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LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (II)

PASCALE HARINCK AND HUBERT RUBENTHALER

Part II:
Explicit functional equation for zeta functions attached to the minimal spherical principal series.

Abstract: In this paper we study the zeta functions associated to the minimal spherical principal
series of representations for a class of reductive p-adic symmetric spaces, which are realized as open
orbits of some prehomogeneous spaces. These symmetric spaces have been studied in the paper
arXiv: 2003.05764. We prove that the zeta functions satisfy a functional equation which is given
explicitly (see Theorem 4.3.9 and Theorem 4.4.5). Moreover, for a subclass of these spaces, we define
L-functions and ε-factors associated to the representations.

AMS classification: 22E50, 11S40, 43A85, 22E35.
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INTRODUCTION

In this second part we define and study the local zeta functions associated to spherical representations
for the class of symmetric spaces introduced in the first part (see [8]).
Let us first describe, formally, the general setting where this paper takes place. Let G be a connected
reductive algebraic group over a p-adic local field F of characteristic zero. Suppose we are given
an irreducible regular prehomogeneous vector space (G, V ) defined over F (see [15] for example)
and denote by ∆0 the fundamental relative invariant. Then the dual representation (G, V ∗) is still a
prehomogeneous vector space of the same type. We denote by ∆∗

0 its fundamental relative invariant.
Suppose, for sake of simplicity, only in this introduction, that (G, V ) has only one open orbit Ω. Let
H be the isotropy subgroup of an element I ∈ Ω. Moreover, suppose that G/H ≃ Ω is a symmetric
space corresponding to an involution σ of G.
Then the dual space (G, V ∗) has the same property. More precisely the open orbit Ω∗ ⊂ V ∗ contains
the element I∗ = d∆0

∆0
(I) (see [15]) and the isotropy subgroup of I∗ is still H .

Consider now a minimal σ-split parabolic subgroup P of G (this means that P and σ(P ) are opposite
and that P is minimal for this property). Again for sake of simplicity, we suppose that P also has
a unique open orbit in V . It is well known (see [1]) that if χ is a character of L which is trivial on
L ∩ H , the induced representation πχ = IndGP (χ) is generically H- distinguished (or H-spherical).
This means that for “almost all” characters χ the dual space I∗χ of the space Iχ of πχ contains a
nonzero H-invariant vector ξ. Therefore if w ∈ Iχ the coefficient ⟨π∗

χ(g)ξ, w⟩ is right H-invariant
and hence can be considered as a function on Ω (or Ω∗). The minimal spherical series for G/H is the
set of the representations πχ.
Let S(V ) (respectively S(V ∗)) be the spaces of locally constant functions with compact support on
V (respectively V ∗). Let also d∗X (resp. d∗Y ) be the G-invariant measure on V (resp. V ∗). For
Φ ∈ S(V ) and Ψ ∈ S(V ∗), and s ∈ C, let us define (formally!) the following local zeta functions:

Z(Φ, s, ξ, w) =

∫
Ω

Φ(X)|∆0(X)|s⟨π∗
χ(X)ξ, w⟩d∗X,

Z∗(Ψ, s, ξ, w) =

∫
Ω∗

Ψ(Y )|∆∗
0(Y )|s⟨π∗

χ(Y )ξ, w⟩d∗Y.

It is expected that these zeta functions can be correctly defined (via absolute convergence and mero-
morphic continuation) and that they should verify a functional of the type:

Z∗(F(Φ),m− s, ξ, w) = γ(s, χ)Z(Φ, s, ξ, w),

where F : S(V ) −→ S(V ∗) is the Fourier transform, m is a suitable “shift”, and γ(s, χ) a meromor-
phic function.
The aim of this paper is to perform this program, including an explicit form of γ(s, χ) in terms of
local Tate factors and Weil constants related to the Fourier transform of some quadratic characters.
This is done even in the case where G has several open orbits, each of it being a symmetric space, for
a class of p-adic prehomogeneous vector spaces (which is essentially the class described in the first
part ([8])). See Theorem 4.3.9 and 4.4.5 below.
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Our results contain, as a particular case, the case of GLn(F ) × GLn(F ) acting on the space Mn(F )

of n by n matrices, which gives rise to the Godement-Jacquet zeta function for the principal minimal
series for GLn(F ).
Moreover, in the case where G and P have a unique open orbit in V +, the space of H-invariant
linear form on Iχ is 1-dimensional. In that case we define and prove the existence of L-functions
which describe the poles of the zeta functions Z(Φ, s, ξ, w) and Z∗(Ψ, s, ξ, w) for all Φ ∈ S(V +),
Ψ ∈ S(V −) and w ∈ Iχ. We define also the corresponding ε-factors. This generalizes the results of
Godement-Jacquet for the principal minimal series for GLn(F ). See Proposition 4.5.3 and Theorem
4.5.5 below.

Let us now describe briefly the content of the paper.
• In section 1 we re-define briefly the class of commutative prehomogeneous vector spaces we are
interested in. These spaces are associated to 3-gradings of a reductive Lie algebra g̃ of the form

g̃ = V − ⊕ g⊕ V +

which satisfy some regularity and irreducibility conditions. The facts about this objects which are
needed in the sequel are recalled from [8] . For technical reasons we also introduce a subgroup P̃ of
the σ-split parabolic P which will play an important role. The representations (P, V ±) and (P̃ , V ±)

are prehomogeneous and the open orbits are described.

• Section 2 is devoted to fix some imported tools. First of all we define the Fourier transform F :

S(V +) −→ S(V −) and prove that there exists a unique pair of measures on V + × V − which are
dual for F and verify some additional compatibility condition. We also define and study the so-called
mean functions (see definition 2.3.4) which correspond, roughly speaking, to integration on an N
orbit where N is the nilradical of a σ-split parabolic, non necessarily minimal. We also normalize
the measures on various subspaces of g. These normalizations are necessary to compute precisely
the factors in the final functional equations. In this section these normalizations are also needed
to compute precisely the Weil constants corresponding to some quadratic forms occurring in the
classification of the orbits (see Proposition 2.5.5).

• As said before the representations (P̃ , V ±) are prehomogeneous and regular. But there are several
fundamental relative invariants named ∆0,∆1, . . . ,∆k. In this situation one can classically define
zeta functions associated to this prehomogeneous space. Roughly speaking they are of the form
K(f, s) =

∫
V + f(X)|∆(X)|sdX where f ∈ S(V +), s = (s0, . . . , sk) ∈ Ck+1 and where |∆(X)|s =

|∆0(X)|s0 . . . |∆k(X)|sk . See Definition 3.2.2. In such a situation it is known from the work of F.
Sato ([15]) that there exists a functional equation if the prehomogeneous spaces satisfies a certain
condition (A2′). In section 3 we prove that the spaces (P̃ , V ±) satisfy this condition (Theorem 3.1.3)
and compute explicitly the constants in the functional equation (Theorem 3.3.3).

• Section 4 contains the main results. The symmetric spaces G/Hi (i=1,. . . ,p) we consider are the
open G-orbits in V +. Let σi be the corresponding involution of G. The key point here is the fact that
the parabolic subgroup P defined previously is minimal σi-split for all σi. Therefore these symmetric
spaces have the same minimal spherical series.
The zeta functions associated to such representations are defined in 4.3.1 as integrals depending on
several complex parameters µj and z. We prove that they are rational functions in the variables
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q±µj , q±z (q is the residual characteristic), that they satisfy a functional equation which is explicitly
computed (see Theorem 4.3.9). The main ingredient of the proofs is the work of P. Blanc and P.
Delorme ([1]) and the close relation, via the Poisson kernel, between these zeta functions associated
to representations and the zeta functions of the prehomogeneous space (P, V +) studied in section 3.
We also give a second version of the main Theorem, which modulo the introduction of a operator
valued “gamma” factor, has a very simple form (see Theorem 4.4.5). Finally, in the case where G
and P have a unique open orbit si V +, we define and prove the existence of L-functions ε-factors
associated to these representations (Proposition 4.5.3 and Theorem 4.5.5).

Acknowledgments. We would like to express our sincere thanks to Giuseppe Ancona, Jan Denef,
Guy Rousseau, Marcus Slupinski who helped us, through discussions or mails, to improve greatly
this paper.

