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Variation of microRNA expression in the
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Song Guo1, Shuyun Huang2, Xi Jiang2, Haiyang Hu2, Dingding Han2, Carlos S. Moreno3, Genevieve L. Fairbrother4,
David A. Hughes5,6, Mark Stoneking7* and Philipp Khaitovich1*

Abstract

Background: Analysis of lymphocyte cell lines revealed substantial differences in the expression of mRNA and
microRNA (miRNA) among human populations. The extent of such population-associated differences in actual
human tissues remains largely unexplored. The placenta is one of the few solid human tissues that can be collected
in substantial numbers in a controlled manner, enabling quantitative analysis of transient biomolecules such as RNA
transcripts. Here, we analyzed microRNA (miRNA) expression in human placental samples derived from 36
individuals representing four genetically distinct human populations: African Americans, European Americans, South
Asians, and East Asians. All samples were collected at the same hospital following a unified protocol, thus
minimizing potential biases that might influence the results.

Results: Sequence analysis of the miRNA fraction yielded 938 annotated and 70 novel miRNA transcripts expressed
in the placenta. Of them, 82 (9%) of annotated and 11 (16%) of novel miRNAs displayed quantitative expression
differences among populations, generally reflecting reported genetic and mRNA-expression-based distances. Several
co-expressed miRNA clusters stood out from the rest of the population-associated differences in terms of miRNA
evolutionary age, tissue-specificity, and disease-association characteristics. Among three non-environmental
influenced demographic parameters, the second largest contributor to miRNA expression variation after population
was the sex of the newborn, with 32 miRNAs (3% of detected) exhibiting significant expression differences
depending on whether the newborn was male or female. Male-associated miRNAs were evolutionarily younger and
correlated inversely with the expression of target mRNA involved in neuron-related functions. In contrast, both male
and female-associated miRNAs appeared to mediate different types of hormonal responses. Demographic factors
further affected reported imprinted expression of 66 placental miRNAs: the imprinting strength correlated with the
mother’s weight, but not height.
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Conclusions: Our results showed that among 12 assessed demographic variables, population affiliation and fetal
sex had a substantial influence on miRNA expression variation among human placental samples. The effect of
newborn-sex-associated miRNA differences further led to expression inhibition of the target genes clustering in
specific functional pathways. By contrast, population-driven miRNA differences might mainly represent neutral
changes with minimal functional impacts.
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Background
Phenotypic differences among humans can be attributed
to the combined effect of genetic, epigenetic, and envir-
onmental factors. The genetic basis for phenotypic vari-
ation in human populations has been extensively
studied. Previous studies identified a number of genetic
variants, including differences in single-nucleotide poly-
morphism (SNP) frequencies, copy number variation
(CNV), transposable elements (TEs), and DNA methyla-
tion, that are associated with human population-specific
phenotypic traits, including differential disease suscepti-
bility [1–8].
In addition to genomic analyses, studies focusing on

gene expression variation as a complex quantitative trait
have played a fundamental role in advancing our under-
standing of the molecular mechanisms of evolution [9–
11]. Most of our current knowledge about expression
variation among human populations, however, comes
from systematic investigations of transformed lympho-
blastoid cell lines (LCLs) rather than native tissues [11–
15]. Several such studies focusing on mRNA expression
demonstrated that 4.5–29% of expressed genes were dif-
ferentially expressed among human populations that in-
cluded Europeans (CEU), Yoruba from sub-Saharan
Africa (YRI), and two East Asian populations: Han Chin-
ese (CHB) and Japanese (JPT) [12–14, 16, 17]. Parallel
analysis of genetic differences explaining these expres-
sion differences identified a large number of cis-regula-
tory variants [12, 15, 16] and also trans-acting remote
regulatory variants [14–16]. In most cases, these genetic
variants might affect the binding of transcription factors
(TFs) and hence alter the transcript isoform repertoire
[18, 19].
MicroRNAs (miRNAs) also play a role in regulation of

gene expression variation. miRNAs are short, 21–23
nucleotide-long hairpin-shaped RNA molecules that act
as co-factors binding target sequences within mRNA
transcripts, commonly in their 3′ untranslated regions,
through Watson-Crick complementarity interactions
[20–22]. Simultaneously, miRNAs interact with parts of
protein complexes, functioning as RNA endonucleases
or as mRNA binding proteins that sequester target
mRNA from the pool of actively translated transcripts
[23]. Accordingly, miRNA expression levels inversely

