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ABD-HFL: Byzantine-resistant Decentralized
Hierarchical Federated Learning

Abstract—Hierarchical federated learning (HFL) has attracted
academic attention to improve the efficiency of federated learning
(FL) in real-world applications, however, little research has
been done to explore the structural advantages of HFL against
Byzantine attacks and to investigate how to make HFL immune to
top-level server Single Point of Failure (SPOF). To explore this
field and improve the robustness of HFL, we propose a novel
generalized paradigm ABD-HFL for asynchronous Byzantine-
resistant decentralized hierarchical federated learning, a multi-
tier structure without a central server for FL tasks with a
large number of devices. Based on the layered structure, an
innovative universal Byzantine resistance mechanism is designed
in ABD-HFL, which enables it to apply a combination of multiple
Byzantine robust techniques, making ABD-HFL more powerful
than any single application of such techniques. Besides, ABD-
HFL is a fully decentralized HFL, there is no central server,
but rather multiple nodes at the top level agree on the global
model where malicious model updates are excluded. A new
concept of pipeline learning workflow is also introduced to
study communication efficiency in ABD-HFL, which is based
on asynchronous communication between various levels to train
and propagate the global model. Our numerical evaluation
validates the advantage of ABD-HFL in terms of robustness and
communication efficiency.

Index Terms—Hierarchical federated learning, distributed
computing, Byzantine resistance, hierarchical networks, decen-
tralized machine learning

I. INTRODUCTION

Federated learning(FL) has emerged as a promising ma-
chine learning(ML) scheme since it was firstly introduced
by Google [1], [2], [3]. According to the original FedAvg
approach [4], FL task is solved by multiple global rounds, each
round consisting of two steps. In the first step, participating
devices(referred as clients) train a global model with their own
dataset via stochastic gradient descent(SGD). In the second
step, a server collects these local models and aggregates them
into a new global model, which is sent back to clients for the
next round of learning.

There are three different communication schemes in FL:
synchronous, asynchronous, and semi-synchronous [5]. Under
synchronous protocol, the above two steps in each round must
be performed alternatively in sequence, while in asynchronous
FL, these two steps of adjacent rounds can be executed at
the same time. The semi-synchronous FL is a compromise
between synchronous and asynchronous protocols.

The traditional FL learning paradigm can be viewed as a
star topology which faces many challenges.

• SPOF Relying on a server to aggregate global models
makes FL vulnerable to Single Point of Failure(SPOF).

• Scalability The central server is prone to become the
bottleneck in terms of bandwidth and workload.

• Efficiency FL efficiency can be severely slowed down by
stragglers in unreliable communication channels.

• Security Byzantine clients may risk FL by uploading
malicious local model updates to the server.

A. Hierarchical Federated Learning(HFL)

In order to solve the problem of star topology, several new
FL paradigms have been proposed, such as tree topology, gos-
sip topology, mesh topology, etc. [5]. Among these paradigms,
tree-structured hierarchical federated learning(HFL) has at-
tracted plenty of attention in recent research. In [6], the authors
describe HFL as an aggregation tree consisting of a global
model aggregator and multiple partly model aggregators, over-
coming the limitations of a single central aggregator.

Many HFL solutions assume a central server to form the
global model, which still exposes the learning process to risks
such as SPOF, Byzantine attacks, etc., shown in II-A. Although
some authors [7] have mentioned it, there has been little
research in academia on a fully decentralized hierarchical FL
paradigm that prevents HFL from relying on any central server
for global model aggregation.

In addition, the great potential advantages of HFL against
Byzantine attacks have been overlooked when many researches
focus on improving the efficiency of communication for HFL
in the learning process, this is one of the main points to be
discussed in this paper.

B. Summary of Contributions

In order to improve the above deficiency in HFL, we
propose a novel Asynchronous Byzantine-resistant Decentral-
ized Hierarchical FL framework(ABD-HFL). ABD-HFL is a
general structure of fully decentralized HFL paradigm with an
innovative mechanism that exploits the advantages of a hier-
archical architecture in filtering malicious participants against
Byzantine attacks, while maintaining the communication effi-
ciency brought by the layered structure. Our contributions are
summarized as follows:

We design a generic algorithm to protect HFL from Byzan-
tine attacks through layer-by-layer filtering, which allows
model aggregation at different levels using different types of
approaches, such as Byzantine-robust aggregation techniques
and distributed consensus mechanisms.

We further decentralize the HFL structure by eliminating a
single central server from the tree structure, making the model



more robust in terms of SPOF and the risk of privacy leakage
caused by attacking central server.

We also introduce the concept of pipeline learning work-
flow, based on what a formal pattern is developed to study
communication efficiency by exploring potential pipelines be-
tween local model training and model aggregation procedures.

Our numerical simulations validate our theoretical inno-
vations of ABD-HFL in Byzantine robustness, which has
great potential for real-world applications, especially when the
learning process involves high percentage of adversaries.

Paper Organization Section II summarizes the latest rele-
vant research on HFL and Byzantine resistance methods in FL.
Section III presents the algorithms and mechanisms of ABD-
HFL, including pipeline learning workflows. The Byzantine-
robust design in ABD-HFL are detailed in section IV, which
is followed by the formal expression of ABD-HFL Byzantine
tolerance capability with the proof of correctness. Section V
shows the results of our simulation on real-world datasets.

II. RELATED WORK

A. Hierarchical Federated Learning(HFL)

Compared with the traditional star topology FL, the main
difference of HFL is the introduction of intermediate layers
between clients and the central server. Recent research work
on HFL has put efforts to explore mechanisms to improve FL
in terms of communication efficiency and security.

Some authors have proposed novel computational
paradigms based on HFL to ameliorate the problem of
low communication efficiency, such as introducing an
asynchronous federated optimization algorithm called
FedAsync to counter the adverse effects by stragglers in the
model aggregation phase [8]. In order to reduce unexpected
waiting, SHFL [9] sets a time limit for the edge server to
collect local models and send them to the cloud server for
global aggregation. Async-HFL [10] and AHFL [11] are
asynchronous HFL framework that uses a staleness-aware
weight aggregation algorithm in model aggregation to
handle stale new updates so that aggregation can proceed
continuously without waiting. DFL [12] focuses on the client
local training side in which a linear local-global model
combiner scheme is adopted to keep clients training without
waiting. Some authors have explored decentralized model
aggregation, where edge servers aggregate models whenever
they receive models from neighbors instead of waiting for
stragglers or failed neighbors, such as DHA-FL [13]. HED-FL
[14] takes a mechanism that requires multiple rounds of local
model exchange between the bottom and middle layers before
global aggregation is required from the middle level.

Another direction is to incorporate device-to-device(D2D)
communications into HFL structures, which aims to improve
communication efficiency by reducing the channel overload.
MH-FL [7] belongs to such type which proposes a novel mech-
anism for edge-level local model aggregation that leverages
D2D communication between clients of the same cluster to
reach consensus on the aggregated local model before the local
models are uploaded to the server. FL-EOCD scheme [15] and

TABLE I
BYZANTINE ATTACK TYPES

Target Attack Approaches Explanation
Training Label flipping Flip training sample labels
datasets Noise Add noise to training samples

Backdoor trigger Inject a trigger into specific area of
datasets

Model Noise Add random noise to model parameters
updates Sign Flip(SF) Flip the sign of the gradient

A Little is
Enough(ALE)

Add noise carefully to pretend to be
benign model updates

Inner Product Ma-
nipulation(IPM)

Manipulate inner product of true mean
of model updates and output of aggre-
gation schemes

TT-HF [16] adopt the similar mechanism. However, the main
drawback of this model is that the aggregation procedure is
too complex to be implemented in reality.

Some authors have extended the research of HFL settings
to delay-sensitive communication networks such as incoming
6G [17]. While some others have studied how to apply HFL
structures to improve FL accuracy in the case of non-IID data
distribution, such as the dynamic client clustering technology
introduced in FL+HC [18]

There are also works to study HFL in Byzantine settings,
such as in [19] the authors propose to group benign clients in a
largest cluster while adversarial in other smaller groups based
on cosine similarity of model updates, the server aggregates
global model for each cluster separately.

However, most of these HFL solutions are based on the
structure of wireless networks, assuming a central server to
form the global model and intermediate local model aggrega-
tion through fixed nodes. This exposes the learning process in
FHL to various risks similar to traditional FL, such as SPOF,
Byzantine attacks, etc.

B. Byzantine Attacks and Resistant Approaches in FL

As a distributed learning paradigm, FL faces severe threats
from Byzantine attacks by malicious learning participants [20].
It has been proved that model aggregation in FL based on
linear combination cannot tolerate even a single Byzantine
participant in distributed implementation of current approaches
based on SGD [21].