1. A CLASS OF COMMUTATIVE PREHOMOGENEOUS VECTOR SPACES

1.1. Notations and preliminaries.
Let F be a p-adic field of characteristic 0, i.e. a finite extension of Qp. Moreover we will always
suppose that the residue class field k has characteristic ̸= 2 (non dyadic case) and we let q denote the
cardinal of k.
Let OF be the ring of integers of F and denote by O∗

F the subgroup of units of F ∗.
We fix a set of representatives {1, ε, π, επ} of C = F ∗/F ∗2 , where ε is a unit which is not a square
in F ∗ and π is a uniformizer of F .

We will denote by F an algebraic closure of F . In the sequel, if U is a F -vector space, we will set

U = U ⊗F F .

Definition 1.1.1. Throughout this paper, a reductive Lie algebra g̃ over F satisfying the following
three hypothesis will be called a regular graded Lie algebra:

(H1) There exists an element H0 ∈ g̃ such that adH0 defines a Z-grading of the form

g̃ = V − ⊕ g⊕ V + (V + ̸= {0}) ,

where [H0, X] =


0 for X ∈ g ;

2X for X ∈ V + ;

−2X for X ∈ V − .

(Therefore, in fact, H0 ∈ g)
(H2) The (bracket) representation of g on V + is irreducible. (In other words, the representation

(g, V +) is absolutely irreducible)
(H3) There exist I+ ∈ V + and I− ∈ V − such that {I−, H0, I

+} is an sl2-triple.

Let us first recall the structure results of such algebras which were obtained in [8] and used in the rest
of the paper.

We fix a maximal split abelian Lie subalgebra a of g containing H0. Then a is also maximal split
abelian in g̃. We denote by Σ̃ and Σ the roots system of (g̃, a) and (g, a) respectively.
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Let Hλ be the coroot of λ ∈ Σ̃. For µ ∈ a∗, we denote by g̃µ the subspace of weight µ of g̃.

From Theorem 1.6.1, Proposition 1.7.7 and Theorem 1.8.1 in [8], we know that there exists a unique
k ∈ N and a family of 2 by 2 strongly orthogonal roots λ0, . . . , λk in Σ̃+ \ Σ, unique modulo the
action of the Weyl group of Σ, such that:

(S1) H0 = Hλ0 +Hλ1 + · · ·+Hλk ,

(S2) If we set a0 = ⊕k
j=0FHλj and if for p, q ∈ Z, we define Ei,j(p, q) to be the space of X ∈ g̃

such that [Hλs , X] =


pX if s = i ;

qX if s = j ;

0 if s /∈ {i, j} .

.

Then we have the following decompositions

(a) g = Zg(a
0)⊕

(
⊕i ̸=jEi,j(1,−1)

)
;

(b) V + =
(
⊕k
j=0g̃

λj
)
⊕
(
⊕i<jEi,j(1, 1)

)
;

(c) V − =
(
⊕k
j=0g̃

−λj
)
⊕
(
⊕i<jEi,j(−1,−1)

)
.

In the rest of the paper, we fix such a family (λ0, . . . , λk) of roots. The integer k + 1 is called the
rank of the graded Lie algebra g̃. From Proposition 1.9.3 in [8], we know that for j = 0, . . . , k, the
spaces g̃λj have the same dimension and also that for i ̸= j, the spaces Ei,j(±1,±1) have the same
dimension.

Notation 1.1.2. In the rest of the paper we will use the following notations:

ℓ = dim g̃λj for j = 0, . . . , k

d = dimEi,j(±1,±1) for i ̸= j ∈ {0, . . . , k}

e = dim g̃(λi+λj)/2 for i ̸= j ∈ {0, . . . , k} (e may be equal to 0).

From the classification of the simple graded Lie algebras ([8] §2.2), the integer ℓ is either the square
of an integer, or equal to 3 and e ∈ {0, 1, 2, 3, 4}. Moreover d− e is even.

Let k be a reductive Lie algebra. Denote by Aut(k) the group of automorphisms of k and by Aute(k)
the subgroup of elementary automorphisms, that is the automorphisms which are finite products of
eadx, where ad(x) is nilpotent on k. Define

Aut0(k) = Aut(k) ∩ Aute(̃k⊗ F ).

Let G = ZAut0(g̃)(H0) = {g ∈ Aut0(g̃), g.H0 = H0} be the centralizer of H0 in Aut0(g̃).

From loc.cit., the group G is the group of F -point of an algebraic group defined over F . Moreover,
the Lie algebra of the group G is g ∩ [g̃, g̃] = [g, g] + [V −, V +].

We recall also that (G, V +) is an absolutely irreducible prehomogeneous vector space, of commuta-
tive type, and regular. By ([8] Theorem 1.11.4), there exists on V + a unique (up to scalar multiplica-
tion) relative invariant polynomial ∆0 which is absolutely irreducible (i.e. irreducible as a polynomial
on V +). We denote by χ0 the character of G associated to ∆0.
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Similarly , (G, V −) is a prehomogeneous vector space of the same type, whose absolutely irreducible
polynomial relative invariant is denoted by ∇0. Its associated character is denoted by χ−

0 .

We set

m =
dim V +

deg(∆0)
. (1.1)

Let dX (resp. dY ) be arbitrary Haar measures on V + (resp. V −). As we know from ([8], proof of
Lemma 4.5.4) that detg|V + = χ0(g)

m and detg|V − = χ0(g)
−m, it is worth noticing that

d∗X =
dX

|∆0(X)|m
and d∗Y =

dY

|∇0(Y )|m
(1.2)

are G-invariant measures on V + and V − respectively.

In this article, we will always suppose that ℓ = 1, except in section 2 in which the results of §2.1,

§2.2, §2.3 and §2.4 are valid without any condition on ℓ. For ℓ = 1, we have m = 1 +
kd

2
.

According to ([8] §1.10), we fix a non degenerate extension B̃ of the Killing form of [g̃, g̃] to g̃. We
define the normalized Killing form by setting:

b(X, Y ) = − k + 1

4 dimV +
B̃(X, Y ) X ∈, Y ∈ g̃. (1.3)

Let Xs ∈ g̃λs for s = 0, . . . k. For i ̸= j let us consider the quadratic form qXi,Xj
on Ei,j(−1,−1)

defined by

qXi,Xj
(Y ) = −1

2
b([Xi, Y ], [Xj, Y ]). (1.4)

Definition 1.1.3. We fix sl2-triples {Ys, Hλs , Xs}, s ∈ {0, . . . , k}, with Ys ∈ g̃−λs and Xs ∈ g̃λs such
that, for i ̸= j, the quadratic forms qXi,Xj

are all G-equivalent (this means that there exists g ∈ G

such that qX0,X1 = qXi,Xj
◦ g), and such that each of the forms qXi,Xj

represents 1 (i.e. there exists
u ∈ Ei,j(−1,−1) such that qXi,Xj

(u) = 1). The existence of such triples is given in ([8] Proposition
3.5.2). We set

qe := qX0,X1 , I+ = X0 + . . .+Xk, et I− = Y0 + . . . Yk.

We normalize the polynomials ∆0 and ∇0 by setting ∆0(I
+) = ∇0(I

−) = 1.

From Proposition 3.5.2 of [8] (and its proof) we know the following facts concerning qe:
- The quadratic form q0 is hyperbolic of rank d = dimE0,1(−1,−1) (sum of d/2 hyperbolic planes).
- If e ̸= 0, the quadratic form qe is the sum of an anisotropic form qan,e of rank e, which represents 1,
and of an hyperbolic form qhyp,d−e of rank d− e.
Setting qan,0 = 0, we can write qe = qan,e + qhyp,d−e.

From Lemma 3.8.6 of [8], the form qan,2 represents exactly two classes of squares. As 1 is represented,
there exists another class of squares, say −α.(F ∗)2 which is represented (here −α /∈ (F ∗)2 of course).
- Suppose first that α /∈ (F ∗)2. Then the quadratic extension E = F [

√
α] of F is such that

NE/F (E
∗) = Im(qan,2)

∗, where NE/F is the norm associated to E.
- If α ∈ (F ∗)2. Then we are in the case where −1 /∈ (F ∗)2 and qan,2 represents the two classes 1

and −1. In that case qan,2 ≃ x2 + y2 because two anisotropic forms of rank 2 are equivalent if and
only if they represent the same two classes of squares ([8] Lemma 3.8.6) and because −1 is the sum
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of two squares ([11] Chapter VI, Corollary 2.6. p.154). In that case if we set E = F [
√
−1], we have

NE/F (E
∗) = Im(qan,2)

∗.
Hence we have shown that there exists a quadratic extension E = F [ξ] of F (unique up to isomor-
phism) such that NE/F (E

∗) = Im(qan,2)
∗.

