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Abstract 31 

The search for new biomarkers and drug targets for hepatocellular carcinoma (HCC) has 32 

spurred an interest in long non-coding RNAs (lncRNAs), often proposed as oncogenes or 33 

tumor suppressors. Furthermore, lncRNA expression patterns can bring insights into the 34 

global de-regulation of cellular machineries in tumors. Here, we examine lncRNAs in a large 35 

HCC cohort, comprising RNA-seq data from paired tumor and adjacent tissue biopsies from 36 

114 patients. We find that numerous lncRNAs are differentially expressed between tumors 37 

and adjacent tissues and between tumor progression stages. Although we find strong 38 

differential expression for most lncRNAs previously associated with HCC, the expression 39 

patterns of several prominent HCC-associated lncRNAs disagree with their previously 40 

proposed roles. We examine the genomic characteristics of HCC-expressed lncRNAs and 41 

reveal an enrichment for repetitive elements among the lncRNAs with the strongest 42 

expression increases in advanced-stage tumors. This enrichment is particularly striking for 43 

lncRNAs that overlap with satellite repeats, a major component of centromeres. Consistently, 44 

we find increased non-coding RNA transcription from centromeres in tumors, in the majority 45 

of patients, suggesting that aberrant centromere activation takes place in HCC.  46 

Introduction 47 

Following the realization that the human genome harbors thousands of non-coding RNA 48 

genes (Carninci et al, 2005), many of which have important cellular functions (Mattick & 49 

Makunin, 2006), a great deal of effort has been put into investigating the contributions of non-50 

coding RNAs to cancer biology (Gutschner & Diederichs, 2012). In particular, the roles of long 51 

non-coding RNAs (lncRNAs) in cancer have been frequently scrutinized in the past decade. 52 

This category of non-coding RNAs (defined simply as RNA molecules that lack protein-coding 53 

capacity, at least 200 nucleotides long) comprises many transcripts with proven functions in 54 

gene expression regulation, genome stability or nuclear architecture (Engreitz et al, 2016). 55 

Numerous recent studies showed that lncRNA loci are part of the alterations that occur in 56 

cancer cells (Yan et al, 2015). Thus, studying lncRNAs is perceived as a promising path 57 

towards understanding the molecular mechanisms that underlie cancer onset. Ultimately, 58 

lncRNAs may prove to be valuable in the diagnosis process, or serve as therapeutic targets. 59 

 60 

The search for novel disease biomarkers and drug targets, including lncRNAs, is 61 

understandably intensive for cancer types for which effective therapies are still lacking. This 62 

is the case for hepatocellular carcinoma (HCC), which is a major cause of cancer-related 63 

mortality world-wide (Yang & Roberts, 2010). As HCC is generally detected at late stages of 64 

tumor progression, surgical treatment options are unavailable for the majority of patients 65 

(Hartke et al, 2017). Several systemic therapies now exist, but they increase median patient 66 
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survival by less than 1 year (Finn et al, 2020). Thus, developing new treatments for HCC is 67 

still an urgent need. With this aim, there has been extensive research aiming to identify the 68 

genic and non-genic functional elements that are altered in HCC compared to the healthy liver. 69 

Large-scale transcriptomics studies, comparing HCC samples with adjacent non-tumor tissue 70 

or with normal liver samples, identified hundreds of differentially regulated protein-coding 71 

genes and lncRNAs (Cui et al, 2017; Yang et al, 2017; Li et al, 2019; Jin et al, 2019; Unfried 72 

et al, 2019). Some of the lncRNAs associated with HCC through genome-wide comparative 73 

analyses were subject to further experimental investigations, aiming to elucidate their 74 

mechanisms of action and the consequences of their differential regulation in tumors. For 75 

some lncRNAs, there are now well-supported models for their behavior in HCC. This is the 76 

case for example for HOTTIP, a lncRNA that is strongly up-regulated in HCC, and which likely 77 

acts to enhance the expression of the neighboring genes by recruiting transcriptional co-78 

activators (Quagliata et al, 2014; Pradeepa et al, 2017; Quagliata et al, 2018). However, for 79 

other lncRNAs experimental studies gave rise to conflicting results. For example, the H19 80 

lncRNA (known as a parentally imprinted regulator of placenta growth (Keniry et al, 2012)) 81 

was alternatively proposed to act as a tumor suppressor (Hao et al, 1993; Yoshimizu et al, 82 

2008; Schultheiss et al, 2017) or as an oncogene (Matouk et al, 2007; Zhou et al, 2019) in 83 

various cancer types including HCC (Tietze & Kessler, 2020). Likewise, MALAT1, initially 84 

described as an abundant lncRNA associated with the presence of metastases (Ji et al, 2003), 85 

was first thought to promote tumor growth and invasion in breast cancer (Arun et al, 2016), 86 

but is now believed to be a tumor suppressor (Kim et al, 2018, 1). In HCC, MALAT1 was 87 

mainly proposed to act as an oncogene (Hou et al, 2017, 1; Liu et al, 2019, 1; Chen et al, 88 

2020), but there is no consensus on its mechanisms of action. This is also the case for most 89 

of the lncRNAs that have been associated with HCC, although experimental data is 90 

accumulating (Lanzafame et al, 2018). Thus, overall, the functions of lncRNAs in HCC and 91 

other cancers are still poorly understood.  92 

 93 

Although we are still far from developing therapies that target lncRNAs in HCC, in the more 94 

immediate future, lncRNAs may prove to be useful as disease biomarkers, to help diagnose 95 

HCC at an earlier stage and to better classify molecular subtypes of tumors. For this purpose, 96 

large-scale transcriptomics comparisons that can identify differentially regulated lncRNAs in 97 

tumor tissues are a valid approach, even in the absence of additional functional experiments. 98 

Although such studies are abundant in the lncRNA literature, they are often restricted to small 99 

cohorts of patients, thus potentially failing to reproduce the full extent of the molecular 100 

heterogeneity of HCC (Boyault et al, 2007; Hoshida et al, 2009). Further work is still needed 101 

to understand what part lncRNAs play in the molecular characteristics of HCC.  102 

 103 
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Studying lncRNA expression patterns in HCC and other cancers is also a means to better 104 

understand the de-regulation of essential cellular machineries in tumors. Although many 105 

lncRNAs have important biological roles (Engreitz et al, 2016), there is strong evidence that, 106 

out of the tens of thousands of lncRNAs that are detected with sensitive transcriptome 107 

sequencing approaches in human tissues (Pertea et al, 2018; Iyer et al, 2015), most may be 108 

non-functional. This is indicated by their weak levels of evolutionary conservation (Necsulea 109 

et al, 2014; Washietl et al, 2014) and by their expression patterns, which are often restricted 110 

to tissues with open chromatin, permissive to spurious transcription (Soumillon et al, 2013; 111 

Darbellay & Necsulea, 2020). Other evidence supporting non-functionality, or even a 112 

deleterious effect of lncRNA transcription comes from their typical processing by the cellular 113 

machinery. LncRNA transcripts are generally inefficiently spliced and poly-adenylated, and 114 

are rapidly degraded by the RNA exosome (Melé et al, 2017; Schlackow et al, 2017). For 115 

certain classes of lncRNAs, transcription is normally tightly repressed by chromatin-modifying 116 

factors, and their de-repression leads to DNA replication stress and subsequently to cellular 117 

senescence, due to an overlap with DNA replication origins (Nojima et al, 2018). It is not clear 118 

yet to what extent similar principles apply to HCC and other cancers. However, the presence 119 

of high lncRNA levels in cancer cells may be a sign of a global de-regulation of the molecular 120 

machineries that normally keep deleterious transcription in check, even if individual lncRNAs 121 

are not “oncogenes” sensu stricto. This further highlights the need for detailed investigations 122 

of the patterns of lncRNA expression in cancer.  123 

 124 

In this study, we set out to explore the patterns of lncRNA transcription in a large HCC cohort, 125 

comprising paired tumor and adjacent tissue biopsies from 114 patients. Our work stands out 126 

from previous efforts to characterize lncRNAs in HCC in several important ways. First, we take 127 

advantage of an extensive transcriptome resource, which covers a wide range of tumor 128 

progression stages and underlying liver diseases, and thus can provide a comprehensive 129 

overview of transcriptional de-regulation during HCC development. Importantly, our 130 

transcriptome dataset is derived from biopsies rather than tumor resections, and is thus likely 131 

more faithful to the in vivo physiological status of the tumors. Second, we perform a meta-132 

analysis of the current literature on lncRNAs and HCC and we use our transcriptome collection 133 

to critically re-evaluate previous claims regarding lncRNA expression patterns in HCC. We 134 

can thus highlight the poor reproducibility of some prominent lncRNA-HCC associations. 135 