Some authors [22] classified malicious attacks in FL settings
into two types, that is by manipulating training datasets or
model parameters. Approaches of manipulating device datasets
are also known as data poisoning attacks [23]. Manipulating
model parameters is a way where the attacker contaminates
the local model parameters, thereby adversely affecting the
aggregation of global model. Malicious servers pose a greater
threat to FL because the server may use the FL tasks to build
malicious tasks, causing harmful consequences to FL target
users [23]. Based on the work [24] which summarizes the main
Byzantine attacks that threaten FL, we classify them according
to the manipulation type, as shown in Table I.



TABLE II
TYPE OF BYZANTINE RESISTANCE APPROACHES

Type Strategy Approaches
Byzantine Euclidean distance Krum, Geomed, AutoGM
robust Mean value TrimmedMean, CC, Clustering
aggregation Median GeoMed, AutoGM, Median

Cosine similarity Clustering
Clipping CC

Consensus Scalar consensus PoW, PoS, PBFT, Committee
mechanism Multidimensional

consensus
(ϵ, p)-relaxed BVC, validated
Byzantine asynchronous ϵ-
agreement protocol

To counter the Byzantine attacks discussed above, various
methods have been proposed, which can be divided into two
type, as shown in Table II.

One approach is to build a Byzantine-robust aggregation
schemes by exploring mathematical measurement of parameter
vectors to detect and rule out malicious model updates in
model aggregation. The authors of [24] summarize these
schemes as measuring model parameter vectors by Euclidean-
distance, geometric median, mean, cosine similarity, and clip-
ping. Some famous proposals for such solutions include Krum
[21], GeoMed [25], Median and Trimmed Mean [26] etc.

A shortcoming of these Byzantine-robust approaches is that
they are normally discussed on traditional FL with a central
server as a model aggregation, without considering a fully
decentralized global model aggregation mechanism to reduce
risks such as SPOF or attacks on the central server.

Another approach to explore Byzantine-resistant FL is to
exploit the distributed optimization characteristics of FL, based
on distributed consensus protocols. In this direction, there are
several different consensus building technologies.

One is to explore the traditional scalar consensus protocols
to filter malicious model updates, such as using PoW [27],
PoS [28], PBFT [29], Committee based consensus [30] etc.,
this has been extensively studied in the blockchain-based FL
paradigm [31], [32]. The basic paradigm of this technology
is that before the aggregation procedure, each member of
the consensus group use a scalar value(e.g. a score or vote)
to express its opinion on a relevant model update, and then
exchanges its value with all other members, so that after
enough communication rounds, all members of the group reach
an agreement on the scalar value which decides to accept
or discard this local model update. In this way, malicious or
illegal model updates are excluded from the aggregation stage.

Another technology is to investigate multidimensional con-
sensus algorithms, such as multidimensional(or vector) agree-
ment [33] [34]. In this paradigm, multiple aggregators form
a consensus group, parameter vectors are collected by each
aggregator and exchanged to all other aggregators, and group
members agree on a safe area that excludes malicious model
updates. Multidimensional agreements usually requires an
exponential computations in each round. However, some more
efficient multi-dimensional protocol algorithms have been pro-
posed, such as (ϵ, p)-relaxed BVC [35], validated Byzantine

asynchronous ϵ-agreement protocol [36], which reaches poly-
nomial computational complexity.

Furthermore, some authors have proposed variants of con-
sensus protocols in Byzantine distributed learning, such as
averaging agreement [37] which builds a fully decentralized
asynchronous learning paradigm. Kardam [38] and BYZSGD
[39] are methods that use Lipschitzness of cost function to
filter Byzantine nodes. MoNNA [40] belongs to the collabo-
rative learning algorithms which use momentum of stochastic
gradients to eliminate malicious model updates.

All of the above distributed proposals do not consider the
network layer structure of real-world FL participant organiza-
tions, which can leverage the potential functionality of edge
servers in HFL to help filter malicious model updates. This is
also where the proposal to secure FL based on blockchain in
the second approach falls short.

In summary, Byzantine robust aggregation techniques gener-
ally require low computational and communication overhead,
but normally each type of method is particularly effective
against some types of Byzantine attacks. For distributed con-
sensus methods, they impose heavy communication costs on
the system although they can be applied to more general
Byzantine attacks.

III. ABD-HFL DESIGN

Inspired by leaf-only trees in LOT [41] and Rcanopus
[42], ABD-HFL architecture is a collection of tree structures
derived upwards from leaves. All nodes above the bottom
level are leader nodes of adjacent lower level. To simply
complex intersections between various factors, the following
assumptions are made in ABD-HFL.

• Assumption 1 The communication channel are assumed to
be partial synchronous communication, for all nodes the
message delivery time is arbitrary, finite but unbounded.

• Assumption 2 For each level, there are always enough
clusters to upload partial models to their upper level at
any global training round.

• Assumption 3 Nodes can join or leave the existing clus-
ters, but no clusters will be split or combined.

A. ABD-HFL Network Architecture

In ABD-HFL, all participating end devices, except nodes
from job publishers, will be considered equal and initially
located at the bottom level. We use L to denote the set of

Fig. 1. Architecture of ABD-HFL.



levels, L0 and LL represent the top level and the bottom level
respectively, given that there are L + 1 levels of the trees in
total. Note that L = {ℓ|0 ≤ ℓ ≤ L} and |L| = L + 1. All
participating nodes on the bottom level will form an arbitrary
number of local learning clusters. The set of clusters at level
Lℓ is denoted as Cℓ, 0 ≤ ℓ ≤ L, and the set of nodes of the
ith cluster at this level is denoted as Cℓ,i with 0 ≤ i < |Cℓ|.
The number of the clusters at level Lℓ is Cℓ, and the number
of nodes at cluster Cℓ,i is Cℓ,i, obviously we have

Cℓ = |Cℓ|, Cℓ,i = |Cℓ,i|

Starting from the bottom level, a leader Aℓ,i of the cluster
Cℓ,i will be responsible for the collection and aggregation
of local models uploaded by members of Cℓ,i, as well as
communication with adjacent upper/lower levels. Leader Aℓ,i

will also upload the new partial aggregated model to its upper
level Lℓ−1 if ℓ > 0, and will disseminate models received
from its upper level to its cluster members. The leader of
each cluster in the Lℓ level will form the upper level Lℓ−1.
Similarly, nodes at level Lℓ−1 should be clustered together
by geographical similarity to reduce the number of partial
aggregated model transfers. This logic applies from the bottom
to the top level L0. At the top level, there is no central
server, but are a set of nodes which form one cluster C0,0.
The leader of cluster Cℓ,i at level Lℓ is also a member of a
jth cluster Cℓ−1,j at its upper level Lℓ−1, as shown in Fig. 1.
The notations of this paper is summarized in Appendix A.

The total number of levels |L| will be determined by the
magnitude of the total number of participants. Besides, job
publishers should contribute their own nodes which will be
located at top level, and whose role is to participate in the
aggregation of the global model. Through this way, the global
model will be shared and stored by all nodes at top level,
eliminating the risk of SPOF.

B. Flag level mechanism in ABD-HFL

Flag level In ABD-HFL, after uploading its local model
updates, the local model trainer does not need to wait for a new
global model which takes time to be formed, but only waits
for a flag partial model from a flag level that is enough for
the trainer to effectively start a new global round of training,
which are defined as follows.

Definition 1: The flag level of ABD-HFL is the level at
which the node propagates its partial aggregated model to its
descendants for next global round of local model training, and
this partial aggregated model is a flag partial model, or simply
flag model.

At any round r, the global model aggregation process is
being processed to produce global model θ

(r)
G , while a new

global training round is taking place in local trainers with the
flag partial model θ

(r)
F . Whenever global model aggregation

is completed, θ(r)
G will be passed to local trainers, and clients

will adjusted their trained local model by a correction factor
which is defined as follows. The selection of this partial model
θ
(r)
F will be discussed in section III-D2.

Correction factor The global model θ(r)
G will arrive after

the device has processed the next round of training with flag
model θ

(r)
F for some local iterations, making θ

(r)
G appears

”stale” compared to the current local model. Flag models are
aggregated from part of entire local updates trained on smaller
datasets, compared to ”outdated” global models, which are
aggregated from the all effective local updates based on the
entire dataset. Therefore, the current local model based on flag
partial model may lead to over fitting to its own datasets. To
avoid this potential risk, it is necessary to merge its current
local model with the new arrived global model, so that the
subsequent local training iterations will be performed on the
updated local model.