Definition 1.1.4. .
Define Se = {a ∈ F ∗, aqe ≃ qe}. Then

Se =


F ∗ for e = 0 or 4
F ∗2 for e = 1 or 3

NE/F (E
∗) = Im(qan,e)

∗ for e = 2.

We denote by Se a set of representatives of F ∗/Se in F ∗/F ∗2.

As two hyperbolic forms of the same rank are always equivalent, we also have Se = {a ∈ F ∗, aqan,e ≃
qan,e}.
The precise description of theG-orbits in V + has been given in ([8] §3). The number of orbits depends
on e and, in some cases, on k (cf. [8] Theorem 3.6.3). This is summarized as follows:

(1) If e = 0 or 4, the group G has a unique open orbit in V +,
(2) if e ∈ {1, 2, 3}, the number of open G-orbits in V + depends on e and on the parity of k:

(a) if e = 2 then G has a unique open orbit in V + if k is even and 2 open orbits if k is odd,
(b) if e = 1 then G has a unique open orbit in V + if k = 0, it has 4 open orbits if k = 1, it

has 2 open orbits if k ≥ 2 is even , and 5 open orbits if k ≥ 2 is odd .
(c) if e = 3, then G has 4 open orbits.

Let us denote by Ω± the union of the open G-orbits V ±. Then one has:

Ω+ = {X ∈ V +; ∆0(X) ̸= 0} and Ω− = {Y ∈ V −;∇0(Y ) ̸= 0}.

If X ∈ Ω+, there exists a unique element ι(X) ∈ Ω− such that {ι(X), H0, X} is an sl2-triple.
From ([8] Remark after Definition 4.5.5), we know that the mapping ι : Ω+ → Ω− is a G-equivariant
isomorphism from Ω+ on Ω−.

Definition 1.1.5. Let {y, h, x} be a sl2-triple with y ∈ V −, h ∈ a and x ∈ V +. For t ∈ F ∗, we define
the following elements of G:

θx(t) = et adg̃xet
−1 adg̃yet adg̃x and hx(t) = θx(t)θx(−1).

By ([4] Chap. VIII, §1, Proposition 6), hx(t) acts by tn on the weight space of weight n under the
action of h.
By ([8] Lemma 1.11.3), the element hI+(

√
t) belongs to G (and even to the Levi subgroup L defined

below). It stabilizes g and acts by t.IdV + on V +. We set

mt = hI+(
√
t).
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1.2. The subgroups P and P̃ and their open orbits in V +.
Set a0 = ⊕k

j=0FHλj . Consider the parabolic subgroup P of G defined as follows (see [8] §4.2):

P = LN, where L = ZG(a
0) and N = exp ad n, n = ⊕0≤i<j≤kEi,j(1,−1).

The representations (P, V +) and (P, V −) are prehomogeneous (see [8] Proposition 4.3.1). The
corresponding sets of fundamental relative invariants are respectively denoted by ∆0, . . . ,∆k and
∇0, . . . ,∇k. These polynomials are normalized by the conditions ∆j(I

+) = ∇j(I
−) = 1 for

j = 0, . . . , k. Let χj and χ−
j be the characters of P associated respectively to ∆j and ∇j pour

j = 0, . . . , k.

From ([8] Theorem 4.3.6 and Theorem 4.5.3), we know that the union O± of the open P -orbits in V ±

is given by

O+ = {X ∈ V +; ∆j(X) ̸= 0, j = 0, . . . , k} and O− = {Y ∈ V +;∇j(Y ) ̸= 0, j = 0, . . . , k}.

Definition 1.2.1.

(1) As ℓ = 1 and as L centralizes a0 = ⊕k
j=0FHλj , each element l ∈ L acts by scalar multiplica-

tion on Xj for j = 0, . . . , k. Define the character xj of L by

l.Xj = xj(l)Xj, l ∈ L.

(2) The subgroups L̃ and P̃ are defined by

L̃ = {l ∈ L;xj(l) ∈ Se, j = 0, . . . , k}, P̃ = L̃N.

Remark 1.2.2.
Define the map T by

T : L −→ (F ∗)k+1

l 7−→ (x0(l), . . . , xk(l))

From Theorem 3.8.8, Theorem 3.8.9 (1) and (2)(d), and Theorem 3.8.10 (1) and (2)(d) in [8] we can
see that

ImT = ∪x∈SexS
k+1
e .

In particular we have T (L̃) = Sk+1
e .

Definition 1.2.3. For a = (a0, . . . , ak) ∈ S k+1
e , define the sets

O+(a) = {X ∈ V +; ∆j(X)aj . . . ak ∈ Se, for j = 0, . . . , k},

and
O−(a) = {Y ∈ V −;∇j(Y )a0 . . . ak−j ∈ Se, for j = 0, . . . , k}.

Lemma 1.2.4.
Remember that mx ∈ L, x ∈ F ∗ is the element of L whose action on V + is the multiplication by x
(cf. Definition 1.1.5).
1) One has

L = ∪x∈SemxL̃

2) The representations (P̃ , V ±) are prehomogeneous vector spaces which have the same sets of fun-
damental relative invariants as (P, V ±),
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3) The open orbits of P̃ in V + (resp. V −) are the sets

O+(a) = P̃ .I+(a), where I+(a) = a0X0 + . . .+ akXk,

(respectively O−(a) = P̃ .I−(a), where I−(a) = a−1
0 Y0 + . . .+ a−1

k Yk),

for a = (a0, . . . , ak) ∈ S k+1
e .

Moreover, any open P -orbit in V ± is given by ∪x∈SemxO±(a) for a = (a0, . . . , ak−1, 1) ∈ S k+1
e .

Proof.
If e = 0 or 4, we have Se = F ∗ and hence Se = {1} and P = P̃ . Then Theorem 4.3.6 and Theorem
4.5.3 in [8] imply the result.

Suppose now that e ∈ {1, 2, 3}. This implies k ≥ 1.

Using Theorem 3.8.8, Theorem 3.8.9 (1) et (2)(d), and Theorem 3.8.10 (1) et (2)(d) in [8] , we know
that two diagonal elements a0X0 + . . . + akXk and b0X0 + . . . + bkXk are L-conjugated if and only
if there exists x ∈ Se such that xajbj ∈ Se for all j = 0, . . . , k.
If l ∈ L, then l.I+ = x0(l)X0 + . . .+ xk(l)Xk. Hence there exists x ∈ Se such that xxj(l) ∈ Se for
all j = 0, . . . , k. Therefore mxl ∈ L̃, this proves assertion 1).

As P/P̃ is a finite group, assertion 2) is true.

Let us now show assertion 3). Let a = (a0, . . . , ak) ∈ S k+1
e . From Theorem 4.3.2 in [8], we have for

l ∈ L̃ and n ∈ N :

∆j(ln.(a0X0 + . . .+ akXk)) =
k∏
s=j

xs(l)as.

As xs(l) ∈ Se for s = 0, . . . , k, we obtain from the definition of O+(a0, . . . , ak) that P̃ .(a0X0+ . . .+

akXk) ⊂ O+(a0, . . . , ak).

Conversely, let Z ∈ O+(a0, . . . , ak). From Lemma 4.3.3 in [8], there exists n ∈ N et z0, . . . zk in F ∗

such that n.Z = z0X0 + · · ·+ zkXk. From the definition of O+(a0, . . . , ak) (and as F ∗2 ⊂ Se), there
exist µj ∈ Se such that zj = ajµj for j = 0, . . . , k.
From Remark 1.2.2 there exists l ∈ L̃ such that xj(l) = µ−1

j for j = 0, . . . , k. Then we have
ln.Z = a0X0 + . . .+ akXk and hence

O+(a0, . . . , ak) = P̃ .I+(a).

The proof concerning the open P̃ -orbits in V − is similar. And the last assertion is a consequence of
the description of the P -orbits in V ± given in ([8] Theorem 4.3.6 and Theorem 4.5.3).