Third, rather than attempting to propose new candidate oncogene or tumor suppressor 136 

lncRNAs, we perform a detailed analysis of the genomic characteristics of de-regulated 137 

lncRNAs. We thus reveal an increase in repetitive-element derived lncRNA expression in 138 

tumor samples. In particular, we uncover a striking up-regulation of non-coding RNAs derived 139 
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from centromeric satellite repeats. We discuss the functional implications of this apparent 140 

activation of centromeric chromatin in HCC tumors.  141 

Results 142 

Transcriptome dataset 143 

We analyzed the patterns of protein-coding and lncRNA gene expression in a collection of 144 

268 RNA-seq samples, derived from tumor and adjacent tissue biopsies from 114 HCC 145 

patients (Figure 1a, Supplementary Table 1). This cohort comprises patients with different 146 

underlying diseases, including hepatitis B and hepatitis C, alcoholic or non-alcoholic liver 147 

diseases and cirrhosis (Supplementary Table 1). The Edmondson-Steiner differentiation 148 

grade was recorded for each tumor sample (Supplementary Table 1). Biopsies were 149 

performed during the diagnostic work-up of patients before therapy, and in 3 patients with 150 

HCC recurrence after tumor resection (Supplementary Table 1). Our transcriptome data is not 151 

restricted to poly-adenylated RNAs (Methods) and may thus better reflect the behavior of 152 

lncRNA transcripts, which are inefficiently or not at all poly-adenylated (Schlackow et al, 2017). 153 

With this dataset, we could analyze the expression patterns of 19,465 protein-coding genes 154 

and 18,866 lncRNAs, including 7,959 lncRNAs detected de novo using our RNA-seq data 155 

(Methods, Supplementary Dataset 1).  156 

Global trends of gene expression variation in HCC tumors and adjacent tissue samples 157 

We first aimed to evaluate broad patterns of gene expression variation among tumor and 158 

adjacent tissue samples. To get a glimpse of the cellular composition changes that take place 159 

in cancer tissue, we analyzed the expression patterns of liver cell type markers 160 

(Supplementary Table 2), obtained from single cell transcriptomics data (MacParland et al, 161 

2018). As expected, many of these markers display striking differences between tumor and 162 

adjacent tissue samples, as well as among degrees of tumor differentiation (Figure 1b). 163 

Hepatocyte markers (PCK1, BCHE, ARG1, ALB) are low in samples derived from 164 

Edmondson-Steiner grade 4 tumors (Figure 1b). Immune cell markers (e.g., T cell markers 165 

PTPRC, NKG7, FCGR3A or macrophage markers CD52 and CD68) are generally expressed 166 

at lower levels in tumor samples than in the adjacent tissue (Figure 1b). Overall, these patterns 167 

confirm that the cellular environment is substantially different in HCC tumors compared to the 168 

adjacent tissue, but also that there is considerable heterogeneity among tumors.  169 

 170 

The molecular heterogeneity of HCC tumors is well illustrated by principal component 171 

analyses (PCA) performed on protein-coding and lncRNA genes (Methods, Figure 1c,d). 172 

However, although there is substantial variation among tumor samples, this gene expression 173 

map is consistent with the histological classification. For both categories of genes the first axis 174 

of the PCA separates samples with the highest Edmondson-Steiner grades and samples from 175 
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less advanced tumors and adjacent tissues (Figure 1c,d, Supplementary Figure 1a-d).  The 176 

second axis forms a gradient from adjacent tissue to the highest Edmondson-Steiner grades 177 

(Figure 1c,d, Supplementary Figure 1a-d). Notably, paired biopsies do not cluster on the first 178 

factorial map of the gene expression PCA, despite their shared genetic background. We 179 

validated the sample pairing by evaluating the presence of shared alleles in exonic single 180 

nucleotide polymorphisms that were reliably detected with our RNA-seq data (Methods). As 181 

expected, samples stemming from the same patient are genetically very similar, in contrast to 182 

samples derived from different patients (Supplementary Figure 1e).  183 

 184 

In HCC, lncRNAs follow previously reported patterns: they are generally weakly expressed 185 

and are thus detected in fewer samples than protein-coding genes (Supplementary Figure 2). 186 

This trend is even stronger for de novo annotated lncRNAs (Supplementary Figure 2).  187 

 188 

Differential expression of protein-coding genes and lncRNAs in HCC 189 

We next tested for differential expression (DE) between paired tumor and adjacent tissue 190 

biopsies and among tumors with different Edmondson-Steiner grades (Supplementary Table 191 

3, Methods). We selected differentially expressed genes with a minimum fold change of 1.5 192 

and maximum false discovery rate (FDR) of 1%. With these stringent settings, we found that 193 

4,100 (21%) protein-coding genes and 3,315 (18%) lncRNAs were differentially expressed 194 

between tumor and adjacent tissue biopsies. When comparing tumor samples grouped by 195 

Edmondson-Steiner grade (grades 1 and 2 vs. grades 3 and 4), 2,537 (13%) protein-coding 196 

genes and 2,065 (11%) lncRNAs were significantly differentially expressed. The distribution 197 

of expression fold changes differs between the two categories of genes, with stronger positive 198 

fold changes for lncRNAs for the latter analysis (Figure 2). Genes that were up-regulated in 199 

tumors compared to adjacent tissues or in tumor samples with higher Edmondson-Steiner 200 

grades were enriched in processes related to the cell cycle, to chromosome organization but 201 

also to embryonic development (Figure 2, Supplementary Table 4). In contrast, downregulated 202 

genes were enriched in metabolic processes characteristic of the healthy liver (Figure 2, 203 

Supplementary Table 4). In addition, genes involved in immune response and in cell adhesion 204 

are down-regulated in tumor samples compared to the adjacent tissue (Figure 2a, 205 

Supplementary Table 4). There is substantial overlap between the sets of genes that are 206 

differentially expressed in the two comparisons, with consistent directions of change, for both 207 

protein-coding genes and lncRNAs (Supplementary Figure 3a,b).  208 

 209 

As expected given their involvement in essential cell cycle processes, protein-coding genes 210 

that are up-regulated in tumors compared to the adjacent tissue or in the tumors with the 211 
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highest Edmondson-Steiner grades had significantly higher levels of evolutionary sequence 212 

conservation than down-regulated genes (Wilcoxon rank sum test p-value < 1e-10 for the first 213 

DE analysis, p-value 0.006 for the second DE analysis, Supplementary Figure 3c). For 214 

lncRNAs, the increase in sequence conservation is only observed for those that are up-215 

regulated in the tumors compared to the adjacent tissue (Wilcoxon rank sum test, p-value 3.7 216 

e-4, Supplementary Figure 3d). In contrast, lncRNAs that are up-regulated in tumors with 217 

higher Edmondson-Steiner grades have slightly lower conservation scores than down-218 

regulated lncRNAs (Wilcoxon rank sum test, p-value 0.03, Supplementary Figure 3d).  219 

 220 

We next verified whether the DE protein-coding genes and lncRNAs were isolated or clustered 221 

in the genome. To do this, for each DE gene (defined as above) we verified the DE status for 222 

neighboring genes, within a 50 kilobases (kb) window (Methods). We find that the proportion 223 

of DE genes that have a DE neighbor with the same expression change direction is 224 

significantly higher than expected by chance, for both protein-coding genes and lncRNAs 225 

(randomization test, p-value < 0.01, Supplementary Figure 4, Methods). In contrast, pairs of 226 

neighboring genes with opposite DE orientation are significantly less frequent than expected 227 

by chance (randomization test, p-value < 0.01, Supplementary Figure 4). This pattern is 228 

observed for both protein-coding and lncRNA genes and for both differential expression tests. 229 

 230 

Finally, we also assessed the effect of other factors (namely, underlying liver disease, 231 

presence of cirrhosis, sex of the patients) on gene expression patterns in HCC tumors. In 232 

contrast with the large numbers of DE genes observed for the two comparisons described 233 

above, only between 36 and 509 genes were significantly DE depending on one of these 234 

factors (maximum FDR 0.01, minimum fold expression change 1.5, Supplementary Dataset 235 

3).  For the comparison between sexes, 180 genes were significantly DE, with the strongest 236 

fold changes observed for genes located on sex chromosomes (Supplementary Dataset 3).  237 

 238 

Expression patterns of prominent HCC-associated lncRNAs 239 

We next aimed to evaluate the behavior of the most prominent HCC-associated lncRNAs in 240 

our gene expression dataset. We performed a PubMed search with the key word 241 

“hepatocellular carcinoma” in the article title, and parsed the abstracts of the resulting articles 242 

to retrieve gene names or an unambiguous mention of lncRNAs as a class (Methods). We 243 

found that the proportion of all HCC publications that mention lncRNAs increased rapidly in 244 

the past decade, from 0 in 2010 to 6.3% in 2019 (Supplementary Figure 5a). In total, we could 245 

find unambiguous citations for 262 lncRNAs, 160 (61%) of which were only mentioned in one 246 

article (Supplementary Table 5, Supplementary Figure 5b). Only 29 lncRNAs were associated 247 
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with HCC in 5 or more articles. Expectedly, at the top of the list of highly-cited lncRNAs can 248 

be found transcripts that are well known from other biological contexts, such as MALAT1 (Ji 249 

et al, 2003, 1), H19 (Bartolomei et al, 1991), HOTAIR (Rinn et al, 2007) and NEAT1 250 

