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A VARIANT OF THE PRIME NUMBER THEOREM AND SOME
RELATED PROBLEMS

B. CHEN, J.-Y. HU AND J. WU

Abstract. Let Λ(n) and µ(n) be the von Mangoldt function and the Möbius function.
Let 1P(n) be the characteristic function of prime numbers and let [t] be the integral part
of real number t. In this paper, we prove that asymptotic formulas∑

n6x

Λ
([x
n

])
=

( ∞∑
d=1

Λ(d)

d(d+ 1)

)
x+Oε

(
x7/15+ε

)
∑
n6x

µ(n)2Λ
([x
n

])
=

(
6

π2

∞∑
d=1

Λ(d)

d(d+ 1)

)
x+O

(
x2/3L(x)−c

)
hold as x→∞, where L(x) := exp((log x)3/5(log log x)−1/5), ε > 0 is an arbitrarily small
positive number and c > 0 is a positive constant. The first asymptotic formula improves
a recent result of Zhang, which requires 7

15 + 1
195 in place of 7

15 . We also improve some
results of Ma-Chen-Wu [13] and of Zhou-Feng [20].

1. Introduction

Let Λ(n) be the von Mangoldt function. The prime number theorem states, in strong
form, as follows: there is a constant c > 0 such that for x→∞ the asymptotic formula

(1.1)
∑
n6x

Λ(n) = x+O(xL(x)−c)

holds, where logk is the k-fold iterated logarithm and L(x) := exp((log x)3/5(log2 x)−1/5).
Furthermore, for any ε > 0,∑

n6x

Λ(n) = x+Oε(x
1/2+ε) ⇔ Riemann Hypothesis,

Clearly it is also interesting to study the distribution of prime numbers in different sets
of integers. Recently many authors are interested by the sparse set

S(x) :=
{[x
n

]
: n ∈ N ∩ [1, x]

}
,

which is sparse in N ∩ [1, x]:

|S(x)| ∼
x→∞

2
√
x.

Under some simple assumptions of arithmetic function f , Bordellès-Dai-Heyman-Pan-
Shparlinski [3, Theorem 2.6] established an asymptotic formula of

(1.2) Sf (x) :=
∑
n6x

f
([x
n

])
.
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Subsequently, Wu [17, Theorem 1.2(i)] and Zhai [18, Theorem 1] improved their results
independently, by showing the following result: If f(n) � nθ with some θ ∈ [0, 1[, then
for any ε > 0 and x→∞,

Sf (x) = cfx+Oε(x
(1+θ)/2+ε),

where

cf :=
∞∑
d=1

f(d)

d(d+ 1)
·

In particular, this implies that

SΛ(x) = cΛx+Oε(x
1/2+ε) (x→∞).

In order to break the 1
2
-barrier, after application of the Vaughan identity, a key point is

to give non trivial bound of the following triple exponential sums

(1.3) Sδ :=
∑
h∼H

∑
m∼M

∑
n∼N

ahbmcne
( hx

mn+ δ

)
,

where e(t) := e2πit, δ ∈ Rr(−N∗), |ah| 6 1, |bm| 6 1, |cn| 6 1 and the symbol h ∼ H
means that H 6 h < 2H. By the Cauchy-Schwarz inequality and the method of one-
dimensional exponential sum, Ma and Wu [11] succeeded to prove

SΛ(x) = cΛx+Oε(x
35/71+ε) (x→∞).

Subsequently the exponent 35
71

has been improved to 97
203

by Bordellès [2, Corollary 1.3]
using a result of Baker on 2-dimensional exponential sums [1, Theorem 6]. When δ = 0,
this triple exponential sum (or more general multiple exponential sums with monomials)
has been studied by Heath-Brown [8], Fouvry-Iwaniec [6], Sargos-Wu [15] and Robert-
Sargos [14]. In [10], Liu, Wu and Yang adapted and refined Heath-Brown’s approach
to the case of δ 6= 0 (see Proposition 2.1(ii) below) and improved 97

203
to 9

19
. It seems

interesting to generalize Fouvry-Iwaniec’s method (or Robert-Sargos’ improved version)
to the case of δ 6= 0 for improving the exponent 9

19
. As Zhang observed in [19], this seems

not easy to do. In order to eliminate the influence of δ he proposed a simple argument
of partial integration such that he could apply directly Robert-Sargos’ result (see Lemma
2.2 below) to improve 9

19
to 7

15
+ 1

195
. By a rather complicated processus of parameter

optimization combining Bourgain’s new exponent pair (see [5]), he can obtain a slightly
better exponent 0.47118 in place of 7

15
+ 1

195
≈ 0.47179. He also wrote [19, page 166]:

“It is worth emphasizing that only by involving the ideas in this paper, the best possible
result should be 7

15
.”

