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NEW RESULTS FOR DRIFT ESTIMATION IN INHOMOGENEOUS

STOCHASTIC DIFFERENTIAL EQUATIONS.

F. COMTE(1), V. GENON-CATALOT(1)

Abstract. We consider N independent and identically distributed (i.i.d.) stochastic processes
(Xj(t), t ∈ [0, T ]), j = 1, . . . , N , de�ned by a one-dimensional stochastic di�erential equation
(SDE) with time-dependent drift and di�usion coe�cient. In this context, the nonparametric
estimation of a general drift function b(t, x) from a continuous observation of the N sample
paths on [0, T ] has never been investigated. Considering a set Iε = [ε, T ] × A, with ε ≥ 0 and
A ⊂ R, we build by a projection method an estimator of b on Iε. As the function is bivariate,
this amounts to estimating a matrix of projection coe�cients instead of a vector for univariate
functions. Below, the use of Kronecker products simpli�es the mathematical treatment of the
problem. We study the risk of the estimator and distinguish the case where ε = 0 and the
case ε > 0 and A = [a, b] compact. In the latter case, we investigate rates of convergence and
prove a lower bound showing that our estimator is minimax. We propose a data-driven choice
of the projection space dimension leading to an adaptive estimator. Examples of models and
numerical simulation results are proposed. The method is easy to implement and works well,
although computationally slower than for the estimation of a univariate function.
June 1, 2024

Keywords and phrases: Adaptive estimator, Di�usion process, Kronecker product, time-dependent
coe�cients, nonparametric estimation, projection method.
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1. Introduction

Statistical inference for the coe�cients of stochastic di�erential equations (SDEs) has a long-
standing history and a huge number of contributions deals with the subject. We can refer to
the textbooks Kessler et al. (2012), Höpfner (2014), Iacus (2010), Kutoyants, (1984, 2004) and
the numerous references therein. In most papers, authors assume the observation of one tra-
jectory which may be continuously or discretely observed, on a time interval [0, T ]. To obtain
statistical results, an asymptotic framework is considered which is that, either T is �xed and
the di�usion coe�cient tends to 0, or T tends to in�nity. In the small variance asymptotics,
Markov type di�usions, i.e. having space and time dependent coe�cients, may be considered
(see e.g. Yoshida, N. (1992), Sørensen and Uchida (2003), Uchida (2004), Gloter and Sørensen
(2009), Guy et al. (2014)). In the long time asymptotics, only homogeneous di�usions, i.e. with
space dependent coe�cients, are studied under ergodicity assumptions. For what concerns more
precisely nonparametric inference, we refer to Ho�mann (1999), Dalalyan (2005), Dalalyan and
Reiss (2006, 2007), Comte et al. (2007), Strauch (2018).
In relation with functional data analysis (see e.g. Ramsay and Silvermann (2007), Wang et
al. (2016), Hsiao (2003)), the case of i.i.d. paths of stochastic di�erential equations has received
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recently considerable attention. Results concerning nonparametric estimation in this setup have
been published (see e.g. Comte and Genon-Catalot (2020), Denis et al (2018, 2021), Marie and
Rosier (2023), see also Comte and Marie (2023) for identically distributed di�usions with corre-
lated Brownian motions). These papers consider homogeneous di�usions, for which the drift and
di�usion coe�cients do not depend on time but only on space. Recent papers concerned with
interacting particle systems assume space-time dependent coe�cients (see e.g. Della Maestra
and Ho�mann (2022), Comte and Genon-Catalot (2023)). When there is no interaction between
particles, these models reduce to i.i.d. di�usion processes.
In this paper, we consider N i.i.d. real-valued stochastic processes (Xi(t), t ≥ 0), i = 1, . . . , N ,
with dynamics ruled by:

(1) dXi(t) = b(t,Xi(t))dt+ σ(t,Xi(t))dWi(t), Xi(0) = x0, i = 1, . . . , N,

where x0 ∈ R is known and (W1, . . . ,WN ) are independent standard Brownian motions. The
functions b, σ : R+ × R → R are unknown and our aim is to study nonparametric estimation
of the drift function b(t, x) from the continuous observation of the N sample paths on a �xed
time interval [0, T ]. We thus generalize the setting of Comte and Genon-Catalot (2024) where

the drift has the form b(t, x) =
∑K

i=1 αi(t)gi(x) with gi(x) known functions and αi(t) unknown
functions.
We proceed by projection method on sieves and estimate the function b(t, x) on a set Iε =
[ε, T ]×A with 0 ≤ ε < T and A ⊂ R. We thus de�ne a collection of �nite-dimensional subspaces
of L2(Iε), (Sm1 × Σm2 ,m1,m2 ≥ 0), where Sm1 is spanned by an orthonormal basis (ϕj , 0 ≤
j ≤ m1 − 1) of L2([ε, T ]) and Σm2 is spanned by an orthonormal basis (ψk, 0 ≤ k ≤ m2 − 1) of
L2(A). As usual for projection method, we estimate a projection of b1Iε on (Sm1 × Σm2), for
m1 ≥ 1,m2 ≥ 1 which is a function of the form

bm(t, x) =

m1−1∑
j=0

m2−1∑
k=0

aj,kϕj�ψk(t, x), ϕj�ψk(t, x) = ϕj(t)ψk(x), 0 ≤ j ≤ m1−1, 0 ≤ k ≤ m2−1

The speci�c challenge for estimation of bivariate functions is the fact that we have to estimate
a matrix (aj,k) of coe�cients, instead of a vector for univariate functions. Therefore, the formu-
lae quickly show intractable expressions depending on hypermatrices. The original idea of this
paper is to introduce vectorization of matrices which allows to get nice expressions for estimators
by means of Kronecker products. In econometrics, this is a usual way of simplifying the math-
ematical treatment of models, see Kle�e (1979), Magnus and Neudecker (1988). In particular,
the m1×m2 matrix Am = (aj,k), 0 ≤ j ≤ m1− 1, 0 ≤ k ≤ m2− 1, m = (m1,m2) is transformed
into a m1m2× 1 dimensional vector vec(Am) by stacking the columns of the matrix Am and the

classical regression equation, de�ning the estimator Âm = (âjk, 0 ≤ j ≤ m1− 1, 0 ≤ k ≤ m2− 1)
of the matrix Am, looks like the usual one,

Θ̂m1m2 vec(Âm) = vec(Ĉm).

where Θ̂m1m2 is a m1m2 ×m1m2 matrix and vec(Ĉm) is a m1m2 × 1 dimensional vector both
using the observations.
In Section 2, we give the assumptions on the model. In Section 3, the projection contrast and the
computation of the projection estimator are detailed. For the study of the risk of the estimator,
we distinguish the case where ε = 0 (Section 4) and the case ε > 0 and A = [a, b] compact (Section
5). In the former case, we propose a data-driven choice of m leading to an adaptive estimator.
In the latter case, we investigate rates of convergence and prove a lower bound showing that
our estimator is minimax. Section 6 is devoted to examples and numerical simulation results,
Section 7 gives some concluding remarks and Section 8 contains all proofs. The whole estimation
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procedure does not depend on σ(t, x) which may thus be unknown, except in Theorem 2 where
a rough upper bound for σ2(t, x) is involved in the penalty. In Section 9, some properties of
Kronecker products are recalled together with a Cherno� matrix inequality. The de�nition of
the Hermite basis is also recalled.

2. Assumptions

We consider the following assumptions.

• [H1-(i)] The coe�cients b(t, x), σ(t, x) are continuous real-valued functions on R+ × R,
• [H1-(ii)] For all R, there exists KR > 0 such that, whenever |x| ≤ R, |y| ≤ R, 0 ≤ s ≤ R,

|b(s, x)− b(s, y)| ≤ KR|x− y|, |σ(s, x)− σ(s, y)| ≤ KR|x− y|,

• [H1-(iii)] For all T > 0, there exists CT > 0, such that, for 0 ≤ s ≤ T , for all x,

|b(s, x)|+ |σ(s, x)| ≤ CT (1 + |x|).

• [H1-(iv)] For all T > 0, there exists σ0 > 0, σ1 > 0, such that 0 < σ2
0 ≤ σ2(t, x) ≤ σ2

1 <
+∞ for all (t, x) ∈ [0, T ]× R,
• [H1-(v)] The function b(t, x) is of class C1,1(R+ × R), the function σ(t, x) is of class
C1,2(R+ × R).