(Hutchinson et al, 2007). The 5th highest-cited lncRNA is HULC, which was initially described 251 

in the HCC context (Panzitt et al, 2007). Among the 262 HCC-associated lncRNAs, 98 (37%) 252 

were significantly DE (maximum FDR 0.01 and minimum fold change 1.5) between tumor and 253 

adjacent tissues, and 57 (22%) were significantly DE between tumor samples with 254 

Edmondson-Steiner grades 1 and 2 and tumor samples with Edmondson-Steiner grades 3 255 

and 4. These proportions are significantly higher than those observed for lncRNAs that are 256 

not cited in the literature (17% and 11%, respectively, Chi-square test, p-value < 1e-10). In 257 

total, 128 (49%) of the HCC-associated lncRNAs were significantly DE in at least one of the 258 

tests; this proportion reached 81% with low stringency criteria (maximum FDR 0.1, no 259 

minimum fold change).  260 

 261 

We next examined the expression patterns of the 29 lncRNAs that were cited at least 5 times 262 

in association with HCC (Figure 3). For this analysis, we set the maximum FDR at 0.01 as 263 

described above, but we did not require a minimum fold expression change, to increase our 264 

sensitivity. The great majority (90%) of these lncRNAs were significantly DE between tumors 265 

and adjacent tissues, and 14 (48%) of them were also significantly DE between highly 266 

differentiated (Edmonson-Steiner grades 1 and 2) and poorly differentiated tumors (grades 3 267 

and 4). However, we observed several unexpected patterns among the best studied lncRNAs. 268 

First, MALAT1 was not significantly DE in neither one of the two analyses (Figure 3), despite 269 

previous reports indicating its up-regulation in HCC tumors compared to adjacent tissues  (Lin 270 

et al, 2007; Lai et al, 2012). Importantly, this is not due to a lack of statistical power or due to 271 

noisy expression, as MALAT1 was expressed at high levels in all samples (Figure 3d). 272 

Second, HOTAIR was overall very weakly expressed and not significantly DE in neither of the 273 

two tests (FDR 0.046, Edmondson grades 1&2 against 3&4). Third, NEAT1 was weakly but 274 

significantly down-regulated in tumors compared to adjacent tissues, despite previous 275 

evidence for up-regulation (Kou et al, 2020). For HULC (Panzitt et al, 2007), we confirmed the 276 

previously reported up-regulation in tumor samples, but surprisingly, we found that it displayed 277 

lower expression levels in advanced-stage tumors (Figure 3). In some cases, the results could 278 

be explained by the distribution of tumor differentiation degrees among the tumor samples. 279 

For example, UCA1 is overall down-regulated in tumors compared to the adjacent tissue, 280 

contrary to what was previously reported (Wang et al, 2015), but is expressed at higher levels 281 

in samples with Edmondson-Steiner grades 3 and 4 (Figure 3). Some of the inconsistencies 282 

observed between our DE analyses and previous reports, for the best-studied HCC-283 

associated lncRNAs, may also come from the distribution of patient characteristics, for 284 



 9 

example underlying liver diseases, genetic background etc. However, out of the 29 tested 285 

lncRNAs none showed significant expression differences between patients with different 286 

underlying diseases (Supplementary Dataset 3). Only XIST was differently expressed 287 

between sexes (Supplementary Dataset 3). We also did not observe any significant difference 288 

between patients with or without cirrhosis (Supplementary Dataset 3).  289 

 290 

Increased repetitive sequence content in HCC-upregulated lncRNAs 291 

We next wanted to assess the genomic features of the lncRNAs that are significantly 292 

differentially expressed in the two analyses described above. It was previously reported that 293 

transposable elements that are repressed in healthy tissues can become active in cancer cells 294 

(Burns, 2017). We thus analyzed the repetitive sequence content of differentially expressed 295 

lncRNAs (Supplementary Table 6, Supplementary Dataset 4, Methods). The fraction of exonic 296 

sequence covered by repeats was significantly higher for lncRNAs that were up-regulated in 297 

tumors compared to adjacent tissues (median value 47%) than for down-regulated lncRNAs 298 

(median value 40%, Wilcoxon rank sum test, p-value < 1e-10, Figure 4a). Likewise, in the DE 299 

analysis comparing tumor samples with different Edmondson-Steiner grades, up-regulated 300 

lncRNAs had significantly higher repetitive sequence content (median 48%) than down-301 

regulated lncRNAs (median value 43%, Wilcoxon rank sum test, p-value 1e-6, Figure 4a). For 302 

protein-coding genes, the opposite trend was observed, with higher repetitive sequence 303 

contents for down-regulated genes, in both DE analyses (Figure 4a). Among the most 304 

abundant classes of repetitive elements, we found that this pattern was the strongest for 305 

satellite repeats: for both DE analyses, up-regulated lncRNAs overlap significantly more 306 

frequently with satellite repeats than down-regulated lncRNAs (Chi-square test, p-value 1e-4 307 

for the first DE analysis, p-value 8e-5 for the second DE analysis, Figure 4b). Confirming this 308 

observation, we found that lncRNAs that overlapped with satellite repeats had significantly 309 

higher fold expression changes than lncRNAs without satellite repeats, for both DE analyses 310 

(Wilcoxon rank sum test p-value 2e-6 for the first DE analysis, 0.02 for the second DE analysis, 311 

Figure 4c). We also observed significantly higher fractions of exonic overlap with LTR repeats 312 

for lncRNAs that are up-regulated in tumors with high Edmondson-Steiner grades, compared 313 

to down-regulated lncRNAs (Supplementary Figure 6). However, for this repeat class there 314 

was no significant difference between lncRNAs that are up-regulated or down-regulated 315 

between tumors and adjacent tissues (Supplementary Figure 6).  316 

Up-regulation of centromeric non-coding RNAs and centromeric proteins in HCC  317 

Satellite repeats are a major functional component of centromeres (Hartley & O’Neill, 2019). 318 

Following our observation that lncRNAs that overlap with satellite repeats tend to be 319 

expressed at higher levels in tumors than in normal tissues, and in particular in advanced-320 
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stage tumors, we performed a more direct examination of transcription in centromeric regions. 321 

As these highly repetitive sequences can be difficult to capture with next generation 322 

sequencing approaches, we first determined the centromeric regions that are mappable with 323 

our RNA-seq data – that is, to which sequencing reads can be attributed unambiguously 324 

(Methods). With the exception of the Y chromosome, which had a mappable length of 222 kb, 325 

all centromeric regions had mappable lengths comprised between 1.2 Mb and 5.2 Mb 326 

(Supplementary Figure 7a). We found 752 transcribed loci in centromeric regions, all but one 327 

detected de novo with our RNA-seq data (Supplementary Dataset 5). In general, we could 328 

detect at most 10 centromeric transcribed loci per chromosome (Supplementary Figure 7b). 329 

However, we found large numbers of transcripts on chromosomes 2 and 18 (173 and 395 330 

transcribed loci, respectively), as well as on chromosomes 1 and 19 (31 and 75 transcribed 331 

loci, respectively). With the exception of an Ensembl-annotated pseudogene, these transcripts 332 

were classified as non-coding, but only 243 passed all lncRNA filtering criteria (Supplementary 333 

Dataset 5). The other non-coding transcripts were generally rejected from the lncRNA dataset 334 

because they were too short (38% of the cases), they overlapped with unmappable regions 335 

(14%), they had insufficient read coverage (4%), or because of a combination of these criteria. 336 

 337 

We evaluated the abundance of centromeric transcripts by counting unambiguously mapped 338 

RNA-seq for each chromosome and strand, normalized by dividing by the total unique read 339 

count attributed to genes, for each sample (Methods, Supplementary Dataset 5). Most 340 

centromeric RNA-seq reads were derived from chromosome 2, followed by chromosome 1 341 

and 19 (Figure 5a).  Chromosome 2 also stood out with respect to the differences between 342 

tumor and adjacent tissue samples: on the reverse DNA strand, 94 patients (85%) had higher 343 

transcript levels in tumors than in adjacent tissue samples (Figure 5b). We note that 344 

transcription is not restricted to well-defined loci, but covers the entire centromeric region 345 

(Figure 5c).  346 

 347 

The degree of centromere transcript activation in tumor samples compared to adjacent tissue 348 

samples varies considerably among patients (Figure 5b). To evaluate the determinants of 349 

centromeric transcription variation, we analyzed the association between protein-coding gene 350 

differential expression and centromeric transcript differential expression, across patients. 351 

