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Abstract 

We present GTDrift, a comprehensive data resource that enables explorations of genomic and transcriptomic characteristics alongside proxies 
of the intensity of genetic drift in individual species. This resource encompasses data for 1506 eukaryotic species, including 1 41 3 animals and 
93 green plants, and is organized in three components. The first t wo components cont ain appro ximations of the effectiv e population siz e, 
which serve as indicators of the extent of random genetic drift within each species. In the first component, we meticulously investigated public 
databases to assemble data on life history traits such as longevity, adult body length and body mass for a set of 979 species. The second 
component includes estimations of the ratio between the rate of non-synonymous substitutions and the rate of synonymous substitutions 
(d N / d S ) in protein-coding sequences for 1324 species. This ratio provides an estimate of the efficiency of natural selection in purging deleterious 
substitutions. A dditionally, w e present polymorphism-derived N e estimates for 66 species. The third component encompasses various genomic 
and transcriptomic characteristics. With this component, we aim to facilitate comparative transcriptomics analyses across species, by providing 
easy-to-use processed data for more than 16 0 0 0 RNA-seq samples across 491 species. These data include intron-centered alternative splicing 
frequencies, gene e xpression le v els and sequencing depth statistics for each species, obtained with a homogeneous analysis protocol. To 
enable cross-species comparisons, we provide orthology predictions for conserved single-copy genes based on BUSCO gene sets. To illustrate 
the possible uses of this database, we identify the most frequently used introns for each gene and we assess how the sequencing depth 
a v ailable f or each species affects our po w er to identify major and minor splice v ariants. 
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ntroduction 

enetic drift refers to stochastic fluctuations in allele frequen-
ies within a population across successive generations. These
uctuations arise due to the inherently random sampling of
ndividuals that reproduce and pass on their alleles to subse-
uent generations ( 1 ,2 ). Population genetics principles state
hat the ability of natural selection to promote beneficial mu-
ations or eliminate deleterious mutations depends on the in-
ensity of selection ( s ) relative to the power of genetic drift
defined by the effective population size, N e ): if the selection
oefficient is sufficiently weak relative to drift (| N e s | < 1),
lleles behave as if they are effectively neutral ( 3 ,4 ). Thus,
andom drift sets an upper limit on the efficiency of selec-
ion. This limit is called the ‘drift barrier’ ( 5 ,6 ). Genomes that
re subject to intense genetic drift are expected to be less
ell-optimized compared to those experiencing lower genetic
rift. Michael Lynch proposed that variation in the ability
o purge slightly deleterious mutations ( i.e. variation in N e )
an account for differences in genome characteristics among
pecies ( 7 ). This hypothesis has been empirically validated
or multiple genome characteristics and phylogenetic clades.
or example, it was shown that the genomes of crustacean
pecies with low N e values are larger than those of their sis-
er species ( 8 ). Moreover, species with large N e tend to have
 lower mutation rate than species with low N e , illustrat-
ng the notion that natural selection acts to improve replica-
eceived: February 1, 2024. Revised: April 22, 2024. Editorial Decision: May 22
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tion fidelity, within the constraints defined by random genetic
drift ( 9 ). 

We recently examined the variations in transcriptome com-
plexity across animal species in light of the ‘drift barrier’ hy-
pothesis ( 10 ). In multicellular eukaryotes, the vast majority of
genes give rise to multiple isoforms through alternative splic-
ing ( 11 ). This phenomenon has attracted a great deal of in-
terest since its discovery almost 50 years ago ( 12 ). Alterna-
tive splicing is commonly hypothesized to be adaptive, be-
cause it can increase the number of biological functions that
are encoded in each genome. Indeed, numerous instances of
alternative splicing patterns with beneficial effects have been
identified ( 13–19 ). However, these examples represent only a
small fraction of all splice variants that are now known, espe-
cially given the substantial detection power brought by next-
generation RNA sequencing (RNA-seq) techniques. Many of
the splice variants that can now be detected with RNA-seq
are present at very low frequencies ( 20 ,21 ) and are poorly
conserved during evolution ( 14 ,15 ). It was thus hypothesized
that they may be the result of errors of the splicing machin-
ery, rather than functional isoforms ( 22–31 ). Notably, accord-
ing to the ‘drift barrier’ hypothesis, one may hypothesize that
if alternative splicing (AS) primarily serves functional roles,
the rate of alternative splicing should increase with N e . Con-
versely, if AS predominantly involves deleterious processes,
its rate should decline with increasing N e . We applied this
, 2024. Accepted: May 27, 2024 
enomics and Bioinformatics. 
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Figure 1. Phylogenetic distribution of the species included in the GTDrift 
database. The phylogeny was retrieved from TimeTree ( 59 ). Not all 
species studied are present ( N = 1220). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

D
ow

nloaded from
 https://academ

ic.oup.com
/nargab/article/6/2/lqae064/7691539 by guest on 12 June 2024
reasoning in our previous work ( 10 ), which led us to deduce
that AS is predominantly non-functional. 

This methodology for exploring the impact of N e on bi-
ological processes holds potential for broader applications.
For example, one could examine the functional importance
of alternative polyadenylation sites ( 26 ). Such investigations
demand cross-species comparative transcriptomics analyses, a
task facilitated by the abundant availability of publicly acces-
sible RNA-seq data. Yet, analysis of transcriptome sequencing
data is resource-intensive in terms of time, energy, and com-
putational power. To facilitate future analyses, we provide a
comprehensive database that streamlines the process by offer-
ing pre-processed data. This dataset includes proxies for ef-
fective population size, sets of orthologous single-copy genes,
gene expression levels, and intron-centered alternative splicing
frequencies, along with phylogenetic trees to control for phy-
logenetic inertia. These resources have been compiled for 16
000 RNA-seq samples spanning 1506 multicellular eukaryotic
species. 