Under Assumption [H1(i)-(iv)], equation (1) admits a unique strong solution process (Xi(t))
adapted to the �ltration (Ft = σ(Wi(s), s ≤ t, i = 1, . . . , N), t ≥ 0) (see e.g. Rogers and
Williams, 1990, Theorem 12.1). The process (Xi(t)) is of Markov type and admits a family of
transition densities ps,t(x, y) de�ned for 0 ≤ s < t ≤ T, x, y ∈ R, where ps,t(x, y) is equal to the
density of Xi(t) given Xi(s) = x. These densities satisfy the Kolmogorov backward equation in
the backward variables (s, x) ∈ [0, T ]×R: for �xed (t, y), the function v(s, x) = ps,t(x, y) satis�es

−∂v
∂s

=
1

2
σ2(s, x)

∂v

∂x2
+ b(s, x)

∂v

∂x

and is of class C1,2([0, t)×R). Under the additional assumption [H1-(v)], the function w(t, y) =
ps,t(x, y) satis�es the Kolmogorov forward equation, for �xed (s, x), in the forward variables
(t, y):

∂w

∂t
=

1

2

∂[σ2(t, y)w(t, y)]

∂y2
− ∂[b(t, y)w(t, y)]

∂y
.

The function w(t, y) is of class C1,2((t, T ]× R) (see e.g. Karatzas and Shreve, p.368-369, Fried-
man, 1975, p.141-148).
In particular, as Xi(0) = x0,

p0,t(x0, y) := pt(y)

is the density of the random variableXi(t). The function (t, y)→ pt(y) is positive and continuous
and the following holds:

(2) ∀k ≥ 0,∀t ≥ 0 sup
0≤u≤t

E[X2k
i (u)] = sup

0≤u≤t

∫
y2kpu(y)dy < +∞.

We also have

(3) ∀k ≥ 0, ∀s, t ∈ [0, T ] E[(Xi(t)−Xi(s))
2k] ≤ C|t− s|k,

where C is a positive constant depending on k, T, x0 and the constant CT of [H1-(iii)] (see e.g.
Karatzas and Shreve (1997, p.306)).
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Consider the function

(4) fT (y) =
1

T

∫ T

0
pu(y)du.

For h continuous and bounded, s→ E[h(X(s))] is continuous on R+ and therefore,

T−1

∫ T

0
Eh(X(s))ds =

∫
h(y)fT (y)dy

is well de�ned so that the probability measure fT (y)dy is always well de�ned, and by (2), has
moments of any order.
Note that, by Theorem 1.2 of Menozzi et al. (2021), pu(y) ≤ Cu−1/2 so that fT (y) is �nite under
our set of assumptions.

3. Definition of projection estimators

Notations. Consider 0 ≤ ε < T and the set Iε := [ε, T ]×A for A ⊂ R. Let h ∈ L2(Iε, dtdx), we

set ‖h‖2 =
∫ T
ε

∫
A h

2(t, x)dt dx. For a matrix M , we denote by M⊥ the transpose of the matrix
M and by M ⊗N the Kronecker product of two matrices. For M a m×n-matrix, we denote by
vec(M) the vector of Rmn composed by stacking the columns of the matrix. In Section 9, some
useful properties of Kronecker products are recalled. For x a vector of Rq, we denote ‖x‖2,q its
Euclidean norm.

3.1. Projection spaces. To de�ne nonparametric estimators of the drift function b, we proceed
by a projection method. Let (ϕj , 0 ≤ j ≤ m1 − 1) be an orthonormal system of bounded
piecewise continuous functions of L2([ε, T ], dt) and (ψk, 0 ≤ k ≤ m2 − 1) an orthonormal system
of bounded piecewise continuous functions of L2(A, dx). We de�ne (Sm1 × Σm2 ,m1,m2 ≥ 0) a
family of �nite-dimensional subspaces of L2(Iε), where Sm1 is spanned by (ϕj , 0 ≤ j ≤ m1 − 1)
and Σm2 is spanned by (ψk, 0 ≤ k ≤ m2 − 1). The bases of Sm1 , Σm2 may depend on m1 or m2

but for simplicity, we omit this dependence in the notations. For m1 ≥ 1,m2 ≥ 1, the functions

ϕj � ψk(t, x) = ϕj(t)ψk(x), 0 ≤ j ≤ m1 − 1, 0 ≤ k ≤ m2 − 1

constitute an orthonormal basis of Sm1 × Σm2 . Let us set:

(5) Lϕ(Sm1) = sup
t∈[ε,T ]

m1−1∑
j=0

ϕ2
j (t), Lψ(Σm2) = sup

x∈A

m2∑
j=0

ψ2
j (x)

These quantities were introduced by Birgé and Massart (1998), and used by Comte and Genon-
Catalot (2020) in the framework of regression and drift estimation for di�usions by projection
method. By Lemma 1 in Birgé and Massart (1998),

Lϕ(Sm1) = sup
h1∈Sm1 ,‖h1‖[ε,T ]=1

sup
t∈[ε,T ]

h2
1(t), Lψ(Σm2) = sup

h2∈Σm2 ,‖h2‖A=1
sup
x∈A

h2
2(x),

where ‖h1‖2[ε,T ] =
∫ T
ε h2

1(t)dt, ‖h2‖2A =
∫
A h

2
2(x)dx. Therefore, Lϕ(Sm1) and Lψ(Σm2) only de-

pend on the subspaces and not on the bases chosen to de�ne them. In relation with (5), we
assume

• [H2] ∃cϕ, cψ > 0 such that Lϕ(Sm1) ≤ c2
ϕm1, Lψ(Σm2) ≤ c2

ψm2.
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Assumption [H2] holds for several classical bases, for instance, for the trigonometric basis on a
compact subset of R (see Section 5). If we take A = R and for (ψk)k the Hermite basis, it satis�es

the weakened condition Lψ(Σm2) ≤ cm
1/2
2 (see Comte and Lacour (2023), Lemma 1, examples

in Section 6 and Appendix).

3.2. Projection estimator. For h : R+ × R→ R a function, we introduce the contrast:

(6) γN (h) =
1

NT

N∑
i=1

(∫ T

ε
h2(u,Xi(u))du− 2

∫ T

ε
h(u,Xi(u))dXi(u)

)
.

For any bounded h, as E
∫ T
ε h2(u,X1(u))σ2(u,X1(u))du < +∞,

EγN (h) =
1

T
E
∫ T

ε
(h(u,X1(u))− b(u,X1(u)))2 du− 1

T
E
∫ T

ε
b2(u,X1(u))du

=
1

T

∫ T

ε

∫
(h(u, y)− b(u, y))2pu(y)dydt− 1

T

∫ T

ε

∫
b2(u, y)pu(y)dydu,

which is minimum for h(u, y) ≡ b(u, y). This property justi�es the de�nition of a collection of

estimators b̂m,m = (m1,m2),m1,m2 ≥ 0 of bIε := b1Iε by setting:

(7) b̂m = arg min
h∈Sm1×Σm2

γN (h)

Thus, for each couple m = (m1,m2), we can write

(8) b̂m(t, x) =

m1−1∑
j=0

m2−1∑
k=0

âj,kϕj � ψk(t, x)

where the matrix of coe�cients

Âm = (âj,k)0≤j≤m1−1,0≤k≤m2−1

is computed as follows. De�ne the m1 ×m2-matrix

(9) Ĉm =

(
1

NT

N∑
i=1

∫ T

ε
ϕj(u)ψk(Xi(u))dXi(u)

)
0≤j≤m1−1,0≤k≤m2−1

and the respectively m1 ×m1 and m2 ×m2 matrices

Φm1(t) =
(
ϕj(t)ϕj′(t)

)
1≤j,j′≤m1−1

and(10)

Ψ̂m2(t) =

(
1

N

N∑
i=1

ψk(Xi(t))ψk′(Xi(t))

)
0≤k,k′≤m2−1

.(11)

We also de�ne

(12) Ψm2(t) =

(∫
ψk(x)ψk′(x)pt(x)dx

)
0≤k,k′≤m2−1

= EΨ̂m2(t).