Inspired by the Linear Local-Global Model Combiner pro-
posed by [12], we adopt a similar linear approach to merge
local model with arrived global model. Assume that device n
within CL,i receives a global model θ(r)

G while n is training its
local model θ(r)

n , this local model is derived from flag partial
model θ(r)

F , then the updated local model parameters θ′(r)
n is

obtained by:

θ′(r)
n = α

(r)
L,i ∗ θ

(r)
G + (1− α(r)

L,i) ∗ θ
(r)
n (1)

α
(r)
L,i is the correction factor for cluster CL,i at round r, with
α
(r)
L,i ∈ (0, 1]. The value of correction factor is determined by

the following factors
• Global model latency The latency of global model deter-

mines its staleness compared to the current local model.
If the delay is large, the correction factor should be
assigned a smaller value to penalize the global model for
outdated information. If the delay is small, a larger value
should be assigned to the correction factor to improve the
generalization ability of the updated local model.

• Relative datasets size of θ
(r)
F to θ

(r)
G Compared to the

global datasets, the relative size of the total datasets on
which the flag partial model θ(r)

F is trained also affects the
value of correction factor. The larger the relative size, the
more representative of θ(r)

F is in the aggregation of θ(r)
G ,

which implies the smaller the difference between θ
(r)
G and

θ
(r)
F . Therefore, the less information the staled θ

(r)
G could

bring to current local model, the smaller the correction
factor should be for member of cluster CL,i. And if the
relative dataset size of θ(r)

F is small, it means that θ(r)
G can

bring more new information to the local model, then the
correction factor should be larger for members in CL,i.

C. ABD-HFL Algorithm

In ABD-HFL, the learning process consists of R global
rounds. In each round, there are three procedures, local model
training at the bottom level, partial model aggregation which
ranges from bottom level to L1, and global model aggregation
that is executed at top level L0, shown in Algorithm 1.

Local model training Algorithm 2 depicts the process of
local model training in ABD-HFL. In global round r, 0 < r ≤
R, all bottom-level devices locally start training their models



Algorithm 1 ABD-HFL Algorithm
Require: L = {ℓ|0 ≤ ℓ ≤ L}

1: Initialize θ
(0)
G to all nodes.

2: for ℓ ∈ set{L} do
3: LocalModelTraining
4: end for
5: for all ℓ ∈ set{l : 1 ≤ l ≤ L} do
6: PartialModelAggregation
7: end for
8: for ℓ ∈ set{0} do
9: GlobalModelAggregation

10: end for

Algorithm 2 LocalModelTraining

Require: {AL,i}, {CL,i}, R, T ,
{
α
(r)
L,i

}
,

with 0 ≤ r < R, 0 ≤ i < |CL|
1: r ← 0
2: while r < R do
3: for all CL,i at bottom level L do
4: for all device n ∈ CL,i do
5: if r = 0 then
6: θ(r),0

n ← θ
(0)
G

7: else
8: repeat
9: Waits for messages

10: until receives flag model θ(r)
F from AL,i

11: θ(r),0
n ← θ

(r)
F

12: end if
13: t← 0
14: while local iteration t < T do
15: SGD updates as:
16: θ(r),t+1

n ← θ(r),t
n − η(r),tn ∇ℓ(θ(r),t

n ;Dn)

17: if receives θ
(r)
G from AL,i then

18: θ(r),t
n ← α

(r)
L,i × θ

(r)
G + (1− α(r)

L,i) ∗ θ
(r),t
n

19: end if
20: t← t+ 1
21: end while
22: θ(r)

n ← θ(r),t+1
n

23: Sends θ(r)
n to AL,i

24: end for
25: end for
26: r ← r + 1
27: end while

with an initial flag model θ(r)
F where r represents the number

of round. Consider any bottom-level device n which belongs
to cluster CL,i. Device n receives model θ(r)

F from its cluster
leader AL,i, then n follow Stochastic Gradient Decent(SGD)
[43] to train the model and complete a predefined local training
iterations T . On receiving the global model θ

(r+1)
G during

local training process, n will merge it with their own trained
local models following Equation 1. After completing iterations
T , n uploads its trained model parameters θ(r)

n to its leader

AL,i, and then waits to receive feedback from leader.
Parial model aggregation Partial model aggregation pro-

cedure is executed across all intermediate levels, defined in
Algorithm 3. Within the process, the communication flow
starts from bottom level LL to its upper level LL−1, then
goes upper along intermediate levels, such as from Lℓ to Lℓ−1,
0 < ℓ ≤ L.

Algorithm 3 PartialModelAggregation
Require: {Aℓ,i}, {Nℓ,i,j |Nℓ,i,j ∈ Cℓ,i}, ℓF, BRA, CBA,

with 0 < ℓ ≤ L, 0 ≤ i < |Cℓ|
1: r ← 0
2: while r < R do
3: for all Cℓ,i at level ℓ do
4: for all Nℓ,i,j ∈ Cℓ,i do
5: if BRA is adopted at l then
6: if Nℓ,i,j = Aℓ,i then
7: θ

(r)
ℓ,i ← AggMdlByCluster(Cℓ,i,BRA)

8: Broadcasts θ
(r)
ℓ,i to all members of Cℓ,i

9: else
10: Sends θ

(r)
ℓ,i,j to Aℓ,i {θ(r)

ℓ,i,j is the partial/local
model of Nℓ,i,j}

11: end if
12: else if CBA is adopted at l then
13: θ

(r)
ℓ,i ← CBA

(
θ
(r)
ℓ,i,k;

{
θ
(r)
ℓ,i,k; |Nℓ,i,k ∈ Cℓ,i

})
14: end if
15: end for
16: θ

(r)
ℓ−1,p,q ← θ

(r)
ℓ,i

17: Aℓ,i stores θ
(r)
ℓ−1,p,q {Aℓ,i = Nℓ−1,p,q}

18: if ℓ = ℓF then
19: for all Nℓ,i,j ∈ Cℓ,i do
20: θ

(r+1)
F ,ℓ,i ← θ

(r)
ℓ,i

21: Nℓ,i,j broadcasts Flag Model as
DisseminateModel (θ(r+1)

F ,ℓ,i )
22: end for
23: end if
24: end for
25: r ← r + 1
26: end while

ABD-HFL provides users the mechanism to set different
partial model aggregation approaches for different interme-
diate levels. In Algorithm 3, BRA stands for Byzantine-
robust aggregation approaches, and CBA means Consensus
mechanism based aggregation approaches, as shown in II-B.

Typically, assume at any intermediate level ℓ, in the setting
of BRA, leader Aℓ,i of Cℓ,i is responsible to receive partial
models to form a partial aggregated model θ(r)

ℓ,i , as shown in
Algorithm 4. After θ(r)

ℓ,i is formed, Aℓ,i will also send a copy
of it to all members of Cℓ,i for storage.

The minimum number of partial models that should be col-
lected for aggregation is defined by a percentage of the cluster
size, ϕℓ. Then the corresponding number Cℓ,i ∗ ϕℓ should be
received by leaders will vary given that the cluster sizes differ



Algorithm 4 AggMdlByCluster
Require: Cℓ,i, Aℓ,i, ϕℓ,AG(Aggregation Approach)

1: Mℓ,i ← 0
2: repeat
3: Waits for messages
4: if Aℓ,i receives partial(or local) model θ(r)

ℓ,i,k from nk
and nk ∈ Cℓ,i then

5: Mℓ,i ←Mℓ,i + 1
6: end if
7: until Mℓ,i ≥ ϕℓ × Cℓ,i or Timeout
8: Aggregate partial model for Cℓ,i as

θ
(r)
ℓ,i ← AG

(
θ
(r)
ℓ,i,k;

{
θ
(r)
ℓ,i,k|nk ∈ Cℓ,i

})
9: return θ

(r)
ℓ,i

from each other. Assuming that the leader Aℓ,i belongs to the
cluster Cℓ−1,p in upper level, once the partial aggregation is
completed, it immediately uploads the aggregated model to its
leader Aℓ−1,p of cluster Cℓ−1,p. Similarly, when enough partial
aggregated models have been collected by node Aℓ−1,p, it will
aggregate a new partial model θ(r)

ℓ−1,p and upload it to its own
cluster leader in level Lℓ−2. This process goes up to level L1.

In the setting of CBA for ℓ, nodes in cluster Cℓ,i will
reach an agreement on partial aggregated model θ(r)

ℓ,i by the
process of consensus mechanism. By this way, all nodes of
Cℓ,i including leader Aℓ,i will get a copy of θ

(r)
ℓ,i , then Aℓ,i

can send θ
(r)
ℓ,i to its leader Aℓ−1,p, which will be used in the

process of partial model aggregation at level Lℓ−1.