This database, that we name GTDrift, complements other
public transcriptomic data resources, such as Bgee ( 32 ),
which provides gene expression levels for 52 species (Ver-
sion 15.0.1), but not alternative splicing frequencies. Other
databases do provide alternative splicing frequencies. For ex-
ample, MeDAS ( 33 ) provides AS data for 18 metazoan species,
and MetazExp ( 34 ) provides data for 72 metazoan species.
This latter resource is substantial, including data for ∼53
000 RNA-seq samples. However, this database favors insects
(53 species, with ∼26 000 RNA-seq samples for Drosophila
melanogaster ) and does not include any representative of the
vertebrate clade, for which more computational resources are
required because of their large genomes. Our database encom-
passes a broader phylogenetic distribution of species (Figure
1 ), with 93 green plant species, 560 invertebrates and 853
vertebrates. Moreover, while other public databases such as
MetazExp are aimed at biologists who want to analyze al-
ternative splicing patterns in a gene-by-gene manner through
web queries, in GTDrift we provide all data in flat files, which 

enable downstream computational analyses. GTDrift is thus 
mainly aimed at users with some computational skills. Nev- 
ertheless, we have created a user-friendly Shiny app to fa- 
cilitate exploration of the database and species-specific data 
downloads. 

In GTDrift, we used assemblies and annotations data col- 
lected from The National Center for Biotechnology Informa- 
tion (NCBI) ( 35 ), as well as publicly available RNA-seq data 
to investigate alternative splicing patterns and gene expression 

profiles. We computed summary statistics across all analyzed 

RNA-seq samples for each species, which enabled us to de- 
termine whether the available sequencing depth is sufficient 
for the study of alternative splicing. To ensure comparability 
across species, we annotated Benchmarking Universal Single 
Copy Orthologs (BUSCO) ( 36 ) genes in all species and pro- 
vide phylogenetic trees to control for phylogenetic inertia. 

We believe that this tremendous amount of information 

should be shared with the scientific community, because it pro- 
vides the means to investigate the impact of genetic drift on 

genome and transcriptome architecture, on a broad phyloge- 
netic scale. 

Materials and methods 

Species selection 

The first criterion for species inclusion in GTDrift is the avail- 
ability of a genome assembly and annotation in the NCBI 
database ( 35 ,37 ), as well as the availability of RNA-seq data in 

the Short Read Archive ( 38 ). We included 1506 multicellular 
eukaryotic species. This collection encompasses 1413 animal 
species as well as 93 species of green plants (Figure 1 ). Our 
Snakemake pipeline can be applied to any species for which 

genome sequence, genome annotation and RNA-seq data are 
available, which will enable us to further expand GTDrift in 

the future ( 39 ). 

Collecting life history traits 

We queried several databases to acquire three specific life his- 
tory traits, namely: maximum longevity, body mass, and body 
length. These traits were previously identified as suitable prox- 
ies for estimating the effective population size ( 40–44 ). For 
eusocial species, which live in colonies and have both repro- 
ductive and non-breeding individuals, we gather data on the 
queen of the colony. For solitary species, we did not take into 

account the sex of the individuals, i.e. we retained the maxi- 
mum value observed. 

We employed several distinct methodologies to screen the 
databases. We initially used a manual approach to search 

across various sources of information, including scientific pa- 
pers and databases. 

We manually searched for information on life history traits 
from four prominent databases, which encompass diverse tax- 
onomic groups. The Animal Ageing and Longevity Database 
(AnAge) ( 45 ), is renowned for its comprehensive collection 

of vertebrates, particularly mammals. The Encyclopedia of 
Life (EOL) ( 46 ,47 ) encompasses a wide spectrum of species,
prominently featuring invertebrates. The Animal Diversity 
W eb (AD W) ( 48 ), is a particularly rich resource for inver- 
tebrates. The FishBase ( 49 ) predominantly houses data on 

teleostei species. While AnAge furnishes extensive information 

regarding body mass and lifespan, it is lacking data pertain- 
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ng to body length (Figure 2 A–C). Furthermore, as previously
oted, certain databases are tailored to specific clades. For in-
tance, in comparison to EOL and ADW, AnAge contains rel-
tively fewer records for invertebrates (Figure 2 D–F). 

We then made efforts to automate the manual search pro-
edures. The primary automated procedure involved the de-
elopment of a bash script, which utilized the Latin nomen-
lature of the species to navigate the textual content within
he research pages of the 4 databases listed above. The bash
cript was designed to extract sentences, words, and numeri-
al data in proximity to keywords such as ‘longevity’, ‘mass’,
weight’ and ‘length’, serving as indicators of relevant infor-
ation. Its output was then reformatted through an R script.
hile this approach proved effective for databases like An-

ge, EOL and FishBase, its applicability to the ADW database
as limited due to the manner in which information is embed-
ed within textual paragraphs. Consequently, we employed
n alternative method for the ADW database, involving Ma-
hine Learning and Natural Language Processing Question-
nswering techniques. We obtained a trained model named

tinyroberta-squad2’ from huggingface.co. This model was
sed to answer questions related to specific attributes, such as
what is the body length ?’; ‘what is the body mass ?’; ‘what
s the longevity ?’. Each question retrieved a pool of 100 po-
ential answers derived from the database’s textual content,
anked by their predictive scores provided by the model. 

We implemented an iterative selection process to identify
he highest predicted answer containing relevant units and nu-
eric values. To avoid redundancy, the selected answer was

hen removed from the text, and the process was repeated
p to 10 times. The entire procedure was implemented in a
ython script. We processed the script’s output to restructure
he obtained results. 

Discrepancies between the manual approach and the other
wo methodologies were further re-investigated manually and
orrected as needed after a further re-reading of the text. As
 result, the curated dataset that we share reflects our highest
evel of confidence. 

In total, our data collection effort resulted in the acquisition
f life history traits for 979 metazoan species. 

cquisition of the reference genome sequence and 

nnotations 

sing the sra-tools software, we performed an automated
dentification of the reference genome for each species. Subse-
uently, we downloaded the annotation data in GFF format,
he nucleotide coding sequences in FASTA format, and the
eptide sequences in FASTA format from the NCBI database
 35 ). 

N / dS pipeline 

e developed a pipeline to estimate the rate of non-
ynonymous substitutions divided by the synonymous sub-
titutions rate (d N / d S ), representing the frequency at which
on-synonymous changes occur relative to synonymous ones.
ince non-synonymous substitutions are commonly perceived
s errors, d N / d S serves as a measure of the rate of erroneous
ubstitutions per neutral substitution. This ratio is directly de-
endant of N e as it is jointly determined by the distribution of
election coefficient of new mutations ( s ) and the magnitude of
enetic drift as defined by N e ( 50 ,51 ). The transcriptome-wide
 N / d S is expected to rise over prolonged periods of small N e
due to the increasing number of slightly deleterious mutations
reaching fixation ( 43 ,52 ). 