The matrices Φm1(t), Ψ̂m2(t) and Ψm2(t) are symmetric nonnegative. For instance, for x =

(x0, . . . , xm1−1), x⊥Φm1(t)x = (
∑m1−1

j=0 xjϕj(t))
2 and analogously for the other matrices.

For h =
∑m1−1

j=0

∑m2−1
k=0 hj,kϕj � ψk, we write that

∂γN
∂hj0,k0

(̂bm) = 0, for j0 = 0, . . . ,m1 − 1, k0 =, . . . ,m2 − 1.
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This yields the equation de�ning Âm:

(13)
1

T

∫ T

ε
Φm1(t)ÂmΨ̂m2(t)dt = Ĉm.

De�ne the m1m2 ×m1m2 matrices

(14) Θ̂m1m2 :=
1

T

∫ T

ε
Ψ̂m2(t)⊗ Φm1(t)dt, Θm1m2 :=

1

T

∫ T

ε
Ψm2(t)⊗ Φm1(t)dt,

where clearly Θm1m2 = EΘ̂m1m2 . As for all t, the matrices Φm1(t), Ψ̂m2(t),Ψm2(t) are symmetric,

so is Ψ̂m2(t)⊗ Φm1(t) (see (38)). As a consequence, Θ̂m1m2 and Θm1m2 are also symmetric.

We now introduce the vectorization of matrices Âm, Ĉm to clarify equation (13) de�ning Âm.

Proposition 1. Equation (13) is equivalent to

Θ̂m1m2 vec(Âm) = vec(Ĉm).

The vector of coe�cients of (8) is uniquely de�ned if Θ̂m1m2 is invertible and in this case,

(15) vec(Âm) = Θ̂−1
m1m2

vec(Ĉm).

Note that although Φm1(t) has rank 1 for all t, this does not prevent Θ̂m1m2 or Θm1m2 from
being invertible.

Let us give some general notation for the sequel. For h(., .), `(., .) two bounded functions, we
set

(16) ‖h‖2N =
1

NT

N∑
i=1

∫ T

ε
h2(u,Xi(u))du, 〈h, `〉N =

1

NT

N∑
i=1

∫ T

ε
h(u,Xi(u))`(u,Xi(u))du,

(17) νN (h) =
1

NT

N∑
i=1

∫ T

ε
h(u,Xi(u))σ(u,Xi(u))dWi(u).

Therefore, E‖h‖2N = ‖h‖2p := 1
T

∫ T
ε

∫
R h

2(u, y)pu(y)dy du,

E〈h, `〉N = 〈h, `〉p :=
1

T

∫ T

ε

∫
R
h(u, y)`(u, y)pu(y)dy du

and EνN (h) = 0, Eν2
N (h) = ‖hσ‖2p/NT .

4. Estimation for ε = 0

4.1. Empirical risk of the estimator for �xed m. In this section, we consider ε = 0 and set
I0 = I. We keep everywhere the same notations but with ε = 0.

We de�ne the risk of the estimator b̂m given by (8) as the expectation of the empirical square
norm ‖.‖2N (with ε = 0) which is naturally associated with our observations.

Using the previous notations and equation (1), we split Ĉm into the sum of two random matrices:

(18) Ĉm = Cm + εm, Cm := (〈ϕj � ψk, b〉N )0≤j≤m1−1,0≤k≤m2−1

and

(19) εm := (νN (ϕj � ψk))0≤j≤m1−1,0≤k≤m2−1 .
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Lemma 1. Let h =
∑m1−1

j=0

∑m2−1
k=0 hj,kϕj � ψk and denote by Hm = (hj,k)0≤j≤m1−1,0≤k≤m2−1.

We have

‖h‖2N =
1

T

∫ T

0
Tr
[
H⊥mΦm1(t)HmΨ̂m2(t)

]
dt = [vec(Hm)]⊥ Θ̂m1m2vec(Hm),

‖h‖2p = E
(

1

T

∫ T

0
Tr
[
H⊥mΦm1(t)HmΨ̂m2(t)

]
dt

)
= [vec(Hm)]⊥Θm1m2vec(Hm),

where Θm1,m2 and Θ̂m1,m2 are de�ned in (14).

Lemma 1 implies that Θ̂m1,m2 and Θm1,m2 are nonnegative. Moreover, as pt(y) > 0, ∀t ∈]0, T ]
and ∀y ∈ R,

‖h‖2p = 0⇒ h(t, y) = 0 a.e. on ]0, T ]× R
and thus hj,k = 0 for 0 ≤ j ≤ m1 − 1 and 0 ≤ k ≤ m2 − 1. Consequently, Θm1,m2 is positive

de�nite. As Θ̂m1,m2 tends to Θm1,m2 as N → +∞ a.s., Θ̂m1,m2 is invertible for N large enough.
Note that we have

‖h‖2N = 0⇒ ∀i, h(u,Xi(u)) = 0 a.s. and a.e. on [0, T ].

Therefore, Θ̂m1,m2 is invertible if:∀u ∈ [0, T ], ∀i = 1, . . . , N,

m1−1∑
j=0

m2−1∑
k=0

hj,kϕj � ψk(u,Xi(u)) = 0 a.s. and a.e. on [0, T ]

(20)

⇒ {hj,k = 0, j = 0, . . . ,m1 − 1, k = 0, . . . ,m2 − 1} .

Condition (20) is an identi�ability constraint linked with the choice of the bases. In Section 6,
we use bases for which (20) is ful�lled. Nevertheless, (20) is not enough for our theory and we
need to reinforce the identi�ability constraint (see (22)).

The following condition restricts the possible choices of m1,m2 to ensure the stability of the
minimum contrast estimator (see e.g. Cohen et al., 2013).

(21) m1m2 ≤ NT, Lψ(m2)‖Θ−1
m1m2

‖op ≤ cr
NT

log(NT )
, cr =

3 log(3/2)− 1

2 + 2r
,

The corresponding empirical version allows to de�ne a truncation of the estimator b̂m.

(22) Λ̂m =

{
m1m2 ≤ NT, Lψ(m2)‖Θ̂−1

m1m2
‖op ≤ 2cr

NT

log(NT )

}
.

The �nal estimator that we study for �xed (m1,m2) is de�ned by:

(23) b̃m = b̂m1
Λ̂m

Theorem 1. Under assumption [H1] and condition (21) on m with r ≥ 2 in (21)-(22), it holds

(24) E(‖b̃m − bI‖2N ) ≤ inf
h∈Sm1×Σm2

‖h− bI‖2p +
2σ2

1m1m2

NT
+

C

NT
,

where σ2
1 is the upper bound on σ2 de�ned in [H1]-(iv), and C is a positive constant.

The risk bound (24) is the sum of squared bias term and a variance term of order m1m2/NT ,
the last term C/NT being negligible.
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The variance term is actually

2

NT
Tr
(
Θ−1
m1m2

Θm1m2,σ2

)
≤ 2σ2

1m1m2

NT
,

where

Θm1m2,σ2 =
1

T

∫ T

0
Ψm2,σ2(t)⊗Φm1(t)dt, Ψm2,σ2(t) =

(∫
ψk(x)ψk′(x)σ2(t, x)pt(x)dx

)
0≤k,k′≤m2−1

.

4.2. Adaptive estimation. In this paragraph, we investigate the possible choice of a data-
driven m which leads to an adaptive estimator realizing automatically the bias-variance com-
promise.
Consider, for c a positive constant, the theoretical collection of models:

MN =

{
m ∈ N2,m1m2 ≤ NT, Lψ(m2)(‖Θm1,m2‖2op ∨ 1) ≤ c

2

NT

log2(NT )

}
and its emprirical counterpart:

M̂N =

{
m ∈ N2,m1m2 ≤ NT, Lψ(m2)(‖Θ̂m1,m2‖2op ∨ 1) ≤ 2c

NT

log2(NT )

}
.

Then de�ne

(25) m̂ = arg min
m∈M̂N

(
γN (̂bm) + pen(m)

)
, pen(m) = κσ2

1

m1m2

NT
,

where κ is a numerical constant and σ2
1 is the upper bound on σ2 (see [H1-iv]). The following

result holds:

Theorem 2. Under assumption [H1], there exists a numerical constant κ0 such that for all
κ ≥ κ0,

E(‖b̂m̂ − bIε‖2N ) ≤ C inf
m∈MN

(
inf

h∈Sm1×Σm2

‖h− bIε‖2 +
σ2

1m1m2

NT

)
+

C ′

NT
,

where C and C ′ are positive constants.