Specifically, for each patient, we computed the difference in TPM levels between tumors and 352 

adjacent tissues, for each protein-coding gene; we also computed the difference in total 353 

centromeric RPKM levels between tumors and adjacent tissues, and we correlated the two 354 

sets of values across patients. Genes involved in mitotic cell cycle processes were often 355 

positively associated with centromeric transcript activation levels (Supplementary Table 7, 356 

gene ontology enrichment analysis presented in Supplementary Dataset 5). Among the genes 357 
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with the highest positive correlations with centromeric transcript activation levels were several 358 

genes encoding centromeric proteins (CENPJ, CENPF and CENPI), the CENPA chaperone 359 

HJURP (Hori et al, 2020), the DNA2 nuclease/helicase that promotes centromeric DNA 360 

replication (Li et al, 2018), etc. (Figure 5d, Supplementary Table 7). Interestingly, CENPC, 361 

which is thought to repress alpha-satellite RNA levels (Bury et al, 2020), was negatively 362 

associated with centromeric transcript activation levels (Figure 5d, Supplementary Table 7).  363 

 364 

In addition to increased levels of centromeric non-coding RNAs in tumors, we also observed 365 

a strong tendency for up-regulation for centromeric proteins (Supplementary Table 8). Out of 366 

25 protein-coding genes annotated in Ensembl as “centromere proteins”, 20 (80%) were up-367 

regulated in the tumors compared to adjacent tissue and 13 (52%) were up-regulated in 368 

tumors with Edmondson-Steiner grades 3&4 compared to tumors with Edmondson-Steiner 369 

grades 1&2 (maximum FDR 0.01). At the top of the list, the genes coding for the histone variant 370 

CENPA and for centromeric protein F (CENPF) were more than 4-fold over-expressed in 371 

tumors compared to adjacent tissues (Supplementary Table 8). Confirming our previous 372 

analysis, we also observed that CENPC was down-regulated in tumors compared with 373 

adjacent tissues and in advanced-stage tumors compared to early-stage tumors 374 

(Supplementary Table 8).  375 

 376 

Discussion  377 

Protein-coding gene and lncRNA expression patterns in HCC 378 

With this analysis, our first aim was to investigate the gene expression alterations that 379 

characterize HCC tumors. Compared to the numerous transcriptome collections that were 380 

previously published in the HCC field, our dataset has the advantage of including a large 381 

number of paired tumor and adjacent tissue samples, comprising a total of 268 samples from 382 

114 patients. Importantly, the samples analyzed here are derived from biopsies, which are 383 

likely to better reflect the situation in vivo, because they are devoid of changes induced by 384 

hypoxia and hypoglycemia that occur in surgical resection specimens as a consequence of 385 

segmental blood vessel occlusions during the operation. Moreover, our data includes both 386 

poly-adenylated and non-poly-adenylated RNA species, which makes it better suited for the 387 

study of inefficiently poly-adenylated lncRNAs (Schlackow et al, 2017).  388 

 389 

We first explored the broad patterns of gene expression variation in our tumor and adjacent 390 

tissue samples. By analyzing the expression patterns of molecular markers for the most 391 

common cell types in the healthy liver (MacParland et al, 2018), we confirmed that HCC 392 

tumors have very different cellular environments compared to adjacent tissue samples (Figure 393 
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1). In particular, immune cell populations appear to be diminished in the majority of tumors, 394 

(Figure 1). Although these patterns are evidently better investigated with single-cell RNA-seq 395 

data, these results confirm that our transcriptome collection reflects the cellular composition 396 

changes that define the “tumor microenvironment” (Hanahan & Weinberg, 2011).  397 

 398 

As expected, we found that gene expression patterns are in good agreement with the 399 

histological classification of the tumor samples. For both protein-coding genes and lncRNAs, 400 

tumor samples with Edmondson-Steiner grades 3 and 4 stand out from tumors with lower 401 

grades and from adjacent tissue samples (Figure 1, Supplementary Figures 1). Other factors, 402 

such as the underlying liver disease, the sex or the age of the patients, have comparatively 403 

little effect on the overall gene expression variation. We thus focused on the protein-coding 404 

genes and lncRNAs that are differentially expressed between paired tumor and adjacent 405 

tissue samples, or between poorly differentiated tumors (Edmondson-Steiner grades 3 and 4) 406 

and highly differentiated tumors (Edmondson-Steiner grades 1 and 2). We observed an over-407 

representation of biological processes associated with the cell cycle among genes that are 408 

up-regulated in the tumors (Figure 2), which is expected given that cancer cells are rapidly 409 

proliferating. Conversely, genes involved in the metabolic processes performed by the healthy 410 

liver or in immune response tend to be down-regulated in the tumors (Figure 2).  411 

 412 

Both protein-coding genes and lncRNAs contribute to the differential gene expression patterns 413 

observed in HCC tumors (Figure 2). Differentially expressed protein-coding genes and 414 

lncRNAs share many characteristics. For example, for both gene categories, we found that 415 

genes that are up-regulated in tumors compared to adjacent tissue samples have significantly 416 

higher levels of evolutionary sequence conservation than genes with the opposite expression 417 

change (Supplementary Figure 3). This observation is consistent with the enrichment of cell 418 

cycle functions among protein-coding genes that are up-regulated in the tumors, as these 419 

genes have essential biological roles and are thus under strong constraint during evolution. 420 

The increase in sequence conservation for lncRNAs that are up-regulated in tumors suggests 421 

that these lncRNAs may also participate in essential cellular functions and contribute to 422 

cellular proliferation. Another shared feature between protein-coding genes and lncRNA is the 423 

presence of spatial clustering: differentially expressed genes are found in close proximity to 424 

other differentially expressed genes with the same expression change direction significantly 425 

more often than expected by chance (Supplementary Figure 4). This observation may be 426 

explained by a tendency for co-regulation of neighboring lncRNA and protein-coding genes, 427 

or may reflect the presence of large-scale structural variations (rearrangements, duplication 428 

and deletions) in cancer cells, which can affect the expression patterns of multiple neighboring 429 

genes (Spielmann et al, 2018). This finding also underlines the importance of evaluating the 430 
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broader genomic context when aiming to select candidate oncogenes, tumor suppressors, or 431 

biomarkers: the most biologically relevant gene may be the neighbor of the gene initially 432 

selected for validation.  433 

Limited reproducibility of differential expression patterns for HCC-associated lncRNAs 434 

In the past decade, the number of publications that discuss lncRNAs in the context of 435 

hepatocellular carcinoma has increased exponentially (Supplementary Figure 5). LncRNAs 436 

are often proposed as promising oncogenes or tumor suppressors, based on their patterns of 437 

expression in tumors and healthy tissues. However, lncRNAs are weakly expressed and are 438 

generally highly variable among tissues, cell types or individuals (Kornienko et al, 2016). Thus, 439 

it is not clear to what extent the lncRNA expression patterns previously reported in the HCC 440 

literature are reproducible with independent datasets. Here, we evaluated the expression 441 

patterns of lncRNAs that were previously associated with HCC in our transcriptome collection. 442 

The majority of these lncRNAs were strongly differentially expressed between paired tumors 443 

and adjacent tissue samples or between groups of tumors with high or low differentiation. 444 

However, we are still far from confirming differential expression patterns for all HCC-445 

associated lncRNAs, even when lowering the stringency of our criteria. Even when evaluating 446 

the most prominent HCC-associated lncRNAs, which were cited by at least 5 publications, we 447 

could not always recover the previously reported differential expression observations. This 448 

was the case even for the three lncRNAs that were most frequently associated with HCC in 449 

the literature: MALAT1, H19 and HOTAIR. The biological roles of these lncRNAs in cancer 450 

were already controversial. For example, a recent study showed that MALAT1 suppresses 451 

metastasis in breast cancer (Kim et al, 2018, 1), contrary to previous reports which proposed 452 

that this lncRNA promotes metastasis (Arun et al, 2016). Likewise, H19 was alternatively 453 

proposed as an oncogene (Matouk et al, 2007) or as a tumor suppressor (Yoshimizu et al, 454 

2008). For HOTAIR, its role as a metastasis-promoting factor appears to be accepted in the 455 

literature (Gupta et al, 2010). However, we note that the initially proposed function for this 456 

lncRNA, namely a role in the regulation of HOXD genes during embryonic development (Rinn 457 

et al, 2007), was refuted in vivo (Amândio et al, 2016). These examples illustrate the frailty of 458 

some of the claims that are recurrently put forward regarding lncRNA functions, in cancer or 459 

in other biological contexts, and again highlight the caution that should be exercised when 460 

investigating lncRNAs.  461 

Activated transcription of centromeric satellite repeats in HCC tumors 462 

Transcriptome comparisons in HCC cohorts or in other cancer types generally aim to select 463 

candidate oncogenes, tumor suppressors or biomarkers, that should be further verified 464 

experimentally. As extensive functional validations were outside of the scope of our study, we 465 

chose instead to analyze the genomic characteristics of the lncRNAs that were differentially 466 
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expressed in HCC tumors. We were thus able to detect an increase in the repetitive sequence 467 

content of lncRNAs that were up-regulated in tumors compared to adjacent tissues, as well as 468 

in poorly differentiated tumors compared to early stage tumors (Figure 4). Repetitive 469 

sequences make up roughly half of the human genome (Lander et al, 2001). The high repeat 470 

fraction observed for lncRNA exons, which is more than triple the fraction observed for protein-471 

coding gene exons (Figure 4), is likely due to the weak selective pressures that act on these 472 

loci (Darbellay & Necsulea, 2020). However, the increase in repetitive sequence content for 473 

tumor-upregulated lncRNAs cannot simply be explained by a lower proportion of functionally 474 

constrained loci; on the contrary, average sequence conservation scores are higher for tumor-475 

upregulated lncRNAs than for tumor-downregulated lncRNAs (Supplementary Figure 3). 476 