In this paper, by combining Zhang’s idea with Liu-Wu-Yang’s estimate of Sδ (see also
(2.2) below with simple exponent pair (1

2
, 1

2
)), we shall establish the best exponent 7

15
which can be obtained by the improved version of Robert-Sargos on Fouvry-Iwaniec’s
method.

Theorem 1. For any ε > 0, we have

SΛ(x) = cΛx+Oε(x
7/15+ε),(1.4)

S1P(x) = c1Px+Oε(x
7/15+ε),(1.5)

as x→∞, where 1P is the characteristic function of the set of prime numbers P.

The asymptotic formula (1.5) improves Theorem 2 of Ma and Wu [12], which requires
9
19

in place of 7
15

. For comparaison, we have

9
19
≈ 0.47368, 7

15
+ 1

195
≈ 0.47179, 7

15
≈ 0.46666.
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Recently, motived by a conjecture of Kellner concerning denominators of Bernoulli poly-
nomials [9] ∗, Ma, Chen and Wu [13] proposed and investigated a more general problem:
Let θ ∈ ]0, 1] be a fixed constant. Define

(1.6) S1P(x, θ) :=
∑
n6xθ

[ x
n

] is prime

1, πS(x, θ) :=
∑
p6x

∃n6xθ such that [ x
n

]=p

1

such that S1P(x, 1) = S1P(x) and πS(x, 1) = πS(x) (In the notation of [13], we have

S1P(x, θ) = π
(3)
θ (x) and πS(x, θ) = π

(4)
θ (x)). They proved that for any positive integer

L > 1, the asymptotic formulas

(1.7) S1P(x, θ) =


xθ

log x1−θ

{ L−1∑
`=0

(−1)``!

(log x1−θ)`
+O

(
1

(log x)L

)}
if 23

47
< θ < 1

c1Px+O(x26/53(log x)119/53) if θ = 1

and

(1.8) πS(x, θ) =


xθ

log x1−θ

{ L−1∑
`=0

(−1)``!

(log x1−θ)`
+O

(
1

(log x)L

)}
if 23

47
< θ 6 1

2

4
√
x

log x

{ L−1∑
`=0

22`(2`)!

(log x)2`
+O

(
1

(log x)2L−1

)}
if 1

2
< θ 6 1

hold as x → ∞ (see [13, Theorems 4.2, 4.4 and Corollary 4.3]). They conjectured that
the first asymptotic formula in (1.7) also holds for 0 < θ 6 23

47
.

Obviously (1.5) of Theorem 1 sharpens the case of θ = 1 of (1.7) by reducing the
error term O(x26/53(log x)119/53) to O(x7/15+ε). Very recently with the help of Liu-Wu-
Yang’s work [10, Proposition 4.1] (see also (4.2) below), Zhou and Feng [20] improved
Ma-Chen-Wu’s (1.7) by extending 23

47
< θ < 1 to 9

19
< θ < 1. Here we propose better

results.

Theorem 2. (i) Let 7
15

< θ < 1, then there is a positive constant cθ > 0 such that
asymptotic formula

(1.9) S1P(x, θ) = x

∫ xθ−1

0

dt

log(1/t)
+O(xθL(x)−cθ)

holds as x→∞. Furthermore the first asymptotic formula of (1.7) holds for 7
15
< θ < 1.

(ii) Let 7
15

< θ < 1, then there is a positive constant cθ > 0 such that asymptotic
formulas

(1.10) πS(x, θ) =


x

∫ xθ−1

0

dt

log(1/t)
+O(xθL(x)−cθ) if 7

15
< θ 6 1

2∫ √x
2

(
1

log t
+

1

log(x/t)

)
dt+O(

√
xL(x)−cθ) if 1

2
< θ 6 1

hold for x→∞. Furthermore (1.8) holds with 7
15

in place of 23
47

.

∗About this conjecture and related works, we refer reader to Bordellès, Luca, Moree and Shparlinski’s
interesting paper [4].
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For comparaison, we have
23
47
≈ 0.489361, 9

19
≈ 0.473684 and 7

15
≈ 0.46666.

Let µ(n) be the Möbius function, then µ(n)2 is the characteristic function of square-free
integers. Define

S]Λ(x) :=
∑
n6x

µ(n)2Λ
([x
n

])
, S]1P

(x) :=
∑
n6x

µ(n)21P

([x
n

])
.