The proof is omitted as it follows closely the analogous result in Comte and Genon-Catalot (2020).
It relies on the standard decomposition, for h, h? two functions of Sm1 × Σm2 ,

γN (h)− γN (h?) = ‖h− h?‖2N + 2νN (h− h?)

where νN (h) is de�ned by (17). The other classical point is that NTνN (h) := MT is a martingale,
with bracket

〈M〉T =

∫ T

ε

N∑
i=1

h2(u,Xi(u))σ2(u,Xi(u))du

satisfying 〈M〉T ≤ σ2
1‖h‖2N . Therefore, the following Bernstein inequality for martingales (see

e.g. Revuz and Yor (1999)) holds

P(νN (h) ≥ δ, 〈M〉T ≤ v2) ≤ exp

(
−NTδ

2

2σ2
1v

2

)
.

Using this and the chaining method described in Baraud et al. (2001) gives the result.
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5. Optimal rate for compact support estimation with ε > 0.

5.1. Upper bound. Here we consider ε > 0 and A = [a, b], a < b, a compact interval of R.
Then

∀t ∈ [ε, T ],∀x ∈ A, 0 < c0(ε, A) ≤ pt(x) ≤ c1(ε, A) < +∞,
and the following Lemma holds:

Lemma 2. Under [H1], ε > 0 and A compact, Θm1m2 is invertible and ‖Θ−1
m1m2

‖op ≤ 1/c0(ε, A).

Moreover ‖h‖2p ≤ c1(ε, A)‖h‖2.

Now, the stability condition (21) can be simpli�ed into

m2 ≤
crc0(ε, A)

c2
ψ

NT

log(NT )
.

As c0(ε, A) is unknown, we ca make the choice of (m1,m2) within the set

(26) M?
N =

{
(m1,m2) ∈ N2, m1m2 ≤ NT,m2 ≤ NT/ log2(NT )

}
.

From Theorem 1 and Lemma 2, under assumption [H1], and for any m ∈M?
N , we have

(27) E(‖b̃m − bIε‖2N ) ≤ c1(ε, A) inf
h∈Sm1×Σm2

‖h− bIε‖2 + 2
σ2

1m1m2

NT
+

C

NT
,

where C is a positive constant.
Let us discuss the rate of convergence of the risk. For β = (β1, β2) ∈ R+ × R+, and R =

(R1, R2) ∈ R+ × R+, de�ne the regularity space:

W ∗(β,R) = {f ∈ L2([ε, T ]× [a, b]), such that
∑
j,k≥0

c2
j,kj

2β1 ≤ R2
1,
∑
j,k≥0

c2
j,kk

2β2 ≤ R2
2,

where cj,k = 〈f, ϕj � ψk〉, j ≥ 0, k ≥ 0}.

Proposition 2. (upper bound) Under assumption [H1], if bIε ∈W ∗(β,R), choosing

m?
1 ∝ (NT )β2/(β1+β2+2β1β2), m?

2 ∝ (NT )β1/(β1+β2+2β1β2)

we get

E(‖b̃m? − bIε‖2N ) . (NT )
− 2β̄

2β̄+2 ,
1

β̄
=

1

2

(
1

β1
+

1

β2

)
.

The resulting rate is the classical nonparametric rate over anisotropic regularity spaces.

5.2. Lower bound. De�ne for β = (β1, β2) ∈ N2 and L = (L1, L2),

W (β,L) = {f ∈ L2([ε, T ]× [a, b]), f derivable up to order β1 w.r.t. t, up to order β2 w.r.t. x

with

∫∫
(∂β1f(t, x)/∂tβ1)2dtdx ≤ L2

1,

∫∫
(∂β2f(t, x)/∂xβ2)2dtdx ≤ L2

2}.

Then we can prove:

Theorem 3. Under Assumption [H1], the following lower bound holds:

lim inf
N→+∞

inf
TN

sup
bIε∈W (β,L)

EbIε [N
2β̄

2β̄+2 ‖TN − bIε‖2] ≥ c

where infTN denotes the in�mum over all estimators and c is a constant depending on L and β.
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5.3. Case of the trigonometric basis. To illustrate and make more concrete the setsW (β,L)
and W ∗(β,R), let us consider trigonometric bases:

ϕ0(t) =
1√
T − ε

1[ε,T ](t)

ϕ2j−1(t) =
2√
T − ε

cos(2πj
t− ε
T − ε

)1[ε,T ](t)

ϕ2j(t) =
2√
T − ε

sin(2πj
t− ε
T − ε

)1[ε,T ](t)

and


ψ0(x) =

1√
b− a

1[a,b](t)

ψ2k−1(x) =
2√
b− a

cos(2πk
x− a
b− a

)1[a,b](x)

ψ2k(x) =
2√
b− a

sin(2πk
x− a
b− a

)1[a,b](x),

for j ≥ 1 and k ≥ 1.
Now, to take the border conditions into account, de�ne the following set:

W (per)(β,L)) = {f ∈W (β,L),∀x ∈ [a, b], (∂α1f(t, x)/(∂tα1)(ε, x) = (∂α1f(t, x)/∂tα1)(T, x),

∀t ∈ [ε, T ], (∂α2f(t, x)/∂xα2)(t, a) = (∂α2f(t, x)/∂xα2)(t, b),

0 ≤ αi ≤ βi − 1, i = 1, 2}.
We can prove the result.

Proposition 3. For integers β1 and β2, L = (L1, L2),R = (R1, R2)

f ∈W (per)(β,L) ⇒ f ∈W ∗(β,R)

with R2
1 = L2

1(T − ε)2β1/π2β1 , R2
2 = L2

2(b− a)2β2/π2β2.

Theorem 3 holds also on W (per)(β,L) (see the proof of Theorem 3, where the propositions gj ,
hk belong to this space). Therefore, the lower bound holds for this function space. By Proposition
3, these functions are in W ∗(β,R) and therefore, the upper bound holds. We conclude that the
rates are minimax optimal on this set.

6. Examples and numerical simulation results
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Figure 1. Smallest eigenvalue of Θ̂m1,m2 in function of m1 and m2 going from
1 to 20, on one sample N = 1000 and function b1. Left: basis T, right: basis H.

We implement the method on some examples. The data are generated by a basic Euler scheme
with T = 2 and n = 100 observations for each path (step ∆ = 2/100), with constant σ equal to
0.25 and functions

b1(t, x) = cos(πx t/2), b2(t, x) =
xt√

1 + t2
√

1 + x2
, b3(t, x) = tanh(xt)
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where tanh denotes the hyperbolic tangent. They are regular and bounded functions. The results
below are given for N = 1000.
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Figure 2. Estimation of (t, x) 7→ b1(t, x) (line 1), b2(t, x) (line 2), b3(t, x) (line
3). Left: True, Middle: estimation with basis T, Right: estimation with basis
H. N = 1000, selected couples of dimensions (6, 4), (3, 4), (4, 6) for T and (5, 9),
(4, 10), (4, 14) for H, resp. for the estimators of b1, b2, b3.

We compute the estimators using either the half-trigonometric basis ((1,
√

2 cos(πjx), j ≥ 1)),
denoted by T, or the Hermite basis, denoted by H, which is not orthonormal on the compact
domain which is considered here (see Section 9). Basis T requires the de�nition of the domain
of estimation which is [1/n = ε, 2]× [a, b] where a is taken as the 5%-quantile of all the data and
b as the 95%-quantile. This domain is also used for graphical representations.
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The estimator is computed for the selected dimensions obtained from formula (25) with κT = 4
and κH = 6 for the value of κ with basis T and H respectively. The term σ2

1 is equal to σ2 in
the constant variance case, and the true value is used (a residual least square estimator may be
computed).

We plot in Figure 1 the surface corresponding to the smallest eigenvalue of Θ̂m1m2 for each
basis and for function b1, to show that it is decreasing whenm1 orm2 increases, and this decrease
is much faster for Hermite basis. A cuto� is set in the program to compute the estimator only if
the inverse of the eigenvalue is less than N4. The estimator is set to zero otherwise, so that the
associated dimensions are not selected.