Algorithm 5 DisseminateModel

Require: θ
(r)
M

1: if disseminate θ
(r)
F then

2: ℓs ← ℓF
3: θ

(r)
M ← θ

(r)
F

4: else if disseminate θ
(r)
G then

5: ℓs ← 0
6: θ

(r)
M ← θ

(r)
G

7: end if
8: for all ℓ ∈ set{l : ℓs ≤ l < L} do
9: for all Nℓ,i,j ∈ Cℓ,i do

10: if ℓ = ℓs then
11: Aℓ+1,k Broadcasts θ

(r)
M to all members of Cℓ+1,k

{Aℓ+1,k = Nℓ,i,j}
12: else
13: repeat
14: Waits for messages
15: until Receives θ

(r)
M from Aℓ,i

16: Aℓ+1,k Broadcasts θ
(r)
M to all members of Cℓ+1,k

17: end if
18: end for
19: end for

When the partial model aggregation process is completed
for cluster Cℓ,i of flag level ℓF, all cluster members will

disseminate their specific flag model θ
(r+1)
F to all of their

lower-level cluster members, which will disseminate the cor-
responding θ

(r+1)
F to lower levels in the same way, shown as

in Algorithm 5. In this way, finally all devices at the bottom
level will receive the flag model θ(r+1)

F from their ancestors at
flag level, then they can start the next round of local training.

Global model aggregation Global model is formed through
communication flow from the last intermediate level L1 to top
level L0. Similar to partial model aggregation, global model
can be formed by Byzantine-robust approaches or consensus
mechanism based approaches. The process is depicted in
Algorithm 6.

For the setting of BRA, a leader node A0,0 at the top
level will collect partial models from other nodes, then it
will aggregate all partial models into global model θ

(r+1)
G .

The process is similar to partial model aggregation with
BRA. Once θ

(r+1)
G is formed, A0,0 broadcasts it to all top-

level nodes. On receiving θ
(r+1)
G , each top-level node will

disseminate the new global model to its lower-level cluster
members, which will broadcast θ(r+1)

G to its own lower level
cluster members, this process goes levels downward until all
devices at bottom level receive the new global model and used
it for the following local iteration.

For the setting of CBA, no leader node exists at the
top level, all nodes are equal. They will follow the CBA
consensus process to reach agreement on the new global model
θ
(r+1)
G , and each node will get a copy of it. Then all nodes

will disseminate θ
(r+1)
G to the bottom-level nodes.

Algorithm 6 GlobalModelAggregation
Require: A0,i, BRA, CBA. {A0,i - leader of cluster C1,i}

1: while r < R do
2: for all node N0,0,i ∈ C0,0 do
3: if BRA is adopted at the top level then
4: if A0,0 = N0,0,i then
5: θ

(r+1)
G ← AggMdlByCluster(C0,0,BRA)

6: A0,0 broadcasts θ
(r+1)
G to all members of C0,0

7: else
8: Sends θ

(r)
0,0,i to A0,0 {θ(r)

0,0,i is the aggregated
partial model of C1,i}

9: end if
10: else if CBA is adopted at the top level then
11: θ

(r+1)
G ← CBA

(
θ
(r)
0,0,k;

{
θ
(r)
0,0,k; |N0,0,k ∈ C0,0

})
12: end if
13: N0,0,i stores Global Model θ(r+1)

G

14: DisseminateModel (θ(r+1)
G )

15: end for
16: r ← r + 1
17: end while

After the formation of θ
(r+1)
G , all top-level nodes will

disseminate θ
(r+1)
G to devices at bottom level. This process

is similar to the dissemination of flag model described above,
but the process starts from the L0 for θ(r+1)

G .



Fig. 2. ABD-HFL Pipeline Learning Workflow.

D. ABD-HFL Pipeline Learning Workflow

The ABD-HFL algorithm is a pipeline learning workflow,
where the local model training procedure goes along with the
global model aggregation process, making the whole process
following an asynchronous communication pattern, as shown
in Fig. 2. This effectively shortens the overall learning time by
reducing the waiting time between successive global rounds.

There are two types of speed differences that can be
exploited to gain concurrency between these tasks. The first
is between local model training and model aggregation, and
the second is between flag partial model and global model
aggregation processes. Note that the second speed difference
depends on the scheme chosen discussed in section IV-A.

1) Pipeline workflow efficiency: The efficiency of pipeline
workflow can be studied and explored through a quantitative
and qualitative analysis.

In any global learning round r, starting from the bottom
level, within any cluster CL,i, assume that the leader AL,i

receives the first local model update from node NL,i,j . Then
AL,i waits to receive enough local models to start the aggrega-
tion process. The number of models needed is decided by the
aggregation scheme described in Algorithm 3. We use τL to
denote the duration from the time when the first local model is
received by AL,i until the time when AL,i starts to aggregate
its partial model. The duration of partial model aggregation to
form θ

(r)
L,i is denoted as τ ′L.

A similar partial aggregation process will occur from LL−1

to flag level ℓF, which means there will be δ of similar
duration to τL and τ ′L, δ = L − ℓF + 1. Assuming that
node NℓF,j,p at ℓF is the ancestor of bottom-level node AL,i,
whenever it gains flag model θ

(r+1)
F,j,p , it disseminates θ

(r+1)
F,j,p

to its descendants, including node AL,i. We ignore the time
of model dissemination, then from the time AL,i collects the
first model to the time it receives the corresponding flag partial
model, AL,i and its members in CL,i waits for a series of time
duration:

{τL, τ ′L, · · · , τℓF , τ ′ℓF}

We use σw to represent this series of waiting time, then

σw =

L∑
i=ℓF

(τi + τ ′i)

While members of CL,i starts the local training of global
round (r+1) with θ

(r+1)
F,j,p , the aggregation process from level

ℓF to L1 is going on at the same time. The sum of the duration
taken by these partial aggregation is similar to the duration of
σw, we denote them as σp

σp =

ℓF−1∑
i=1

(τi + τ ′i)

Similarly, the global model aggregation at top level consists
of two phase of model collection duration τg and aggregation
duration τ ′g , we use σg denote the entire time

σg = τg + τ ′g

Thus, the total time from when the first local model is ready
to when the global model arrives is

σ = σw + σp + σg (2)

Within the duration σp and σg , members in CL,i are training
with θ

(r+1)
F,j,p for the next global round, the only waiting time

is σw.
Based on (2) we can derive the efficiency indicator as

below, which indicates the computational resources that are
effectively utilized by the pipeline workflow instead of being
wasted on waiting.

ν =
σp + σg

σ
(3)

Note that the above efficiency indicator will vary from round
to round, because each of the three items σw, σp, σg may be
different in each global training round. And in each round,
nodes in different cluster may also get different efficiency
indicators. This mainly comes from the term σw, while the
latter two items σp and σg are same for all nodes in the same
round. The difference of σw comes from two part. First, for
each node within a same cluster, the time to complete the local
training iteration is different. Second, for nodes in different
clusters, the speed between their ancestors is different at flag
level ℓF. Due to these reasons, the formula (3) can be used as a
qualitative analysis tool for ABD-HFL. The precise calculation
for the effective overall efficiency indicator is a future work
which is beyond the scope of this paper.

2) Flag level settings: Formula 3 implies that there is
a trade-off between learning efficiency and waiting time in
setting which intermediate level as flag level. If the flag level
is closer to the top level, meaning that it is less dependence on
correction factors defined by Formula 1, and that more useful
work has been done before arrival of global model in the new
round of training. But the disadvantage of this setting is that
bottom-level devices have to wait longer for the arrival of
flag partial model. While, if flag partial model is closer to the
bottom level, a better communication efficiency can be gained.
But in this case the flag partial model may differ significantly
from the global model, which means the system relies more
on correction factors to correct the staleness of global model.
An anlysis of factors that affects the choice of the flag level
is discussed in Appendix E.



TABLE III
AGGREGATION SCHEMES IN ABD-HFL

Scheme Partial Aggregation Phase Global Aggregation Phase
1 Byzantine-robust aggregation Consensus mechanism
2 Consensus mechanism Byzantine-robust aggregation
3 Byzantine-robust aggregation Byzantine-robust aggregation
4 Consensus mechanism Consensus mechanism

IV. BYZANTINE RESILIENCE MECHANISM IN ABD-HFL

A. Byzantine settings options

The flexible setting in ABD-HFL algorithm makes it pos-
sible to adopt a combination of different Byzantine resistant
approaches from the two different domains discussed in II-B.
In this way, task publishers can choose the best trade-off
between robustness and efficiency according to their own
criteria. Based on the two type of approaches, we summarize
four possible Byzantine-robust combination for ABD-HFL,
shown as in Table III.

Each of these four combination has its own potential appli-
cable scenarios, we summarize the features of each of these
combinations.

• Scheme 1 This scheme deploys Byzantine-robust ap-
proaches for partial aggregation and consensus-based
methods for global aggregation, which is suitable for FL
with mass devices. With this setting, partial aggregation
can filter out malicious models with lower overall com-
munication cost, whereas on the top level a high quality
of global model aggregation is implemented with a higher
communication cost.