Theorem 3. There is a positive constant c > 0 such that

S]Λ(x) = (6π−2)cΛx+O(x2/3L(x)−c),(1.11)

S]1P
(x) = (6π−2)c1Px+O(x2/3L(x)−c),(1.12)

as x→∞.

Theorem 3 shows that events “n is a square-free integer” and “[x
n
] is a prime number”

are independent.

2. Triple exponential sums

As in [6], we write Sδ in the following form

Sδ :=
∑
h∼H

∑
m∼M

∑
n∼N

ahbmcne
(
X
MN

H

h

mn+ δ

)
,

where X := xH/(MN), |ah| 6 1, |bm| 6 1, |cn| 6 1 and the symbol h ∼ H means that
H 6 h < 2H. The aim of this section is to give some bounds for this triple exponential
sums, which will play a key role in the proof of Theorem 1.

Proposition 2.1. (i) Let δ ∈ Rr(−N∗) be a fixed constant. For any ε > 0, we have

(2.1)
Sδ �ε

(
1 +X(MN)−1

)(
(XH3M3N2)1/4

+ (HM)3/4N +HMN1/2 +X−1/2HMN
)
Y ε

uniformly for X > 0, H > 1, M > 1 and N > 1, where Y := 1+XHMN and the implied
constant depends on (δ, ε) at most.

(ii) Let (κ, λ) be an exponent pair and lt δ ∈ Rr(−N∗) be a fixed constant. For any
ε > 0, we have

(2.2)
Sδ �

(
(XκH2+κM2+κN1+κ+λ)1/(2+2κ)

+ (HM)1/2N +HMN1/2 +X−1/2HMN
)
Y ε

uniformly for X > 0, H > 1, M > 1 and N > H, where Y := 1 + XHMN and the
implied constant depends on (κ, λ, δ, ε).

The second assertion of Proposition 2.1 is a special case of [10, Proposition 3.1]. In
order to prove the first assertion, we need a result of Robert-Sargos (see [14, Theorem 1]),
which is an improvement of [6, Theorem 3] and [15, Theorem 7].

Lemma 2.2. Let α, β, γ ∈ R such that αβγ(γ − 1) 6= 0. Define

S :=
∑
h∼H

∑
m∼M

∑
n∼N

ahbmcne
(
X

hαmβnγ

HαMβNγ

)
.

Then for any ε > 0 we have

(2.3) S �
(
(XH3M3N2)1/4 + (HM)3/4N +HMN1/2 +X−1/2HMN

)
Y ε



A VARIANT OF THE PRIME NUMBER THEOREM AND SOME RELATED PROBLEMS 5

uniformly for X > 0, H > 1, M > 1 and N > 1, where Y := HMN and the implied
constant depends on (α, β, γ, ε).

Proof of (2.1). Noticing that

X
MN

H

h

mn+ δ
= X

MN

H

h

mn
−XMN

H

δh

mn(mn+ δ)
,

we have

Sδ =
∑
h∼H

∑
m∼M

∑
n∼N

ahbmcne
(
−XMN

H

δh

mn(mn+ δ)

)
e
(
X
MN

H

h

mn

)
.

By a partial integration, we can write

Sδ =

∫ 2N

N

e
(
−XMN

H

δh

mt(mt+ δ)

)
d

(∑
h∼H

∑
m∼M

∑
N6n<t

ahbmcne
(
X
MN

H

h

mn

))
�
(
1 +X(MN)−1

)
max

N6N162N

∣∣∣∣∑
h∼H

∑
m∼M

∑
N6n<N1

ahbmcne
(
X
MN

H

h

mn

)∣∣∣∣.
Applying (2.3) to bound the last triple exponential sums, we get (2.1). �

3. Preliminary lemmas

In this section, we shall cite two lemmas, which will be needed in the next section. The
first one is the Vaughan identity [16, formula (3)].

Lemma 3.1. Let τ(n) be the classical divisor function. There are six real arithmetical
functions αk(n) verifying |αk(n)| � τ(n) for (n > 1, 1 6 k 6 6) such that, for all D > 100
and any arithmetical function g, we have

(3.1)
∑

D<d62D

Λ(d)g(d) = S1 + S2 + S3 + S4,

where

S1 :=
∑

m6D1/3

α1(m)
∑

D6mn<2D

g(mn),

S2 :=
∑

m6D1/3

α2(m)
∑

D6mn<2D

g(mn) log n,

S3 :=
∑∑

D1/3<m,n6D2/3

D6mn<2D

α3(m)α4(n)g(mn),

S4 :=
∑∑

D1/3<m,n6D2/3

D6mn<2D

α5(m)α6(n)g(mn).