Estimating the d N / d S necessitates the annotation of genes
shared across all species, their evolutionary history depicted
by a phylogenetic tree, and finally a comparative analysis of
site evolution to derive the d N / d S ratio. 

BUSCO genes identification 

We used the BUSCO v.3.1.0 software to identify single-copy
orthologous genes within three datasets selected from Or-
thoDB v9 ( 53 ): eukaryota ( N = 303 genes), embryophyta
( N = 1440 genes) and metazoan ( N = 978 genes) sourced
from BUSCOv3 ( 36 , 54 , 55 ). The search was performed against
the longest annotated protein sequences per gene within each
genome. 

Phylogenetic tree reconstruction 

Due to the considerable time and resource demands associ-
ated with phylogenetic inference for large numbers of species,
we employed a strategy in which the analysis was partitioned
by clades. On initial releases of the database, which did not
encompass all current species, we performed three compara-
ble and independent analyses that rely on the three BUSCO
datasets, corresponding to the following lineages: eukaryota,
embryophyta and metazoa. For each BUSCO dataset, we se-
lected a subset of species that matched the lineage of inter-
est from the available database records at the time of anal-
ysis. All of these selected species underwent transcriptomic
analyses (see Transcriptomic analyses). We then collected the
longest corresponding proteins identified in each species for
each BUSCO gene family. We removed proteins for which
the amino acid sequence provided with the annotations did
not perfectly correspond to the translation of the correspond-
ing coding sequences. We then aligned the resulting sets of
protein-coding sequences for each BUSCO gene, using the
codon alignment option in PRANK v.170427 ( 56 ). We trans-
lated the codon alignments into protein alignments using the
R package seqinr ( 57 ). 

A filter was applied to retain only genes for which enough
species have been detected (85% of the analyzed species), re-
ducing the eukaryota set to 126 genes (embryophyta N = 387
genes, metazoa N = 731 genes). Then, species were removed
from the analysis if they had < 80% of the studied genes, re-
ducing the number of studied species from 336 to 279 for
the eukaryota BUSCO dataset (embryophyta 93 to 80 species,
metazoa 293 to 257 species). 

To infer the phylogenetic tree rapidly, we sub-sampled the
resulting multiple alignments, selecting alignments with the
highest number of species (eukaryota N = 25 genes, em-
bryophyta N = 77 genes, metazoa N = 146 genes). We then
concatenated these alignments and kept sites that were aligned
in most of the analyzed species (see information provided in
the supplementary archive for more details). The final align-
ment for the eukaryota BUSCO dataset included 279 taxa
(embryophyta N = 80 species, metazoa N = 257 species) taxa
and 600 807 sites (embryophyta N = 670 083 sites, metazoa
N = 3 135 111 sites). We used RAxML-NG ( 58 ), to infer the
species phylogeny on these final alignments. RAxML was set
to perform one model per gene with a fixed empirical sub-
stitution matrix (LG), empirical amino acid frequencies from
alignment (F) and eight discrete GAMMA categories (G8).
These parameters were specified in a partition file with one
line per BUSCO gene multiple alignment. The analysis gener-
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A B C

D E F

Figure 2. Representation of life history traits retrieved from diverse data sources. Depiction of data origins for lifespan ( A ), body length ( B ),and body 
mass ( C ). Additionally, distribution of species and their respective clades with at least one recorded life history trait in ADW ( D ), EOL ( E ) and AnAge ( F ). 
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ated at least 10 starting trees. The best-scoring topology was
kept as the final ML tree and 10 bootstrap replicates have been
generated. 

The phylogenetic trees were rooted using as a reference
source the TimeTree phylogeny, which synthesizes data from
numerous published studies, despite its incomplete represen-
tation of all species ( 59 ). 

To encompass a broader spectrum of the species included
in our latest database release, the one published here, we also
reconstructed phylogenetic trees per clade. To do this, we di-
vided the full set of metazoan species in nine groups (Hy-
menoptera, Diptera grouped with Lepidoptera under the su-
perorder Mecopterida, Nematoda, other insects, Aves, Mam-
malia, Teleostei, other vertebrates, and finally other inverte-
brates). We ranked the 731 metazoan BUSCO genes in de-
creasing order of the number of species in which they were
annotated. We then selected as a basis for the analyses the 73
genes at the top of this list, corresponding to the top 10%
genes. We applied the protocol described above to each in-
dividual clade. The resulting clade-specific trees were merged
using outgroup species as a reference point to construct the
complete metazoan phylogenetic tree. 

dN / dS computation 

We computed d N / d S ratios for BUSCO gene families that
were present in at least 85 percent of the species under in-
vestigation. We conducted four independent analyses. We first
analyzed each of the three BUSCO gene sets: eukaryota ( N
= 126 genes), embryophyta ( N = 387 genes), metazoa ( N
= 731 genes). We also performed an analysis ‘ per clade’, as
explained above for the phylogenetic tree reconstruction, us-
ing the same 731 genes preselected in the metazoa analysis.
Codon alignments obtained using PRANK ( 56 ) served as the 
basis for this estimation. To manage the computational mem- 
ory demands during the substitution rate estimation step, we 
segmented the sequence alignments into clusters. Following 
the approach recommended by Bolívar et al. ( 60 ), these clus- 
ters were defined based on the average GC3 content across 
species, in order to group genes with similar parameters. We 
then concatenated the alignments within each group, obtain- 
ing alignments that were 200 kb long on average. This process 
yielded 13 groups for eukaryota (15 for embryophyta and 73 

for metazoa). We used bio++ v.3.0.0 libraries ( 60–62 ) to esti- 
mate the d N / d S on each branch of the phylogenetic tree, for 
each concatenated alignment. 