0 0.5 1 1.5 2
0

0.5

1

0 0.5 1 1.5 2
-0.6

-0.4
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0

-2 -1 0 1 2
-1
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0

0.5

1

-2 -1 0 1 2
-1

-0.5

0

0.5

1

Figure 3. Estimated b3 for �xed values of t or x. True in full red line, Estimation
with T in dotted blue, Estimation with H in dotted magenta. First line: �xed x,
x ' 1 (left) and x ' −0.2 (right). Second line �xed t, t = 1.5 (left) and t = 1
(right).

Figure 2 gives the 3-D representation of the functions (t, x) 7→ bi(t, x) for i = 1, 2, 3 and
their estimates in the two bases for the dimensions selected by the procedure. Clearly on these
examples, the Hermite basis is better for b1 and the trigonometric for the function b2. We present
in Figure 3 sections of the last surface corresponding to b3, for �xed values of x or t (not too
near of the boarders). The curves in this case are very good, but some shifts or side e�ects can
occur in other examples.

We can conclude that the method is easy to implement and works well, the main drawback is
that it is computationally slower than for univariate estimation.

7. Concluding remarks

In this paper, we consider N independent and identically distributed (i.i.d.) stochastic pro-
cesses (Xj(t), t ∈ [0, T ]), j = 1, . . . , N , de�ned by a one-dimensional stochastic di�erential
equation (SDE) with general time-dependent drift and di�usion coe�cient. Considering a set
Iε = [ε, T ]×A, with ε ≥ 0 and A ⊂ R, we build by a projection method an estimator of b on Iε.
The introduction of Kronecker products simpli�es and clari�es the mathematical treatment of
this estimation problem. We study the risk of the estimator �rst in the case where ε = 0, second
in the case ε > 0 and A = [a, b] compact. In the latter case, we investigate rates of convergence
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and prove a lower bound showing that our estimator is minimax. We propose a data-driven
choice of the projection space dimension leading to an adaptive estimator.
Extensions of this work is to consider discrete observations of the sample paths which would lead
to an asymptotic condition linking the discretisation step and the size N of the sample.
Obviously, the problem of estimating σ(t, x) in the context of discrete observations is worth of
investigation.

8. Proofs

8.1. Proof of Proposition 1. We vectorize relation (13) and obtain:

vec(
1

T

∫ T

ε
Φm1(t)ÂmΨ̂m2(t)dt) =

1

T

∫ T

ε
vec(Φm1(t)ÂmΨ̂m2(t))dt = vec(Ĉm).

Now using the relation vec(ABC) = (C⊥ ⊗ A)vec(B) (linking the three matrices A,B,C), we

get, as Âm does not depend on t,

1

T

∫ T

ε
vec(Φm1(t)ÂmΨ̂m2(t)dt =

1

T

∫ T

ε
Ψ̂m2(t)⊗ Φm1(t)vec(Âm)dt = Θ̂m1m2 vec(Âm). 2

8.2. Proof of Lemma 1. The begining of the computation is straightforward.

‖h‖2N =
1

T

∑
0≤j,j′≤m1−1

∑
0≤k,k′≤m2−1

hj,khj′,k′

∫ T

0
[Φm1(u)]j,j′ [Ψ̂m2(u)]k,k′du

=
1

T

∫ T

0

m2−1∑
k=0


m1−1∑
j=0

[H⊥m]k,j

m2−1∑
k′=0

m1−1∑
j′=0

[Φm1(u)]j,j′ [Hm]j′,k′

 [Ψ̂m2(u)]k′,k

 du

=
1

T

∫ T

0

m2−1∑
k=0

[
H⊥mΦm1(u)HmΨ̂m2(u)

]
k,k
du

=
1

T

∫ T

0
Tr
[
H⊥mΦm1(u)HmΨ̂m2(u)

]
du,

which is the �rst equality of the Lemma. We use equality (39) which yields

Tr
[
H⊥mΦm1(u)HmΨ̂m2(u)

]
= vec(Hm)⊥vec(Φm1(u)HmΨ̂m2(u)).

Now with (37), we obtain :

vec(Φm1(u)HmΨ̂m2(u)) = (Ψ̂m2(u)⊗ Φm1(u))vec(Hm).

Integrating wrt u gives

‖h‖2N = [vec(Hm)]⊥ Θ̂m1m2vec(Hm).

The last equalities are obtained by taking expectation. 2

8.3. Proof of Theorem 1. Let us de�ne

(28) Ωm :=

{∣∣∣∣‖h‖2N‖h‖2p
− 1

∣∣∣∣ ≤ 1

2
, ∀h ∈ Sm1 × Σm2

}
.

On Ωm, the empirical norm ‖.‖N and the p-norm are equivalent for elements of Sm1 × Σm2 :
(2/3)‖h‖2N ≤ ‖h‖2p ≤ 2‖h‖2N and the following result holds.
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Lemma 3. We have

(29) Ωm =

{∥∥∥Θ−1/2
m1m2

Θ̂m1m2Θ−1/2
m1m2

− Idm1m2

∥∥∥
op
≤ 1

2

}
.

Moreover, under m1m2 ≤ NT and under (21), it holds that P(Ωc
m) ≤ C/(NT )r and P(Λ̂cm) ≤

C/(NT )r.

Proof of Lemma 3. Let h =
∑m1−1

j=0

∑m2−1
k=0 hj,kϕj�ψk and denote byHm = (hj,k)0≤j≤m1−1,0≤k≤m2−1.

We have

‖h‖2N = vec(Hm)⊥Θ̂m1m2vec(Hm) and ‖h‖2p = vec(Hm)⊥Θm1m2vec(Hm) so that

sup
h∈Sm1×Σm2 ,‖h‖p=1

∣∣‖h‖2N − ‖h‖2p∣∣ = sup
vec(Hm) ∈ Rm1m2 ,

‖Θ1/2
m1m2vec(Hm)‖2,m1m2 = 1

∣∣∣vec(Hm)⊥(Θ̂m1m2 −Θm1m2)vec(Hm)
∣∣∣

= sup
u∈Rm1m2 ,‖u‖2,m1m2=1

∣∣∣u⊥Θ−1/2
m1m2

(Θ̂m1m2 −Θm1m2)Θ−1/2
m1m2

u
∣∣∣

= ‖Θ−1/2
m1m2

Θ̂m1m2Θ−1/2
m1m2

− Idm1m2‖op.

Therefore, (29) holds.
De�ne ψ(x) = (ψ0(x), . . . , ψm2−1(x))⊥ and Sψ(x) = ψ(x)ψ(x)⊥ so that

Ψ̂m2(t) =
1

N

N∑
i=1

Sψ(Xi(t)).

We intend to apply Tropp's Inequality (see Theorem 4 in Appendix) to G− Idm1m2 where

G =
1

N

N∑
i=1

Xi, Xi = Θ−1/2
m1m2

(
1

T

∫ T

0
Sψ(Xi(t))⊗ Φm1(t)dt

)
Θ−1/2
m1m2

.

Note that G = Θ
−1/2
m1m2Θ̂m1m2Θ

−1/2
m1m2 and E(G) = Idm1m2 . Therefore

P(Ωc
m) = P(‖G− Idm1m2‖op > 1/2).

The matrices Xi, i = 1, . . . , N are i.i.d. and symmetric nonnegative with λmin(E(G)) = λmax(E(G)) =
1, thus if λmax(Xi) ≤ R, then by Tropp's Inequality

P(‖G− Idm1m2‖op > δ) ≤ 2m1m2e
−Nc(δ)/R where c(δ) = (1 + δ) log(1 + δ)− δ,

as eδ/(1 + δ)1+δ ≥ e−δ/(1− δ)1−δ, see Cohen et al. (2019, 2013).
It remains to compute the bound R.