Moreover, we found that the over-representation of repetitive sequences in upregulated 477 

lncRNAs does not affect all classes of repeats, but is strongest for satellite repeats (Figure 5). 478 

This class of repeats is a major functional component of centromeres (Hartley & O’Neill, 2019).  479 

 480 

Although centromeres were initially thought to be transcriptionally inert, it is now known that 481 

they are transcribed into non-coding RNAs, which associate with centromeric chromatin and 482 

potentially participate in kinetochore formation (Talbert & Henikoff, 2018). However, these 483 

non-coding RNAs are generally weakly transcribed, and higher expression levels can lead to 484 

impaired centromeric function (Bouzinba-Segard et al, 2006). Overexpression of centromeric 485 

non-coding RNAs was previously reported in pancreatic cancers and in other types of 486 

epithelial cancers (Ting et al, 2011). In mouse models of pancreatic cancers, it was shown 487 

that overexpression of centromeric satellite repeats leads to increased DNA damage and 488 

chromosomal instability, thereby accelerating tumor formation (Kishikawa et al, 2016, 2018). 489 

Here, we reveal that centromeric non-coding RNAs are also aberrantly overexpressed in HCC. 490 

This finding is supported by several lines of evidence. First, we showed that satellite repeats, 491 

which are characteristic of centromeric regions, are over-represented in the exonic regions of 492 

tumor-upregulated lncRNAs. Second, we directly quantified centromeric transcription, by 493 

evaluating regions to which RNA-seq reads can be unambiguously attributed, despite the 494 

repetitive sequence context.  We thus showed that transcription stems from the entire length 495 

of centromeric regions, rather than from well-defined non-coding RNA loci. Interestingly, all 496 

chromosomes are not equal with respect to detectable centromeric transcription. The 497 

centromere of chromosome 2 appears to be transcriptionally active in tumor samples for the 498 

majority of patients (Figure 5). The mechanisms that underlie this over-representation of 499 

chromosome 2 are unclear. This chromosome has a particular evolutionary history: it is 500 

derived from a chromosome fusion event, which occurred after the divergence of human and 501 

chimpanzee and which led to the loss of one of the two ancient centromeres (Chiatante et al, 502 

2017). Although we verified that the over-representation of chromosome 2 is not simply due 503 
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to a better mappability of satellite repeats (Supplementary Figure 7), we cannot exclude other 504 

technical issues that prevent us from detecting these highly repetitive transcripts from other 505 

chromosomes.  506 

 507 

The levels of centromeric non-coding RNA transcription were previously found to vary during 508 

the cell cycle in mouse, with a peak in the G2/M phase (Ferri et al, 2009). Thus, our findings 509 

may be partially explained by an over-representation of cells in the G2/M phase in tumor 510 

samples compared to the adjacent tissue, expected given that cancerous cells are rapidly 511 

proliferating. Indeed, our analysis revealed that genes involved in mitotic cell cycle processes 512 

were positively associated with centromeric transcript up-regulation levels, across patients. 513 

This included several genes encoding centromeric proteins (CENPJ, CENPF and CENPI) 514 

(Figure 5d, Supplementary Table 7). Interestingly, the gene encoding centromere protein C 515 

(CENPC) was negatively associated with centromeric transcript up-regulation levels across 516 

patients, and was significantly down-regulated in tumors compared to adjacent tissues and in 517 

advanced stage tumors (Figure 5d, Supplementary Tables 7-8). It was recently reported that 518 

this protein acts to repress centromere-derived alpha-satellite RNA levels (Bury et al, 2020). 519 

This observation could thus explain the up-regulation of centromeric transcripts in tumor 520 

compared to adjacent tissue samples, which appears to occur in parallel with a down-521 

regulation of CENPC expression.  522 

 523 

We also note that the ability to detect centromeric non-coding RNAs likely depends on the 524 

methods used to generate RNA-seq data. Our transcriptome collection was generated from 525 

ribo-depleted RNA samples, without enrichment for poly-adenylated RNA species (Methods). 526 

Although it was reported that centromeric transcripts are poly-adenylated (Topp et al, 2004), 527 

their subsequent processing into smaller RNA molecules (Talbert & Henikoff, 2018) may lead 528 

to the loss of the polyA tail, thus hampering their detection in polyA-enriched RNA-seq data. 529 

Furthermore, our RNA-seq data consists of relatively long reads (126-136 bp), which likely 530 

increases our ability to unambiguously map RNA-seq reads to the genomic regions from which 531 

they stem, even in the case of repetitive sequences. 532 

 533 

To our knowledge, aberrant transcription of centromeric non-coding RNAs had not been 534 

previously reported in HCC. Given that this phenomenon has been associated with tumor 535 

formation in other types of cancer (Kishikawa et al, 2018), our observations are highly relevant 536 

for the search for oncogenic factors driving hepatocellular carcinoma, and thus warrant further 537 

investigations.  538 

 539 

540 
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Methods 541 

Biological sample collection 542 

The analyses presented in this manuscript were performed on carcinoma and adjacent liver 543 

tissue biopsies obtained from 114 patients. Human tissues were obtained from patients 544 

undergoing diagnostic liver biopsy at the University Hospital Basel. Written informed consent 545 

was obtained from all patients. The study was approved by the ethics committee of the 546 

northwestern part of Switzerland (Protocol Number EKNZ 2014-099). The samples analysed 547 

here were derived from pre-treatment biopsies, with the exception of 3 patients, for which 548 

samples were collected after tumor resection (Supplementary Table 1). We recorded the sex, 549 

age at the time of biopsy and underlying liver diseases for each patient (Supplementary Table 550 

1). We also recorded the percentage of tumor tissue in the biopsies and the Edmondson-551 

Steiner grades of the tumors (Supplementary Table 1). Multiple tumor and adjacent tissue 552 

biopsies were collected for 26 and 3 patients, respectively. In total, we analysed 268 samples, 553 

corresponding to 117 adjacent tissue and 151 tumor biopsies. 554 

RNA extraction and library preparation 555 

We extracted RNA and DNA from tissue biopsies using the ZR-Duet DNA/RNA MiniPrep Plus 556 

kit (Zymo Research, catalog number D7003). We performed the in-column DNase I treatment 557 

as specified in the kit to remove residual DNA from the RNA fraction. We prepared RNA-seq 558 

libraries using the Illumina TruSeq stranded RNA protocol, without polyA selection. We 559 

depleted ribosomal RNA using the Ribo-Zero Gold kit from Illumina. We generated single-end 560 

reads, 126 or 136 nucleotides (nt) long (Supplementary Table 1).  561 

RNA-seq data processing 562 

We aligned the RNA-seq reads on the genome using HISAT2 (Kim et al, 2015, 2) version 563 

2.0.5. We used the primary assembly of the human genome version GRCh38 (hg38), 564 

downloaded from Ensembl (Cunningham et al, 2019). We built the HISAT2 genome index 565 

using additional splice site information from Ensembl release 97, as well as from the CHESS 566 

(Pertea et al, 2018) and MiTranscriptome (Iyer et al, 2015) transcript assemblies. We 567 

extracted unambiguously mapped reads based on the NH tag from HISAT2 reported 568 

alignments. To evaluate the prevalence of strand errors during library preparation, we 569 

identified introns with GT-AG and GC-AG splice sites, supported by spliced RNA-seq reads 570 

aligned on at least 8 nucleotides on each neighboring exon and with a maximum mismatch 571 

frequency of 2%. We then compared the strand inferred based on splice site information with 572 

the strand inferred based on the read alignment orientation and on the library type. All libraries 573 

had strand error rates below 2.5% (Supplementary Table 1).  The presence of contradictory 574 

strand assignments was used as a red flag in our lncRNA filtering procedure (see below).   575 
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Single nucleotide polymorphism analysis 576 

We verified that samples derived from the same patient were correctly paired by assessing 577 

their genetic similarity, using RNA-seq information alone. To do this, we first scanned the 578 

RNA-seq alignments to detect putative single nucleotide polymorphisms (SNPs). We used a 579 

a pipeline combining tools from GATK (Van der Auwera et al, 2013) version 4.1.9.8 and Picard 580 