correlate with expression levels of their mRNA targets
[24, 25]. Differences in miRNA expression among hu-
man populations were examined previously using LCLs
derived from CEU and YRI individuals; this study re-
vealed population-associated expression differences for
33 of the 757 detected miRNAs, resulting in downregu-
lation of 55–88% of their expressed target genes [26].
Cancer studies investigating circulating miRNA abun-
dance further indicated differences between individuals
of African and non-African descent [27, 28].
However, gene expression variation among human

populations measured in cell lines might not be indica-
tive of the variation found in native tissues. Earlier, we
reported mRNA expression differences at 6.3% of
expressed genes among placental samples, all collected
at the same location following the same protocol, from
four populations: African Americans, European Ameri-
cans, South Asians, and East Asians [29]. Here, we build
upon this work by examining microRNA (miRNA) ex-
pression in these same placental samples and how it is
influenced by 12 demographic variables for which we
have sufficient information. We find that population
identity and sex of the newborn contribute the most to
miRNA expression variation.

Results
Placental miRNA expression measurements
We analyzed miRNA expression in placenta samples
from individuals representing four major human ethnic
groups (further referred to as populations): African
Americans, European Americans, South Asians, and East
Asians (Fig. 1a). For each population, we analyzed sam-
ples from ten individuals (Additional file 1: Table S1), all
from a previous study [29]. All samples were collected at
the same geographic location (Northside Hospital in At-
lanta, Georgia) from residents of the area. We sampled
each placenta at five sites within the central villous par-
enchyma region and pooled the dissected samples before
the mRNA and miRNA isolation [29]. In addition to
population identity, for each sample we collected infor-
mation for 26 demographic parameters from GSE66622
[29]. Among them, 12 parameters (listed in Methods),
including delivery type (natural or cesarean), newborn
infant’s sex, number of previous births, mother’s age,
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and mother’s BMI, had sufficient variability to estimate
their influence on miRNA expression levels.
We estimated miRNA expression levels using high-

throughput transcriptome sequencing (RNA-seq) con-
ducted on the Illumina sequencing platform. For each
sample, we obtained an average of 31.4 million reads
(Additional file 2: Table S2). Based on these data, we de-
tected 938 miRNAs annotated in miRbase (v22) and 70
novel miRNAs (Fig. 1b; Additional file 3: Table S3; Add-
itional file 4: Table S4) with the total expression count
among the 40 individuals greater than 100 reads. Four
individuals did not pass data quality criteria and were re-
moved from further analyses (Fig. 1a; Additional file 5:
Fig. S1c).

Placental miRNA expression variation
Besides individual differences, the most notable contrib-
utors to the miRNA expression variation were popula-
tion identity and sex of the newborn (SON), explaining
11 and 4% of the total variation, respectively (Fig. 1c).
Accordingly, 139 miRNAs showed significant expression

differences among populations, including 12 novel ones
(ANOVA F-test, nominal p < 0.05, FDR < 36%; permuta-
tion p < 0.0001; Fig. 1b,d,e), while 32 miRNAs, including
one novel miRNA, differed depending on SON (ANOVA
F-test, nominal p < 0.01, FDR < 31%; permutation p <
0.05; Fig. 1f,g). The other variables, including mother’s
BMI, gestational length, gestational weight, and mother’s
age did not have a significant effect on miRNA expres-
sion (Linear regression model on each variable, nominal
p < 0.05, FDR > 50%, permutation p > 0.05).