2. MEAN FUNCTIONS AND WEIL FORMULA

Except for the last section §2.5 which is only valid for ℓ = 1, the results of this paragraph are valid for
any regular graded algebra (see Definition 1.1.1). Hence ℓ is either the square of an integer, or ℓ = 3

(Notation 1.1.2).
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2.1. A class of parabolic subgroups.

Let us fix p ∈ {0, . . . , k − 1} and define the following elements:

I+p,1 =

p∑
i=0

Xi, Hp,1
0 =

p∑
i=0

Hλi , and I−p,1 =

p∑
i=0

Yi,

and

I+p,2 =
k∑

i=p+1

Xi, Hp,2
0 =

k∑
i=p+1

Hλi , and I−p,2 =
k∑

i=p+1

Yi.

Hence we have

I+ = I+p,1 + I+p,2, H0 = Hp,1
0 +Hp,2

0 , and I− = I−p,1 + I−p,2,

and {I−p,j, H
p,j
0 , I+p,j} is an sl2-triple, for j = 1, 2.

For a fixed p ∈ {0, 1, . . . , k} and i, j ∈ Z we define the following spaces:

Kp(i, j) = {X ∈ g, [H1
0,p, X] = iX, [H2

0,p, X] = jX}.

The same way as in ([8] Theorem 1.8.1) one shows that Kp(i, j) ̸= {0} =⇒ |i|+ |j| ≤ 2.
More precisely one obtains the following decompositions:

V − = Kp(−2, 0)⊕Kp(−1,−1)⊕Kp(0,−2),

g = Kp(1,−1)⊕Kp(0, 0)⊕Kp(−1, 1),

V + = Kp(2, 0)⊕Kp(1, 1)⊕Kp(0, 2).

Hence there are four new regular prehomogeneous vector spaces (corresponding to graded algebras) at
hand. Namely (Kp(0, 0), Kp(2, 0)), (Kp(0, 0), Kp(0, 2)), (Kp(0, 0), Kp(−2, 0)), (Kp(0, 0), Kp(0,−2)).
For further use we need to make explicit the fundamental relative invariants corresponding to these
spaces.
The graded Lie algebra l̃j = g̃−λj ⊕ [g̃−λj , g̃λj ]⊕ g̃λj satisfies also the conditions of Definition 1.1.1.
We denote by κ the common degree of the corresponding relative invariants (see [8], section 1.13).
More precisely κ = δ if ℓ = δ2 and κ = 2 if ℓ = 3.

Definition 2.1.1.
Let p = 0, . . . , k− 1. From the definition in ([8] §1.14 and §4.5) the fundamental relative invariant of
(Kp(0, 0), Kp(0, 2)) is ∆p+1 whose degree is κ(k+1−(p+1)) = κ(k−p). Similarly the fundamental
relative invariant of (Kp(0, 0), Kp(−2, 0) is ∇k−p whose degree is κ(k + 1− (k − p)) = κ(p+ 1).
We denote by ∆̃k−p the fundamental relative invariant of (Kp(0, 0), Kp(2, 0)) whose degree is κ(k +
1− (k − p)) = κ(p+ 1).
We denote by ∇̃p+1 the fundamental relative invariant of (Kp(0, 0), Kp(0,−2)) whose degree is κ(k+
1− (p+ 1)) = κ(k − p).
It is easy to see from the definitions that the polynomials ∆̃p (p = 0, . . . , k − 1) are the fundamental
relative invariants of the prehomogeneous vector space (P−, V +) where P− is the parabolic subgroup
opposite to P . Also the polynomials ∇̃p (p = 0, . . . , k − 1) are the fundamental relative invariants of
the prehomogeneous vector space (P, V −).

Lemma 2.1.2. The representations (Kp(0, 0), Kp(2, 0)) and (Kp(0, 0), Kp(0, 2)) are absolutely irre-
ducible.
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Proof. Recall that we denote by F the algebraic closure of F and for any F -vector space U , we define

U = U ⊗F F

The space Kp(0, 2) contains the highest weight vector of V + (for the action of g). Let v1 be such a
non zero vector. Of course v1 is also a highest weight vector for the action of Kp(0, 0). Suppose that
Kp(0, 2) is reducible under the action of Kp(0, 0). Then it would exist a second highest weight vector
v2 for this action. Let us examine how these vectors move under the action of n− (= the sum of the
negative root spaces in g). One has

n
−
= Kp(1,−1)⊕Kp(0, 0)

−

.

The action of Kp(1,−1) on Kp(0, 2) is as follows:

v1, v2 ∈ Kp(0, 2)
adKp(1,−1)−→ Kp(1, 1)

adKp(1,−1)−→ Kp(2, 0)
adKp(1,−1)−→ {0}.

On the other hand the action of Kp(0, 0)
−

stabilizes Kp(0, 2)

v1, v2 ∈ Kp(0, 2)
adKp(0,0)

−

−→ Kp(0, 2).

Let U(Kp(0, 0)) be the enveloping algebra of Kp(0, 0). As Kp(0, 2) is supposed to be reducible under
Kp(0, 0) we obtain

V1 = U(Kp(0, 0))v1 ⊊ Kp(0, 2).

As V + is irreducible under g we should have:

V + = U(Kp(1,−1))U(Kp(0, 0))v1

= U(Kp(1,−1))V1 ⊂ V1 ⊕Kp(1, 1)⊕Kp(2, 0) ⊂ Kp(0, 2)⊕Kp(1, 1)⊕Kp(2, 0) = V +.

But this is not possible as V1 ⊊ Kp(0, 2).
As Kp(2, 0) contains a lowest weight vector of the representation (g, V +), the proof for Kp(2, 0) is
analogue.

It is worth noticing that from the preceding Lemma 2.1.2 and from Proposition 1.5.2 in [8] the Lie
algebras Kp(−2, 0) ⊕ [Kp(2, 0), Kp(−2, 0)] ⊕ Kp(2, 0) and Kp(0,−2) ⊕ [Kp(0, 2), Kp(0,−2)] ⊕
Kp(0, 2) are absolutely simple.

Let us fix p ∈ {0, 1, . . . , k}. Consider now the maximal parabolic subalgebra of g given by

pp = Zg(H
1
0,p)⊕Kp(1,−1) = Zg(H

2
0,p)⊕Kp(1,−1) = Zg(F.H

1
0,p ⊕ F.H2

0,p)⊕Kp(1,−1)

= Kp(0, 0)⊕Kp(1,−1)

(As H0 = H1
0,p +H2

0,p and as g = Zg̃(H0), we get Zg(H
1
0,p) = Zg(H

2
0,p) = Zg(F.H

1
0,p ⊕ F.H2

0,p).)

The maximal parabolic subgroup Pp corresponding to pp is now defined as follows. Define first:

Np = exp adKp(1,−1)

Lp = ZG(F.H
1
0,p ⊕ F.H2

0,p) = ZAut0(g̃)(F.H
1
0,p ⊕ F.H2

0,p) = ZG(F.H
1
0,p) = ZG(F.H

2
0,p).

Then

Pp = LpNp
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The Lie algebra of Lp is Kp(0, 0), the Lie algebra of Np is Kp(1,−1) and hence the Lie algebra of Pp
is Kp(0, 0)⊕Kp(1,−1).

2.2. Fourier transform and normalization of measures.
We will, in the sequel of this paragraph, normalize the Haar measures such that there is no constant
appearing in some integral formulas occurring later, in particular in Theorem 2.3.3 and Theorem
2.4.2. We use here the same method as in ([2] chap. 4) and in ([12] §3.2). For the convenience of the
reader we give some details.
Remember that we use the normalized Fourier Killing form b(·, ·) defined by

b(X, Y ) = − k + 1

4 dimV +
B̃(X, Y ) X ∈, Y ∈ g̃.

Using b the space V − is identified with the dual space V +∗, and the natural action of g ∈ G on V −

corresponds to the dual action of g on V +∗.
We fix once and for all a non trivial additive character ψ of F . Consider Haar measures dX and dY
on V + and V − respectively.

Definition 2.2.1. The Fourier transform f ∈ S(V +) is the function F(f) ∈ S(V −) defined by

F(f)(Y ) =

∫
V +

f(X)ψ(b(X, Y ))dX, Y ∈ V −,

and the inverse Fourier transform of g ∈ S(V −) is the function F(g) ∈ S(V +) defined by

F(g)(X) =

∫
V −

g(Y )ψ(b(X, Y ))dY, X ∈ V +.