The sums S1 and S2 are called as type I, S3 and S4 are called as type II.

The second one is due to Vaaler (see [7, Theorem A.6]).
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Lemma 3.2. Let ψ(t) := {t} − 1
2
, where {t} means the fractional part of real number t.

For x > 1 and H > 1, we have

(3.2) ψ(x) = −
∑

16|h|6H

Φ
( h

H + 1

)e(hx)

2πih
+RH(x),

where e(t) := e2πit, Φ(t) := πt(1− |t|) cot(πt) + |t| and the error term RH(x) satisfies

(3.3) |RH(x)| 6 1

2H + 2

∑
06|h|6H

(
1− |h|

H + 1

)
e(hx).

4. A key inequality

The aim of this section is to prove the following proposition, which will play a key role
for the proof of Theorem 1. Define

(4.1) Sδ(x,D) :=
∑
d∼D

Λ(d)ψ
( x

d+ δ

)
,

where Λ(n) is the von Mangoldt function, ψ(t) := t− [t]− 1
2

and the symbol d ∼ D means
that D 6 d < 2D.

Proposition 4.1. Let δ ∈ Rr(−N∗) be a fixed constant.
(i) For any ε > 0, we have

(4.2) Sδ(x,D)�ε (x2D7)1/12xε

uniformly for x6/13 6 D 6 x2/3.

(ii) For any ε > 0, we have

(4.3) Sδ(x,D)�ε

(
(x6D)1/14 + (x8D−3)1/14

)
xε

uniformly for x22/45 6 D 6 x8/15.

Proof. The first assertion is [10, Proposition 4.1]. Next we shall prove the second one.
Using (3.2) of Lemma 3.2, for any H > 1 we can write

Sδ(x,D) = −
∑

16|h|6H

Φ
( h

H + 1

) 1

2πih

∑
d∼D

Λ(d)e
( hx

d+ δ

)
+
∑
d∼D

Λ(d)R
( x

d+ δ

)
.

In view of (3.3) of Lemma 3.2, we can derive that

|Sδ(x,D)| 6
∣∣∣∣ ∑

16|h|6H

Φ
( h

H + 1

)e(−hι)
2πih

∑
d∼D

Λ(d)e
( hx

d+ δ

)∣∣∣∣
+

1

2H + 2

∑
06|h|6H

(
1− |h|

H + 1

)
e(−hι)

∑
d∼D

Λ(d)e
( hx

d+ δ

)
.

Noticing the fact that 0 < Φ(t) < 1 (0 < |t| < 1) and using the prime number theorem,
for any H > 1 we have

(4.4) Sδ(x,D)� D

H
+
∑

16h6H

1

h

∣∣∣∣∑
d∼D

Λ(d)e
( hx

d+ δ

)∣∣∣∣.
For the last inner sum, we apply the Vaughan identity (3.1) to write

(4.5) Sδ(x,D)� DH−1 + Sδ,1 + Sδ,2 + Sδ,3 + Sδ,4,
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where Sδ,j := max
16H16H

H−1
1 Sj(H1, D) and

S1(H1, D) :=
∑
h∼H1

∣∣∣∣ ∑
m6D1/3

α1(m)
∑

D6mn<2D

e
( hx

mn+ δ

)∣∣∣∣,
S2(H1, D) :=

∑
h∼H1

∣∣∣∣ ∑
m6D1/3

α2(m)
∑

D6mn<2D

(log n)e
( hx

mn+ δ

)∣∣∣∣,
S3(H1, D) :=

∑
h∼H1

∣∣∣∣ ∑∑
D1/3<m,n6D2/3

D6mn<2D

α3(m)α4(n)e
( hx

mn+ δ

)∣∣∣∣,
S4(H1, D) :=

∑
h∼H1

∣∣∣∣ ∑∑
D1/3<m,n6D2/3

D6mn<2D

α5(m)α6(n)e
( hx

mn+ δ

)∣∣∣∣.
The sums S1 and S2 are called as type I, S3 and S4 are called as type II. In view of
symmetricity of m and n in S3(H1, D) and S4(H1, D), we can suppose that m 6 n in
these two sums.

