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ABSTRACT: CF3-substituted cyclopropyl carbinol derivatives undergo regio- and diastereoselective nucleophilic halogenation at 
the quaternary carbon center to provide acyclic products as a single diastereomer. The selectivity of the substitution is rationalized 
by the formation of a non classical cyclopropylcarbinyl cation intermediate, reacting at the most substituted carbon center. Tertiary 
alkyl chlorides, bromides, and fluorides, adjacent to a stereogenic C–CF3-motif are diastereomerically pure, and can be obtained in 
few catalytic steps from commercially available alkynes.

Fluorine containing compounds have shown a remarkable his-
tory of success in various fields such as agrochemicals, func-
tional materials, polymers and notably in medicinal chemistry 
as 20-25 % of all pharmaceutical drugs incorporate at least one 
fluorine atom.1 Within the spectrum of fluorine subunits, the tri-
fluoromethyl group (CF3) stands out for its significant applica-
tion in drug design, as it can modulate the solubility, lipophilic-
ity, metabolic stability, bioavailability, and binding affinity of 
drug candidates.2  Hence, molecules containing one or more flu-
orine atoms, including the CF3 unit, are crucial in drug discov-
ery (Scheme 1a).3 Therefore, the development of efficient meth-
odologies for synthesizing stereogenic fluorinated building 
blocks remains an important objective in organic chemistry.4 
Inspired by previous results from our group in controlling the 
stereochemistry of SN1 reactions involving non-classical carbo-
cations (Scheme 1b),5 we wondered whether we could employ 
a similar strategy to prepare acyclic molecular backbones con-
taining the CF3 groups with adjacent stereocenters, alongside 
additional halogens including fluorine (Scheme 1c). Indeed, we 
have recently reported that cyclopropyl carbinol derivatives 15a 
featuring a quaternary carbon stereocenter at C4 undergo a 
smooth Lewis acid-catalyzed ring-opening, resulting in the for-
mation of the non-classical cyclopropylcarbinyl carbocation in-
termediate CPC.6 Given the asymmetrical substitution pattern 
at C3 and C4 of CPC, the C2–C4 bond exhibits a slightly longer 
bond length as compared to the C2–C3 bond.5e Consequently, the 
nucleophile is expected to preferentially react at C4, resulting in 
the stereospecific formation of 2 with a complete inversion of 
configuration with a very high diastereoselectivity as a single 
E-isomer (Scheme 1b).5e 

Scheme 1. State-of-the-art and research proposal 
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Given these finding, we questioned whether such approach 
could be extended to the formation of adjacent polyhalogenated 
compounds 4 (Nu = halide) and therefore applicable to CF3-
containing cyclopropyl substrates 3, while maintening both re-
gio- and diastereoselectivity of the reaction. The preparation of 
starting materials was achieved by employing our previously 
reported carbocupration reaction on trifluoromethyl-substituted 
cyclopropenes 5,7 followed by trapping the resulting cyclopro-
pyl copper species with various acyl chlorides. The resulting 
cyclopropyl ketones 6 were subsequently reduced to yield the 
corresponding CF3-substituted cyclopropyl carbinol derivatives 
3a-n (Scheme 2). 
 
Scheme 2. CF3-substituted cyclopropyl carbinols 
 

 
 
The reaction sequence exhibits a broad versatility, as it accom-
modates various substituted aromatics as well as a,b-unsatu-
rated aldehydes and ketones, which were successfully added to 
the cyclopropyl copper intermediates. Furthermore, alkyl halide 
or terminal double bond as functional groups may be present on 
the initial cyclopropene substrates without impeding either the 
carbocupration reaction or the subsequent transformations (3i-
m, Scheme 2). With a range of CF3-substituted cyclopropyl car-
binols 3a-n in hand, we initiated our research by developing the 
Lewis acid-catalyzed nucleophilic halogenation reactions at 
non-classical cyclopropyl carbinyl carbocation intermediates, 
utilizing TMSCl and TMSBr as halide donors, respectively on 
our model compound 3a. Following a comprehensive 

investigation (see the Supporting Information for all details), 
we were pleased to discover that employing 10 mol% of FeCl3 
in dichloromethane at temperature ranging from -78 oC to room 
temperature for 12 h yielded the tertiary chloride 4a and bro-
mide 4b in 81% and 71% yields, respectively, with outstanding 
diastereospecificities (Scheme 3). Globally, the outcome of the 
reaction can be influenced by the nature of the Lewis acid. It is 
essential to find a proper balance and ensure compatibility be-
tween the activation of the leaving group (to form the cyclopro-
pyl carbinyl cation) and the nature of the nucleophile for effec-
tive nucleophilic substitution. While many Lewis acids provide 
the expected product, achieving the best yields often requires 
precise tuning. The products 4a,b were obtained with a com-
plete inversion of configuration at the tertiary halide center as a 
single E-isomer.  
 