(http://broadinstitute.github.io/picard/) version 2.18.7. Briefly, we analyzed non-duplicated 581 

aligned RNA-seq reads, re-calibrated the alignment quality around known variants from 582 

dbSNP (Sherry et al, 2001) release 151 and called variants with a minimum base quality score 583 

threshold of 20. We combined the detected SNPs across all samples and filtered them to keep 584 

only positions found in dbSNP and in exonic regions, excluding repetitive sequences. For all 585 

resulting SNPs, we counted the number of reads supporting each allele using the 586 

ASEReadCounter tool. We kept biallelic SNPs supported by at least 50 reads. To allow for 587 

sequencing or mapping errors, SNPs were considered to be heterozygous if the estimated 588 

allele frequency was between 0.1 and 0.9, and homozygous if the allele frequency was equal 589 

to 0 or 1. For all pairs of samples, we computed the proportion of SNPs with shared alleles 590 

out of all biallelic SNPs. We compared this measure of genetic similarity between pairs of 591 

samples derived from the same patient or from different patients (Supplementary Figure 1). 592 

We also evaluated the proportion of heterozygous SNPs out of all detected SNPs on 593 

autosomes and on sex chromosomes, for each sample. We excluded the pseudo-autosomal 594 

regions from sex chromosomes. For one male patient (identifier 42), we observed high levels 595 

of heterozygosity on the X chromosome and high Xist expression levels, for both tumor and 596 

adjacent tissue biopsies. This patient was excluded from differential expression analyses 597 

(Supplementary Table 1).  598 

Evaluation of genomic DNA contamination 599 

To assess the amount of genomic DNA contamination, we evaluated the RNA-seq read 600 

coverage on repeat-masked intergenic regions, on both forward and reverse strands. As 601 

genuinely transcribed regions are generally strongly biased in favor of one strand, we 602 

computed the number of regions that had relatively symmetric strand distribution, i.e. for which 603 

the absolute value of the (forward-reverse)/(forward+reverse) coverage ratio was below 0.5. 604 

We then computed for each sample the proportion of intergenic regions with symmetric 605 

coverage, out of all intergenic regions with RNA-seq coverage. We considered that samples 606 

with more than 5% symmetrically transcribed intergenic regions had significant DNA 607 

contamination. These samples were excluded from differential expression analyses 608 

(Supplementary Table 1).   609 
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Identification of “mappable” and “unmappable” genomic regions  610 

To determine whether RNA-seq reads can be correctly traced back to their genomic region of 611 

origin, we performed a “mappability” analysis. To do this, we generated single-end sequencing 612 

reads with the same lengths as in our data (126 and 136 nt) from sliding genomic windows 613 

with 5 nt step. Reads were generated with perfect sequence quality and no mismatches. We 614 

aligned these reads on the genome using HISAT2 with the same parameters as for the real 615 

RNA-seq data. Genomic regions to which simulated reads were mapped back unambiguously 616 

and on their entire length were said to be mappable. We defined unmappable regions by 617 

subtracting mappable intervals from full-length chromosomes. 618 

Transcript assembly 619 

We performed a genome- and transcriptome-guided transcript assembly with StringTie 620 

(Pertea et al, 2015) release 2.1.2. We used as an input the unambiguously mapped reads 621 

obtained with HISAT2, combined across all samples. We used annotations from Ensembl 622 

(Cunningham et al, 2019) release 99, excluding read-through transcripts, as a guide for the 623 

assembly. We ran StringTie separately for each chromosome and strand; unassembled 624 

contigs and the mitochondrion were excluded. We filtered the StringTie output to discard 625 

artefactual antisense transcripts stemming from library preparation errors. To do this, we 626 

computed the sense and antisense exonic read coverage for each transcript and kept only 627 

those transcripts which had a sense/antisense ratio of at least 5% in at least one sample. We 628 

also removed transcripts that contained splice junctions with contradictory strand assignments 629 

based on the splice site (GT-AG or GC-AG) and on the read alignment and library type. We 630 

combined Ensembl 99 and filtered StringTie transcript annotations by adding to the Ensembl 631 

reference those de novo annotated transcripts which had exonic overlap with at most 1 632 

Ensembl-annotated gene. Ensembl-annotated transcripts were not altered, with the exception 633 

of read-through transcripts (defined as transcripts that overlap with more than one multi-exonic 634 

gene), which were discarded. LncRNAs that overlapped with annotated microRNAs were 635 

annotated separately from the miRNA products. 636 

Protein-coding potential of newly assembled transcripts 637 

We used the PhyloCSF (Mudge et al, 2019) codon substitution frequency score to evaluate 638 

the protein-coding potential of newly assembled transcripts. To do this, we overlapped exonic 639 

coordinates with protein-coding regions predicted by PhyloCSF, in all possible reading frames. 640 

Transcripts were said to be potentially protein-coding if they overlapped with a PhyloCSF 641 

protein-coding region on at least 150 nt. Due to the nature of the genetic code, some 642 

substitutions are synonymous on both DNA strands, which can generate artefactually high 643 

PhyloCSF scores on the antisense strand of protein-coding regions. We thus required that the 644 

overlap with PhyloCSF regions be higher on the sense strand than on the antisense strand of 645 
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the transcripts. We also evaluated the similarity between lncRNA sequences and known 646 

proteins and protein domains, using DIAMOND (Buchfink et al, 2015) against SwissProt 647 

(UniProt Consortium, 2019) and Pfam (El-Gebali et al, 2019). We retained SwissProt entries 648 

with high confidence scores (1 to 3) and the Pfam-A subset of Pfam. We searched for hits on 649 

repeat-masked cDNA sequences with the “blastx” flavor of DIAMOND and we required a 650 

maximum e-value of 0.01. Transcripts were said to be potentially protein-coding if they had 651 

similarity with a known protein or protein domain on at least 150 nt, with at least 40% sequence 652 

identity. Genes were said to be potentially protein-coding if at least one of their isoforms was 653 

predicted as protein-coding with either method. 654 

LncRNA dataset 655 

We established a lncRNA dataset by combining lncRNAs annotated in Ensembl (gene biotype 656 

“lncRNA”) and transcribed loci annotated with StringTie that passed several filters: no protein-657 

coding potential, evaluated as described above; minimum exonic length of 200 nt for multi-658 

exonic loci and 500 nt for mono-exonic loci; at most 5% exonic length overlap with unmappable 659 

genomic regions; no overlap with Ensembl-annotated protein-coding genes on the same 660 

strand; at least 5000 nt away from protein-coding gene exons; at most 25% exonic length 661 

overlap with RNA repeats; at most 10% exonic length overlap with retrogenes (coordinates 662 

downloaded from the UCSC Genome Browser database (Casper et al, 2018)). We also 663 

required transcribed loci to be supported by at least 100 RNA-seq reads. LncRNA annotations 664 

are provided in Supplementary Dataset 1 online. 665 

Literature search for HCC-associated lncRNAs 666 

We searched for articles in PubMed with the key word “hepatocellular carcinoma” in the article 667 

title. We retrieved the article abstract, title, journal and publication date. We searched for gene 668 

names in the abstract, based on a list of common gene names and synonyms in the Ensembl 669 

database. We excluded gene names that were ambiguous and matched with common terms 670 

in the HCC literature (e.g., MRI, TACE, etc). We also checked if articles contained general 671 

references to lncRNAs as a class, based on the “long non-coding RNA” and “lncRNA” 672 

keywords, with spelling variations (e.g. “noncoding” instead of “non-coding”, “lincRNA” instead 673 

of “lncRNA”, etc.).   674 

Gene expression estimation 675 

We evaluated gene expression values with Kallisto (Bray et al, 2016) release 0.46.1 (patch by 676 

P.V. to correct bootstrap estimates). We obtained effective read counts and transcript per 677 

million (TPM) values for each isoform and obtained gene-level TPM values using tximport 678 

(Soneson et al, 2015) in R. We performed an additional normalization across samples, with a 679 

previously-proposed median-scaling approach based on the 100 genes that vary least in terms 680 

of expression ranks among samples (Brawand et al, 2011). This approach was applied on 681 
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gene-level TPM values. For most gene expression analyses, we used log2-transformed TPM 682 

values, adding an offset of 1 (TPM to log2(TPM+1)). As a control, we also evaluated unique 683 

read counts per gene using featureCounts from Rsubread (Liao et al, 2019). Expression 684 

estimation analyses were performed on the full set of detected transcribed loci, including 685 

protein-coding genes, lncRNAs and other types of genes. Gene expression levels are 686 

provided in Supplementary Dataset 2 online. 687 

Principal component analyses 688 

We performed principal component analyses using the dudi.pca function in the ade4 library in 689 

R (Dray & Dufour, 2007). We used log2-transformed TPM levels, for all protein-coding and 690 

lncRNA genes or for each gene type separately. We enabled variable centering but not scaling 691 

and kept 5 axes. 692 

Differential expression analyses 693 

We used DESeq2 release 1.28.0 and txImport (Soneson et al, 2015) release 1.16.1 in R to 694 

assess differential expression, based on Kallisto-estimated effective read counts per 695 

transcript. We performed all differential expression analyses on the combined set of protein-696 

coding and lncRNA genes. Given that the number of biopsies varied among patients, we first 697 

selected one pair of tumor and adjacent tissue samples per patient, to ensure patients 698 

contributed equally to DE results. For patients where biopsies were done before and after 699 

tumor resection, we selected the biopsies obtained before resection. For one patient, an 700 

adjacent tissue biopsy was performed before onset of HCC; we excluded it from DE analyses. 701 