• Scheme 2 This scheme fits FL with a relative small num-
ber of participants which is more sensible to malicious
participants. At the expense of high communication in
partial aggregation, consensus-based method can provide
a relative high quality of partial models used for global
model aggregation. With this guarantee, the top level can
safely employ a lightweight Byzantine-robust aggregation
for global model aggregation.

• Scheme 3 With this configuration, Byzantine-robust ag-
gregation are deployed through all levels, which ensures
a relative faster aggregation speed than all other schemes,
This scheme is suitable for a great amount of participants
joining the FL task, and the extent of Byzantine behavior
of participants should be controlled by job publisher.

• Scheme 4 In this scheme consensus-based methods are
adopted at all levels. Due to the heavy communication
cost of distributed consensus mechanisms, this config-
uration will be accompanied by high communication
cost. But the reward from heavy communication is better
robustness on Byzantine attacks.

B. ABD-HFL Byzantine Tolerance Models

In this section we describe the Byzantine tolerance capabil-
ity of ABD-HFL in terms of the proportion of malicious nodes.
Job publishers can decide on the aggregation scheme shown in

TABLE IV
APPLICABLE SCENARIOS FOR AGGREGATION SCHEMES IN ABD-HFL

Scheme Participants Quantity Robustness Communication Cost
1 Masses High Intermediate
2 Intermediate High Intermediate
3 Masses Intermediate Low
4 Small High High

Table III for a specific FL task. We denote γ1 as the percentage
of maximum Byzantine tolerance of global aggregation at
the top level, and denote γ2 for partial aggregation in all
intermediate levels.

First we develop the Equal Cluster Size Model((ECSM) as
a basic model to study the property of ABD-HFL. ECSM is
an ideal model where we consider all clusters on all levels
except the top to be of equal size, i.e. each top node is the
root of a complete m-ary tree. To simplify the notation, we
use Nt to denote the number of nodes at the top in round r.
Due to space limitation, all proofs of the following theorems
and corollaries are given in the Appendix B.

In order to study the properties of ABD-HFL tree structure,
we define a new tree concept based on m-arry tree.

Definition 2: A p-ratio two-type complete m-ary tree is a
complete m-ary tree in which all nodes are either type-I or
type-II nodes, the root is a type-I node, and the proportion of
type-I in the child nodes of a type-I node is p, 0 ≤ p ≤ 1, and
the child nodes of a type-II node are all type-II.

With this definition, we can develop the properties related
to the proportion of each type in each levels.

Theorem 1: For a p-ratio two-type complete m-ary tree of
depth L, at the ℓth level, 0 ≤ ℓ < L, there are (pm)ℓ type-I
nodes , and the proportion of type-I nodes at this level is pℓ.

We study the case of ABD-HFL structures with different
Byzantine tolerance capability in the top level and subsequent
levels. For convenience of description, we first define this
property for ABD-HFL structure as below.

Definition 3: ABD-HFL with property γ1-γ2 is a ABD-HFL
structure with Nt nodes at the top level, and the maximum
proportion of Byzantine nodes tolerated in the top level is γ1,
the maximum proportion for each cluster of each subsequent
level is γ2.

Based on Definition 2, we define the concept of a p-ratio
ABD-HFL for this analysis.

Definition 4: A p-ratio ABD-HFL structure of L levels is an
ABD-HFL structure with Nt nodes at top level, and for some
top-level nodes, each of them is the root of a p-ratio two-type
complete m-ary tree of depth L, assuming that the nodes of
type-I are honest nodes, and nodes of type-II are Byzantine
nodes; while for other top-level nodes, each of them is the
root of a complete m-ary tree of depth L, where all the nodes
are Byzantine nodes(type-II).

In fact, the p-ratio ABD-HFL structure is a set of p-ratio
two-type complete m-ary tree, with each node at the top level
is the root of each such tree respectively.



Note that if all top-level nodes are Byzantine, then all nodes
of a p-ratio ABD-HFL structure are Byzantine; if all top-level
nodes are honest and p = 1, then all nodes are honest.

Firstly we develop an corollary about the number of nodes
at each level of the structure.

Corollary 1: For an p-ratio ABD-HFL structure of L levels
with Nt nodes at top level, there are a total of Ntm

ℓ nodes
at level Lℓ, given that 0 ≤ ℓ < L.

Based on Corollary 1, we can develop an important property
of ABD-HFL structure regarding the proportion of Byzantine
nodes that can be tolerated in each level.

Theorem 2: For a p-ratio ABD-HFL structure of L levels
with property γ1-γ2, for any level ℓ, 0 ≤ ℓ < L, the
maximum number of tolerated Byzantine nodes are Ntm

ℓ −
(1 − γ1)Nt[(1 − γ2)m]ℓ, and the maximum proportion of
Byzantine nodes tolerated is 1− (1− γ1)(1− γ2)ℓ.

Interestingly, if γ1 = γ2, according to Theorem 2, the
maximum ratio of Byzantine nodes in each level becomes
1 − (1 − γ1)

ℓ. Based on the above observations, we can
further derive several interesting properties of p-ratio ABD-
HFL structure with property γ1-γ2.

Corollary 2: For a p-ratio ABD-HFL structure with property
γ1-γ2, a lower level tolerates a greater proportion of Byzantine
nodes than its upper level.

Corollary 3: For a p-ratio ABD-HFL structure with property
γ1-γ2, if the number of bottom-level nodes is fixed, the more
levels there are, the greater the proportion of Byzantine nodes
that the system can tolerate at bottom level.

Corollary 3 is useful to guide the build of ABD-HFL
structure based on ECSM model. It implies that for any task,
assuming the number of devices joining the learning task is
fixed, increasing the total number of levels in ABD-HFL can
make it tolerate higher proportion of Byzantine devices at the
bottom level.

ECSM assumes equal cluster sizes. Extending ECSM to
clusters of arbitrary size at any level, i.e., the Arbitrary Cluster
Size Model(ACSM), is detailed in the Appendix C.

V. NUMERICAL EVALUATION

In this section, we present simulation results of an example
ABD-HFL structure based on ECSM with real-world image
classification task.

A. Experimental Setup

We choose the handwriting recognition data set
MNIST [44], following Song et al. [45], we use DNN
model for evaluation. The final test accuracy of the global
model are compared between ABD-HFL and vanilla FL.

Following McMahan et al. [4], two sets of experiments
are made, i.e. IID and non-IID data distribution. We set up
two scenarios of data poisoning attacks, Type I and Type II.
The former sets all training sample labels to 9, and the latter
randomly set sample labels to values between 0 and 9.

The proportion of bottom-level devices with poisoned
datasets are ranging from 0% to 65%, where 0% represents
the situation where all nodes are honest.

For the Byzantine-resistant aggregation approaches, in
ABD-HFL structure we follow scheme 1 mentioned in IV-A.
The Byzantine-robust aggregation approaches are set for the
partial aggregation. Two partial aggregation methods, Krum
(MultiKrum) and Median, under IID and non-IID settings
respectively, with the assumed proportion of malicious nodes
in Krum’s algorithm set to 25%. At the top level, a consensus
mechanism inspired by Chen et al [28] is deployed for
global model aggregation. Simulation settings are detailed in
Appendix D.

Based on the above design, according to Definition 3, the
MultiKrum algorithm mentioned above defines γ1 = 25%. We
also assume that the consensus mechanism at the top level is
able to filter out one Byzantine node from the four top nodes,
which implies that γ2 = 1/4 = 25%. The total number of lay-
ers is 3, the bottom layer L = 2, according to Theorem 2, this
ABD-HFL settings can tolerate up to 57.8125% of malicious
participants at the bottom level, calculated as follows:

1− (1− γ1)(1− γ2)ℓ = 1− (1− 25%) ∗ (1− 25%)2

= 57.8125%

This inference has been verified by simulations shown below.

B. Simulation Results

The average test accuracy of five repeated runs to evaluate
the final global model is shown in table V. Firstly, we observe
that when the proportion of malicious nodes is 0% (all nodes
are honest), ABD-HFL achieves almost the same prediction
accuracy as vanilla FL model regardless of whether the data
distribution is IID or non-IID, which verifies that ABD-HFL
maintains the learning ability of the classical FL paradigm.

In the IID case of Type I attack, where both models
deploy MultiKrum as partial model aggregation approach, with
malicious nodes proportion increases from 5% to 57.8%, the
accuracy of vanilla FL model drops sharply from approxi-
mately 90.3% to 10.1%, while for ABD-HFL model, it almost
remains at the same level between 89% to 90%, which verifies
the stability of ABD-HFL comparing to traditional centralized
FL paradigm under such attack.

Note that even with malicious proportion of 65%, which
is above the theoretical upper bound of 57.8%, ABD-HFL
still achieves an accuracy of 73.8%, compared to 10.01% for
vanilla FL. This sharp contrast does not appear in the IID
cases of Type II attack, the reason is that Krum performs very
well in this type of attack even with vanilla FL topology,
and the similar performance of ABD-HFL to vanilla FL
shows that it can keep the Byzantine-resistance capabilities
of Krum mechanism deployed within its architecture without
compromising it.