In a first step, we used an homogeneous codon model im- 
plemented in bppml to infer the most likely branch lengths,
codon frequencies at the root, and substitution model param- 
eters. We used YN98 (F3X4) ( 50 ) substitution model, which 

allows for different nucleotide content dynamics across codon 

positions. In a second step, we used the MapNH substitution 

mapping method to count synonymous and non-synonymous 
substitutions ( 63 ,64 ). We defined d N as the total number of 
non-synonymous substitutions divided by the total number 
of non-synonymous mutational opportunities, both summed 

across concatenated alignments, for each branch of the phy- 
logenetic tree. Likewise, we defined d S as the total num- 
ber of synonymous substitutions divided by the total num- 
ber of synonymous mutational opportunities, both summed 

across concatenated alignments. The per -species d N / d S cor- 
responds to the ratio between d N and d S , on the termi- 
nal branches of the phylogenetic tree. We also provide the 
d N and d S values for each branch within the phylogenetic 
trees. 
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For the ‘ per clade’ approach, the results pertaining to dis-
inct clades were combined in a single table. 

olymorphism-derived N e estimates 

n Lynch et al. ( 65 ) the per species germline mutation rate ( μ)
nd level of neutral diversity ( πs ) was integrated into the equa-
ion N e = πs / 4 μ, to produce what we named a ‘polymorphism-
erived N e ’. This more direct estimates of N e was calculated
or 65 of the species in our dataset. 

Additionally, we expanded our dataset with the N e estimate
or C. nigoni by including πs = 0.06 (Asher Cutter, personal
ommunication) and μ = 1.3 × 10 

−9 (assuming a similar mu-
ation rate as in C. briggsae ( 66 )). 

ranscriptomic analyses 

e developed a pipeline facilitating the detection of alterna-
ive splicing events within genes. This process entails the se-
ection of RNA-seq data, subsequent alignment to the refer-
nce genome, and the identification of splicing events through
he recognition of introns. Utilizing the aligned transcriptomic
ata, we computed gene expression levels across each sample.

election of the RNA-seq samples 
o extract RNA-seq data, we queried the Short Read
rchive (SRA) database for samples where the library source
as ‘TRANSCRIPTOMIC’ and the library strategy was

RNA-seq’. 
For perfect comparability of transcriptome data among

pecies, we would need to have the same representation of
ndividual tissues, developmental stages etc. for each species,
ith data generated with the same protocol by the same per-

on. However, such data exist only for limited sets of species
 e.g. ( 67 )). Here, we decided not to filter the RNA-seq samples
n criteria pertaining to sample origin or experimental proto-
ols, mainly because the relevant information is not always
rovided in sufficient detail in the SRA database ( 38 ). More-
ver, depending on the clade, the biological sample of origin
an vary from ‘whole body’ in insects, to specific tissues or cell
ypes in mammals. Thus, perfectly comparable sample collec-
ions are difficult to obtain across such a broad phylogenetic
cale. 

Rather than filtering samples on these criteria prior to inclu-
ion in the database, in GTDrift we provide users with the in-
ormation collected from SRA for all RNA-seq samples. This
nformation includes the library type, the date of extraction
nd the name of the laboratory that performed the experiment
see Description of the data available in GTDrift). 

After evaluating the amount of RNA-seq data that is needed
o evaluate global alternative splicing patterns for each species
see below), we decided to include a maximum of 50 RNA-
eq samples per species in GTDrift. We included more than
0 samples for 150 species (43 embryophyta, 107 metazoa),
or which we performed more detailed analyses, considering
arious tissues or developmental stages. 

In the current version of GTDrift, the RNA-seq dataset en-
ompasses a total of 491 distinct species, including 92 plants
nd 399 animals. (Figure 3 A). 

ndexing genomes and aligning RNA-seq data 
he RNA-seq alignment phase represents the most time-
onsuming stage in the pipeline (Figure 4 ), and can extend up
to one week when utilizing 16 cores for each RNA-seq dataset,
particularly for larger genomes such as those of mammals. 

For this step, HISAT2 version 2.1.0 was employed to align
RNA-seq reads to the respective reference genomes ( 68 ). To
enhance the sensitivity of splice junction detection, we con-
structed genome indexes incorporating annotated intron and
exon coordinates along with genome sequences. The maxi-
mum permitted intron length was set at 2 000 000 bp. The
processed and compressed files generated during this proce-
dure can amass a size exceeding 20 terabytes. 

We extracted intron coordinates from the HISAT2 align-
ments, utilizing a custom Perl script that scanned for CIGAR
strings containing ‘N’ characters, which indicate skipped re-
gions in the reference sequence. For intron identification and
quantification, we exclusively utilized uniquely mapped reads
with a maximum mismatch fraction of 0.02. In the context
of new intron identification, we imposed a minimum anchor
length ( i.e. part of the read that spans each of the two exons
flanking a given intron) of 8 bp. We then quantified intron
splicing frequencies by including aligned reads with a mini-
mum anchor length of 5 bp. We retained predicted introns
exhibiting GT–A G, GC–A G or AT–A C splice signals and de-
termined the intron strand based on the splice signal. 

Introns were assigned to genes if at least one of their bound-
aries was within 1 bp of annotated exon coordinates, com-
bined across all isoforms for each gene. Intron assignments
were limited to those that could be unambiguously associ-
ated with a single gene. Notably, we differentiated between
annotated introns, present in the reference genome annota-
tions, and unannotated introns, identified through RNA-seq
data and assigned to previously annotated genes. 

We identified introns situated within protein-coding re-
gions. To do this, for each protein-coding gene, we extracted
annotated start and stop codon positions across all anno-
tated isoforms. The minimum start codon and maximum end
codon positions were identified, and introns located upstream
or downstream of these extreme coordinates were considered
as interrupting untranslated regions. 

Alternative splicing variables 
For each intron, we recorded two key variables: N s represent-
ing the number of reads corresponding to the precise removal
of the intron (referred to as spliced reads), and N a represent-
ing the count of reads supporting alternative splicing events
( i.e. spliced variants sharing only one of the two boundaries of
the focal intron). Additionally, we denoted N u as the count of
unspliced reads that align linearly with the genomic sequence
and span at least 10 bp on both sides of an exon-intron junc-
tion. These definitions are visually clarified in (Figure 3 B, C).
Subsequently, we introduced the relative measurement of the
target intron’s abundance compared to introns with a single
alternative splice boundary ( RAS = 

N s 
N s + N a 

), as well as relative

to unspliced reads ( RANS = 

N s 

N s + 

N u 
2 

). 

