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An extensive near-field noise prediction of a subsonic jet using
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The use of surrogate models has become essential in modern design processes, with machine
learning algorithms increasingly adapting to active metamodelling techniques. In this specific
investigation, the formulation focuses on Artificial Neural Networks (ANNs) as data-driven
nonlinear models. Within this study, ANNs formulation is used as a data–driven nonlinear model
aimed at describing the dynamics and the noise emitted by a single-stream subsonic jet, trained
with a large numerical database that includes a wide range of parameters. What sets this model
apart is its pioneering incorporation of variables such as nozzle exhaust turbulence intensity
and nozzle–exhaust boundary–layer thickness. These parameters significantly influence noise
emissions and are challenging to model using traditional analytical methods. The training
dataset was formulated using 80% of the information sourced from the numerical database
derived from large-eddy simulations (LESs) of a jet flow operating at M=0.9 and 𝑹𝒆 = 105.
Pressure time series were gathered from virtual probes placed at various radial and axial
positions within the near field. The model has been properly validated and it is shown to predict
well the pressure spectra over the entire range of frequencies of interest.

Nomenclature

𝑥 = axial distance from the nozzle exhaust
𝑟 = radial distance from the jet centerline
𝐷 = nozzle exhaust diameter
𝑅𝑒𝐷 = nozzle exhaust Reynolds number. 𝑅𝑒𝐷 = 𝜌𝑈𝐷/𝜇
𝑆𝑡𝐷 = Strouhal number. 𝑆𝑡𝐷 = 𝑓 𝐷/𝑈
𝑈 𝑗 = nozzle exhaust jet velocity
𝑀 𝑗 = jet Mach number
𝛿𝐵𝐿 = nozzle exhaust boundary layer
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𝑇 𝐼 = Turbulence Intensity
𝑟0 = Jet radius
𝑆𝑃𝐿 = Sound Pressure Level
𝑃𝑆𝐷 = Power Spectral Density
𝐴𝑁𝑁 = Artificial Neural Networks
𝐿𝐸𝑆 = Large Eddie Simulation
𝑉𝑎𝑟 = Variance
𝑅𝑀𝑆𝐸 = Root-Mean-Square Error

I. Introduction
Jet noise is a long-standing issue in aviation due to its significant impact on the community. Because of ever-tightening

noise regulations, the imperative to develop advanced strategies for mitigating jet engine noise is pressing. Contemporary
commercial aircraft design needs the inclusion of acoustic emission considerations right from the initial concept stage.
Thus, the development of rapid and dependable prediction methods holds pivotal importance in this domain.

Following existing literature, the near-acoustic field is defined by relatively small pressure fluctuations, allowing
for linearization. The identification of coherent structures revolutionized the understanding of jet noise, paving the
way for the introduction of the wave-packet approach [1–3], which is characterized by the involvement of modulating
travelling waves. Several researchers have adopted and applied this method extensively to characterize and model jet
noise sources [4]. However, due to proximity to the jet flow, the near-field fluctuations might be influenced by the
rotational hydrodynamic pressure field. Within this zone, the predominant kinetic energy of fluctuations is associated
with coherent structures along the azimuth, contributing to nonlinear effects in the evolution of wave packets [5].
Hence, considering the highlighted complexity, accurately predicting the noise source of high subsonic jets remains a
challenging task.