It is worth noting that in the case of non-IID simulation, the
Median approach is deployed as aggregation in both models.
Different from the IID cases where we can develop theoretical
Byzantine tolerance boundary for Krum algorithm, it is diffi-
cult to give precise boundaries for Median aggregation, so the
malicious proportion in non-IID is more of a representation
than a precise quantitative characterization.



TABLE V
FINAL TESTING ACCURACY ON GLOBAL MODELS

Data Distribution Attack Type Model Accuracy
IID Type I ABD-HFL 89.9% 90.0% 90.0% 89.9% 90.0% 90.0% 89.9% 89.7% 73.8%

Vanilla FL 90.0% 90.3% 90.1% 90.5% 89.9% 90.1% 10.1% 10.1% 10.1%
Type II ABD-HFL 90.1% 90.0% 90.1% 90.1% 90.3% 90.1% 89.6% 89.7% 88.8%

Vanilla FL 90.1% 90.1% 90.2% 90.1% 90.1% 90.2% 89.8% 89.9% 89.6%
non-IID Type I ABD-HFL 89.5% 78.1% 76.5% 74.6% 68.7% 59.4% 62.7% 59.9% 48.9%

Vanilla FL 90.0% 74.3% 72.2% 65.2% 57.7% 44.2% 14.7% 10.1% 10.1%
Type II ABD-HFL 89.7% 79.7% 75.8% 76.7% 73.6% 66.6% 68.9% 62.9% 47.0%

Vanilla FL 89.7% 74.6% 76.1% 69.6% 68.1% 62.8% 46.3% 38.6% 26.8%
Malicious Proportion 0% 5.0% 10.0% 20.0% 30.0% 40.0% 50.0% 57.8% 65.0%

Fig. 3. Data-poisoning attack simulation results.

Nonetheless, the results of non-IID simulation more directly
demonstrate the Byzantine fault tolerance advantage of ABD-
HFL over centralized topologies. Although the accuracy of
ABD-HFL decreases as the number of malicious participants
increases, the decrease from approximately 78.1% to 48.9%
and 79.7% to 47.0% is much smaller than that of vanilla FL
model, which are from 74.3% to 10.1% and 74.6% to 26.8%
respectively. The decrease in accuracy for both models comes
partly from the Byzantine tolerance capability of Median algo-
rithm and partly from the tougher challenges present in non-
IID distribution compared to IID cases. Even so, ABD-HFL
can keep a accuracy level above 60% when 50% participants
are malicious, while vanilla FL can only achieve an accuracy
of 14.7% to 46.3% depending on the attack type.

Figure 3 shows the relative convergence speed between
ABD-HFL and vanilla FL in several data poisoning attack
scenarios. Each curve consists of a line representing the
average accuracy at each global step, with the gray shaded
area standing for the confidence intervals based on five runs.
We observe that both ABD-HFL or vanilla FL perform stably
within five repeated running, except for the case with a
malicious proportion of 65%, where both show larger but
acceptable variation comparing to other cases.

As for the convergence speed, we can also observe that

in all cases, ABD-HFL almost keeps pace with vanilla FL
at low malicious proportions, such as below 50% in the IID
case, while for the non-IID case, ABD-HFL always achieves
much higher test accuracy than vanilla FL with a malicious
proportion above 30%, which corresponds to the final accuracy
shown in TableV.

VI. CONCLUSION AND OUTLOOK

In this work, we have studied the related technologies to ex-
tend traditional centralized FL to more efficient and Byzantine-
robust, including various HFL proposals, Byzantine-robust
aggregation approaches, and applying distributed consensus
mechanism to secure FL. Based on these studies, we detect
the risk of relying on a central server in most HFL models, as
well as the blank domain where the huge potential function-
ality of layered architecture in HFL regarding to strengthen
the Byzantine-resistance ability in FL has been ignored by
recent research. As a result, we propose a novel ABD-HFL
arhcitecture for building a decentralized FL platform with an
innovative generic Byzantine-robust framework, and a pipeline
learning workfow pattern to exploit the efficiency between
local training and model aggregation. We also show the
theoretical boundary of Byzantine tolerance ability in ABD-
HFL, which are verified by numerical experiments.

In future work we hope to further explore optimization
possibilities to make ABD-HFL more efficient and robust.
To maximum the benefits of pipeline workflow, we need to
conduct further research on factors that underlie asynchronous
learning process, such as selection of flag level, defining an
overall efficiency indicator, comparison of various aggregation
schemes, etc.
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APPENDIX A
NOTATIONS AND TERMINOLOGIES

TABLE VI
NOTATIONS AND TERMINOLOGIES

Notation Description
L Set of levels in ABD-HFL structure
Lℓ The ℓth level
ℓF Flag level

L0, LL The top level, the bottom level
R Number of global rounds of federated learning
T Number of local training iterations

θ
(r)
n Local model parameters of node n in round r
Cℓ Set of learning clusters at level Lℓ

Cℓ,i Set of nodes in ith cluster of level Lℓ

Aℓ,i Leader node of set Cℓ,i
N Set of all nodes

Nℓ,i,j The jth node in cluster Cℓ,i
θ
(r)
G Global model of round (r)

θ
(r)
F Partial flag model of round (r)

θ
(r+1)
F ,ℓ,i Partial flag model aggregated by cluster Cℓ,i for round (r + 1)

θ
(r)
ℓ,i Partial aggregated model of cluster Cℓ,i in round r

ℓ(θ
(r),t
n ;Dn) Loss function, θ(r),t

n are parameters at round r, local iteration t
α
(r)
L,i Correction factor for cluster CL,i at global round (r)
Dn Dataset of node n
Cℓ Total number of clusters of level Lℓ

Nℓ Total number of nodes of level Lℓ in global iteration round r
Cℓ,i Total number of nodes in cluster Cℓ,i

Bℓ (Hℓ) Set of Byzantine(honest) clusters at level Lℓ

Hℓ (Bℓ) Total number of honest nodes (Byzantine nodes) of level Lℓ

Hℓ,i (Bℓ,i) Total number of honest nodes (Byzantine nodes) in cluster Cℓ,i

APPENDIX B
PROOFS OF ECSM

Before proving the theorems and corollaries of ECSM model, we firstly put lemma which is used in the following proofs.
Lemma 1: For a complete m-ary tree of depth L, there are mℓ nodes in any ℓth level, given that 0 ≤ ℓ ≤ L.

Proof: We ignore the proof as it is straightforward.
Theorem 1: For a p-ratio two-type complete m-ary tree of depth L, at the ℓth level, 0 ≤ ℓ < L, there are (pm)ℓ type-I

nodes , and the proportion of type-I nodes at this level is pℓ.
Proof: The proof can be accomplished through a level by level induction.

We firstly prove it for the top level, where ℓ = 0. At the top level, there is only one root node which is type-I, which means
that the number of type-I nodes is 1, thus the proportion of type-I nodes is 1. As

(p ∗m)0 = 1

p0 = 1

Which proves the correctness of the theorem for the top level.
We then prove it for the the first level. All nodes at L1 is the children of the root of top level, so the number of type-I

nodes at the first level is 1 × p ×m = pm, and the number of type-II nodes is 1 × (1 − p) ×m = (1 − p)m. According to
the Lemma 1 there are m nodes at level one, so the ratio of type-I nodes at level one is

pm

m
= p

which proves the correctness for the first level.
Suppose the theorem is true at the ℓth level, where there are mℓ nodes in total, and there are (pm)ℓ nodes of type-I.

Remember that each node at that level has m children, so at ℓth level a type-I node has pm nodes of type-I as its children.
So the total number of type-I nodes among all the child nodes at ℓth level is:

(pm)× (pm)ℓ = (pm)ℓ+1

which is also the total number of type-I nodes at (ℓ+ 1)th level.



Similarly, according to Lemma 1 there are mℓ+1 nodes at (ℓ+1)th level, thus the ratio of type-I nodes at (ℓ+1)th level is

(pm)ℓ+1

mℓ+1
= pℓ+1

which completes the proof.
Corollary 1: For an p-ratio ABD-HFL structure of L levels with Nt nodes at top level, there are a total of Ntm

ℓ nodes at
level Lℓ, given that 0 ≤ ℓ < L.

Proof: Firstly we focus on any top node. Since the node is the root of a complete m-ary tree, according to Lemma 1,
level Lℓ has mℓ nodes.