λmax(Xi) = ‖Xi‖op = sup
x∈Rm1m2 ,‖x‖2,m1m2=1

x⊥Xix.
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x⊥Xix = y⊥
(

1

T

∫ T

0
Sψ(Xi(t))⊗ Φm1(t)dt

)
y where y = Θ−1/2

m1m2
x

=
1

T

∫ T

0
Tr
[
Y ⊥Φm1(t)Y Sψ(Xi(t))

]
dt where y = vec(Y )

=
1

T

∫ T

0

∑
0≤j,j′≤m1−1

∑
0≤k,k′≤m2−1

Yj,kYj′,k′ϕj(t)ϕj′(t)ψk(Xi(t))ψk′(Xi(t))dt

=
1

T

∫ T

0

m2−1∑
k=0

ψk(Xi(t))

m1−1∑
j=0

Yj,kϕj(t)

2

dt

≤ 1

T

∫ T

0

(
m2−1∑
k=0

ψ2
k(Xi(t))

)
m2−1∑
k=0

m1−1∑
j=0

Yj,kϕj(t)

2 dt.
Therefore

x⊥Xix ≤ Lψ(m2)

m2−1∑
k=0

1

T

∫ T

0

m1−1∑
j=0

Yj,kϕj(t)

2

dt = Lψ(m2)‖y‖22,m1m2
/T.

Now it holds that ‖y‖22,m1m2
= ‖Θ−1/2

m1m2x‖22,m1m2
≤ ‖Θ−1

m1m2
‖op‖x‖22,m1m2

. Consequently

λmax(Xi) ≤ Lψ(m2)‖Θ−1
m1m2

‖op/T := R.

We obtain

P(‖G− Idm1m2‖op > 1/2) ≤ 2m1m2 exp

(
− Nc(1/2)T

Lψ(m2)‖Θ−1
m1m2‖op

)
.

For the proof of P(Λ̂cm) ≤ C/(NT )r, we refer to the proof of Lemma 5 in Comte and Genon-
Catalot (2020). 2

To study the risk of the estimator de�ned by E(‖b̃m − bI‖2N ),we write

‖b̃m − bI‖2N = ‖b̂m − bI‖2N1Λ̂m
+ ‖bI‖2N1Λ̂cm

.

We de�ne the orthogonal projection of bI on Sm1×Σm2 wrt the empirical scalar product, denoted
by Πmb. We �nd for

Πmb =

m1−1∑
j=0

m2−1∑
k=0

aj,kϕj � ψk, Am = (aj,k)0≤j≤m1−1,0≤k≤m2−1

with

vec(Am) = Θ̂−1
m1m2

vec(Cm)

where Cm de�ned by (18). Then we have by Pythagoras theorem

‖b̂m − bI‖2N = ‖b̂m −Πmb‖2N + ‖Πmb− bI‖2N .

Thus

‖b̃m − bI‖2N =
(
‖b̂m −Πmb‖2N + ‖Πmb− bI‖2N

)
1

Λ̂m
+ ‖bI‖2N1Λ̂cm

.
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Then we have

E(‖b̃m − bI‖2N ) = E
(
‖Πmb− bI‖2N1Λ̂m

)
+ E

(
‖b̂m −Πmb‖2N1Λ̂m∩Ωm

)
(30)

+E
(
‖b̂m −Πmb‖2N1Λ̂m∩Ωcm

)
+ E(‖bI‖2N1Λ̂cm

)

:= T1 + T2 + T3 + T4

For the bias, we have

(31) T1 = E(‖Πmb− bI‖2N1Λ̂m
) = E

(
inf

h∈Sm1×Σm2

‖h− bI‖2N1Λ̂m

)
≤ inf

h∈Sm1×Σm2

‖h− bI‖2p.

By Lemma 1,

‖b̂m −Πmb‖2N =
1

T

∫ T

0
Tr
[
(Âm −Am)⊥Φm1(t)(Âm −Am)Ψ̂m2(t)

]
dt

Now we use (13) and its analogous for Am and we get

‖b̂m −Πmb‖2N = Tr

[
(Âm −Am)T

1

T

∫ T

0
Φm1(t)(Âm −Am)Ψ̂m2(t)dt

]
= Tr

[
(Âm −Am)T (Ĉm − Cm)

]
= vec(Âm −Am)Tvec(Ĉm − Cm) with Tr(M⊥N) = vec(M)⊥vec(N),

= vec(Ĉm − Cm)⊥Θ̂−1
m1,m2

vec(Ĉm − Cm)

= vec(εm)⊥Θ̂−1
m1,m2

vec(εm).(32)

On Ωm, the eigenvalues of Θ
−1/2
m1m2Θ̂m1m2Θ

−1/2
m1m2 all belong to [1/2, 3/2]. Therefore, the eigenvalues

of Θ
1/2
m1m2Θ̂−1

m1m2
Θ

1/2
m1m2 all belong to [2/3, 2]. So we write

vec(εm)⊥Θ̂−1
m1,m2

vec(εm) = vec(εm)⊥Θ−1/2
m1m2

Θ1/2
m1m2

Θ̂−1
m1,m2

Θ1/2
m1m2

Θ−1/2
m1m2

vec(εm).

This yields

E(‖b̂m −Πmb‖2N1Λ̂m∩Ωm
) ≤ 2E(vec(εm)⊥Θ−1

m1m2
vec(εm)).

Now,

E(vec(εm)⊥Θ−1
m1m2

vec(εm)) = E
[
Tr
(

vec(εm)⊥Θ−1
m1,m2

vec(εm)
)]

= E
[
Tr
(

Θ−1
m1m2

vec(εm)vec(εm)⊥
)]

= Tr
(

Θ−1
m1m2

E
[
vec(εm)vec(εm)⊥

])
=

1

NT
Tr
(
Θ−1
m1m2

Θm1,m2,σ2

)
.

Thus, we get

(33) T2 = E(‖b̂m −Πmb‖2N1Λ̂m∩Ωm
) ≤ 2

NT
Tr
(
Θ−1
m1m2

Θm1,m2,σ2

)
.

Now, using (32) and the de�nition of Λ̂m, we have:

T3 = E(‖b̂m −Πmb‖2N1Λ̂m∩Ωcm
) ≤ 2cr

NT

Lψ(m2) log(NT )
E
[
vec(εm)⊥vec(εm)1

Λ̂m∩Ωcm
)
]

≤ 2cr
NT

Lψ(m2) log(NT )
E1/2

[(
vec(εm)⊥vec(εm)

)2
]
P1/2(Ωc

m)
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Lemma 4. Under the assumptions of Theorem 1, we have

E
[(

vec(εm)⊥vec(εm)
)2
]
.
m1m2

N2T 2
(Lϕ(m1)Lψ(m2))2

(
1

T

∫ T

0

∫
σ4(u, x)pu(x)dx du

)
.

Applying Lemma 4, we get for r > 7, that

(34) T3 = E(‖b̂m −Πmb‖2N1Λ̂cm∩Ωcm
) .

1

N
,

using m1m2 ≤ NT , Lϕ(m1) ≤ NT and P1/2(Ωc
m) ≤ C/N r.

Lastly, we notice that

E
(
‖bI‖4N

)
≤
C4
T

T
E
∫ T

0
(1 + |Xi(u)|)4du

and we get, using Lemma 3, that

T4 = E(‖bI‖2N1Λ̂cm
) ≤ C2

T

(
1

T
E
∫ T

0
(1 + |Xi(u)|)4du

)1/2

P1/2(Λ̂cm) .
1

N r/2
.

This means T4 = O(1/N) for r ≥ 2. Therefore, plugging this and (31)-(33)-(34) into (30) gives
Inequality (24) of Theorem 1.

Now, we use that σ is uniformly bounded on [0, T ]× R. We exploit the following trick.

Tr
(
Θ−1
m1m2

Θm1,m2,σ2

)
= Tr

(
Θ−1/2
m1m2

Θm1,m2,σ2Θ−1/2
m1m2

)
= E

[
vec(Z)⊥Θ−1/2

m1m2
Θm1,m2,σ2Θ−1/2

m1m2
vec(Z)

]
where Z = (Zi,j) is am1×m2-matrix with i.i.d. entries Zi,j such that E(Zi,j) = 0 and E(Z2

i,j) = 1.

Let Y = (Yi,j) be a m1×m2-matrix with i.i.d. entries Yi,j such that vec(Y )⊥ = vec(Z)⊥Θ
−1/2
m1m2 ,

and let us look at vec(Y )⊥Θm1,m2,σ2vec(Y ). We have,

vec(Y )⊥Θm1,m2,σ2vec(Y ) =
1

T

∑
j,k,j′,k′

Yj,kYj′,k′

∫ T

0
du

∫
ϕj(u)ϕj′(u)ψk(x)ψk′(x)pu(x)σ2(u, x)dx

=
1

T

∫ T

0
du

∫ ∑
j,k

Yj,kϕj(u)ψk(x)

2

pu(x)σ2(u, x)dx

≤ σ2
1vec(Y )⊥Θm1,m2vec(Y )

This yields

E
[
vec(Z)⊥Θ−1/2

m1m2
Θm1,m2,σ2Θ−1/2

m1m2
vec(Z)

]
≤ σ2

1E
[
vec(Z)⊥Θ−1/2

m1m2
Θm1,m2,Θ

−1/2
m1m2

vec(Z)
]

= σ2
1Tr(Θ−1/2

m1m2
Θm1,m2Θ−1/2

m1m2
) = σ2

1m1m2.