In this framework, the principal focus of the present work is to present a data–driven metamodel capable of
predicting the jet near-field noise. This metamodel aims to predict the near-field noise spectra generated by a subsonic
jet, incorporating as a key parameter the initial conditions at the nozzle exhaust, such as turbulence intensity and
boundary–layer thickness. The surrogate model developed herein is based on Artificial Neural Networks (ANNs),
which represent a versatile tool that can be used to represent phenomena when their derivation and solution may be
too cumbersome. The dichotomy between biological neurons and mathematical processes has been investigated in the
1940s [6, 7], but the theoretical layout of complex multilayer structures has been developed within the last 50 years
[8, 9], thanks to the increase in computing resources. In order to manage the intrinsic complexity and richness of the jet
near pressure field, the strategy we follow relies on the use of suitable surrogate models based on artificial intelligence
techniques. Thus, the main focus is on leveraging the ANN-based approach to forecast jet noise spectra, while predicting
uncertainty. Artificial neural networks are nowadays applied extensively also in fluid mechanics. Kim and Lee [10],
for example, used the ANNs with a deep learning approach based only on wall information to predict turbulent heat
transfer. In the work of Lee and You [11], the unsteady flow fields over a circular cylinder are used for training four
different deep learning networks providing reliable predictions. Le Clainche et al. [12] presented a data-driven model
applied to approximate the statistics of the averaged wall-shear stress in a turbulent channel flow over a porous wall.
Centracchio et al. [13] recently proposed a data-driven nonlinear model based on ANNs to describe and predict the
noise emitted by a single stream jet in under-expanded conditions. A metamodel on the wall pressure fluctuations
generated by an installed supersonic jet has been carried out by Meloni et al. [14], Iemma et al. [15], while the prediction
of the noise directivity generated by an ingesting boundary layer propeller has been presented by Meloni et al. [16].
Machine learning has been successfully exploited in similar configurations, for example, to correlate computational
fluid dynamics data to the jet acoustic response [17] or to successfully predict the far-field noise spectra produced by
supersonic jets with different nozzle shapes located near a surface [18].

Following the approach presented in Meloni et al. [14], we aim at providing a prediction of the sound pressure
level with a low uncertainty in a large numerical domain which spans from the nozzle exhaust up to 𝑥/𝐷 = 20 in
the streamwise direction and up to 𝑟/𝐷 = 3 in the radial direction. To tune the present model, we used a numerical
dataset obtained from the Large-Eddy Simulation (LES) of an isothermal round free jet at a Mach number of 0.9 and a
diameter-based Reynolds number of 𝑅𝑒𝐷 = 105 varying the nozzle-exhaust turbulence level between 𝑇 𝐼 = 0% (fully
laminar flow) and 𝑇 𝐼 = 15%, which is representative of a fully turbulent jet, and the boundary layer thickness at the
nozzle exit between 𝛿𝐵𝐿 = 0.05 𝑟0 and 𝛿𝐵𝐿 = 0.4 𝑟0, where 𝑟0 is the jet radius. The training data set contains pressure
data at different axial and radial locations from 𝑥/𝐷 = 0 to 𝑥/𝐷 = 20 in the axial direction and from 𝑟/𝐷 = 0.5 to
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𝑟/𝐷 = 3 in the radial direction, respectively.
The remainder of the paper is organised as follows. Details on the numerical setup are given in Sec. II. Section III

contains a brief description of the in-house dynamic ANN metamodel used in this work. Results and the model
assessment with the uncertainty evaluation is included in Sec. IV whereas final remarks are given in Sec. V.

II. Numerical Setup
Large Eddy Simulations of round free jets at a Reynolds number 𝑅𝑒= 105 and M=0.9 have been used for the analysis

reported in this paper. The first set of LES considers jets with a nozzle–exhaust boundary–layer thickness fixed at
𝛿𝐵𝐿 = 0.15𝑟0. The nozzle exit turbulence intensity has been varied in all the simulations with a step of Δ𝑇 𝐼 = 3%,
starting from a fully laminar case with 𝑇 𝐼 = 0% to the fully turbulent case 𝑇 𝐼 = 15%. These conditions have been
achieved by tripping the pipe boundary layers using random low-level vortical disturbances decorrelated in the azimuthal
direction. A second set of simulations has been carried out with 𝑇 𝐼 = 0 and a normalized boundary–layer thickness
𝛿𝐵𝐿/𝑟0 varying from 0.025 up to 0.4 doubling the value of 𝛿𝐵𝐿/𝑟0 at each step.

For the sake of clarity, the jet initial conditions are summarized in Tab. 1.

Table 1 Jet initial conditions

M 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9 0.9
Re𝐷 105 105 105 105 105 105 105 105 105 105 105

TI 0% 3% 6% 9% 12% 15% 0% 0% 0% 0% 0%
𝛿𝐵𝐿/𝑟0 0.15 0.15 0.15 0.15 0.15 0.15 0.025 0.05 0.10 0.20 0.40

An in-house solver, based on the three-dimensional filtered compressible Navier–Stokes equations in cylindrical
coordinates, has been used to perform the LES simulations. Specifically, the LESs were carried out using grids
containing a number of points varying between 250 million and 1 billion, with low-dissipation schemes and relaxation
filtering as a sub-grid dissipation model [19]. More useful details on the LES can be found in [5, 20–23].