Firstly we bound Sδ,1 and Sδ,2.
Applying the exponent pair (κ′, λ′) to the sum over n, we can derive that

S1(H1, D)� xε
∑

m6D1/3

∑
h∼H1

{( hx

(D2/m)

)κ′(D
m

)λ′
+

(D2/m)

hx

}
�
(
xκ
′
D(1−5κ′+2λ′)/3H1+κ′

1 + x−1D2
)
xε

for all H > 1. The same bound also holds for S2(H1, D) since the factor log n can be
removed by a simple partial integration. Thus these imply that

(4.6) Sδ,j �
(
xκ
′
D(1−5κ′+2λ′)/3Hκ′ + x−1D2

)
xε

for all H > 1 and j = 1, 2.

Next we shall bound Sδ,3 and Sδ,4.
Define

S :=
∑
h∼H1

∣∣∣∣ ∑
m∼M

∑
n∼N

α3(m)α4(n)e
( hx

mn+ δ

)∣∣∣∣
=
∑
h∼H1

∣∣∣∣ ∑
m∼M

∑
n∼N

α3(m)α4(n)e
(
X
MN

H1

h

mn+ δ

)∣∣∣∣,
where X = xH1(MN)−1, D1/3 6M 6 D1/2, D 6 mn < 2D and H1 6 H 6 N . Applying
(2.1) of Proposition 2.1 with (H,M,N) = (H1, N,M), it follows that

(4.7)
S �

(
(XH3

1M
2N3)1/4 + (H3

1M
4N3)1/4 + (H2

1MN2)1/2 +X−1/2H1MN

+ (X5H3
1M

−2N−1)1/4 + (X4H3
1N
−1)1/4 + (X2H2

1M
−1)1/2 +X1/2H1

)
Y ε.

By (2.2) of Proposition 2.1 with (H,M,N) = (H1,M,N), it follows that

(4.8)
S �

(
(XκH2+κ

1 M2+κN1+κ+λ)1/(2+2κ)

+ (H1M)1/2N +H1MN1/2 +X−1/2H1MN
)
Y ε.
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Write

ς1 := (XH3
1M

2N3)1/4,

ς2 := (X5H3
1M

−2N−1)1/4,

ψ := (XκH2+κ
1 M2+κN1+κ+λ)1/(2+2κ).

From (4.7) and (4.8), for H1 6 H 6 N we can deduce that

(4.9)

S �
(
(X1+κ−λH5+κ−3λ

1 M4+κ−2λN4+κ−2λ)1/(6+2κ−4λ)

+ (H3
1M

4N3)1/4 + (H2
1MN2)1/2 +X−1/2H1MN

+ (X5+κ−5λH5+κ−3λ
1 Mκ+2λNκ+2λ)1/(6+2κ−4λ)

+ (X4H3
1N
−1)1/4 + (X2H2

1M
−1)1/2 +X1/2H1

+ (H1M)1/2N +H1MN1/2
)
Y ε,

where we have used the following inequality

min(ψ, ς1) 6 (ψ1+κς2−2λ
1 )1/(3+κ−2λ)

= (X1+κ−λH5+κ−3λ
1 M4+κ−2λN4+κ−2λ)1/(6+2κ−4λ),

min(ψ, ς2) 6 (ψ1+κς2−2λ
2 )1/(3+κ−2λ)

= (X5+κ−5λH5+κ−3λ
1 Mκ+2λNκ+2λ)1/(6+2κ−4λ).

Noticing that H1 > 1 and M 6 D1/2 6 N imply that

(H1M)1/2N 6 (H2
1MN2)1/2, H1MN1/2 6 (H2

1MN2)1/2

and
((X2H2

1M
−1)1/2)1/2((H2

1MN2)1/2)1/2 = (XH2
1N)1/2 > X1/2H1,

the inequality (4.9) can be simplified as

S �
(
(X1+κ−λH5+κ−3λ

1 M4+κ−2λN4+κ−2λ)1/(6+2κ−4λ)

+ (H3
1M

4N3)1/4 + (H2
1MN2)1/2 +X−1/2H1MN

+ (X5+κ−5λH5+κ−3λ
1 Mκ+2λNκ+2λ)1/(6+2κ−4λ)

+ (X4H3
1N
−1)1/4 + (X2H2

1M
−1)1/2

)
Y ε

for H1 6 H 6 N . Using D1/3 6M 6 D1/2 and D 6 mn < 2D, we deduce that

S �
(
(X1+κ−λH5+κ−3λ

1 D4+κ−2λ)1/(6+2κ−4λ) + (H6
1D

7)1/8 + (H6
1D

5)1/6 +X−1/2H1D

+ (X5+κ−5λH5+κ−3λ
1 Dκ+2λ)1/(6+2κ−4λ) + (X8H6

1D
−1)1/8 + (X6H6

1D
−1)1/6

)
Y ε

for H1 6 H 6 N , where we have removed terms (H2
1D

3)1/4 and (H3
1D

5)1/6 since

(H2
1D

3)1/4 6 (H3
1D

5)1/6 6 (H6
1D

7)1/8.