Using the same character ψ and the same form b, we define similarly:
- Fourier transforms F2,0 anf F2,0 between S(Kp(2, 0)) and S(Kp(−2, 0)),
- Fourier transforms F0,2 anf F0,2 between S(Kp(0, 2)) and S(Kp(0,−2)),
- Fourier transforms F1,1 anf F1,1 between S(Kp(1, 1)) and S(Kp(−1,−1)),
- Fourier transforms F−1,1 anf F−1,1 between S(Kp(−1, 1)) and S(Kp(1,−1)).

It is well known that there exists a pair of Haar measures (dX, dY ) on V + and V − respectively wich
are so-called dual for F . This means that F ◦ F = IdS(V +). Moreover if such a pair (dX, dY ) of
dual measures is given, any other pair of dual measures is of the form (αdX, 1

α
dY ), with α ∈ R+∗.

Let us indicate one way to construct such dual measures. Define the Fourier transform on F by

F1h(y) =

∫
F

h(x)ψ(xy)dx, h ∈ S(F ), F1h ∈ S(F ),

and fix once and for all a self-dual measure (for F1) dx on F .
Let us choose a basis (e1, . . . , en) of V + which contains a base of each root space contained in V +.
Consider the dual base (e∗1, . . . , e

∗
n) of V − (i.e b(ei, e∗j) = δij). Denote by X =

∑n
i=1 xiei (resp.

Y =
∑n

j=1 yje
∗
j ) a general element in V + (resp. in V −) and define the measures

d1X = dx1 . . . dxn d1Y = dy1 . . . dyn,

where dxi, dyj are copies of dx.
Then the measures d1X, d1Y are dual for F . Let us denote by ι the bijective map from Ω+ to Ω−,
defined for X ∈ Ω+ by the fact that (ι(X), H0, X) is an sl2-triple. This map is clearly G-equivariant:
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ι(g.X) = g.ι(X) for X ∈ Ω+ and g ∈ G. Moreover this map can also be defined as a map from Ω+

onto Ω−, which is G-equivariant, where G is the group which is defined the same way as G, but for
the extended grading of g̃.
It is worth noticing that similarly one can consider maps still denoted by ι from Kp(2, 0)

′ onto
Kp(−2, 0)′ and from Kp(0, 2)

′ onto Kp(0,−2)′ defined by the conditions that (ι(u), Hp,1
0 , u) and

(ι(v), Hp,2
0 , v) are sl2-triples (u ∈ Kp(2, 0)

′, v ∈ Kp(0, 2)
′).

We then normalize the various relative invariants by the conditions:

∇0(ι(X)) =
1

∆0(X)
for all X ∈ Ω+,

∇k−p(ι(u)) =
1

∆̃k−p(u)
for all u ∈ Kp(2, 0)

′,

∇̃p+1(ι(v)) =
1

∆p+1(v)
for all v ∈ Kp(0, 2)

′.

It is easy to see, due to the G-equivariance and the ZG(FH
p,1
0 + FHp,2

0 )-equivariance, that these
conditions are equivalent to the same equalities holding only for fixed elements X, u, v.
We will also impose the conditions:

∆0(u+ v) = ∆̃k−p(u)∆p+1(v) for all u ∈ Kp(2, 0), v ∈ KP (0, 2),

∇0(u
′ + v′) = ∇k−p(u

′)∇̃p+1(v
′) for all u′ ∈ Kp(−2, 0), v′ ∈ KP (0,−2).

Let (Y,H0, X) be an sl2-triple with X ∈ V +, Y ∈ V −. Recall from Definition 1.1.5 that we have set
for t ∈ F ∗

θX(t) = exp(tadX) exp(
1

t
adY ) exp(tadX) = exp(

1

t
adY ) exp(tadX) exp(

1

t
adY ),

and θX = θX(−1). Then

θX(X) = (−1)2Y = Y, θX(Y ) = (−1)2X, θX(H0) = −H0.

Moreover θ2X acts by (−1)r on the weight r space for any finite dimensional module. Hence θX is an
involution of g̃. Is is also easy to see that for g ∈ G and X ∈ Ω+ we have θgX = gθXg

−1.

The restriction θX |V +
is a linear map from V + to V −. From the preceding identity one obtains

det(θgX |V +
) = (detg|V − )det(θX |V +

)(detg−1
|V +

) = (detg|V − )
2det(θX |V +

).

Hence det(θX |V +
) is a relative invariant whose character is (detg|V − )

2. As we know ([2], p.95) that
detg|V − = χ0(g)

−m, where m = dimV +

deg(∆0)
= dimV +

κ(k+1)
, we get that there exists c ∈ F ∗ such that

det(θX |V +
) = c∆0(X)−2m. (2.1)

Fix X0 ∈ Ω+, and remark that θX0gθ
−1
X0

∈ G. Then

∇0(θX0(gX)) = ∇0(θX0gθ
−1
X0
θX0(X)) = χ−1

0 (θX0gθ
−1
X0
)∇0(θX0(X)).

Therefore the map X 7−→ ∇0(θX0(X)) is a polynomial relative invariant with the same degree as ∇0

(hence the same degree as ∆0). Thus ∇0(θX0(X)) = α∆0(X) with α ∈ F ∗. Replacing X by X0,
and using the normalization above we obtain

α∆0(X0) = ∇0(θX0(X0)) = ∇0(ι(X0)) =
1

∆0(X0)
.
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Hence α =
1

∆0(X0)2
and

∇0(θX0(X)) =
∆0(X)

∆0(X0)2
(X ∈ Ω+). (2.2)

Proposition 2.2.2.
There exists a unique pair of Haar measures (dX, dY ) on V + × V − such that
1) F ◦ F = IdS(V +) (in other words the measures are dual for F)
2) ∀f ∈ L1(V −) and ∀X0 ∈ Ω+∫

V +

f(θX0(X))dX = |∆0(X0)|2m
∫
V −

f(Y )dY. (2.3)

In fact if the identity (2.3) is true for one fixed X0, then it holds for all.
Moreover if d∗X = dX

|∆0(X)|m and d∗Y = dY
|∇0(Y )|m denote the corresponding G-invariant measures on

V + and V − respectively, we have for Ψ ∈ L1(Ω−, d∗Y ) and Φ ∈ L1(Ω+, d∗X):∫
Ω+

Ψ(θX0(X))d∗X =

∫
Ω−

Ψ(Y )d∗Y and
∫
Ω−

Φ(θX0(Y ))d∗Y =

∫
Ω+

Φ(X)d∗X.

Proof.
Let us start with the pair of dual Haar measures (d1X, d1Y ) described before. Suppose that (dX, dY )

is a couple of Haar measures satisfying the condition 1). Then there exists λ ∈ R∗+ such that
dX = λd1X and dY = 1

λ
d1Y . We make the change of variable Y = θX0(X) in the left hand side of

2). From the definition of d1X and d1Y we get d1Y = |det(θX0 |V +
)|d1X . Hence∫

V +

f(θX0(X))dX =

∫
V +

f(θX0(X))λd1X =

∫
V −

f(Y )
1

|det(θX0 |V +
)|
λd1Y

=

∫
V −

f(Y )
1

|det(θX0 |V +
)|
λ2dY =

λ2

|c|
|∆0(X0)|2m

∫
V −

f(Y )dY ),

where the last equality comes from (2.1).
Therefore if we take λ =

√
|c| = |det(θX0 |V +

)| 12 |∆0(X0)|2m we have proved the first part of the
statement. And the fact that c does not depend on X0 implies that if (2.3) holds for one X0 then it
holds for all.
Using (2.2) and 2) we obtain:∫

Ω+

Ψ(θX0(X))d∗X =

∫
Ω+

Ψ(θX0(X))
dX

|∆0(X)|m

= |∆0(X0)|−2m

∫
V +

Ψ(θX0(X))
dX

|∇0(θX0(X))|m

=

∫
V −

Ψ(Y )d∗Y.

Setting Φ = Ψ ◦ θX0 in this identity, we obtain the last assertion.

Proposition 2.2.3.
Fix X0 ∈ Ω+ and let Y0 = ι(X0). Define H = ZG(X0) = ZG(Y0). One defines two G-invariant
measures d1ġ and d2ġ on G/H by setting for Φ ∈ S(G.X0) and Ψ ∈ S(G.Y0)∫

G.X0

Φ(X)d∗X =

∫
G/H

Φ(g.X0)d1ġ and
∫
G.Y0

Ψ(Y )d∗Y =

∫
G/H

Ψ(g.Y0)d2ġ.
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Then d1ġ = d2ġ.