Population-associated placental miRNA
Further analysis of the 139 miRNAs showing
population-associated expression yielded 93 miRNAs
with significant expression differences between at least
one pair of populations (Student’s t-test, Benjamini-
Hochberg corrected p < 0.05). Visualization of the dis-
tances among populations based on the expression of 93
or 139 population-associated miRNAs yielded dendro-
grams compatible with the genetic relationships among
populations (Fig. 2a; Additional file 6: Fig. S2 and

Fig. 1 Sample information and miRNA expression distribution. a Schematic illustration of sample numbers according to population ID and
newborn sex. The abbreviations here and in the text indicate: A – African Americans; E – European Americans; S – South Asians; X – East Asians; F
- female newborn and M - male newborn. b Violin plot showing miRNA expression distribution. Y-axis shows the quantile normalized log2-
transformed miRNA read count values after removing the batch effect. X-axis labels indicate 938 annotated miRNAs (Known), 127 annotated
miRNAs differentially expressed among populations (Known DE), 70 novel miRNAs (Novel), and 12 novel miRNAs differentially expressed among
populations (Novel DE). c Percentage of total expression variance explained by newborn sex and population. Bars represents the mean variation
explained by the categorical trait. Error bars represent the standard deviation of the mean. d-g Principal component analysis plots based on the
miRNA expression of all 1008 miRNAs (d, colored according to population and f, colored according to newborn sex), 139 miRNAs differentially
expressed among populations (e), and 32 miRNAs differentially expressed depending on the sex of the newborn (g)
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Additional file 7: Fig. S3). Specifically, miRNA expres-
sion in African Americans was the most distant from
the other populations, while the two Asian populations
were most similar to one another. Similarly, miRNA ex-
pression in African American population differed most
from the other three based on analysis of 1008 expressed
miRNAs (Additional file 6: Fig. S2a).
Using unsupervised analysis of the 93 population-

associated miRNA we identified six co-expressed
miRNA clusters (Fig. 2b,c; Additional file 8: Table S5).
Characterization of these clusters concerning miRNA
evolutionary age, expression tissue-specificity, and dis-
ease associations further identified specific miRNA

clusters showing significant feature enrichment (two-
sided Wilcoxon test, nominal p < 0.01). Specifically, clus-
ter 1 (C1), characterized by elevated expression in Euro-
pean American samples, contained significantly younger
miRNAs than the bulk (two-sided Wilcoxon test,
nominal p < 0.01) (Fig. 2c,d) and showed the highest
miRNA expression tissue-specificity, restricted
mainly to the placenta (Fig. 2c,e). Further, cluster 5
(C5), characterized by low expression in African
Americans and elevated expression in Asian popula-
tions (Fig. 2c), showed the highest number of
miRNA disease associations (Fig. 2f; Additional file 9:
Fig. S4; Additional file 10: Table S6).

Fig. 2 Characterization of miRNAs differentially expressed among human populations. a Dendrogram based on expression levels of 93
population-associated miRNAs. The abbreviations here and in the text indicate: A – African Americans; E – European Americans; S – South Asians;
X – East Asians. Numbers indicate the branch length. b Hierarchical clustering of 93 population-associated miRNAs based on correlation of their
expression profiles. Colors represent six main clusters. c miRNA expression patterns in each of the six clusters. Colors represent populations. Panel
titles show the cluster name and the number of miRNAs in the cluster. Y-axis indicates Z-transformed miRNA expression values. The dendrograms
on the right of each panel represents the average normalized expression distances among populations based on the expression of cluster
miRNAs. d Distribution of miRNA evolutionary age in the six clusters. The age scale extends from 433 Mya (age 0) to human-specific miRNA (age
12). Asterisks indicate the significance of the difference (two-sided Wilcoxon test, ** represents nominal p < 0.01). e Distribution of miRNA tissue
expression index (Tau) in the six clusters. Large values represent greater expression tissue-specificity. Asterisks indicate the significance of the
difference (two-sided Wilcoxon test, **** represents nominal p < 0.0001). f Number of miRNAs associated with disease in each cluster
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To assess the potential effects of population-associated
miRNAs on expression of their target genes, we examined
the published mRNA expression dataset derived from a
partially overlapping set of placental samples [29]
(GSE66622; Additional file 1: Table S1). Only cluster 1
(C1) reveal significant downregulation of predicted targets
of population-associated miRNAs (one-side Wilcoxon
rank test, p < 0.05, correlation r < − 0.5). The potential tar-
gets of C1 miRNAs were enriched in the functional term
associated with vasculogenesis and muscle organ develop-
ment (Additional file 11: Table S7).