The present study is limited to the near-field domain, usually identified as the noise-producing region of the jet flow
and thus of interest for jet–noise modelling. Pressure time series are extracted from virtual probes at different locations
in the near field, covering a domain that spans from the nozzle exhaust up to 𝑥/𝐷 = 20 in the axial direction and from
the nozzle lip line (𝑟/𝐷 = 0.5) up to 𝑟/𝐷 = 3 in the radial direction. The data set has been acquired at a sampling
Strouhal number corresponding to 𝑆𝑡 = 12.8 for 3221 time snapshots (see Fig. 1).

Fig. 1 Snapshot in the (x,r) plane of the pressure signals. The black dashed lines represent the probe arrays in
the near field.
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III. Neural Network Metamodel and Uncertainty
The ANN model consists of a group of information connections made up of artificial neurons: the elementary unit

is the perceptron, a mathematical function that accepts several inputs and retrieve a single output. In the feed-forward,
fully-connected architecture, the network is capable of receiving external signals on a layer of processing units (input
nodes), each of which is connected with several inner nodes, organized in different layers: each node processes the
received signals and transmits the result to subsequent nodes. In compact form, the output of the 𝑙-th layer, with
2 ≤ 𝑙 ≤ 𝐿 can be written as it follows

a𝑙 = f𝑙 (W𝑙-1a𝑙-1 + b𝑙) (1)

so that the inputs x ≡ a1 and the outputs y ≡ a𝐿 . A schematic representation of a neural network is shown in Fig. 2.

Fig. 2 Schematic representation of a neural network with 4 input nodes, two hidden layers (4 and 10 nodes
respectively, with bias units) and 2 output nodes.

The selection of weight matrices {W𝑙}𝐿-1
𝑙=1 and bias vectors {b𝑙}𝐿𝑙=2 is performed by means of the so–called learning,

and is here addressed through the so–called training with back-propagation method: a cost function is computed
at the 𝑡-th epoch (the iteration of the training process), so that its gradient is used to update weight and bias values,
back-propagating the error information layer by layer [14]. Weights and biases at the 𝑡-th epoch are updated used the
learning rate, a free parameter selected by the designer to control the change in weights and biases based on the error
gradient components. As a result of the training process, the model can be completely identified by the parameters
vector Θ = {f𝑙 ,W𝑙-1, b𝑙}𝐿𝑙=2, where 𝐿 = 𝑄 + 2 and 𝑄 is the number of hidden layers.

The choice of the network topology and the selection of the parameters that regulate the training, represents a
serious challenge given that they are significantly problem dependent. To overcome the issue, a suitable hyperparameter
self–tuning coupled with a fully–deterministic topology optimisation scheme has been used here to derive the metamodel.
Several rules have been implemented to address a data–informed tuning of the training parameters (weights and biases
initialization, number of training epochs, batch size and learning rate), which affect the learning capability of the
network. As the ANN fitting capability is sensitive to the architectural parameters (activation functions, number of
hidden layers and number of neurons per layer), an in-house deterministic optimisation algorithm has been implemented.

The developed active metamodel is coupled with the quantification of its uncertainty. To this aim, the ANN response
is assumed to be the expectation of a posterior continuous uniform probability U 𝑗 (x) = unif

{
𝑎 𝑗 (x); 𝑏 𝑗 (x)

}
with

𝑎 𝑗 (x) < 𝑏 𝑗 (x). The hypothesis of continuous uniform distribution yields to the following definition of uncertainty
related to the 𝑗-th component of the output vector

𝑢 𝑗 (x) = 𝑏 𝑗 (x) − 𝑎 𝑗 (x) = 2
√

3𝜎𝑗 (x) (2)

being 𝜎𝑗 =

√︃
Var

[
U 𝑗 (x)

]
the standard deviation (here modelled with spatial correlation function). The metamodel

global uncertainty 𝑈 (x) is evaluated as the normalised norm on the R𝑁 Euclidean space