For all other cases where multiple biopsies were available, we selected the sample with the 702 

largest number of uniquely mapped reads for each tissue type. We tested for differential 703 

expression between pairs of tumors and adjacent tissues by fitting a model that explains gene 704 

expression variation as a function of two factors, the tissue type and the patient of origin. We 705 

then evaluated the difference between tumors and adjacent tissues with a Wald test 706 

contrasting the two tissue types and estimated the effect size with the “apeglm” shrinkage 707 

method (Zhu et al, 2019). We repeated this analysis separately for males and females. We 708 

also tested for differences in gene expression among tumor samples, depending on the patient 709 

sex Edmondson-Steiner grade, presence or absence of hepatitis C, hepatitis B, cirrhosis, 710 

alcoholic liver disease or non-alcoholic liver disease. To do this, we fitted an additive model 711 

including all these factors and then evaluated the effect of each factor by contrasting its levels 712 

with a Wald test, using the “apeglm” shrinkage method to estimate the effect size (Zhu et al, 713 

2019). For the Edmondson-Steiner grade, we contrasted grades 1 and 2 against grades 3 and 714 

4. We performed a preliminary test for an age effect, but as there were no significantly DE 715 

genes this factor was not included in the model. Differential expression analyses were 716 
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performed only on protein-coding and lncRNA genes. Results are provided in Supplementary 717 

Dataset 3 online. 718 

Gene ontology analyses 719 

We performed gene ontology enrichment analyses with GOrilla (Eden et al, 2009), contrasting 720 

the lists of up- or down-regulated protein-coding genes in each test with a background set 721 

consisting of protein-coding genes expressed in those samples. To define the background set, 722 

we evaluated the minimum expression level (DESeq2-normalized read counts) of differentially 723 

expressed genes and selected genes that had higher or equal expression levels. For the 724 

analysis of the association between protein-coding gene expression and centromeric 725 

transcript levels, across patients, we analyzed the gene ontology enrichment in a single 726 

ranked list, comparing genes at the top of the list (with high, positive correlation coefficients) 727 

to genes at the bottom of the list (with low, negative correlation coefficients). 728 

Cell type marker analyses 729 

We analyzed the expression patterns of common markers for the most frequent cell types in 730 

the liver from a single cell RNA-seq study (MacParland et al, 2018). We computed a Z-score 731 

matrix from the log2-transformed normalized TPM values across samples.  732 

Sequence conservation analyses 733 

We downloaded PhastCons (Siepel et al, 2005) sequence conservation scores, computed on 734 

a multiple genome alignment on human and 29 other mammalian species, from the UCSC 735 

Genome Browser (Casper et al, 2018). We computed average PhastCons scores on exonic 736 

regions and splice sites. For loci that overlapped with other genes, we also computed average 737 

scores on non-overlapping exonic regions. Results are provided in Supplementary Dataset 4 738 

online.  739 

Repetitive sequence analyses 740 

We downloaded repetitive element coordinates predicted with RepeatMasker (Smit et al, 741 

2003) from the UCSC Genome Browser (Casper et al, 2018). We overlapped the exonic 742 

coordinates of all protein-coding and lncRNA loci with repetitive elements and we analyzed 743 

the exonic fraction covered by each repeat class. Results are provided in Supplementary 744 

Dataset 4 online.  745 

Centromeric transcription analyses 746 

We downloaded centromeric region coordinates from the UCSC Genome Browser (Casper et 747 

al, 2018). We determined the mappable regions within each centromere as described above, 748 

by discarding regions deemed unmappable for 126 or 136 nt read lengths. We counted the 749 

number of unambiguously mapped reads that could be attributed to each mappable 750 

centromeric region, on each DNA strand, using featureCounts in the Rsubread R package 751 
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(Liao et al, 2019). We computed normalized expression values (RPKM) by dividing the read 752 

counts by the mappable region length (expressed in kilobases) and by the number of million 753 

mapped reads, counted on the gene models annotated in Ensembl or detected with StringTie. 754 

We extracted centromeric proteins based on the “centromere” keyword in the Ensembl gene 755 

description. We used the same set of samples selected for differential expression analyses. 756 

Results are provided in Supplementary Dataset 5 online. Centromeric transcription read 757 

coverage tracks are available online for all patients: http://pbil.univ-758 

lyon1.fr/members/necsulea/MERIC_lncRNAs/ . 759 

Co-expression between centromeric transcript levels and protein-coding gene expression 760 

To evaluate the determinants of centromeric transcription variation, we estimated the 761 

correlation between protein-coding gene expression and centromeric transcript levels across 762 

patients. Specifically, for each patient we estimated the difference in centromeric RPKM 763 

between tumor and adjacent tissue samples, using the samples selected for differential 764 

expression analyses. In parallel, we computed the difference in gene TPM between tumor and 765 

adjacent tissue samples, for all protein-coding genes. We then computed Spearman’s 766 

correlation coefficients for each protein-coding gene, using the values described above for all 767 

patients. Results are presented in Supplementary Table 7 and in Supplementary Dataset 5 768 

online. 769 

Data and code availability 770 

The sequencing data used in this project was submitted to the European Genome-Phenome 771 

Archive under the accession number EGAS00001004976. Supplementary datasets 772 

containing all the information needed to reproduce the results are available at the address: 773 

http://pbil.univ-lyon1.fr/members/necsulea/MERIC_lncRNAs/ . Scripts are available in GitLab: 774 

https://gitlab.in2p3.fr/anamaria.necsulea/meric .  775 
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Figure legends 791 

Figure 1. Global expression patterns in HCC tumors and adjacent tissue samples. 792 

a. Numbers of patients and RNA-seq samples included in our study. All samples are derived 793 

from pre-treatment biopsies. 794 

b. Heatmap representing relative expression levels (log2-transformed TPM values, divided by 795 

the maximum value across samples), for 36 markers of the most common cell types in the 796 

healthy liver (MacParland et al, 2018). 797 

c. Scatter plot representing the first factorial map of a principal component analysis, performed 798 

on log2-transformed TPM values for protein-coding genes. Each dot represents one sample. 799 

Colors represent sample types (adjacent tissue in grey, tumor samples colored according to 800 

the Edmonson-Steiner grade). 801 

d. Same as c, for lncRNAs. 802 

 803 

Figure 2. Differentially expressed genes between HCC tumors and adjacent tissue samples. 804 

a. Density plot of the log2 fold expression change, for genes that are significantly differentially 805 

expressed (maximum FDR 0.01) between paired tumor and adjacent tissue samples 806 

(Methods). Red: protein-coding genes; blue: lncRNAs. The dotted vertical lines mark an 807 

expression change threshold of 1.5. The numbers of genes that pass the FDR and minimum 808 

fold change thresholds are shown at the top of the plot. The main enriched gene ontology 809 

categories for up-regulated and down-regulated genes are shown below the plot (Methods). 810 

b. Same as a, for the analysis comparing tumor samples with different stages (Edmondson-811 

Steiner grades 1 and 2 vs. Edmondson-Steiner groups 3 and 4).  812 

 813 

Figure 3. Differential expression patterns for prominent HCC-associated lncRNAs.  814 

a. Distribution of patient characteristics for the 151 tumor samples analyzed in this study. ALD: 815 

alcoholic liver disease. 816 

b. Distribution of the difference in expression levels between tumor and adjacent tissue 817 

samples, across patients, for the 29 lncRNAs that are cited in at least 5 HCC publications. The 818 

black line shows a density plot of the ratio (TPM tumor – TPM adjacent tissue)/(TPM tumor + 819 

TPM adjacent tissue), computed for each patient. Only samples used for the differential 820 

expression analyses were considered. The vertical red line represents the median value. 821 

c. Presence/absence and direction of significant expression changes between paired tumor 822 

and adjacent tissue biopsies. Upward arrows indicate up-regulation in tumor samples, 823 

downward arrows indicate down-regulation in tumor samples, with a maximum false FDR of 824 

0.01 (no fold change requirement). Gray arrows represent marginally significant changes 825 

(FDR < 0.1, no fold change requirement). 826 
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d. Expression levels (log2-transformed TPM) for tumor samples, for the 29 lncRNAs that are 827 

cited in at least 5 HCC publications. Samples are colored depending on the Edmondson-828 

Steiner grade. 829 

e. Same as c, for the differential expression analysis comparing tumor samples with 830 

Edmondson-Steiner grades 3 and 4, versus tumor samples with Edmondson-Steiner grades 831 