Proof.
From the last assertion of Proposition 2.2.2 we obtain∫
G/H

Φ(g.X0)d1ġ =
∫
Ω+ Φ(X)d∗X =

∫
Ω− Φ(θX0(Y ))d∗Y =

∫
G/H

Φ(θX0(g.Y0))d2ġ

=
∫
G/H

Φ(θX0gθX0θX0(Y0))d2ġ =
∫
G/H

Φ(g.X0)d2ġ

(The last equality is obtained by taking into account that the conjugation g 7−→ θX0gθX0 is an involu-
tion of G which stabilizes H , so we make the change of variable g = θX0gθX0).

Definition 2.2.4. We will denote by dġ the G-invariant measure appearing in Proposition 2.2.3.

Proposition 2.2.5.
Let σ be an involution of g̃ such that σ(H0) = −H0. We also suppose that there exists X0 ∈ V + such
that (σ(X0), H0, X0) is an sl2-triple. Then for Ψ ∈ L1(Ω−, d∗Y ) we have∫

Ω+

Ψ(σ(X))d∗X =

∫
Ω−

Ψ(Y )d∗Y.

Proof.
One should note that if σ is such an involution, then σ(g) = g and σ(V +) = V −. From Proposition
2.2.2 we obtain∫

Ω+

Ψ(σ(X))d∗X =

∫
Ω+

Ψ ◦ σθX0(θX0(X))d∗X =

∫
Ω−

Ψ(σθX0(Y ))d∗Y.

It is easy to see that if we set Y0 = σ(X0) we have

θX0 ◦ σ = σ ◦ exp(−ad(Y0)) exp(−ad(X0)) exp(−ad(Y0)) = σ ◦ θX0 .

Therefore σ ◦ θX0 is an involution preserving V −. Hence if we make the change of variable Y =

σθX0(Y ) we obtain the assertion.

Proposition 2.2.6.
Remember that for X ∈ Ω+, the element ι(X) ∈ Ω− is defined by the fact that (ι(X), H0, X) is an
sl2-triple. For Ψ ∈ L1(Ω−, d∗Y ) we have∫

Ω+

Ψ(ι(X))d∗X =

∫
V −

Ψ(Y )d∗Y.

Proof.
Let Ω+ = ∪r0i=1Ω

+
i be the decomposition of Ω+ into open G-orbits. Let Ω−

i = ι(Ω+
i ). Take Xi ∈ Ω+

i

and define Yi = ι(Xi) ∈ Ω−
i . Define also Hi = ZG(Xi) = ZG(Yi). It is enough to prove the assertion

for Ψ ∈ S(Ω−
i ). Using Proposition 2.2.3 we obtain:∫

Ω+
i
Ψ(ι(X))d∗X =

∫
G/Hi

Ψ(ι(gXi))dġ =
∫
G/Hi

Ψ(gι(Xi))dġ =
∫
G/Hi

Ψ(gYi)dġ =
∫
Ω−

i
Ψ(Y )d∗Y.

We now consider the subset (ei1 , . . . , eir) of (e1, . . . , en) which is a basis of Kp(1, 1) (see the discus-
sion after definition 2.2.1). Then (e∗i1 , . . . , e

∗
ir) is the dual basis of Kp(−1,−1) with respect to the

form b. If d1w and d1w′ are the Haar measures on Kp(1, 1) and Kp(−1,−1) respectively, defined
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through the preceding basis and the choice of a self dual measure on F , then these measures are dual
for F1,1.

Proposition 2.2.7.
There exists a unique pair of Haar measures (dw, dw′) on Kp(1, 1)×Kp(−1,−1) such that
1) F1,1 ◦ F1,1 = IdS(Kp(1,1) (in other words the measures are dual for F1,1)
2) ∀g ∈ L1(Kp(1, 1)) and ∀u ∈ Kp(2, 0)

′ and ∀v ∈ Kp(0, 2)
′

∫
Kp(1,1)

g(θu+v(w))dw = |∆p+1(v)|
dim(Kp(1,1))

deg(∆p+1) |∆̃k−p(u)|
dim(Kp(1,1))

deg(∆̃k−p)

∫
Kp(−1,−1)

g(w′)dw′.

As θu+v2|Kp(1,1)
= IdKp(−1,−1) it is easy to see that condition 2) is equivalent to the following condition

2′).
2′) ∀f ∈ L1(Kp(−1,−1)) and ∀u ∈ Kp(2, 0)

′ and ∀v ∈ Kp(0, 2)
′

∫
Kp(1,1)

f(w)dw = |∆p+1(v)|
dim(Kp(1,1))

deg(∆p+1) |∆̃k−p(u)|
dim(Kp(1,1))

deg(∆̃k−p)

∫
Kp(−1,−1)

f(θu+v(w
′))dw′.

Proof.
For u, v as in 2), the map θu+v is a linear isomorphism from Kp(1, 1) onto Kp(−1,−1) and for
g ∈ ZG(FH

p,1
0 + FHp,2

0 ) we have:

det(θg(u+v)|Kp(1,1)
) = det(g|Kp(−1,−1)

)2det(θu+v |Kp(1,1)
).

Therefore det(θu+v |Kp(1,1)
) is a relative invariant of the prehomogeneous vector space (Kp(0, 0), Kp(2, 0)⊕

Kp(0, 2). Hence there exist c ∈ F ∗ and α, β ∈ Z such that

det(θu+v |Kp(1,1)
) = c∆̃k−p(u)

α∆p+1(v)
β. (2.4)

For t1, t2 ∈ F , let us consider the element g0 = hu(t1)hv(t2) ∈ ZG(FH
p,1
0 + FHp,2

0 ) (see Definition
1.1.5). This element acts by t−1

2 t−1
1 on Kp(−1,−1), by t21 on Kp(2, 0) and by t22 on Kp(0, 2) Hence

det(g0|Kp(−1,−1)
)2 = t

−2 dimKp(−1,−1)
2 t

−2 dimKp(−1,−1)
1

But from (2.4) above we also have:

det(θg0(u+v)|Kp(1,1)
) = ct

2αdeg ∆̃k−p

1 t
2β deg∆p+1

2 det(θ(u+v)|Kp(1,1)
).

Therefore α = −dimKp(1,1)

deg ∆̃k−p
and β = −dimKp(1,1)

deg∆p+1
. Hence

det(θu+v |Kp(1,1)
) = c∆̃k−p(u)

−dimKp(1,1)

deg ∆̃k−p ∆p+1(v)
−dimKp(1,1)

deg∆p+1 . (2.5)

Let us start with the pair of dual Haar measures (d1w, d1w′) described before. Suppose that (dw, dw′)

is a couple of Haar measures satisfying the condition 1). Then there exists λ ∈ R∗+ such that
dw = λd1w and dw′ = 1

λ
d1w

′. We make the change of variable w′ = θu+v(w) in the left hand side of
2). From the definition of d1w and d1w′ we get d1w′ = |det(θu+v |Kp(1,1)

)|d1w. Hence



LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (II) 17

∫
Kp(1,1)

g(θu+v(w))dw =

∫
Kp(1,1)

g(θu+v(w))λd1w =

∫
Kp(−1,−1)

g(w′)
1

|det(θu+v |Kp(1,1)
|
λd1w

′

=

∫
Kp(−1,−1)

g(w′)
1

|det(θu+v |Kp(1,1)
)|
λ2dw′

=
λ2

|c|
|∆̃k−p(u)|

dimKp(1,1)

deg ∆̃k−p |∆p+1(v)|
dimKp(1,1)

deg∆p+1

∫
Kp(−1,−1)

g(w′)dw′,

where the last equality comes from (2.5). Therefore if we take λ =
√

|c| the result is proved.

As above we consider Haar measures d1A and d1A′ on Kp(−1, 1) and Kp(1,−1) respectively, which
are dual for F−1,1 (see Definition 2.2.1).These measures are defined through the choice of a basis of
Kp(−1, 1) ⊂ V +, the dual basis of Kp(1,−1) ⊂ V − (via the form b) and the choice of a self dual
measure on F .