Sex-of-the-newborn-associated placental miRNA
Among 32 miRNAs showing expression differences de-
pending on the sex of the newborn (SON-associated
miRNA), 14 miRNAs were elevated in pregnancies with
a male child (male-associated miRNA) and 18 in preg-
nancies with a female child (female-associated miRNA)
(FDR < 31%, permutation p < 0.05; Fig. 3a,b; Additional

file 8: Table S5). All SON-associated miRNA expression
differences were reproduced in multiple populations,
with 24 of the 32 reproduced in all four (Exact binomial
test, p < 0.01; Additional file 12: Fig. S5). Notably,
female-associated miRNAs were of significantly older
evolutionary origin compared to most male-associated
miRNAs (two-sided Wilcoxon test, nominal p < 0.05; Fig.
3c). Further, female-associated miRNAs were enriched
in imprinted mir-379 cluster (C14MC) implicated in
regulation of brain-specific functions [30] (hypergeo-
metric test, Bonferroni corrected p = 4.58 × 10− 6; Add-
itional file 10: Table S6). Both female- and male-
associated miRNA groups showed, however, the same
moderate tissue-specificity (Fig. 3d).
To assess the potential effects of SON-associated

miRNA expression, we identified their potential targets
in the published mRNA expression dataset derived from
a partially overlapping set of placental samples [29]
(Additional file 1: Table S1; GSE66622). In total, we

Fig. 3 Characterization of miRNAs with newborn sex-associated expression. a Bar plot showing individual miRNA expression differences between
placental samples from female vs. male newborn. Colors represent male-newborn-associated (F < M, blue) and female-newborn-associated (F > M,
orange) miRNAs. Abbreviations: F – female newborn; M – male newborn. b Boxplot showing the distributions of miRNA expression fold-change
for placental samples from female vs. male newborn infants. The blue and yellow boxes represent miRNAs with male-newborn-associated and
female-newborn-associated expression. Each dot represents one miRNA. c Distribution of miRNA evolutionary age for male-newborn-associated
(blue) and female-newborn-associated (orange) miRNA. The age scale extends from 433 Mya (age 0) to human-specific miRNA (age 12). Asterisks
indicate the significance of the difference (two-sided Wilcoxon test, * represents nominal p < 0.05). d Distribution of miRNA tissue expression
index (Tau) for male-newborn-associated (blue) and female-newborn-associated (orange) miRNA. Large values represent greater expression tissue-
specificity. e GO terms enriched in targets of male-newborn-associated (blue) and female-newborn-associated (orange) miRNAs. X-axis and the
number within circles indicate -log10-transformed p-values
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classified 46 mRNAs as potential targets of male-
associated miRNAs and 65 mRNAs as potential targets for
female-associated miRNAs, using a combination of
miRNA target predictions and the inverse relationship of
miRNA and target expression profiles as selection criteria.
Notably, the potential targets of male-associated miRNAs
were enriched in functional terms associated with glutam-
ate receptor signaling and endocrine processes (Fig. 3e;
Additional file 11: Table S7). By contrast, the potential tar-
gets of female-associated miRNAs were enriched in func-
tions linked to steroid hormones, estradiol, and
glucocorticoid response, as well as cell differentiation and
metabolic processes (Fig. 3e; Additional file 11: Table S7).

Expression of imprinted miRNA
One of the characteristic features of placental miRNA is
the prevalence of imprinted expression, a term referring
to complete or partial suppression of one of the parental
alleles [31]. To assess the extent of miRNA expression
imprinting in our data, we focused on the largest charac-
terized imprinted miRNA cluster, located on chromo-
some 19 (C19MC) and expressed almost exclusively in
the placenta [31, 32]. This cluster locus contains 67 ma-
ture miRNAs (hg38 chr19:53,665,746-53,761,746), of
which 66 were detected in our study (Additional file 8:
Table S5). Expression analysis of these 66 miRNAs re-
vealed a significant negative correlation with the
mother’s BMI (two-sided Wilcoxon test, p = 2.8 × 10− 14)
and weight (p = 1.7 × 10− 10), but not height (p = 0.27)
(Fig. 4a). This relationship was further apparent at the

level of individual miRNAs (Spearman correlation, p <
0.05; Fig. 4b).