𝑈 (x) =

√√√
1
𝑁

𝑁∑︁
𝑗=1

𝑢2
𝑗
(x) (3)
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being 𝑢 𝑗 (x) the magnitude of the uncertainty function of the 𝑗-th output. The uncertainty quantification allows for the
implementation of adaptive sampling schemes aimed at driving the designer towards the choice of new experiments or
simulations. Indeed, new a training point to be analysed can correspond to the maximum value of 𝑈 (x) as it follows

x𝑛𝑒𝑤 = arg max
x∈D

[𝑈 (x)] (4)

so that the size of the training set is systematically increased, and a new network can be built using the scheme described
above.

IV. Results
To the extent of the noise level estimations, the Sound Pressure Level (SPL) was calculated as reported in the

following equation:

𝑆𝑃𝐿 = 10 log10

(
PSDΔ 𝑓ref

𝑃2
ref

)
, (5)

where PSD denotes the power spectral density evaluated using Welch’s method, Δ 𝑓ref is the frequency bandwidth
and 𝑃ref is the reference pressure in air (equal to 20𝜇Pa). Spectra have been represented in 1/3–octave bands. The
rationale underlying this choice lies in the fact that most aircraft noise prediction tools widely used in the aircraft design
process make use of the 1/3–octave bands description of the pressure signals. In addition, using band representation
considerably reduces the number of training set data, resulting in faster network training.

Due to the specific arrangement of the data from the numerical simulations, two different databases have been
created, the first one includes the data for different turbulence intensities and the second one accounts for data for
different nozzle–exhaust boundary–layer thickness, each database is composed by 3 independent variables (x/D, r/D and
TI for the first one and x/D, r/d and 𝛿𝐵𝐿/𝑟0 for the second one) associated with the 22 components of the SPL spectrum
(related to the centre frequencies of the 1/3–octave bands). In this view, two separate models of the vector collecting the
1/3–octave bands SPL have been built. The first model provides the SPL as a function of 𝑥/𝐷 and 𝑟/𝐷 and 𝛿𝐵𝐿/𝑟0:

𝑆𝑃𝐿1
...

𝑆𝑃𝐿N

 = f
(
𝑥

𝐷
,
𝑟

𝐷
,
𝛿𝐵𝐿

𝑟0

)
(6)

In the second model, the independent variables are 𝑥/𝐷 and 𝑟/𝐷 and the 𝑇 𝐼 percentage in the nozzle–exit turbulence
level: 

𝑆𝑃𝐿1
...

𝑆𝑃𝐿N

 = f
( 𝑥
𝐷
,
𝑟

𝐷
,𝑇 𝐼%

)
(7)

Both the datasets have been divided into two subsets: the 80% of the data was used as the training set T whereas
20% as a validation set V. A fixed-budget architecture optimisation (consisting of 1000 objective function evaluations)
has been performed for both the models. The characteristics of the optimal models are reported in Tab. 2, highlighting
the characteristics of the final topology of the neural network with the activation functions.

Table 2 ANN final configuration related to both the BL and TI models.

BL TI

Optimal topology 3/14/23/20/22 3/32/37/22
Hidden layer activation swish sinc
Output layer activation sech sigmoid
RMSET ∼2.5% ∼2.5%
RMSEV <5% <5%
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It is interesting to highlight that, as shown in Tab. 2, the architecture optimisation process resulted in nearly identical
training and validation losses for both the models. The convergence of root mean square error on the training set
(RMSET) as a function of the objective function evaluations is depicted in Fig. 3.

(a) (b)

Fig. 3 Convergence of RMSET as a function of the objective function evaluations for the BL (a) and TI (b)
models.

Each data point of Fig. 3(a) and (b) corresponds to a unique neural network architecture, with its associated
training loss value reflected on the given axis. It is worth highlighting than the architecture optimisation provided an
improvement of about one order of magnitude in terms of training loss with respect to the training RMSE related to the
first architectures analysed.

Figures 4 and 5 show the comparison between the responses of both models with the original data at different known
locations.
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(a)

10
-1

10
0

105

110

115

120

125

130

135

(b)

Fig. 4 Comparison between turbulence intensity ANN metamodel response and original data at different known
locations: (a) at x/D=1, r/D=0.5 and TI=15, (b) at x/D=17, r/D=0.5 and TI=9.