To compute these ratios, we required at least 10 reads in
their denominators. Thus, we computed the RAS only when
( N s + N a ) ≥ 10, and the RANS only when ( N s + 

N u 
2 ) ≥ 10 . We

divided N u by 2 because unspliced reads that span the two in-
tron boundaries likely refer to the same intron retention event.
If these conditions were not met, the resulting values were des-
ignated as unavailable (NA). These ratios were computed uti-
lizing data from all available RNA-seq samples, unless explic-
itly specified ( e.g. in sub-sampling analyses). Based on these
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A

B

C

Figure 3. Species with transcriptomic data and alternative splicing estimation. ( cf Figure 2 A Bénitière et al. (2024)( 10 )) ( A ) Taxonomic distribution of the 
species for which transcriptomic data was included in GTDrift. ( B ) Definition of the variables used to compute the relative splicing frequency of a focal 
intron, compared to splice variants with a common alternative splice boundary (RAS) or compared to the unspliced form (RANS): N s : number of spliced 
reads corresponding to the precise e x cision of the focal intron; N a : number of reads corresponding to alternative splice variants relative to this intron ( i.e. 
sharing only one of the two intron boundaries); N u : number of unspliced reads, co-linear with the genomic sequence. ( C ) Definitions of the main 
variables used in this study. The definition of the variables corresponds to the one provided in Bénitière et al. ( 10 ). 
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ratios, we divided introns into three categories: major-isoform
introns, defined as those introns that have RANS > 0.5 and
RAS > 0.5 (these likely correspond to the introns of major iso-
forms ( 10 , 20 , 21 ); minor-isoform introns, defined as those in-
trons that have RANS ≤0.5 or RAS ≤0.5 (these introns are de-
tected in a minority of transcripts); unclassified introns, which
do not satisfy the above conditions. 

Gene expression estimation 

Gene expression levels were computed using Cufflinks ver-
sion 2.2.1 ( 69 ,70 ), utilizing the read alignments obtained with
HISAT2 for each individual RNA-seq sample. We thus eval-
uated gene expression levels with the Fragment Per Kilobase
of exon per Million mapped reads (FPKM) method. To deter-
mine the representative expression level of each gene, the mean
FPKM was calculated across all samples, taking into consid-
eration the sequencing depth of each sample, called ‘weighted
FPKM’. We used this measure to evaluate the relationship
between alternative splicing rates and gene expression levels,
within each species. 
Estimation of the sequencing depth 

We determined for each gene the union of all annotated 

exon coordinates (termed here exon blocks). Using bedtools 
v2.25.0 ( 71 ), we assessed the read coverage at each position 

of the exon blocks. The average exonic per -base read cover- 
age was subsequently computed for each gene. The sequenc- 
ing depth of a given sample was evaluated through the median 

per -base read coverage across BUSCO (Benchmarking Univer- 
sal Single-Copy Orthologs) genes. 

Data visualization using a Shiny app 

A Shiny app available at https://lbbe- shiny.univ- lyon1.fr/ 
ShinyApp-GTDrift/ was deployed to allow users to visual- 
ize and compare the summarized data. Most of the graph- 
ics shown in this paper are directly reproducible from the 
app. In this app, users can also visualize and download intra- 
species variables, for example comparing introns or gene 
characteristics. Furthermore, a specific tab is dedicated to 

the investigation of gene structure in relation to the splicing 

https://lbbe-shiny.univ-lyon1.fr/ShinyApp-GTDrift/
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Figure 4. Description of the bioinformatic analysis pipeline (adapted from Supplementary Figure 11 , ( 10 )). First, we retrieved genomic sequences and 
annotations from the NCBI Genomes database. We aligned RNA-seq reads on the corresponding reference genomes with HISAT2. We used these 
alignments to estimate various variables related to splicing patterns (see Figure 3 ), to compute the AS rate, and to estimate gene expression using 
Cufflinks. To compute the dN / dS ratios, we first identified BUSCO genes with BUSCOv3 and aligned their coding sequences (CDS) using PRANK (codon 
model). We reconstructed a phylogenetic tree using RAxML-NG. Using bio++, we estimated dN / dS along the phylogenetic tree on concatenated 
alignments. This pipeline was previously used in ( 10 ). 
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ttributes found in the underlying database. Users can also
isualize the phylogenetic tree and employ these trees for
onducting Phylogenetic Generalized Least Square regression
nalyses. 

The app is organized in several panels or ‘tabs’ in the web
age. 
The tab ‘Inter-species graphics’ facilitates the comparison of

enome characteristics across different species through graph-
cal representation. Additionally, users have the option to up-
oad their own data in a tab-separated text format, where
ach species is represented in a separate row, with the vari-
bles of interest organized in columns. An example of such
 tabular dataset can be found in the repository of the Shiny
pp. 

The ‘Inter-species Axis’ tab explains the variables available
n the ‘Inter-species graphics’ tab. 

The ‘Intra-species graphics’ tab permits the exploration of
haracteristics within a species, focusing on introns or on
enes. Furthermore, users have the ability to download meta-
ata related to BUSCO annotation, gene expression profile, or

ntron splicing events (see Methods). 
The ‘Intra-species Axis’ tab describes the variables featured

n the ‘Intra-species graphics’ tab. 
Within the ‘Gene structure’ tab, users can delve into the

ntrons detected in RNA-seq alignments for a specific gene.
hese introns are color-coded based on various criteria, in-
luding their location within the CDS or outside of it, as well
s whether they are classified as major or minor-isoform in-
rons (see Materials and Methods). 

The ‘Phylogenetic tree’ tab facilitates the examination of
hylogenetic trees used for conducting Phylogenetic General-

zed Least Squares regression within the ‘Inter-species graph-
cs’ tab. 
 

Results 

Description of the data available in GTDrift 

In GTDrift, we provide a manageable number of compressed
data tables for each species processed via our pipeline (Fig-
ure 4 ). Tables are stored in tab-delimited text format, which
makes them easy to access for users with experience in bioin-
formatics. They are user-friendly because of the simplicity of
their contents. To access these tables, users can visit the Zen-
odo DOI: https:// doi.org/ 10.5281/ zenodo.10017653 and se-
lect their desired data type. The data can also be easily ex-
plored through a web application written in Shiny at https:
//lbbe- shiny.univ- lyon1.fr/ShinyApp- GTDrift/ . Data explo-
ration is thus easily accessible even for users who do not have
a background in bioinformatics. 