Discussion
The placenta plays an essential role in fetal development.
Thus, understanding the role of factors determining
miRNA expression variation in this tissue can shed light
on the fundamental mechanisms of human developmen-
tal regulation and variability. Our study design helps to
address this question by minimizing sampling effects on
the results. The placentas were obtained from a single
location, all processed according to the same protocol,
and all collected at the same time point (birth). Sampling
was further averaged in each individual by taking five in-
dependently dissected tissue fragments. For each sample,
we recorded 26 demographic variables relating to
mothers and newborn infants, allowing us to assess their
influence on placental miRNA expression variation.
Our results demonstrate that of three investigated

non-environmental demographic variables, two substan-
tially influence the expression of common posttranscrip-
tional regulators, miRNAs, in the human placenta:
population identity and sex of the newborn. Population
has the most substantial influence explaining up to 11%
of the total miRNA variance, and the relative miRNA ex-
pression divergence among four populations investigated
in the study is consistent with their genetic divergence
(Two-sided Mantel permutation test, Spearman’s correl-
ation coefficients rho = 0.771, p = 0.08; Additional file 7:
Fig. S3) [4]. Since genetic divergence is largely thought
to reflect the accumulation of phenotypically neutral

Fig. 4 Expression of imprinted miRNAs in the C19MC cluster. a Correlation distribution between imprinted miRNAs located in the C19MC cluster
and demographic variables. Panel titles indicate the demographic variable used in the comparison. P-values for a two-sided Wilcoxon test are
shown within panels. b Five miRNAs showing a significant expression correlation with mother’s BMI. Each dot represents the expression level in a
sample. Colors represent human populations as illustrated in Fig. 1a. Shaded areas represent confidence intervals. Spearman’s correlation
coefficients rho (R) and p-values (p) are displayed in the top right corner of each scatter plot
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mutations [33], it is therefore conceivable that miRNA
variation among populations is similarly influenced by
the phenotypically neutral changes. This notion aligns
with previous work suggesting that mRNA expression
divergence includes a substantial proportion of function-
ally and phenotypically neutral changes [29, 34]. How-
ever, environmental/social differences between the
groups sampled for this study could also contribute to
the observed effect of population identity on miRNA ex-
pression. Moreover, our current study only collected as
diverse a sample with respect to ancestry as feasible
given sampling constraints, to determine whether hu-
man population identity would at all affect placental
microRNA expression. It would be desirable to include
Hispanic American and other ancestries in future
studies.
Regulatory effects of population-associated miRNA ex-

pression differences estimated using mRNA expression
data derived mainly from the same tissue revealed sig-
nificant excess of expressional repression among pre-
dicted targets for only one of the six miRNA clusters.
This result appears to contrast the reported widespread
population-specific downregulation of miRNA targets
described in cell lines [26]. While part of this discrep-
ancy might be due to the limited statistical power of our
study, the rest could be caused by unequal extent of the
evolutionarily constraint in tissues and cell lines. As
other regulators controlling multiple targets, miRNAs
are under substantial evolutionary constraint [35, 36].
Assuming that most of the randomly arising population-
specific miRNA expression differences are non-adaptive,
those with large regulatory effects are likely to be detri-
mental and will not be observed in a natural tissue, such
as placenta. The artificial growth conditions of the cell
lines could, however, allow the manifestation of large-
scale population-associated regulatory effects of miRNA
variation.
Several technical factors might have further restricted

our ability to detect miRNA-driven regulation of their
predicted mRNA targets. Such factors include a mis-
match between computational and experimentally veri-
fied miRNA target predictions, sequestering of target
mRNA out of the translational pool without degradation,
and the complex and often a tissue-specific interplay be-
tween miRNAs and other regulators [37, 38]. Biologic-
ally, our study includes a limited number of populations
and biological replicates and certainly does not cover all
population-associated aspects of miRNA regulatory ef-
fects. Evolutionarily, as mentioned above, the proportion
of population-associated miRNA differences leading to
functionally meaningful effects might be minor, analo-
gous to genetic and mRNA divergence [4, 29]. It has to
be noted, however, that despite these limitations, the fact
that our study reveals many population-associated

miRNA expression differences indicates the importance
of further studies investigating the functional signifi-
cance of this phenomenon.
Previous investigation of mRNA expression in human