Proposition 2.2.8.
There exists a unique pair of Haar measures (dA, dA′) on Kp(−1, 1)×Kp(1,−1) such that
1) F−1,1 ◦ F−1,1 = IdS(Kp(−1,1) (in other words the measures are dual for F−1,1)
2) ∀g ∈ L1(Kp(1,−1)) and ∀u ∈ Kp(2, 0)

′ and ∀v ∈ Kp(0, 2)
′∫

Kp(−1,1)

g(θu+v(A))dA = |∆p+1(v)|
dim(Kp(1,−1))

deg(∆p+1) |∆̃k−p(u)|
−dim(Kp(1,−1))

deg(∆̃k−p)

∫
Kp(1,−1)

g(A′)dA′.

As θu+v2|Kp(−1,1)
= IdKp(−1,1) it is easy to see that condition is equivalent to the following condition

2′).
2′) ∀f ∈ L1(Kp(−1, 1)) and ∀u ∈ Kp(2, 0)

′ and ∀v ∈ Kp(0, 2)
′∫

Kp(−1,1)

f(A)dA = |∆p+1(v)|
dim(Kp(1,−1))

deg(∆p+1) |∆̃k−p(u)|
−dim(Kp(1,−1))

deg(∆̃k−p)

∫
Kp(1,−1)

f(θu+v(A
′))dA′.

Proof.
The proof is almost the same as for the preceding Proposition. The only change comes from the fact
that the element g0 = hu(t1)hv(t2) acts by t1t−1

2 on Kp(1,−1).

Remark 2.2.9. It is clear that Proposition 2.2.2 applies to the graded algebrasKp(−2, 0)⊕Kp(0, 0)⊕
Kp(2, 0) and Kp(0,−2)⊕Kp(0, 0)⊕Kp(0, 2).
Therefore there exists a unique pair of measures (du, du′) on Kp(2, 0)×Kp(−2, 0) such that
1) These measures are dual for the Fourier transform F2,0 between S(Kp(2, 0)) and S(Kp(−2, 0)),
2) ∀f ∈ L1(Kp(−2, 0) and ∀u0 ∈ Kp(2, 0)

′∫
Kp(2,0)

f(θu0(u))du = |∆̃k−p(u0)|
2 dimKp(2,0)

deg ∆̃k−p

∫
Kp(−2,0)

f(u′)du′.

Similarly there exists a unique pair of measures (dv, dv′) on Kp(0, 2)×Kp(0,−2) such that
1) These measures are dual for the Fourier transform F0,2 between S(Kp(0, 2)) and S(Kp(0,−2))
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2) ∀f ∈ L1(Kp(0,−2) and ∀v0 ∈ Kp(0, 2)
′∫

Kp(0,2)

f(θv0(v))dv = |∆p+1(v0)|
2 dimKp(0,2)

deg∆p+1

∫
Kp(0,−2)

f(v′)dv′.

Definition 2.2.10. Normalization of the measures
From now on we will always make the following choice of measures:
a) On V + × V − we take the measures (dX, dY ) which were defined in Proposition 2.2.2.
b) On Kp(2, 0) × Kp(−2, 0) and on Kp(0, 2) × Kp(0,−2) respectively, we take the pairs measures
(du, du′) and (dv, dv′) which were defined in Remark 2.2.9.
c) On Kp(1, 1) ×Kp(−1,−1) we take the pair of measures (dw, dw′) which were defined in Propo-
sition 2.2.7.
d) On Kp(−1, 1) ×Kp(1,−1) we take the pair of measures (dA, dA′) which were defined in Propo-
sition 2.2.8.

Proposition 2.2.11.
a) dX = dudvdw

b) dY = du′dv′dw′

Proof.
Define dX := dudvdw and dY := du′dv′dw′. It is now enough to prove that the pair (dX, dY )

satisfies the two conditions of Proposition 2.2.2.
1) It is clear from the definitions that the measures dX, dY are dual for F .
2) Let f ∈ S(V +), u0 ∈ Kp(2, 0)

′, v0 ∈ Kp(0, 2)
′. Then we have, using Remark 2.2.9 and Proposition

2.2.7:∫
V +

f(θu0+v0(u+ v + w))dudvdw =

∫
V +

f(θu0(u) + θv0(v) + θu0+v0(w))dudvdw

= |∆̃k−p(u0)|
2 dimKp(2,0)+dimKp(1,1)

deg ∆̃k−p |∆p+1(v0)|
2 dimKp(0,2)+dimKp(1,1)

deg∆p+1

∫
V −

f(u′ + v′ + w′)du′dv′dw′.

From Proposition 1.9.5 p.26 in [8] we know that dimV + = (k + 1)(ℓ + kd
2
), dimKp(2, 0) = (p +

1)(ℓ+ pd
2
), dimKp(0, 2) = (k− p)(ℓ+ (k−p−1)d

2
). Moreover as Kp(1, 1) = ⊕0≤i≤p;p+1≤j≤kEi,j(1, 1),

we obtain that dimKp(1, 1) = (p+ 1)(k − p)d. We also have deg ∆̃k−p = κ(p+ 1) and deg∆p+1 =

κ(k − p). A simple calculation shows then that

2 dimKp(2, 0) + dimKp(1, 1)

deg ∆̃k−p
=

2dimKp(0, 2) + dimKp(1, 1)

deg∆p+1

=
2

κ
(ℓ+

kd

2
) = 2m.

Finally we get∫
V +

f(θu0+v0(u+ v + w))dudvdw = |∆0(u0 + v0)|2m
∫
V −

f(u′ + v′ + w′)du′dv′dw′

2.3. Mean functions.
We will first define the mean functions T+

f (u, v) (u ∈ Kp(2, 0), v ∈ Kp(0, 2)) and T−
f (u

′, v′) (u′ ∈
Kp(−2, 0), v ∈ Kp(0,−2)) which were introduced by I. Muller ([12] Definition 4.3.1 p. 83) and used
in the real case by N. Bopp and H. Rubenthaler ([2] p.104).
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Let us denote Kp(±2, 0)′ and Kp(0,±2)′ the sets of generic elements in Kp(±2, 0) and Kp(0,±2),
respectively (as (Lp, Kp(±2, 0)) and (Lp, Kp(0,±2)) are prehomogeneous, the notion of generic ele-
ment is clear).

In the rest of the section we adopt the following convention concerning the variables:
u ∈ Kp(2, 0), v ∈ Kp(0, 2), u′ ∈ Kp(−2, 0), v′ ∈ Kp(0,−2), A ∈ Kp(−1, 1), A′ ∈ Kp(1,−1),
w ∈ Kp(1, 1), w′ ∈ Kp(−1,−1), X ∈ V +, Y ∈ V −.

Lemma 2.3.1.
There exist positive constants α, β, γ and δ which depend on the choice of Lebesgue measures on the
different spaces such that the following assertions hold.
1) If v ∈ Kp(0, 2)

′, then for all f ∈ L1(Kp(1, 1)) one has :∫
Kp(1,1)

f(w)dw = α|∆p+1(v)|
dimKp(1,−1)

deg∆p+1

∫
Kp(1,−1)

f([A′, v])dA′.

2) If v ∈ Kp(0, 2)
′, then for all g ∈ L1(Kp(−1, 1)) one has :

∫
Kp(−1,1)

g(A)dA = β|∆p+1(v)|
dimKp(1,−1)

deg∆p+1

∫
Kp(−1,−1)

g([w′, v])dw′.

3) If u′ ∈ Kp(−2, 0)′, then for all f ∈ L1(Kp(−1,−1)) one has :∫
Kp(−1,−1)

f(w′)dw′ = γ|∇k−p(u
′)|

dimKp(1,−1)

deg∇k−p

∫
Kp(1,−1)

f([A′, u′])dA′.

4) If u′ ∈ Kp(−2, 0)′, then for all g ∈ L1(Kp(−1, 1)) one has :∫
Kp(−1,1)

g(A)dA = δ|∇k−p(u
′)|

dimKp(1,−1)

deg∇k−p

∫
Kp(1,1)

g([w, u′])dw.

(Remember that dimKp(1,−1) = dimKp(−1, 1) = dimKp(1, 1) = dimKp(−1,−1)).