Replacing X by xH1D
−1, it follows that

S �
(
(x1+κ−λH6+2κ−4λ

1 D3−λ)1/(6+2κ−4λ) + (H6
1D

7)1/8 + (H6
1D

5)1/6 + (x−1H1D
3)1/2

+ (x5+κ−5λH10+2κ−8λ
1 D−5+7λ)1/(6+2κ−4λ) + (x8H14

1 D
−9)1/8 + (x6H12

1 D
−7)1/6

)
xε.

for H1 6 H 6 D1/2 (6 N). This implies that for j = 3, 4,

(4.10)
Sδ,j �

(
(x5+κ−5λH4−4λD−5+7λ)1/(6+2κ−4λ) + (x8H6D−9)1/8 + (x6H6D−7)1/6

+ (x1+κ−λD3−λ)1/(6+2κ−4λ) +D7/8
)
xε
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for H 6 D1/2 (6 N), where we have removed terms D5/6 and (x−1D3)1/2 since D5/6 6 D7/8

and (x−1D3)1/2 6 D7/8 provided D 6 x4/5.
Inserting (4.6) and (4.10) into (4.5), it follows that

Sδ(x,D)�
(
DH−1 + (x5+κ−5λH4−4λD−5+7λ)1/(6+2κ−4λ)

+ (x8H6D−9)1/8 + (x6H6D−7)1/6 + xκ
′
D(−5κ′+2λ′+1)/3Hκ′

+ (x1+κ−λD3−λ)1/(6+2κ−4λ) +D7/8
)
xε

for all H 6 D1/2, where we have removed term x−1D2 since x−1D2 6 D7/8 (provided
D 6 x8/9). Optimizing H on ]0, D1/2], we obtain that

(4.11)
Sδ(x,D)�

(
(x5+κ−5λD−1+3λ)1/(10+2κ−8λ) + (x8D−3)1/14 + (x6D−1)1/12

+ (x3κ′D−2κ′+2λ′+1)1/(3κ′+3) + (x1+κ−λD3−λ)1/(6+2κ−4λ) +D7/8
)
xε.

Taking (κ, λ) = (κ′, λ′) = (1
2
, 1

2
) in (4.11), we find that

Sδ(x,D)�
(
(x6D)1/14 + (x8D−3)1/14 + (x6D−1)1/12

+ (x3D2)1/9 + (x2D5)1/10 +D7/8
)
xε.

Noticing that

(x3D2)1/9 6 (x6D)1/14 (provided D 6 x12/19),

(x2D5)1/10 6 (x6D)1/14 (provided D 6 x8/15),

D7/8 6 (x6D)1/14 (provided D 6 x8/15),

(x6D−1)1/12 6 (x8D−3)1/14 (provided D 6 x6/11),

we can obtain the required inequality. �

5. Proof of Theorem 1

5.1. Proof of (1.4).

First we write

(5.1) SΛ(x) =
∑
n6x

Λ
([x
n

])
= S̃Λ(x) +O(x7/15 log x)

with

S̃Λ(x) :=
∑

x7/15<n6x

Λ
([x
n

])
.

Putting d = [x/n], then

x/n− 1 < d 6 x/n⇔ x/(d+ 1) < n 6 x/d.

Thus we can write

(5.2)

S̃Λ(x) =
∑

d6x8/15

Λ(d)
∑

x/(d+1)<n6x/d

1

=
∑

d6x8/15

Λ(d)
(x
d
− ψ

(x
d

)
− x

d+ 1
+ ψ

( x

d+ 1

))
= cΛx+ RΛ

1 (x, x7/15)− RΛ
0 (x, x7/15) +O(x7/15),
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where

RΛ
δ (x, x7/15) =

∑
x7/15<d6x8/15

Λ(d)ψ
( x

d+ δ

)
and we have used the following bounds

x
∑

d>x8/15

Λ(d)

d(d+ 1)
� x7/15,

∑
d6x7/15

Λ(d)
(
ψ
( x

d+ 1

)
− ψ

(x
d

))
� x7/15.

Noticing that
|RΛ

δ (x, x7/15)| � (log x) max
x7/156D6x8/15

|Sδ(x,D)|,

we can apply Proposition 4.1(i) (for x7/15 6 D 6 x34/67) and Proposition 4.1(ii) (for
x34/67 6 D 6 x8/15) to get

|RΛ
δ (x, x7/15)| �ε x

7/15+ε.