placenta reported 41 genes with sex-associated expres-
sion, 12 of them (30%) localized on sex chromosomes
[39]. The substantial prevalence for sex chromosome
localization was not, however, the case for SON-
associated differences in miRNA expression: of 32 miR-
NAs, four (13%) localize on sex chromosomes. Sex-
associated differences in miRNA expression were simi-
larly reported in human tissues other than the placenta.
Specifically, miRNA analysis across postnatal brain de-
velopment revealed 40 miRNAs with significant sex-
biased expression differences in the prefrontal cortex re-
gions, 93% of them female-biased [40]. Further, investi-
gation of four adult human tissues – brain, colorectal
mucosa, peripheral blood, and cord blood – revealing 73
female-biased and 163 male-biased expressed miRNAs
[41]. Notably, two of 32 SON-associated miRNAs over-
lapped with miRNAs showing corresponding sex-biased
expression in the adult brain, and two overlapped with
miRNAs showing such a bias in the peripheral blood. In
addition to human studies, sex-biased miRNA expres-
sion was reported in mouse brain [42], mouse liver [43],
rat liver [44], developing rat cortex [45], and other mam-
malian somatic tissues [46]. Previous studies singled out
hormonal regulation as the main driving mechanism of
miRNA sex-biased expression [43, 47]. In our study,
functional analysis of target genes downregulated by
SON-associated miRNAs in placenta similarly revealed
terms related to hormonal processes, but also in other
biological pathways.
In addition to the identification of population and

SON effects, our data allowed us to examine a well-
characterized phenomenon of imprinted miRNA expres-
sion in the human placenta [31]. Previously reported
imprinted expression of the miRNA cluster located on
chromosome 19 (C19MC) [31, 32] was also evident in
our data. Previous work further linked the amplitude of
the imprinting effect with the mother’s BMI [48]. Our
analysis of demographic variables indicated that the rela-
tionship between C19MC cluster imprinting and
mother’s BMI depends on the mother’s weight but not
the height.

Conclusions
Our results indicate that miRNA expression in the pla-
centa varies substantially due to the population identity
and the sex of the newborn. While the majority of popu-
lation effects might reflect recent evolutionary drift
caused by geographical separation, miRNA expression
differences associated with female newborns are evolu-
tionarily older than those associated with male newborns
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and display detectable regulatory effect on genes in-
volved in particular functional processes. Further, the
identification of regulatory effects induced by
population-associated miRNA expression differences
might differ between tissues and cell lines, highlighting
the need for further studies of miRNA variation in a
population framework.

Methods
Samples
Placental samples were obtained from a previously study
[29], and included ten individuals from each ancestry
(African American, European American, South Asian
American (India) and East Asian American ancestry
(Korea, China, Vietnam, and Taiwan)) from Northside
Hospital in Atlanta, Georgia with the approval of the
Northside Hospital Institutional Review Board (NSH
#804), as described previously [29]. The placenta dissec-
tion procedure was described in detail in the previous
study [29]. In short, we dissected centrally located villus
parenchyma tissue, avoiding the decidua, chorion, and
amnion, at five non-adjacent locations of each placenta
and pooled them into a single sample to homogenize the
cell types composition among samples. The sample in-
formation with 26 demographic variables was provided
under GEO (GSE66622).

Construction of indexed small RNA-Seq libraries
Total RNA was isolated from human placenta using Tri-
zol (Invitrogen, USA) according to the manufacturer’s
directions. RNA quality was determined using Agilent
6000 Nano chips on an Agilent Technologies 2100 Bioa-
nalyzer. Samples with RIN > 6 were selected for library
construction. Sequencing libraries were constructed in a
single batch according to the TruSeq SmallRNA Libary
Preparation guide (Illumina) with no modification. In
each sequencing lane on an Illumina HiSeq X10 plat-
form, we pooled 14 samples with different index se-
quences and carried out 150-bp paired-ended sequences.
We randomly distributed 10 African American, 10 Euro-
pean American, 10 South Asian American, and nine East
Asian American samples into three sequencing lanes.
We further included the tenth East Asian American
sample (X14) into each of the three lanes to control for
potential sequencing artifacts among the lanes (Add-
itional file 1: Table S1).