Our database is centered around transcriptomics data. At
the time of publication, the database contained over 15 935
RNA-seq samples distributed over 491 embryophytes and
metazoans (Figure 3 A), providing gene expression and alter-
native splicing events data. Additionally, we have enriched
the database with annotations for orthologous single-copy
genes (BUSCO genes) and proxies of effective population
size, including the molecular evolutionary rate d N / d S , the
polymorphism-derived N e estimates and life history traits
such as longevity, body mass, body length. We used similar
types of data in our recent publication exploring the relation-
ship between random genetic drift and alternative splicing pat-
terns ( 10 ). However, here we provide considerably more data,
for 1506 species compared to 53 in this publication. 

Below, we provide information on the data types that
are currently available in GTDrift for the species listed
in the Supplementary Table S1 , that are also listed in
the table labeled ‘list_species.tab’ of the database. The
‘list_species.tab’ table contains additional information, such

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae064#supplementary-data
https://doi.org/10.5281/zenodo.10017653
https://lbbe-shiny.univ-lyon1.fr/ShinyApp-GTDrift/
https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae064#supplementary-data
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as genome / annotation assembly accession, number of RNA-
seq samples for each studied species, species taxonomy, etc. 

Life history traits and pol ymorphism-deri ved N e 

The table labeled ‘life _ history _ traits _ and _ polymorphism _ der
ived _ Ne.tab’ comprises values pertaining to three distinct
traits (body mass, longevity and body length), for 979 species.
This table includes bibliographic references which attribute
these values to each species. The species are defined by
their scientific names and by the corresponding NCBI tax-
onomy identifier (taxID). Additionally, this table contains
polymorphism-derived N e estimates for 66 species. 

Protein-coding sequence evolution features 
We provide estimates of the representative d N / d S ratio for
most species ( N = 1324 species after filtering for a sufficient
number of annotated orthologous genes). The data are avail-
able in the directory ‘d N d S ’. 

We provide the phylogenetic tree of the studied species, with
the d N / d S ratios as branch lengths, in the Newick file for-
mat. We provide this data separately for the four approaches
used to estimate the ratios d N / d S , using the eukaryota, em-
bryophyta or metazoa BUSCO gene sets, or a different gene
set for each clade (see Materials and Methods). In addition, we
provide a table comprising the d N and d S values for each ter-
minal branch of the phylogenetic tree, along with the species
scientific name and NCBI taxonomy ID, for each of the four
approaches. 

Gene expression 

In the ‘Transcriptomic’ directory, each species is represented
by a dedicated table named ‘by_gene_analysis.tab.gz’. This ta-
ble contains annotated gene coordinates, the mean and me-
dian FPKM (Fragments Per Kilobase of exon per Million
mapped reads) across samples. Additionally, the table includes
information about RNA-seq read coverage for exonic regions
for each gene, including the total read coverage across sam-
ples. The individual gene expression data for each RNA-seq
experiment can be accessed within the ‘RUN’ directory. The
data are provided in a separate directory for each SRA acces-
sion number. The file ‘by_gene_db.tab.gz’ containing the exon
coverage and the FPKM measured for each gene correspond-
ing in line to the previous file ‘by_gene_analysis.tab.gz’. 

Alternative splicing data 
For each species, in the ‘Transcriptomic’ directory, we pro-
vide a summarized table named ‘by_intron_analysis.tab.gz’,
containing for each intron the cumulative counts of spliced
reads ( N s ), the number of reads supporting alternative splic-
ing of this introns (N a ), and the number of unspliced reads
overlapping with this intron ( N u ) detected through RNA-seq
analysis (see Materials and Methods). This table contains data
combined across all analyzed RNA-seq samples. Detailed in-
formation for individual RNA-seq experiments can be found
within the ‘RUN’ directory, in the file ‘by_intron_db.tab.gz’.
In these files, introns are listed in the same order as in the file
‘by_intron_analysis.tab.gz’. 

RNA-seq sample description 

The RNA-seq samples used in the study are listed in the
Supplementary Table S2 . The ‘Transcriptomic’ directory of
the database contains files named ‘SRAruninfo.tab’, where we
provide information extracted from the SRA database, for
each RNA-seq sample of a given species. Depending on the 
sample, this information can include the library source, the tis- 
sue from which the sample is derived, the sex of the sampled 

individual, the lab that conducted the analysis, the methods 
used to prepare the library, etc . 

BUSCO gene identification 

In the directory ‘BUSCO_annotations’, we provide the corre- 
spondence between NCBI gene identifiers and BUSCO gene 
identifiers, determined for three distinct BUSCO datasets: eu- 
karyota, metazoa, and embryophyta. 

Data quality validation 

Acquiring life history traits 
To facilitate the acquisition of life history traits, we have de- 
vised and shared a pipeline that uses an automatic screening 
technique complemented by a Machine Learning method. 

To assess the effectiveness of the automatic screening tech- 
nique that we used to extract life history traits from various 
databases, we conducted a comparative analysis, contrasting 
it with the manual methodology. We also compared it to the 
Machine Learning (ML) approach for the ADW database.
The screening procedure yielded accurate information with 

varying false positive rates depending on the source database,
as follows: AnAge (98.9% accuracy; 0% false positive), fish- 
base (100%; 0.2%), EOL (94.5%; 0.2%) and ADW (87.9%; 
5.4%). These results highlight the utility of our screening 
pipeline for identifying three key life history traits across An- 
Age, EOL, ADW and fishbase databases. 

For the ADW database, the ML approach exhibited a slight 
advantage over the screening method, and its results did not 
completely align with those obtained through the screening 
approach. Specifically, for life history traits, the ML approach 

correctly retrieved 89.8% of the results obtained through the 
manual approach, while introducing a 9.2% false positive 
rate. 

When combining both the ML approach and the screen- 
ing process, we achieved a 95.1% accuracy rate in identifying 
positive cases. However, a 7.3% error rate persisted in this 
merged approach. 