1 and 2.  832 

 833 

Figure 4. Over-representation of satellite repeats among tumor-upregulated lncRNAs.  834 

a. Boxplots of the percentage of exonic sequences covered by repetitive sequences, for 835 

protein-coding genes (red) and lncRNAs (blue). We display separately genes that are 836 

differentially expressed (maximum FDR 0.01, minimum fold expression change 1.5) in tumors 837 

compared to adjacent tissues, and in tumors with Edmondson-Steiner grades 3 and 4 838 

compared to tumors with Edmondson-Steiner grades 1 and 2. Horizontal segments represent 839 

median values; notches represent 95% confidence intervals for the median; dashed segments 840 

extend to 1.5 times the inter-quartile range. 841 

b. Percentage of genes that have exonic overlap with satellite repeats, for protein coding 842 

genes (red) and lncRNAs (blue). As in a, we display separately genes that show significant 843 

expression differences in our two main DE analyses.  844 

c. Distribution of the log2 fold expression changes in our two main DE analyses, for lncRNAs 845 

that overlap with satellite repeats (dark blue) or not (light blue). Only lncRNAs that are show 846 

significant differences (maximum FDR 0.01, no minimum fold change requirement) are shown.   847 

  848 

Figure 5. Increased centromeric transcription in tumors compared to adjacent tissue samples. 849 

a. Dot chart representing the median normalized expression levels (RPKM) for centromeric 850 

regions, across samples, for each chromosome and strand. Red: transcripts on the forward 851 

DNA strand, blue: reverse strand. The bars represent the 95% confidence intervals. 852 

b. Density plot of the RPKM difference between tumor and adjacent tissue, across patients, 853 

for the three chromosome/strand combinations with highest RPKM levels (chromosome 2 854 

reverse, 1 reverse and 19 forward strand).  855 

c. Top: representation of the regions considered to be unambiguously mappable (Methods), 856 

for the chromosome 2 centromere. Next panels: unique read coverage distribution on the 857 

chromosome 2 centromere, forward and reverse strands, for one patient (identifier 13). The 858 

read coverage was normalized for each sample based on the number of million mapped reads 859 

attributed to genes.  860 

d. Boxplots representing the distribution of gene TPM differences between tumor and adjacent 861 

tissues, for three classes of patients defined based on the degree of centromeric transcript 862 

“activation” in tumors compared to adjacent tissues. The first class comprises 23 patients for 863 
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which the difference in RPKM values for total centromeric transcripts between tumors and 864 

adjacent tissues is below 0 RPKM; the second class comprises 61 patients for which the 865 

difference is between 0 and 50 RPKM; the third class comprises 26 patients for which the 866 

difference is above 50 RPKM. We display the 6 genes mentioned in the text: CENPJ, HJURP, 867 

CENPF, DNA2, CENPI, CENPC. P-values correspond to Kruskal-Wallis non-parametric tests, 868 

for differences among the three classes of patients. 869 

  870 
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Supplementary figure legends 871 

Supplementary Figure 1. Sample clustering based on gene expression and genetic similarity.  872 

a. Boxplots representing the distribution of sample coordinates on principal component 1, for 873 

the PCA performed on protein-coding genes (displayed in figure 1). Samples are grouped 874 

depending on tissue types. Gray: adjacent tissue samples; yellow to red: tumors grouped by 875 

Edmondson-Steiner grade. Horizontal segments represent median values; notches represent 876 

95% confidence intervals for the median; dashed segments extend to 1.5 times the inter-877 

quartile range. 878 

b. Same as a, for principal component 2.  879 

c. Same as a, for the PCA performed on lncRNAs (displayed in figure 1).  880 

d. Same as c, for principal component 2.  881 

e. Distribution of the proportion of shared alleles for pairs of samples, for single nucleotide 882 

polymorphisms detected with our RNA-seq data (Methods). Red: distribution observed for 883 

pairs of samples derived from different patients; black: distribution observed from pairs of 884 

samples derived from the same patient. 885 

 886 

Supplementary Figure 2. Expression patterns of protein-coding genes and lncRNAs in HCC 887 

samples.  888 

a. Distribution of the maximum expression level (log2-transformed TPM, maximum observed 889 

across samples) for protein-coding genes (red), previously known lncRNAs (dark blue) and 890 

newly annotated lncRNAs (light blue). The dotted vertical line represents the TPM = 1 891 

threshold. Numbers of genes above the threshold are shown in the figure legend.  892 

b. Histogram of the number of samples in which the expression level is above the TPM = 1 893 

threshold, for the three categories of genes described in a.  894 

  895 

Supplementary Figure 3. Differential expression patterns in HCC samples.  896 

a. Comparison between the log2 expression fold changes observed for our two main 897 

differential expression analyses (tumors vs. adjacent tissue samples, tumors with 898 

Edmondson-Steiner grades 3 and 4 vs. tumors with Edmondson-Steiner grades 1 and 2), for 899 

protein-coding genes. We show only genes that were significantly DE with a maximum FDR 900 

of 0.01 and a fold expression change above 1.5 in at least one of the two analyses. Green: 901 

genes with consistent expression changes in the both analyses; red: genes with opposite 902 

expression changes; orange: genes that are significantly DE only in the first DE analysis; 903 

purple: genes that are significantly DE only in the second DE analysis. 904 

b. Same as a, for lncRNAs. 905 

c. Distribution of sequence conservation scores for exonic regions (Methods), for protein-906 

coding genes. Genes that are up-regulated or down-regulated in our two main DE analyses 907 
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are shown separately. The dot represents the median conservation score, the vertical 908 

segments represents the 95% confidence interval for the median. 909 

d. Same as c, for lncRNAs.  910 

 911 

Supplementary Figure 4. Genomic clustering of differentially expressed genes.  912 

a. Proportion of differentially expressed genes (maximum FDR 0.01, minimum fold expression 913 

change 1.5), in the comparison between paired tumors and adjacent samples, that have 914 

another differentially expressed gene within a 50kb distance. Red dots represent the values 915 

observed for protein-coding genes, blue dots for lncRNAs. The gray dots and vertical intervals 916 

represent the average and the 95% confidence intervals for the random expectation, obtained 917 

through simulations (Methods). The direction of the expression change required for the focus 918 

gene and the neighboring gene is displayed below the plot.  919 

b. Same as a, for the comparison between tumors with Edmondson-Steiner grades 3 and 4 920 

vs. tumors with Edmondson-Steiner grades 1 and 2.  921 

 922 

Supplementary Figure 5. Growing interest for lncRNAs in the HCC field.  923 

a. Bar plot of the fraction of publications that mention lncRNAs and HCC, from 2009 to 2019. 924 

The bars represent the percentage of publications that mention lncRNAs, out of the total 925 

number of HCC publications. The numbers of publications that mention lncRNAs are shown 926 

above the bars.  927 

b. Histogram of the number of publications that cite each lncRNA in the context of HCC. 928 

lncRNAs that are cited in 5 or more publications are indicated in the plot. 929 

 930 

Supplementary Figure 6. Increased repetitive sequence content in tumor-upregulated 931 

lncRNAs. 932 

Percentage of genes that have exonic overlap with major classes of repeats, for protein coding 933 

genes (red) and lncRNAs (blue). We display separately genes that show significant expression 934 

differences in our two main DE analyses. Significantly different proportions (Chi-square test, 935 

p-value <0.05) are marked by an asterisk.  936 

 937 

Supplementary Figure 7. Centromeric transcription characteristics.  938 

a. Bar plot representing the total mappable length of centromeric regions, for each 939 

chromosome (Methods). 940 

b. Bar plot representing the number of transcribed loci found in centromeric regions, annotated 941 

with our RNA-seq data.  942 

  943 
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Supplementary tables 944 

Supplementary Table 1. Description of the 268 RNA-seq samples in our transcriptome 945 

collection.  946 

Supplementary Table 2. List of cell type-specific markers for the most abundant cells in the 947 

healthy liver.  948 

Supplementary Table 3. Results of our two main differential expression analyses for protein-949 

coding genes and lncRNAs.  950 

Supplementary Table 4. Gene ontology enrichment for differentially expressed protein-coding 951 

genes.  952 

Supplementary Table 5. Number of HCC-related articles that mention each protein-coding and 953 

lncRNA genes.  954 

Supplementary Table 6. Statistics for the overlap with different classes of repetitive elements. 955 

Supplementary Table 7. Correlation between protein-coding gene expression and centromeric 956 

transcript levels across patients. 957 

Supplementary Table 8. Results of our two main differential expression analyses for protein-958 

coding genes involved in centromere functions. 959 

  960 

Supplementary datasets 961 

Supplementary Dataset 1. Genome annotation used in this analysis, obtained by combining 962 

annotations from Ensembl 99 and gene models detected de novo with our RNA-seq data. 963 

Supplementary Dataset 2. Gene expression data.  964 

Supplementary Dataset 3. Full results of the differential expression analyses.  965 

Supplementary Dataset 4. Evolutionary sequence conservation and repetitive element overlap 966 

statistics.  967 

Supplementary Dataset 5. Mappable region coordinates and expression estimates for 968 

centromeric regions.   969 

 970 

  971 
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