Sequence mapping and novel miRNA identification
The adapter sequence at the 3′-end of each read was
trimmed using cutadapt v1.13 [49] with parameters -m
17 -M 50 -a TGGAATTCTCGGGTGCCAAGG -A
GATCGTCGGACTGTAGAACTCTGAAC. Novel miR-
NAs for each sample were detected using the miRDeep2
algorithm with default parameters based on the human

genome (hg38) and miRbase v22 as references [50]. Pre-
dicted rRNA/tRNA reads and reads with the miRDeep2
score < =5, representing the miRNA hairpin properties
matching, were removed from the following analyses. Se-
quencing reads mapped to overlapping miRNA genomic
locations were merged across all samples. The detected
miRNAs with no overlap with known mature miRNA
genomic positions were considered as novel.

miRNA expression quantification
The trimmed raw sequences that were at least 17 bp
long were mapped allowing no mismatches to the se-
quences of known and novel mature miRNAs deter-
mined as described in the previous section, extending 8
nt both up and downstream, using the Bowtie algorithm
[51]. To quantify miRNA expression, only the reads
from the R1 strand were considered. Following the
protocol described in [52], the expression value of each
miRNA was calculated as the number of reads mapping
to the reference sequence for the mature miRNA. All
miRNA read count data were log2 transformed and
quantile normalized. As sequences were obtained in
three batches, the batch effect, identified by principal
component analysis, was removed by the removeBatch-
Effect (limma) algorithm (Additional file 5: Fig. S1). The
detailed read mapping information is listed in Additional
file 2: Table S2. Based on a principle component analysis
of all 42 samples, four samples were considered as out-
liers based on their dispersion and were removed from
further analysis (Additional file 5: Fig. S1c). In total, data
from 8 African American, 10 European American, 8
South Asian American and 10 East Asian American in-
dividuals were retained.

Estimation of miRNA expression variation
Of the 26 demographic variables provided in the previ-
ous study [29](GSE66622), 12 had at least five observa-
tions for each level. These 12 variables include: birth
delivery type (Cesarean or natural), sex of the newborn,
maternal body mass index, number of pregnancies, has
pregnancy infection or not, first pregnancy or not,
mother’s age, birth length of the newborn child, birth
weight of the newborn child, number of children,
drinker or not, and population identity. For these vari-
ables we estimated miRNA expression variation using a
multivariate Type I analysis of variance with the above
sequential ordering, denoted as Model1 (ANOVA; aov()
function in the R stats package; Additional file 13: Table
S8). The variation explained by each factor was esti-
mated by an eta-squared statistic using the sums of
squares.
In a second model (Model2), we recalculated the eta-

squared statistics after subtracting the potential effects
of four continuous demographic variables using linear
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regression. The four continuous variables modeled first
were: maternal body mass index, birth weight of the
newborn child, mother’s age and birth length of the
child. The residuals for each miRNA were carried for-
ward into subsequent linear regressions that included
birth delivery type (Cesarean or natural), sex of the new-
born and population identity. The estimations of vari-
ation explained agreed well between model1 and model
2 (Fig. 1c). Model2 as described here was used to iden-
tify miRNAs with population and sex of a child effects.

Identification of population-associated miRNA expression
differences
To identify miRNAs differentially expressed between
populations, we applied an ANOVA test with factors
contributing the most to the general variation effects
listed in the model in the following order: birth delivery
type, sex of the newborn, and population. The expres-
sion data used in this analysis were adjusted for the con-
tinuous demographic variables as described in the
previous section. To estimate the significance of results,
we applied the same test 1000 times to the dataset with
randomly permuted individual labels. The permutation
p-value was calculated as the proportion of times in
which the number of significantly differentially-
expressed miRNAs was greater than or equal to the ob-
served difference in the data.
To further identify the miRNAs differentially

expressed between any two human populations, we ap-
plied a two-sided pairwise t-test (pairwise.t.test in R
multcomp package). Differentially-expressed miRNAs
were defined as those with a p < 0.05 after Benjamini-
Hochberg correction.