Inserting this into (5.2), we find that

(5.3) S̃Λ(x) = cΛx+Oε(x
7/15+ε).

Now the required result follows from (5.1) and (5.3).

5.2. Proof of (1.5).

As before, we have

(5.4) S1P(x) = S̃1P(x) +O(x7/15),

where

(5.5)

S̃1P(x) :=
∑

x7/15<n6x

1P

([x
n

])
=

∑
p6x8/15

∑
x/(p+1)<n6x/p

1

=
∑

p6x8/15

(x
p
− ψ

(x
p

)
− x

p+ 1
+ ψ

( x

p+ 1

))
= c1Px+ R1P

1 (x, x7/15)− R1P
0 (x, x7/15) +O(x7/15)

and

R1P
δ (x, x7/15) =

∑
x7/15<p6x8/15

ψ
( x

p+ δ

)
.

We write

R1P
δ (x, x7/15)� xε max

x7/15<D6x8/15

∣∣∣∣ ∑
D<p62D

ψ
( x

p+ δ

)∣∣∣∣
� xε max

x7/15<D6x8/15

∫ 2D

D

∣∣∣∣ 1

log t
d
( ∑
D<p6t

(log p)ψ
( x

p+ δ

))∣∣∣∣.
Noticing that ∑

D<p6t

(log p)ψ
( x

p+ δ

)
=
∑
D<n6t

Λ(n)ψ
( x

n+ δ

)
+O(t1/2),

we can apply Proposition 4.1(i) (for x7/15 6 D 6 x34/67) and Proposition 4.1(ii) (for
x34/67 6 D 6 x8/15) to get

(5.6) R1P
δ (x, x7/15)�ε x

7/15+ε.

Now (1.5) follows from (5.4), (5.5) and (5.6). �
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6. Proof of Theorem 2

6.1. Proof of (i).

Let 7
15
< θ < 1. Similar to (5.4) and (5.5), we have

(6.1) S1P(x, θ) = S̃1P(x, θ) +O(x7/15),

where

(6.2)

S̃1P(x, θ) =
∑

x1−θ<p6x8/15

(x
p
− ψ

(x
p

)
− x

p+ 1
+ ψ

( x

p+ 1

))
= x

∑
p>x1−θ

1

p(p+ 1)
+ R1P

1 (x, x1−θ)− R1P
0 (x, x1−θ) +O(x7/15),

where

R1P
δ (x, x1−θ) =

∑
x1−θ<p6x8/15

ψ
( x

p+ δ

)
.

Trivially we have

R1P
δ (x, x1−θ)�

∑
xmax(7/15,1−θ)<p6x8/15

ψ
( x

p+ δ

)
+ x7/15.

The same argument for proving (5.6) allows us to derive that for any ε > 0, the last sum
is O(x7/15+ε). Thus

R1P
δ (x, x1−θ)�ε x

7/15+ε.

Inserting this into (6.2) and noticing that

x
∑

p>x1−θ

1

p3
� x1−2(1−θ) � x2θ−1,

we obtain that

(6.3) S̃1P(x, θ) = x
∑

p>x1−θ

1

p2
+Oε

(
xmax(7/15+ε,2θ−1)

)
.

With the help of the prime number theorem

(6.4) π(t) :=
∑
p6t

1 =

∫ t

2

du

log u
+O(tL(t)−c)

where c > 0 is a positive constant, we easily derive that

x
∑

p>x1−θ

1

p2
= x

∫ ∞
x1−θ

du

u2 log u
+O(xθL(x)−cθ)

= x

∫ 0

xθ−1

dt

log t
+O(xθL(x)−cθ) (u = 1/t).

Inserting this into (6.3) and noticing that max(7/15 + ε, 2θ − 1) < θ (provided that
0 < ε 6 1

2
(θ − 7

15
)), it follows that

(6.5) S̃1P(x, θ) = x

∫ xθ−1

0

dt

log(1/t)
+O(xθL(x)−cθ).

Now (1.9) follows from (6.1) and (6.5).
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By integration by parts, it follows that

x

∫ 0

xθ−1

dt

(log t)`
= x

([
t

(log t)`

]0

xθ−1

+ `

∫ 0

xθ−1

dt

(log t)`+1

)
=

(−1)`−1xθ

(1− θ)`(log x)`
+ x`

∫ 0

xθ−1

dt

(log t)`+1
·

After a simple argument of recurrence, we can find that

x

∫ xθ−1

0

dt

log(1/t)
=

L∑
`=1

(−1)`−1(`− 1)!