There are Nt nodes at top level, so in level Lℓ, there are a total of Nt ∗mℓ nodes, leading to the proof.
Theorem 2: For a p-ratio ABD-HFL structure of L levels with property γ1-γ2, for any level ℓ, 0 ≤ ℓ < L, the maximum

number of tolerated Byzantine nodes are Ntm
ℓ − (1− γ1)Nt[(1− γ2)m]ℓ, and the maximum proportion of Byzantine nodes

tolerated is 1− (1− γ1)(1− γ2)ℓ.
Proof: For convenience, we use Bℓ and Hℓ to denote the number of Byzantine nodes and honest nodes at level ℓ, use Pℓ

to denote the proportion of Byzantine nodes in Lℓ, and use BCℓ,i
, HCℓ,i

to denote the number of Byzantine nodes and honest
nodes in cluster Cℓ,i. We prove it from the top level where ℓ = 0. According to definition 3, there are Nt nodes at the top
level, and the maximum Byzantine tolerance ratio is γ1, so the number of Byzantine nodes tolerated at top level satisfies:

B0 ≤ γ1Nt

Notice that

γ1Nt = Ntm
0 − (1− γ1)Nt[(1− γ2)m]0

= Nt − (1− γ1)Nt

As a result, the proportion of Byzantine nodes satisfies:

P0 =
B0

Nt

≤ γ1Nt

Nt

≤ γ1

Notice that

γ1 = 1− (1− γ1)(1− γ2)0

= 1− (1− γ1)

Which proves the correctness of the assertion for the top level L0.
From this we can infer that the number of honest nodes required at top level satisfies:

H0 ≥ Nt − γ1 ∗Nt

≥ Nt(1− γ1)

Then we consider for the first level below the top level, where ℓ = 1. By definition 4, each top node is the root of a p-ratio
two-type complete m-ary tree, and is also the leader node of each cluster of level one. According to the definition 3, for each
cluster at level one, the maximum ratio of Byzantine nodes tolerated is γ2 , which implies that the minimum ratio of honest
nodes in each cluster is (1− γ2). By the definition of 2, let p ≥ 1− γ2, then by theorem 1 the number of honest nodes at any
cluster C1,i of this level will be

HC1,i
= (pm)1

≥ (1− γ2)m

implying the Byzantine nodes in each cluster at this level can be tolerated is

BC1,i
= m−HC1,i

≤ m− (1− γ2)m
≤ γ2m



Then considering all clusters at this level, we get the total number of honest nodes at this level satisfies:

H1 = H0 ∗HC1,i

≥ (1− γ1)Nt ∗ (1− γ2)m
≥ (1− γ1)Nt ∗ (1− γ2)m

According to corollary 1 there are Ntm nodes at L1, that is N1 = Ntm, and by Lemma 1, there are m nodes for each complete
m-ary tree, then we get

B1 = Ntm−H1

≤ Ntm−Nt(1− γ1)(1− γ2)m

Hence the proportion of Byzantine nodes at L1 satisfies

P1 =
B1

N1

≤ Ntm−Nt(1− γ1)(1− γ2)m
Ntm

≤ 1− (1− γ1)(1− γ2)

which completes the prove for level L1.
Assuming that the theorem holds for level Lℓ, we show that it also holds for level Lℓ+1. From corollary 1 we know that

there are Ntm
ℓ nodes at Lℓ. Based on the assumption, the number of Byzantine nodes tolerated at Lℓ satisfies:

Bℓ = Ntm
ℓ − (1− γ1)Nt[(1− γ2)m]ℓ

Then we get

Hℓ = Ntm
ℓ −Bℓ

= Ntm
ℓ − [Ntm

ℓ − (1− γ1)Nt[(1− γ2)m]ℓ]

= (1− γ1)Nt[(1− γ2)m]ℓ

Remember that the minimum proportion of honest nodes is (1− γ2), let p ≥ (1− γ2), then

Hℓ+1 = Hℓ ∗ p ∗m
≥ Hℓ ∗ (1− γ2) ∗m
≥ (1− γ1)Nt[(1− γ2)m]ℓ ∗ (1− γ2) ∗m
≥ (1− γ1)Nt[(1− γ2)m]ℓ+1

There are a total of Ntm
ℓ+1 nodes in level Lℓ+1, so

Bℓ+1 = Ntm
ℓ+1 −Hℓ+1

≤ Ntm
ℓ+1 − (1− γ1)Nt[(1− γ2)m]ℓ+1

As a result, the proportion of Byzantine nodes satisfies

Pℓ+1 =
Bℓ+1

Nℓ+1

≤ Ntm
ℓ+1 − (1− γ1)Nt[(1− γ2)m]ℓ+1

Ntmℓ+1

≤ 1− (1− γ1)(1− γ2)ℓ+1

which completes the proof.
Corollary 2: For a p-ratio ABD-HFL structure with property γ1-γ2, a lower level tolerate a greater proportion of Byzantine

nodes than its upper level.
Proof: Consider such an ABD-HFL of depth L, for any level Lℓ and its adjacent lower level L′

ℓ with 0 ≤ ℓ ≤ ℓ′Ł. As

ℓ < ℓ′

(1− γ2) < 1

ℓ− 1 ≥ 1

ℓ′ − 1 ≥ 1



then
(1− γ2)(ℓ−1) > (1− γ2)(ℓ

′−1)

then
(1− γ1)(1− γ2)(ℓ−1) > (1− γ1)(1− γ2)(ℓ

′−1)

As a result,
1− (1− γ1)(1− γ2)(ℓ−1) < 1− (1− γ1)(1− γ2)(ℓ

′−1)

That is
Pℓ < P ′

ℓ

which completes the proof.
Corollary 3: For a p-ratio ABD-HFL structure with property γ1-γ2, if the number of bottom-level nodes is fixed, the more

levels there are, the greater the proportion of Byzantine nodes that the system can tolerate at bottom level.
Proof: Comparing two ABD-HFL system S1, S2 with same property γ1-γ2, S1 and S2 have the same number of participants

at bottom level, but the number of levels are different. Here we denote L1 as the bottom level is level for S1, and denote L2

for as the bottom level is level for S2, assuming L1 < L2 From theorem 2,

P1,L1
= 1− (1− γ1)(1− γ2)(L1−1)

P2,L2
= 1− (1− γ1)(1− γ2)(L2−1)P

(S1)
L1

= 1− (1− γ1)(1− γ2)(L1−1)

P
(S2)
L2

= 1− (1− γ1)(1− γ2)(L2−1)

As

L1 < L2

(1− γ2) < 1

L1 − 1 ≥ 1

L2 − 1 ≥ 1

then
1− (1− γ1)(1− γ2)(L1−1) < 1− (1− γ1)(1− γ2)(L2−1)

That is
P

(S1)
L1

< P
(S2)
L2

which proves the assertion.

APPENDIX C
ARBITRARY CLUSTER SIZE MODEL

In practical applications with ABD-HFL structure, the size of each cluster in each level may differ from each other. We
further extend ECSM model into an Arbitrary Cluster Size Model(ACSM), where the cluster size can not only vary between
levels, but also vary in the same level. We develop the property of ACSM model regarding to the Byzantine tolerance ability
in each level. For convenience of analysis, we firstly give some important definitions.

Definition 5: If the proportion of malicious model updates collected from its cluster is greater than the maximum proportion
of Byzantine tolerance, the cluster is called a Byzantine cluster, otherwise it is called a honest cluster.

Note that when this definition is applied at top level, each node is considered as a cluster itself and is the leader of this
single-node cluster. Based on the above definition, we give the responding definition for clusters.

Definition 6: The leader of a Byzantine cluster is called a Byzantine leader, and the leader of a honest cluster is called a
honest leader.

We define ABD-HFL to consist of Byzantine clusters and honest clusters, and other type of cluster are not possible. In any
level, there may be multiple Byzantine clusters and honest clusters. We use Bℓ and Hℓ to denote the set of Byzantine cluster
and honest clusters respectively. Obviously, we have

Cℓ = Bℓ ∪Hℓ

Cℓ = |Bℓ|+ |Hℓ|

We define Bℓ and Hℓ as the number of Byzantine nodes and honest nodes in level Lℓ respectively, and denote the maximum
proportion of Byzantine nodes tolerated in any level ℓ as Pℓ, and the minimum proportion of honest nodes as Qℓ.