Clustering of population-associated placental miRNA
To detect co-expression patterns among 93 population-
associated miRNAs, we applied a hierarchical clustering
method (hclust function in R) on z-transformed miRNA
expression values with (1-rho) as the distance measure,
where rho is the Spearman correlation coefficient. To
define miRNA clusters we used the cutree() function
(from the R stats package) and set k, the number of clus-
ters, to six. The choice of k = 6 was based on visual in-
spection of the dendrogram (Fig. 2b).

Construction of population dendrograms
To illustrate the extent of the expression difference
among human populations, we built unrooted neighbor
joining trees (nj function in R package ape) using the
Euclidean distances between the mean expression of
each miRNA in each population. The expression level of
each miRNA was scaled by the mean expression of this
miRNA across all samples. A single population tree was
generated by estimating the mean Euclidean distance

across all miRNAs (Additional file 6: Fig. S2a). A differ-
entially expressed (DE) tree was generated by taking the
mean Euclidean distance across 93 DE miRNAs (Fig. 2a)
or 139 DE miRNAs (Additional file 6: Fig. S2b). The
same approach was applied to human genetic data with
distances based on the Fst values from the 1000 genome
project [4]. Populations used for genetic data included
African Americans, CEPH, Telugu, Han Chinese, South-
ern Han Chinese, and Kinh Vietnamese to match the
populations used in our study. The mean Fst value of
the Han Chinese, Southern Han Chinese, and Kinh Viet-
namese populations was considered as the value for the
East Asian population.

Quantification of miRNA expression tissue specificity
We downloaded 87 miRNA expression datasets derived
from 12 healthy tissues from miRmine database [53].
Tissue specificity was measured by the tau index [54]
using quantile normalized log2-RPM expression data. A
tau value can range between 0 for house-keeping genes
and 1 for tissue-specific genes.

Dating of human miRNA evolutionary ages
To estimate miRNA evolutionary age, we first down-
loaded all hairpin sequences for the 23 species listed in
Additional file 14: Table S9 from miRBase v22. We then
mapped the hairpin sequences to all of the 23 genomes
using blastn with parameter -evalue 1e-5. A positive hit
was called when the sequence overlapped with another
species’ known miRNA coordinates using bedtools inter-
sect with default parameters. If a miRNA pair could be
blasted reciprocally, it was considered to be a one-to-
one miRNA hit. Next, according to Additional file 14:
Table S9, we assigned each miRNA to an age group
from 0 to 12, where 0 is the oldest and 12 is the most re-
cent evolutionary age group. We considered the evolu-
tionary age of the pre-miRNA to correspond to the
evolutionary age of the mature miRNA.

miRNA target prediction and functional analysis of miRNA
targets
We downloaded miRNA predicted targets using miR-
NAtap [55], requiring a predicted target to be identified
by at least three of the five following methods: “pictar”,
“diana”, “targetscan”, “miranda” and “mirdb”. To get po-
tential targets for each cluster of population-associated
miRNAs, we assessed if predicted target genes for a clus-
ter of miRNAs were negatively regulated compared to
non-target genes (Spearman correlation coefficient rho<
− 0.5; one-sided Wilcoxon rank test p < 0.05). To identify
potential targets of SON-associated miRNAs, we re-
quired the absolute expression fold change of miRNA
targets to be greater than 0.1 and the direction of change
to be opposite to the direction of miRNA expression
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difference. The normalized expression of miRNA targets
was obtained from [29].
Gene ontology (GO) and pathway enrichment tests

were processed with Metascape [56] with all genes
expressed in human placenta used as a background. The
GO terms with -log10(p) > 2 were reported as signifi-
cantly enriched.

miRNA disease association analysis
We used the database TAM2.0 [57] to analyze the func-
tional and disease associations of miRNAs with cancer-
related terms masked. All expressed human placenta
miRNAs were taken as a background. The terms with
nominal p < 0.05 were reported as associated diseases.

Statistical analysis and software
All statistical analyses and plots were performed in the R
environment (http://www.r-project.org/), using packages
preprocessCore, multcomp, limma, dendextend, ggpubr,
ggsci, ggplot2, gridExtra, reshape2, miRNAtap and cul-
tevo. TAM2.0 was used for miRNA disease association
and Metascape was used for the miRNA target enrich-
ment test.
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