(1− θ)`
xθ

(log x)`
+O

(
xθ

(log x)L+1

)
(` ∈ N∗).

Thus this and (1.9) imply the second assertion of (i).

6.2. Proof of (ii).

When 7
15

< θ 6 1
2
, we have S1P(x, θ) = πS(x, θ). Thus the first assertion gives us

immediately the required result.
Next we suppose that 1

2
< θ 6 1. In this case, the required result is essentially [12,

Theorem 1]. In fact, noticing that
[
x
n

]
= p ⇔ x/(p + 1) < n 6 x/p and n 6 xθ ⇔

x1−θ − 1 < p 6 x, we can write

(6.6) πS(x, θ) =
∑

x1−θ−1<p6x

1
([x
p

]
−
[ x

p+ 1

]
> 0
)

= G1(x, θ) +G2(x),

where 1(Q) = 1 if the statement Q is true and 0 otherwise, and

G1(x, θ) :=
∑

x1−θ−1<p6
√
x

1
([x
p

]
−
[ x

p+ 1

]
> 0
)
,

G2(x) :=
∑
√
x<p6x

1
([x
p

]
−
[ x

p+ 1

]
> 0
)
.

For p 6
√
x− 1, we have[x

p

]
−
[ x

p+ 1

]
>

x

p(p+ 1)
− 1 > 0.

Thus the prime number theorem (6.4) gives us

(6.7) G1(x) = π(
√
x) +O(π(x1−θ)) = Li(

√
x) +O(

√
xL(x)−cθ)

for x > 3, where cθ > 0 is a positive constant depending on θ.
On the other hand, according to [12, (2.8)], we have

(6.8) G2(x) =

∫ √x
2

dt

log(x/t)
+O

(√
xL(x)−c

)
.

Now the required result (1.10) follows from (6.6), (6.7) and (6.8).
The second assertion is an immediate consequence of (1.10) thanks to a simple partial

integration. �
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7. Proof of Theorem 3

7.1. Proof of (1.11).

Let N(x) ∈ [1, x2/3] be a function to be chosen later. Write

(7.1) S]Λ(x) = S̃]Λ(x) +O(N(x) log x),

where

S̃]Λ(x) :=
∑

N(x)<n6x

µ(n)2Λ
([x
n

])
.

Noticing that d = [x/n] ⇔ x/(d+ 1) < n 6 x/d, we can write

S̃]Λ(x) =
∑

d6x/N(x)

Λ(d)
∑

max(N(x), x/(d+1))<n6x/d

µ(n)2

=
∑

d6x/N(x)

Λ(d)
∑

x/(d+1)<n6x/d

µ(n)2 +O(N(x) log x),

where we have used the following bound∑
x/N(x)−1<d6x/N(x)

Λ(d)
∑

N(x)<n6x/d

µ(n)2 �
∑

n62N(x)

µ(n)2
∑

x/N(x)−1<d6x/N(x)

Λ(d)

� N(x) log x.

With the help of classic result

(7.2)
∑
n6x

µ(n)2 = (6/π2)x+O(x1/2L(x)−3c),

we can derive that

S̃]Λ(x) =
∑

d6x/N(x)

Λ(d)

{
6

π2
· x

d(d+ 1)
+O

((x
d

)1/2

L(x)−3c

)}
+O(N(x) log x).

We have∑
d6x/N(x)

Λ(d)

d1/2
� (x/N(x))1/2 and x

∑
d6x/N(x)

Λ(d)

d(d+ 1)
= cΛx+O(N(x)).

Inserting these into the preceding formula, it follows that

(7.3) S̃]Λ(x) = (6/π2)cΛx+O(N(x) + xN(x)−1/2L(x)−3c).

Now the required result follows from (7.1) and (7.3) thanks to the choice of N(x) =
x2/3L(x)−2c.

7.2. Proof of (1.12).

As before, we have trivially

(7.4) S]1P
(x) = S̃]P(x) +O(N(x)),

where

S̃]1P
(x) :=

∑
N(x)<n6x

µ(n)21P

([x
n

])
.
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Using (7.2), we have

S̃]1P
(x) =

∑
p6x/N(x)

∑
x/(p+1)<n6x/p

µ(n)2 +O(N(x))

=
∑

p6x/N(x)

{
6

π2

x

p(p+ 1)
+O

((x
p

)1/2

L(x)−3c

)}
+O(N(x))

= (6/π2)c1Px+O(N(x) + xN(x)−1/2L(x)−3c).

Inserting this into (7.4) and taking N(x) = x2/3L(x)−2c, we get (1.12). �
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