In GTDrift, we provide data corresponding to a synthesis 
of the three methodologies including only manually-checked 

values (see Methods). 

Estimating the intensity of random drift 
As expected, a positive correlation is observed in Figure 5 A,B 

between the different life history traits, used as indirect pre- 
dictors of the effective population size ( N e ) ( 40–45 ). 

When examining the d N / d S ratio across distinct time scales 
and using various BUSCO datasets, we consistently observe 
comparable d N / d S ratios at terminal branches. This unifor- 
mity across a range of methodological approaches highlights 
their concordance (Figure 6 A, B). 

Furthermore, all the above proxies of N e ( i.e. longevity,
body mass, body length and d N / d S ) significantly correlate 
with a more direct N e proxy, i.e. the polymorphism-derived 

N e (Figure 7 ; ( 65 )). 

Quality of genome annotations 

To assess gene expression levels and alternative splicing pat- 
terns, the quality of genome annotations is of paramount 
importance. We evaluated genome annotation quality by 

https://academic.oup.com/nargab/article-lookup/doi/10.1093/nargab/lqae064#supplementary-data
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A B

Figure 5. N e pro xies. ( A ) R elationship betw een body length (cm, log scale) and the body mass (kg, log scale). ( B ) Relationship between body length (cm, 
log scale) and longevity (days, log scale) of the organism. Each dot represents one species (colored by clade). (A, B) Pagel’s lambda model is used to 
take into account the phylogenetic str uct ure of the data in a regression model. 

A B

Figure 6. Reproducibility of the dN / dS ratio. ( A ) Relation between the dN / dS ratio on terminal branches of the phylogenetic tree of the metazoa set 
compared to the ones measured in the per clades set. ( B ) Relation between the dN / dS ratio on terminal branches of the phylogenetic tree of the 
eukaryota set compared to the ones measured in the embry oph yta and the metazoa set. (A, B) LM stands for Linear regression Model and Pagel’s 
lambda model is used to take into account the phylogenetic str uct ure of the data in a regression model. 
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xamining the presence of BUSCO genes. We note that the re-
ults depend on the BUSCO dataset that is used as a starting
oint. When using the BUSCO dataset designed for eukary-
ta, which comprises 303 genes, we have effectively identified
early all single-copy orthologous genes, and this feature ex-
ibits a high degree of homogeneity across different species
Figure 8 ). However, the aves clade demonstrates a deficiency
n the number of BUSCO genes compared to the anticipated
ount based on BUSCO expectations. This is expected given
he known genome incompleteness problem for this clade, due
o the presence of GC-rich chromosomes ( 72 ). 

Because the eukaryota BUSCO gene set is limited, we
lso performed gene identification for the metazoa and em-
ryophyta BUSCO datasets, leading to substantially larger
ollections of genes. Specifically, we detected 978 BUSCO
enes for the metazoa dataset and 1440 genes for the em-
ryophyta dataset. 

pliced introns classification 

 significant body of literature has consistently reported that
he majority of genes typically exhibit one predominant iso-
orm ( 20 ,21 ). This isoform is commonly termed ‘major iso-
orm’. Here, we aimed to assess the influence of sequenc-
ng depth on the identification of major-isoform introns, that
is, those introns that belong to major isoforms (see Alter-
native splicing variables). Employing the model organism
Drosophila melanogaster , we randomly selected between 1
and 20 RNA-seq samples. For each subset of samples, we com-
puted the median read coverage across the exons of BUSCO
genes, providing a standardized measure of transcriptome se-
quencing depth that can be compared across different species.
Additionally, we tallied the count of introns falling into vari-
ous categories (major-isoform introns, minor-isoform introns
or unclassified introns—see Materials and Methods) for each
subset of samples. This entire process was repeated 10 times
(Figure 9 A). 

As expected, we observed that the number of major-isoform
introns that could be identified increased with greater se-
quencing depth until it reached a threshold of 200 read cov-
erage per base (Figure 9 A). Beyond this threshold, no addi-
tional major-isoform introns are discernible. Simultaneously,
the count of unclassified introns decreased to nearly zero, in-
dicating that introns newly detected above the 200-read cov-
erage threshold predominantly consisted of minor-isoform in-
trons that shared a boundary with a major intron. Indeed, the
count of minor-isoform introns continued to rise steadily be-
yond this point. 

We then assessed the proportion of annotated introns that
fall within the categories defined above. Our results reveal that
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A B

C D

Figure 7. Interplay between N e proxies. Correlation between the polymorphism-derived N e and four other, more indirect, proxies of N e : life history traits 
such as longevity (days, log scale) ( A ), body mass (kg, log scale) ( B ), body length (cm, log scale) ( C ), and the d N / d S ratio on terminal branches of the 
phylogenetic tree of the per clade set ( D ). Pagel’s lambda model is used to take into account the phylogenetic str uct ure of the data in a regression model. 

Figure 8. BUSCO genes annotation. Proportion of BUSCO genes, from the BUSCO gene set eukaryota ( N = 303 genes), identified in each species. 
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the majority of species exhibit well-annotated major-isoform
introns, indicating the accuracy of the intron annotation (Fig-
ure 9 B). Additionally, as sequencing depth increases, we ob-
served a decreasing fraction of annotated minor-isoform in-
trons. This trend is consistent with expectations, given that
higher sequencing depth expands the pool of rare variants and
potential spontaneous errors that may not have been previ-
ously observed. It is important to note that there appears to
be no inherent limit to this phenomenon, as the intricacies of
alternative splicing machinery can give rise to unpredictable 
errors ( 10 ). 

Discussion 

GTDrift is a comprehensive data resource facilitating investi- 
gations of genomic and transcriptomic characteristics along- 
side indicators of genetic drift intensity for distinct species.
Notably, this resource offers information on life history traits,



NAR Genomics and Bioinformatics , 2024, Vol. 6, No. 2 11 

A

B

Figure 9. Sequencing depth impact on intron classification. ( A ) Number of major (RANS > 0.5 and RAS > 0.5), minor (RANS ≥ 5% or RAS ≥ 5% ) and 
unclassified introns for Drosophila melanogaster . The sequencing depth is measured by taking the median per -base read coverage across BUSCO 

genes from eukaryota gene set. ( B ) Per species major-isoform introns, minor-isoform introns and undetermined introns ( N s ) ≥ 10) annotated proportion 
and sequencing depth measured by taking the median per -base read coverage eukaryota BUSCO genes. 
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ncluding longevity, adult body length, and body mass, for a
urated set of 979 species. Additionally, it provides estimates
f the ratio between the rate of non-synonymous substitutions
ver synonymous substitutions (d N / d S ) for 1324 species and
 polymorphism-derived N e estimates for 66 species. 