This ends the proof of Theorem 1. 2

8.4. Proof of Lemma 4. First we have that

vec(εm)⊥vec(εm) =

m1−1∑
j=0

m2−1∑
k=0

ν2
N (ϕj � ψk).
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Thus

E
[(

vec(εm)⊥vec(εm)
)2
]
≤ m1m2

m1−1∑
j=0

m2−1∑
k=0

E
(
ν4
N (ϕj � ψk)

)
.

Now using the Burkholder-Davies-Gundy inequality

E
(
ν4
N (ϕj � ψk)

)
=

1

(NT )4
E

(∫ T

0

N∑
i=1

ϕj � ψk(u,Xi(u))σ(u,Xi(u))dWi(u)

)4


.
1

(NT )4
E

(∫ T

0

N∑
i=1

(ϕj � ψk(u,Xi(u)))2 σ2(u,Xi(u))du

)2


.
1

N2T 2

1

T

∫ T

0
E
[
(ϕj � ψk(u,X1(u)))4 σ4(u,X1(u))du

]
Therefore as

∑m1−1
j=0 ϕ4

j (u) ≤ (Lϕ(m1))2 and
∑m2−1

k=0 ψ4
k(x) ≤ (Lψ(m2))2

E
[(

vec(εm)⊥vec(εm)
)2
]
≤
m1m2(Lϕ(m1)Lψ(m2))2

(NT )2

1

T
E
[∫ T

0
σ4(u,X1(u))du

]
.

This is the announced result. 2

8.5. Proof of Lemma 2. Let Hm = (hj,k)0≤j≤m1−1,0≤k≤m2−1, then as by Lemma 1

[vec(Hm)]⊥Θm1m2vec(Hm) =
1

T

∫ T

ε

∫
A
h2(t, u)pt(u)dudt

≥ c0(ε, A)
1

T

∫ T

ε

∫
A
h2(t, u)dudt = c0(ε, A)[vec(Hm)]⊥ vec(Hm)

where h(t, u) =
∑

j,k hj,kϕj(t)ψk(u). This proves that any eigenvalue of Θm1m2 is larger than

c0(ε, A). The upper bound for ‖h‖2p is straightforward. This gives the result of Lemma 2. 2

8.6. Proof of Proposition 2. In the bound (27), we look at the bias term:

inf
h∈Sm1×Σm2

‖h− bIε‖2 = ‖bm − bIε‖2

where bm =
∑m1−1

j=0

∑m2−1
k=0 〈b, ϕj�ψk〉ϕj�ψk is the L2-orthogonal projection of bIε on Sm1×Σm2 .

Therefore, if bIε ∈W ∗(β, R),

‖bm − bIε‖2 ≤ R2
1m
−2β1
1 +R2

2m
−2β2
2 .

Making the standard compromise with the variance term of order m1m2/(NT ) gives the rate. 2

8.7. Proof of Theorem 3. We follow the scheme of Theorem 2.11 in Tsybakov (2009). Take
g and h two regular functions with support [0, 1], bounded by Kf and Kg respectively, with
g β1-times derivable and h β2 times derivable, with square integrable derivatives. De�ne for
j = 0, . . . ,M1 − 1, and k = 0, . . . ,M2 − 1, with A = [a, b], a < b,

gj(t) =

√
M1

T − ε
g

(
M1(

t− ε
T − ε

)− j
)
, hk(x) =

√
M2

b− a
h

(
M2(

x− a
b− a

)− k
)
.

Clearly, the gj have disjoint supports and gjgj′ = 0 for j 6= j′, and for the same reason hkhk′ = 0
for k 6= k′. Denote by Ij := [ε+j(T −ε)/M1, ε+(j+1)(T −ε)/M1] and Jk = [a+k(b−a)/M2, a+
(k + 1)(b− a)/M2] the respective supports of gj , hk.
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Let us de�ne proposals: b0(t, x) = 0 and for θ = (θj,k)j=0,...,M1−1,k=0,...,M2−1 with θj,k ∈ {0, 1}
for all j = 0, . . . ,M1 − 1, k = 0, . . . ,M2 − 1,

bθ(t, x) =
δ√
NT

M1−1∑
j=0

M2−1∑
k=0

θj,kgj � hk(t, x).

We choose M1 = (NT )β2/(β1+β2+2β1β2), M2 = (NT )β1/(β1+β2+2β1β2).
• As g is β1-times derivable and h is β2 times derivable, both with square integrable derivatives,
we get that∫∫

(∂β1bθ(t, x)/∂tβ1)2dtdx+ (∂β2bθ(t, x)/∂xβ2)2dtdx

=
δ2

NT

M1−1∑
j=0

M2−1∑
k=0

θ2
j,k

{(
M1

T − ε

)2β1
∫

[g(β1)(t)]2dt

∫
h2
k(x)dx

+

(
M2

b− a

)2β2
∫
g2
j (t)dt

∫
[ψ(β2)(x)]2dx

}

≤ δ2

NT

[∫
[g(β1)(t)]2dt

∫
h2(x)dx

(T − ε)2β1
M2β1+1

1 M2 +

∫
g2(t)dt

∫
[h(β1)(x)]2dx

(b− a)2β2
M1M

2β2+1
2

]
.

As M2β1+1
1 M2 = M1M

2β2+1
2 = NT , we obtain that∫∫

(∂β1bθ(t, x)/∂tβ1)2dtdx+ (∂β2bθ(t, x)/∂xβ2)2dtdx ≤ C2δ2 ≤ L2

for δ ≤ L/C small enough, where

C =

∫
[g(β1)(t)]2dt

∫
h2(x)dx

(T − ε)2β1
+

∫
g2(t)dt

∫
[h(β1)(x)]2dx

(b− a)2β2
.

This implies that b0 and bθ belong to W (β,L) with L = (L,L).
• We have that:

‖bθ − bθ′‖2 =
δ2

NT

M1−1∑
j=0

M2−1∑
k=0

(θj,k − θ′j,k)2

∫
g2
j (t)h

2
k(x)dtdx =

δ2

NT
ρ(θ, θ′)

∫
g2(t)dt

∫
h2(x)dx

where ρ(θ, θ′) =
∑

j,k 1(θj,k 6=θ′j,k) is the Hamming distance between θ and θ′.

As a consequence, the Varshamov-Gilbert Lemma (see Lemma 2.9 in Tsybakov (2009)) ensures

that for M := M1M2 ≥ 8, there exist Q ≥ 2M/8 elements say {θ0, . . . , θQ} of {0, 1}M such that

ρ(θq, θq
′
) ≥M/8 for all 0 ≤ q < q′ ≤ Q, with θ0 = (0, . . . , 0). This leads to:

(35) ‖bθq − bθq′‖
2 ≥ δ2

NT

M

8
‖g‖2‖h‖2 = δ2‖g‖2‖h‖2N−

2β̄
2β̄+2 .

• Lastly, let Pθ (resp P0) denotes the distribution of the process (1) when the drift is equal to
bθ(t, x) (resp. is equal to 0) and the di�usion coe�cient to σ(t, x) on the space CT = C([0, T ]) of
real valued continuous functions on [0, T ] endowed with the canonical σ-�eld CT = σ(X(t), t ∈
[0, T ]) where (X(t), t ∈ [0, T ] is the canonical process of CT , i.e. Xt(x) = x(t) for x ∈ CT . We
bound

K(P⊗Nθ ,P⊗N0 ) = NK(Pθ,P0).



20 F. COMTE, V. GENON-CATALOT

where K(P,Q) = EP (log dP
dQ) is the Kullback-Leibler divergence of P with respect to Q. Under

[H1], Pθ and P0 are equivalent and

log
dPθ
dP0

=

∫ T

0

bθ(t,X(t))

σ2(t,X(t))
dX(t)− 1

2

∫ T

0

b2θ(t,X(t))

σ2(t,X(t))
dt.