Scheme 3. Chlorination and bromination of CF3-substituted 
cyclopropyl carbinols 
 

 
 
Substituent such as Ph(CH2)2- can be situated either on the ini-
tial cyclopropene or on the Grignard reagent, resulting in anal-
ogous products of opposite stereochemistry with comparable 
yields and diastereospecificities (4c and 4d, Scheme 3). The 
substituent R1 can have functionality such as chlorine (4e, 
Scheme 3) underlining that the reaction proceeds selectively at 
the quaternary carbon stereocenter by cleaving a C–C bond in 
the presence of what is typically considered as a more reactive 
functional group towards nucleophilic substitution, highlight-
ing the efficacy of the formation and reactivity of cyclopropyl 
carbinyl cation intermediate CPC. In such case, the nucleophile 
reacts at the carbon center possessing the highest positive 
charge density, namely the quaternary carbon stereocenter. 
Moreover, ring-strain release of the cyclopropyl unit also 
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contributes to the regioselective substitution. Derivatives of cy-
clopropyl carbinol featuring electron-withdrawing CF3 group or 
Cl atom at para and ortho positions, respectively, were trans-
formed into the corresponding tertiary alkyl chlorides (Scheme 
3, 4f and 4g) and bromide (4i, Scheme 3) in good yields with 
excellent diastereospecificity (ds > 95:05).8 Finally, the reaction 
also proceeded smoothly with a cyclopropyl carbinol bearing a 
tertiary alcohol, yielding 4j with excellent diastereospecificity 
and as the sole trisubstituted E-isomer. 
With a solid ability to synthesize adjacent polyhalogenated acy-
clic molecular fragments, we then proceeded in our research to-
wards the preparation of polyfluorinated compounds. Follow-
ing a swift screening of various experimental parameters, we 
quickly found that the copper-catalyzed addition of fluoride 
from HBF4 in Et2O provided the desired products in good to 
excellent yields with excellent diastereospecificities (Scheme 
4).  
 
Scheme 4. Fluorination of CF3-substituted cyclopropyl car-
binols 
 

 
 
The two opposite diastereomers 4m and 4n were readily syn-
thesized by simply permuting the nature of the two substituents 
at the quaternary carbon stereocenter of the starting cyclopropyl 
carbinols, yielding the products with similar diastereospecific-
ity (Scheme 4). The reaction could be scaled-up as the transfor-
mation of 350 mg of 3b afforded 4l with the same level of dia-
stereoselectivity (dr > 95:05), demonstrating the practicability 
of this procedure. The relative configuration was established by 
single-crystal X-ray diffraction analysis of 4n, while all other 

configurations were assigned by analogy, reaffirming the com-
plete inversion of configuration at the quaternary carbon center 
during the substitution. The nature of the substituent R1 exhibits 
broad compatibility as alkyl chloride and alkyl bromide chains 
are well-tolerated within the reaction conditions (4o and 4s,t 
Scheme 3). Variation of substituents at the carbinol center pro-
vides products possessing a dienyl framework or a trisubstituted 
double bond, without altering the outcome of the transformation 
(4q,r and 4w, Scheme 4).  
In summary, we have established an efficient method for syn-
thesizing tertiary alkyl halides via a stereoinvertive nucleophilic 
substitution at quaternary carbon stereocenter of CF3-
containing cyclopropyl carbinols, through the formation of non-
classical cyclopropylcarbinyl cation intermediate (CPC). This 
straightforward approach enables the preparation of tertiary al-
kyl fluorine, bromine, chlorine species, adjacent to a stereo-
genic C–CF3 moiety. In all cases, products were obtained in 
good yields with excellent diastereospecificities. 
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