For individual species, intron-centered alternative splic-
ng frequencies, gene expression levels, and sequencing depth
tatistics have been systematically quantified and shared, en-
ompassing more than 15 935 RNA-seq samples across 491
pecies. To enable cross-species comparisons, orthology pre-
ictions for conserved single-copy genes are provided, based
n BUSCO gene sets, encompassing a total of 1506 eukaryotic
pecies, including 1413 animals and 93 green plants, along
ith phylogenetic trees to account for phylogenetic inertia. 
The number of species per data type varies due to different

imitations: availability of life history traits data; completeness
f gene annotations for d N / d S calculation; computational re-
ources and availability of RNA-seq samples for transcrip-
omic analysis (Figure 4 ). 

These pre-processed data streamlines the work for those in-
erested in investigating the impact of drift on biological pro-
esses across a wide range of species. All data are provided in
at files, which enable downstream computational analyses
nd render GTDrift mainly aimed at users with some compu-
ational skills. Nonetheless, to enhance accessibility, we have
developed a user-friendly Shiny app that facilitates database
exploration and allows for species-specific data downloads
such as BUSCO annotation, gene expression profile, or intron
splicing events (available at https://lbbe- shiny.univ- lyon1.fr/
ShinyApp-GTDrift/). 

Cautionary considerations in utilizing N e proxies 

Users should bear in mind that the scientific community has
yet to establish the most adequate proxies for effective popu-
lation size. A prominent hypothesis suggests that these prox-
ies are associated with the number of individuals ( N ). Indeed,
species with greater longevity and larger body mass tend to
be less abundant within their ecological niche due to resource
(mass) and spatial (length, mass) requirements ( 73–75 ). There-
fore, variations in life history traits should correspond to vari-
ations in the number of individuals ( N ), which subsequently
impact N e . 

When using the d N / d S ratio as a proxy for N e , rather than
focusing on correlations with the population census, we eval-
uated the efficiency of natural selection to purge deleterious
mutations. This efficiency can be represented as the product
of N e and s , which denotes the selection coefficient. The ex-
tent to which a well-estimated d N / d S ratio can be considered
as a proxy for N e remains a subject of debate. Notably, when

https://lbbe-shiny.univ-lyon1.fr/ShinyApp-GTDrift/
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the rate of synonymous substitutions (d S ) exceeds 1, it indi-
cates a point of saturation where multiple substitutions occur
per site, rendering d S susceptible to considerable noise due to
the challenge of accurately identifying the number of substitu-
tions at given sites. In such cases, the d N component can often
still be reliably determined. Given that non-synonymous sub-
stitutions have a lower rate compared to synonymous ones,
d N reaches a saturation point at a later stage. 

Moreover, when the evolutionary time frame is relatively
short, characterized by small d S values, the variants under ex-
amination are primarily attributed to polymorphism rather
than fixed substitutions. In such cases, we are not effec-
tively measuring substitution rates. Consequently, the discus-
sion also revolves around determining a divergence thresh-
old, above which we could assume that d S and d N predom-
inantly represent substitutions, with minimal influence from
polymorphism. In this perspective, the expanding polymor-
phism data could potentially serve as a means to distinguish
between polymorphism and substitutions, offering a more ef-
ficient approach to investigate d N / d S ( 76 ). 

Overall, we found that the various N e proxies were signif-
icantly correlated, even when accounting for the underlying
phylogenetic structure. Thus, our dataset, which encompasses
information on d N and d S across all branches of the phyloge-
netic trees, holds the potential to estimate the long-term effec-
tive population size ( N e ) and its interaction with life history
traits over time. 

Comparing transcriptomic data 

In our study, we have identified BUSCO genes for the eukary-
ota, metazoa, or embryophyta BUSCO reference gene sets. To
ensure meaningful comparisons between species with a suf-
ficient number of detected BUSCO genes, we evaluated the
median RNA-seq coverage of these BUSCO genes. As demon-
strated in Data quality validation, the median per -base read
exonic RNA-seq coverage of BUSCO genes is a good indicator
of the power to detect alternative splicing patterns. We believe
that, for the inclusion of additional species, an examination of
the RNA-seq read coverage on BUSCO genes is needed to en-
sure that we could identify major-isoform introns and analyze
alternative splicing patterns. 

Additionally, it is essential to assess the completeness of the
genome and of the annotation, which can be estimated based
on the number of identified BUSCO genes. Some species may
have a limited number of well-annotated BUSCO genes, or
global gene duplications may result in the presence of two
copies of a BUSCO gene, which no longer qualifies as a single
copy gene. 

Our RNA-seq description table offers users access to infor-
mation collected from the Sequence Read Archive (SRA) for
the RNA-seq datasets under study. This table enables users to
filter and select RNA-seq data that align with their specific
research needs. Users can tailor their selection based on fac-
tors such as sex, tissue, or protocol. Depending on the research
question that is asked, it may be important to extract and anal-
yse RNA-seq samples that were generated for the same biolog-
ical conditions. We provide this information so that GTDrift
users are able to filter the data as needed. 

To facilitate cross-species comparisons, especially in the
context of alternative splicing and gene expression, users can
make use of BUSCO gene sets, which should exhibit consis-
tent expression patterns, functionality, and evolutionary con-
straints across diverse species. However, users should thor- 
oughly validate this assumption and proceed with vigilance. 

Conclusion 

In conclusion, we are confident that the GTDrift database can 

be a valuable resource for studies aiming to investigate the re- 
lationship between the intensity of genetic drift, genomic and 

transcriptomic characteristics. 

Data availability 

The database is provided on Zenodo with the DOI: https:// 
doi.org/ 10.5281/ zenodo.10017653 . 

All processed data that we generated and used in this study,
as well as the scripts that we used to analyze the data and 

to generate the figures, are available at the following Zen- 
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