Similar to appendix B, we define Pℓ,i as the maximum proportion of Byzantine nodes tolerated in any cluster Cℓ,i, and Qℓ,i

as the corresponding minimum proportion of honest nodes. Note that for a Byzantine cluster, it is possible that all cluster
members are Byzantine nodes, so we have

0 ≤ Pℓ,i ≤ 1, i ∈ Bℓ

While, for honest clusters there is a bound value for the proportion of Byzantine nodes; at the top level, the upper bound is
γ1, and for other levels it is γ2, hence

0 ≤ P0 ≤ γ1 (4)

0 ≤ Pℓ,i ≤ γ2, i ∈ Hℓ; ℓ ≥ 1 (5)

We have
Pℓ +Qℓ = 1 (6)

Pℓ,i +Qℓ,i = 1 (7)

Then combining (4-7) we get
1− γ1 ≤ Q0 ≤ 1 (8)

1− γ2 ≤ Qℓ,i ≤ 1, i ∈ Hℓ; ℓ ≥ 1 (9)

Then we can express Hℓ and Bℓ as below

Bℓ = Pℓ ∗Nℓ

Hℓ = Qℓ ∗Nℓ

which is equal to
Bℓ =

∑
i∈Bℓ

Pℓ,i ∗ Cℓ,i (10)

Hℓ =
∑
i∈Hℓ

Qℓ,i ∗ Cℓ,i (11)

We can express Pℓ and Qℓ as follows:

Pℓ =
Bℓ

Nℓ
(12)

Qℓ =
Hℓ

Nℓ
(13)

As with theorem 2, we can develop a property for any ABD-HFL regarding to the maximum proportion of Byzantine nodes
tolerated in each level. Firstly we need to define an important quantity that represents the relative size of all honest clusters to
the total size of the level as below.

Definition 7: The relative reliable number of level ℓ in ABD-HFL is the ratio between the total number of nodes in honest
clusters to the total number of node in this level.
We use ψℓ to denote the relative reliable number of level ℓ, by the definition

ψℓ =

∑
i∈Hℓ

Cℓ,i∑Cℓ

i=1 Cℓ,i

(14)

With this, we give the following property.
Theorem 3: For an ABD-HFL of L+1 levels with property γ1-γ2, for any level ℓ, 0 ≤ ℓ ≤ L, the maximum proportion of

Byzantine nodes tolerated is inversely proportional to relative reliable number of the level.
Proof: We start the proof from the top level. For a valid ABD-HFL structure, at top level there is only one cluster which

is regarded as an honest cluster. By (12), we get

Q0 =
H0

N0
(15)

and (14), we have

ψ0 =

∑
i∈H0

C0,i∑C0

i=1 C0,i

(16)



As in top level, |C0,i| = 1 for any i ∈ H0, so

H0 =
∑
i∈H0

C0,i

N0 =

C0∑
i=1

C0,i

Then from (15),(16) we get
Q0 = ψ0 (17)

Combining (17),(7) we get
P0 = 1− ψ0

which proves that the theorem is true for the top level.
We proceed to prove for any level Lℓ with ℓ > 0. According to (9),(11),(13) and definition 7 we get

Qℓ =
Hℓ

Nℓ

=

∑
i∈Hℓ

Qℓ,i ∗ Cℓ,i∑Cℓ

i=1 Cℓ,i

≥ (1− γ2)
∑

i∈Hℓ
Cℓ,i∑Cℓ

i=1 Cℓ,i

≥ (1− γ2)ψℓ

Then, from (6) we can get

Pℓ = 1−Qℓ

≤ 1− (1− γ2)ψℓ

which shows that Pℓ is inversely proportional to the relative reliable number ψℓ, compeleting the proof.

APPENDIX D
NUMERICAL EVALUATION SETTINGS

A. Basic Settings

In all simulations, the learning consists of a total of 200 global training epochs, and 5 local training iterations.
The setting of data distribution is as below:

• IID data distribution In IID cases, training samples for each label are shuffled and then distributed equally to all clients,
with each client having approximate 937 samples covering sample labels from 0 to 9.

• non-IID distribution In non-IID cases, the size of training datasets is evenly assigned to each client, each client has only
2 sample labels, which is regarded as an extreme non-IID cases. A special design is set in the code to ensure that honest
participants as a whole cover all ten labels, so that the final accuracy is affected by the sample size of all honest nodes,
rather than the lack of some sample labels.

In ECSM model, the cluster sizes are equal at all levels except the top level. We construct a ABD-HFL model of three-level
network with a cluster size of 4, and 4 nodes at the top level. As a result, there are 64 clients at the bottom level performing
the local training tasks. In the simulation, the leader of each cluster is assigned virtually, and clients are ordered by client id
from 0 to 63. The vanilla FL is set with a central server as aggregation for all 64 clients. Table VII lists the detail of simulation
settings.

Specially, for ABD-HFL, at the top level, only one of all four top-level nodes is considered malicious, given the maximum
tolerance of 33% Byzantine participants in a distributed environment. Note that in the data poisoning attack, a malicious
node manipulates training data instead of model updates. According to this definition, in ABD-HFL, even if a malicious node
is elected as its cluster leader, it will ”honestly” aggregate local models from its cluster members and uploads the partial
aggregated model to its leader at upper level. So in this simultion the proportion of malicious nodes refers to the bottom layer
in ABD-HFL, and considering that all leader nodes are initially elected from the bottom layer, the number of bottom nodes is
equal to the total number of nodes.



TABLE VII
NUMERICAL EVALUATION SETTINGS

Items Parameters Settings Notes
Dataset MNIST

Learning settings Global rounds 200
Local iterations 5

ABD-HFL settings Model ECSM
Number of levels 3

Cluster size 4 Number of nodes in each cluster
Number of top-level nodes 4

Number of bottom-level clients 64
Vanilla FL Number of clients 64

Data distribution Number of samples for each client 947

TABLE VIII
DELAY CASES OF DIFFERENT BYZANTINE SCHEME

Delay Case Advises for Lk

big τ ′-big τg depends on other factors
small τ ′-small τg close to top level
small τ ′-big τg close to top level
big τ ′-small τg depends on other factors

B. Voting based consensus mechanism

At the top level of ABD-HFL, each node votes on the partial aggregated model received from other top-level nodes. Upvoting
or downvoting a model is decided after testing a node’s testing dataset.

The partial models that receive the fewest number of positive votes are considered malicious, and are excluded from the final
global model aggregation. As an explanation, given the limitation of the testing dataset size (10000), instead of distributing
them evenly to all clients, we assign them evenly to 4 top-level nodes, so that the top level nodes can make meaningful votes.

APPENDIX E
DISCUSS ON FLAG LEVEL SETTINGS

Several important factors should be considered on choosing the best flag level, shown as following.
• The number of levels in ABD-HFL The depth of the ABD-HFL determines the available choice of flag level Lk. We start

from the simplest case, L = 1, where there is only two levels, the top and the bottom level, and the descendants of each
node of top level are directly the local model training participants. In this case, the only possible for flag level is at top
level, that is Lk = 0. The top-level nodes will collect all local model updates and form the partial aggregated model,
which will then be immediately returned to its descendants for next round of training. At the same time, the top-level
nodes starts the process of global model aggregation. For ABD-HFL with more than 2 levels, L > 1, there are L possible
choices for flag level, Lk ∈ {0, 1, · · · , L − 1}. Then the balance of the trade-offs should be well considered in such a
choice.

• The aggregation schemes The aggregation scheme significantly affects the choice of Lk. As shown in section IV-A, the
scheme determines the delay in aggregation processes. From this perspective, four possible compositions of delays are
shown in Table VIII. Note that we use τ ′ to denote the delay caused by the partial aggregation process, τg to denote the
delay caused by the global aggregation. In the case of big τ ′-big τg , there is a long delay in both partial aggregation
and global aggregation, and the choice of Lk depends on other factors and needs to balance the trade-off between the
efficiency indicator and cost of correction factor. While, in small τ ′-small τg , the delays of both are short. In this case
Lk should be located near the top level because the cost of correction factor becomes the main consideration due to the
small absolute value of the gain of efficiency improvement. In the case of big τ ′-small τg , the delay caused by partial
aggregation is longer, while the delay caused by global aggregation is shorter, in this case Lk should be decided together
with all other factors. For the case of small τ ′-big τg , it is recommended that Lk should be located near the top level if no
other factors strongly oppose it. Since the partial aggregation delays are small, we can achieve relatively large efficiency
gains and keep the cost of correction factor as low as possible.

• Bandwidth difference of each level The difference in bandwidth at each level affects the propagation of the model. Although
it is ignored in the model in section III-D1, in reality they may become a major factor to be considered, especially when
the AI model is large and has limited bandwidth.

• Quality of the federated learning task The quality of FL tasks also plays a key role in the selection of Lk. One factor that
has a profound impact on this is the use of correction factor. While it is assumed that the correction factor is sufficient



to compensate for the staleness of the new arrived global model compared to the flag partial model being trained, it
is hardly comparable to the effect of training directly with global model. For FL tasks that are highly sensitive to user
data, or tasks that will have serious consequences if quality cannot not guaranteed, such as cases in medical diagnoses,
efficiency consideration should be reduced when designing Lk, or the global model should be used directly to replace
the flag partial model. While there are situations where the speed of FL is critical, such as in real-time decision-making
business, efficiency indicator becomes more important, and cost of correction factor or even sacrificing some of training
quality is acceptable to the task publishers.


