintroduced a generic value of D0. From the first equation, we deduce

λ = P (Φ(0+))− P (Φ(0−)) , P (ρ) =

∫ ρ 2rD(r)

σ(r)
dr = − ln(1− ρ) for the SEP. (S80)

Similarly, the equations (S79) can be combined to yield

Φ′(0+)

Φ(0+)(1− Φ(0+))
=

Φ′(0−)

Φ(0−)(1− Φ(0−))
, (S81)

which can be written as

∂xµ(Φ)|0+ = ∂xµ(Φ)|0− , µ(ρ) =

∫ ρ 2D(r)

σ(r)
dr . (S82)

The two equations (S80,S82) are the boundary conditions given in the main text. They have first been derived for
the specific case of the SEP, and it has recently been shown that they hold for any single-file model with arbitrary
D(ρ) and σ(ρ) [S15].

Although the two boundary conditions (S80,S82) are very general, and take a compact physical form, they give
less information than the three equations (S79). In particular, Eqs. (S80,S82) do not involve the cumulant generating

function ψ̂, while (S79) does. To fully generalise (S79) to any D(ρ) and σ(ρ), we need the last relation that relates ψ̂

and Φ(0±), Φ′(0±). This relation was very useful in [S9, S10, S13] as it allows to easily compute ψ̂ from Φ. To obtain
this relation for any single-file system, let us start by rewriting (S79) as

ψ̂ = −2D0
Φ′(0+)

Φ(0+)
(eλ − 1) = −2D0

Φ′(0+)

Φ(0+)(1− Φ(0+))
(Φ(0+)− Φ(0−)) . (S83)

We can rewrite this expression in terms of the chemical potential defined in (S82), which for the SEP yields

ψ̂ = −2D0(Φ(0
+)− Φ(0−)) ∂xµ(Φ)|0+ . (S84)

This form is consistent with the conjecture given in the main text, which reads

ψ̂ = −2 ∂xµ(Φ)|0+
∫ Φ(0+)

Φ(0−)

D(r)dr . (S85)

Furthermore, the mapping (S4) between two different single-file systems impose a strong condition on ψ̂: it must
be the same function for a tracer in a single-file with D and σ and for the current in the dual single-file D̃, σ̃ due
to (S8). Additionally, the profiles transform as (S4),

Φ̃(y(x)) =
1

Φ(x)
, y(x) =

∫ x

0

Φ(x′)dx′ , (S86)

and the transport coefficients D, σ as (S6). We can thus show that

∂xµ(Φ) =
1

Φ̃(y)
∂yµ

(
1

Φ̃(y)

)
= − Φ̃′(y)

Φ̃(y)3

2D
(

1
Φ̃

)
σ
(

1
Φ̃

) = −Φ̃′(y)
2D̃(Φ̃)

σ(Φ̃)
= −∂yµ̃(Φ̃) , (S87)

where µ̃(ρ) =
∫ ρ 2D̃

σ̃ is the chemical potential in the dual model. Similarly, we have,∫ Φ(0+)

Φ(0−)

D(r)dr = −
∫ 1/Φ(0+)

1/Φ(0−)

dr

r2
D

(
1

r

)
= −

∫ Φ̃(0+)

Φ̃(0−)

D̃(r)dr , (S88)
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so that Eq. (S85) is invariant under the duality mapping, as it should.

Finally, from our explicit results on κ4 (S63) and the profiles (S68-S70), we check that (S85) holds, at least up to
order 4 in λ included.

All these arguments strongly support the validity of the conjecture (S85) for arbitrary D(ρ) and σ(ρ), at all orders
in λ.
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