The analysis of Fig. 5 demonstrates that both ANN models align closely with the numerical data, effectively
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Fig. 5 Comparison between boundary layer thickness ANN metamodel response and original data at different
known locations. (a) at x/D=1, r/D=1.5 and BL=0.025, (b) at x/D=18, r/D=1 and 𝛿𝐵𝐿/𝑟0=0.2.

reproducing the spectrum across a wide range of Strouhal numbers. Minor discrepancies are noted at the highest and
lowest Strouhal numbers in both models, likely due to these points being situated near the models’ boundaries. Figures 6
and 7 illustrate the model’s responses in terms of SPL at different radial and axial locations.
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Fig. 6 ANN metamodel response for different TI: (a) at x/D=8 and r/D=2, (b) at x/D=16 and r/D=1.2.

According to the literature, an increase in turbulence intensity leads to a notable increase in noise levels, particularly
at lower frequencies and closer to the nozzle exhaust this is observed in Fig. 6. This effect is more pronounced at lower
values of turbulence intensity. On the other hand, Fig. 7 shows that the noise increase is primarily due to the thickness of
the boundary layer near the nozzle exhaust. This observation highlights the importance of considering boundary–layer
effects when analyzing the model’s response.

It is crucial to emphasize that a proper quantification of the model’s uncertainty is essential for estimating the
reliability of its predictions. The ANN model uncertainty maps of both models are reported Fig. 8 and Fig. 9 covering
almost the whole domain.
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Fig. 7 ANN metamodel response for different BL: (a) at x/D=4 and r/D=1.3, (b)x/D=15 and r/D=2.
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Fig. 8 ANN metamodel uncertainty for different nozzle–exhaust turbulence intensities and different radial
distances: (a) at x/D=6.5 and (b) at x/D=19.

It can be observed that both models show low uncertainty values across most of the domain. Analyzing Fig. 8(a) in
detail, high uncertainty values can be observed near the jet plume (low r/D), distributed evenly across the different
turbulence levels. This behaviour may be correlated with the strong variation of the spectra in that area due to the very
strong aerodynamic fluctuations at 𝑟/𝐷 = 0.5. This uncertainty signature disappears at high x/D values in Fig. 8(b),
likely due to the development of the jet turbulence, which reduces the differences between the spectra. Low uncertainty
has also been observed for the boundary layer thickness model, especially at high x/D values in Fig. 8(b). In the
uncertainty map for the area closest to the jet exit Fig. 8(a), this model also exhibits signatures with higher uncertainty
values. These are mostly located between 𝛿𝐵𝐿/𝑟0=0.2 and 𝛿𝐵𝐿/𝑟0=0.4 due to the sparse number of training points in
this area.

In conclusion, the uncertainty graphs highlight the need to train the model with a greater number of data points near
the jet plume and higher boundary layer thicknesses.
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Fig. 9 ANN metamodel uncertainty for different boundary layer thicknesses and different radial distances: (a)
at x/D= 4.5 and (b) at x/D=19.5.

V. Concluding Remarks
The present paper outlines the development of an Artificial Neural Network (ANN) metamodel, meticulously trained

on a large numerical dataset to the scope of predicting the near-field noise of a jet under different initial conditions. A
fully deterministic architecture optimization algorithm has been used to derive the ANN topology and the activation
functions combination. The algorithm is coupled with a suitable self-tuning scheme to select the network training
parameters. As expected, the accuracy of the prediction depends on the number of iterations. In the application
presented here, a training set error less than 2.5% (with a validation error of approximately 5%) steps. The main physical
parameters considered at the nozzle exit are the turbulence level and the boundary–layer thickness. Two distinct ANN
models are built to reproduce the influence of the two parameters upon the near field pressure fluctuations. It is shown
that both models effectively capture the dynamics of the data, providing predictions consistent with expected physical
behavior. The analysis confirms that both ANN models closely match the numerical data, accurately replicating the
spectrum over a broad range of Strouhal numbers. Both models exhibit low uncertainty across most of the domain,
emphasizing the importance of training the models with a large number of data points near the jet plume and for large
boundary–layer thickness.
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