(see e.g. Liptser and Shiryaev (2001)). Under Pθ, dX(t) = bθ(t,X(t))dt+σ(t,X(t))dB(t) where
(B(t), t ∈ [0, T ]) is a standard Brownian motion. Therefore,

log
dPθ
dP0

=
1

2

∫ T

0

b2θ(t,X(t))

σ2(t,X(t))
dt+

∫ T

0

bθ(t,X(t))

σ(t,X(t))
dB(t).

Thus,

K(Pθ,P0) = EPθ
1

2

∫ T

0

b2θ(t,X(t))

σ2(t,X(t))
dt ≤ 1

2σ2
0

∫ T

ε

∫
R
b2θ(t, x)pθt (x)dxdt.

Then, we have∫ T

ε

∫
R
b2θ(t, x)pθt (x)dxdt =

δ2

NT

∫ T

ε

∫
R

M1−1∑
j=0

M2−1∑
k=1

θ2
j,kg

2
j (t)h

2
k(x)pθt (x)dxdt

=
δ2M1M2

NT

1

(T − ε)(b− a)

∑
j,k

θ2
j,k

∫
Ij

∫
Jk

g2

(
M1(

t− ε
T − ε

)− j
)
h2

(
M2(

x− a
b− a

)− k
)
pθt (x)dxdt

≤ δ2M1M2

NT

K2
fK

2
g

(T − ε)(b− a)

∫ T

ε

∫ b

a
pθt (x)dxdt ≤ δ2M1M2

N

K2
fK

2
g

(T − ε)(b− a)
,

as
∫
pθt (x)dx = 1 and (T − ε)/T ≤ 1. As a consequence, we get

K(Pθ,P0) ≤ Cδ2M1M2

N
.

Therefore

K(P⊗Nθ ,P⊗N0 ) ≤ Cδ2M1M2 ≤
8Cδ2

log(2)
log(Q).

By choosing δ small enough, we obtain, for κ ∈ (0, 1
8),

(36)
1

Q

Q∑
q=1

K(P⊗Nθq ,P⊗N0 ) ≤ κ log(Q).

We apply Theorem 2.7 in Tsybakov (2009) and (35) and (36) imply the lower bound result. 2

8.8. Proof of Proposition 3. Assume that f ∈ W (per)(β,L). De�ne for j1 = 1, . . . , β1, the
Fourier coe�cients of (∂j1f(t, x)/(∂tj1)(t, x) with rspect to the trigonometric bases (ϕ`, ψk):

s`,k(j1) =

∫ T

ε

∫ b

a
(∂j1f(t, x)/(∂tj1)(t, x)ϕ`(t)ψk(x)dtdx

and we set s`,k(0) = cjk.
We have

s0,k(j1) =
1√
T − ε

∫ b

a
ψk(x)dx[(∂j1−1f(t, x)/(∂tj1−1)(ε, x)− (∂j1−1f(t, x)/(∂tj1−1)(T, x)] = 0.
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Integrating by parts w.r.t. t under the integral, we get for ` ≥ 1

s2`−1,k(β1) =
2√
T − ε

∫ b

a
ψk(x)dx

∫ T

ε

∂β1−1f(t, x)

∂tβ1−1
(t, x)

2π`

T − ε
sin(2π`

t− ε
T − ε

)dt

=
2π`

T − ε
s2`,k(β1 − 1).

Analogously, s2`,k(β1) = − 2π`
T−εs2`−1,k(β1 − 1). This yields:

s2
2`−1,k(β1) + s2

2`,k(β1) = [
2π`

T − ε
]2[s2

2`−1,k(β1 − 1) + s2
2`,k(β1 − 1)].

By induction, ∑
`≥1

[
2π`

T − ε
]2β1 [s2

2`−1,k(0) + s2
2`,k(0)] = [

π

T − ε
]2β1

∑
`≥1

a2
` (β1)s`,k(0),

with a`(β1) = `β1 if ` is even, and = (`+ 1)2β1 if ` is odd. We deduce∑
`,k

∫ T

ε

∫ b

a

(
∂β1f(t, x)/(∂tβ1)(t, x)

)2
ψk(x)ϕ`(t)dtdx = [

π

T − ε
]2β1

∑
`,k

a2
` (β1)s2

`,k(0).

Hence, ∫ T

ε

∫ b

a

(
∂β1f(t, x)/(∂tβ1)(t, x)

)2
dtdx = [

π

T − ε
]2β1

∑
`,k

a2
` (β1)c2

`,k.

Therefore, ∑
`,k

`2β1c2
`,k ≤ L2

1(T − ε)2β1/π2β1 = R1.

Analogously, ∑
`,k

k2β2c2
`,k ≤ L2

2(T − ε)2β2/π2β2 = R2.

This implies that f ∈W ∗(β,R) as announced. 2
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9. Appendix

9.1. Some properties of Kronecker products (wikipedia). Recall that M⊥ denotes the
transpose of the matrix M . The Kronecker product of two matrices M,N with respective
dimensions (m × n) and (p × q) is the (mp × nq) matrix de�ned, if M = (Mi,j)1≤i≤m,1≤j≤n,
by

M ⊗N =


M1,1N . . . Mm,1N
M1,2N . . . Mm,2N
. . . . . . . . .

M1,nN . . . Mm,nN

 .

The Kronecker product has several nice properties when using vectorization of matrices. For a
matrix A as above, denote by vec(M) the vector of Rmn given by

vec(M) = (M1,1, . . .M1,n,M2,1, . . .M2,n, . . . ,Mm,1, . . .Mm,n)⊥.

The following relations hold for matrices M,N,R:

(37) vec(MNR) = (R⊥ ⊗M)vec(N)

(38) (M ⊗N)⊥ = M⊥ ⊗N⊥.

As soon as the product M⊥N is well de�ned and a square matrix:

(39) Tr(M⊥N) = vec(M)⊥vec(N).

Lastly, M ⊗N is invertible if and only if (M and N are invertible) and in this case,

(40) (M ⊗N)−1 = M−1 ⊗N−1.

9.2. Tropp's inequality.

Theorem 4. (Matrix Cherno�, Tropp (2012)) Consider a �nite sequence {Xk} of independent,
random, self-adjoint matrices with dimension d. Assume that each random matrix satis�es

Xk < 0 and λmax(Xk) ≤ R almost surely.

De�ne µmin := λmin(
∑

k E(Xk)) and µmax := λmax(
∑

k E(Xk)). (Here λmin, λmax denote the
minimum and the maximum eigenvalue of the matrix). Then

P

{
λmin

(∑
k

Xk

)
≤ (1− δ)µmin

}
≤ d

[
e−δ

(1− δ)1−δ

]µmin/R

for δ ∈ [0, 1] and

P

{
λmax

(∑
k

Xk

)
≥ (1 + δ)µmax

}
≤ d

[
eδ

(1 + δ)1+δ

]µmax/R

for δ ≥ 0.



24 F. COMTE, V. GENON-CATALOT

9.3. The Hermite basis. The Hermite polynomial of order j is given, for j ≥ 0, by:

Hj(x) = (−1)jex
2 dj

dxj
(e−x

2
).

Hermite polynomials are orthogonal with respect to the weight function e−x
2
and satisfy:∫

R
Hj(x)H`(x)e−x

2
dx = 2jj!

√
πδj,`

(see e.g. Abramowitz and Stegun (1964)). The Hermite function of order j is given by:

(41) hj(x) = cjHj(x)e−x
2/2, cj =

(
2jj!
√
π
)−1/2

The sequence (hj , j ≥ 0) is an orthonormal basis of L2(R).

9.4. The half-trigonometric basis. The trigonometric basis is well-�tted for functions satis-
fying border conditions as described in W per. This is why we rather used the so-called "half-
trigonometric" system, namely the cosine basis de�ned by ϕ0,T (x) =

√
1/T1[0,T ](t), ϕj,T (t) =√

2/T cos(πjt/T )1[0,T ](t), j = 1, . . . ,m − 1, see Efromovich (1999, p.46). It is clearly an or-
thonormal basis, which is easy to handle and still has good approximation properties, see Efro-
movich (1999, p.32).