Proof. :
We only prove assertion 1). The proofs of 2), 3) and 4) are similar.
If v ∈ Kp(0, 2)

′ the map :

ad(v) : Kp(1,−1) −→ Kp(1, 1)

is an isomorphism (classical result for sl2-modules). Therefore there exists a non zero positive con-
stant α(v) such that ∫

Kp(1,1)

f(w)dw = α(v)

∫
Kp(1,−1)

f([A′, v])dA′

On the other hand the subspaceKp(1,−1) is stable under Lp. This implies that there exists a character
χ1 of Lp such that for F ∈ L1(Kp(1,−1)) and g ∈ Lp one has:∫

Kp(1,−1)

F (gA′)dA′ = χ1(g)

∫
Kp(1,−1)

F (A′)dA′.
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Moreover, the set Kp(0, 2)
′ is also Lp-invariant. Hence:∫

Kp(1,1)

f(w)dw = α(gv)

∫
Kp(1,−1)

f([A′, gv])dA′

= α(gv)

∫
Kp(1,−1)

f(g[g−1A′, v])dA′

= α(gv)χ−1
1
(g)

∫
Kp(1,−1)

f(g[A′, v])dA′

= α(gv)χ−1
1
(g)

1

α(v)

∫
Kp(1,1)

f(g.w)dw.

But there is also a character χ2 of Lp such that∫
Kp(1,1)

f(g.w)dw = χ2(g)

∫
Kp(1,1)

f(w)dw.

Hence

α(gv) = χ1(g)χ2(g)
−1α(v).

This means that α(v) is a positive relative invariant on Kp(0, 2) under the action of Lp, hence there
exist n ∈ Z and α ∈ R∗+ such that

α(v) = α|∆p+1(v)|n.

To compute n, let us take g = hI+p,2(t) as defined in Definition 1.1.5. Then gv = t2v.
Thus, we have ∫

Kp(1,1)

f(w)dw = α(v)

∫
Kp(1,−1)

f([A′, v])dA′

= α(t2v)

∫
Kp(1,−1)

f([A′, t2v])dA′

= α(t2v)

∫
Kp(1,−1)

f([t2A′, v])dA′

= α(t2v)t−2 dim(Kp(1,−1))

∫
Kp(1,−1)

f([A′, v])dA′

Hence α(t2v) = t2 dim(Kp(1,−1))α(v). We obtain then:

α|∆p+1(t
2v)|n = αt2ndeg∆p+1|∆p+1(v)|n = αt2 dimKp(1,−1)|∆p+1(v)|n.

Therefore n = dimKp(1,−1)

deg∆p+1
and α(v) = α|∆p+1(v)|

dimKp(1,−1)

deg∆p+1

This ends the proof of assertion 1).

Proposition 2.3.2.
If the measures are normalized as in Definition 2.2.10, then the four constants α, β, δ, γ occuring in
Lemma 2.3.1 are equal to 1.

Proof.
Let u ∈ KP (2, 0)

′, v ∈ Kp(0, 2)
′, and define u′ = ι(u), v′ = ι(v). If A ∈ Kp(1,−1), then

aduA = adv′A = 0 and hence adv adu′A = adu′ advA = adu′ad(u + v)A = ad[u′, u + v]A +



LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (II) 21

ad(u + v)adu′A = A + ad(u + v)adu′A = A + ad(u + v)ad(u′ + v′)A = θu+v(A) (for the last
equality see Theorem 4.1.1 in [8]). Hence we have

∀A ∈ KP (1,−1), adv adu′A = adu′ advA = θu+v(A). (2.6)

It is equivalent to say that the following diagram is commutative:

Kp(−1, 1)

Kp(−1,−1)

adv 77

Kp(1, 1)

adu′ff

Kp(1,−1)
adu′

gg
θu+v

OO

adv

88

Take now w′ ∈ Kp(−1,−1). Then (recall that θu+v(v) = v′)
adθu+v(v)ad v w

′ = ad[θu+v(v), v]w
′ + ad v adθu+v(v)w

′ = −w′ + ad v adθu+v(v)w
′ = −w′.

Hence

adv◦θu+v◦adv w′ = θu+v◦θu+v◦adv◦θu+v◦adv w′ = θu+v◦adθu+v(v)◦adv w′ = −θu+v(w′). (2.7)

Similarly one can also prove that for all w ∈ Kp(1, 1):

adu′ ◦ θu+v ◦ adu′w = −θu+v(w) (2.8)

– Step 1. We will first prove that αδ = αβ = βγ = γδ = 1.
Let u ∈ Kp(2, 0)

′ and v ∈ Kp(0, 2)
′.

Using successively relation 4) and 1) in Lemma 2.3.1, the relation ∇k−p(u
′) = ∆̃k−p(u)

−1 and equa-
tion (2.6) we obtain:∫

Kp(−1,1)

g(A)dA = δ|∇k−p(u
′)|

dimKp(1,−1)

deg∇k−p

∫
Kp(1,1)

g(−adu′w)dw

= αδ|∇k−p(u
′)|

dimKp(1,−1)

deg∇k−p |∆p+1(v)|
dimKp(1,−1)

deg∆p+1

∫
Kp(1,−1)

g(adu′advA′)dA′

= αδ|∆̃k−p(u)|
−dimKp(1,−1)

deg∇k−p |∆p+1(v)|
dimKp(1,−1)

deg∆p+1

∫
Kp(1,−1)

g(adu′advA′)dA′

= αδ|∆̃k−p(u)|
−dimKp(1,−1)

deg∇k−p |∆p+1(v)|
dimKp(1,−1)

deg∆p+1

∫
Kp(1,−1)

g(θu+v(A
′))dA′

Then Proposition 2.2.8 implies that αδ = 1.
Using successively relation 1) in Lemma 2.3.1, Proposition 2.2.8, equation 2) in Lemma 2.3.1, and
finally equation (2.7) above we obtain:

∫
Kp(1,1)

f(w)dw = α|∆p+1(v)|
dimKp(1,−1)

∆p+1

∫
Kp(1,−1)

f([A′, v])dA′

= α|∆p+1(v)|
dimKp(1,1)

∆p+1 |∆p+1(v)|
−dimKp(1,1)

∆p+1 |∆̃k−p(u)|
dimKp(1,1)

deg ∆̃k−p

∫
Kp(−1,1)

f([θu+v(A), v])dA

= αβ|∆̃k−p(u)|
dimKp(1,1)

deg ∆̃k−p |∆p+1(v)|
dimKp(1,−1)

deg∆p+1

∫
Kp(−1,−1)

f([θu+v([w
′, v]), v])dw′

= αβ|∆̃k−p(u)|
dimKp(1,1)

deg ∆̃k−p |∆p+1(v)|
dimKp(1,−1)

deg∆p+1

∫
Kp(−1,−1)

f(−θu+v(w′))dw′
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Then Proposition 2.2.7 implies that αβ = 1.

The proofs that βγ = 1 and γδ = 1 are similar.
- Step 2 We will now prove that αγ = 1. From Step 1, this will imply that α = β = γ = δ = 1.
Let f ∈ S(Kp(1, 1). Then by Lemma 2.3.1, 3), for w ∈ Kp(1, 1)

f(w) = (F1,1 ◦ F1,1f)(w) =

∫
Kp(−1,−1)

F1,1f(w
′)ψ(b(w′, w))dw′

= γ|∇k−p(u
′)|

dimKp(1,−1)

deg∇k−p

∫
Kp(1,−1)

F1,1f([A
′, u′])ψ(b([A′, u′], w))dA′.

(2.9)

On the other hand, using Lemma 2.3.1, 1) we have

F1,1(w
′) =

∫
Kp(1,1)

f(w)ψ(b(w,w′))dw

= α|∆p+1(v)|
dimKp(1,−1)

deg∆p+1

∫
Kp(1,−1)

f([A′, v])ψ(b(A′, [v, w′]))dA′.

If we define φ(A′) = f([A′, v]) the preceding equation becomes:

F1,1(w
′) = α|∆p+1(v)|

dimKp(1,−1)

deg∆p+1 F1,−1φ(−[v, w′]) (see Definition 2.2.1).

Then, from equation (2.6) we get

F1,1([A
′, u′]) = α|∆p+1(v)|

dimKp(1,−1)

deg∆p+1 F1,−1φ(advadu
′A′) = α|∆p+1(v)|

dimKp(1,−1)

deg∆p+1 F1,−1φ(θu+v(A
′)).

Therefore equation (2.9) above can be written as

f(w) = γα|∇k−p(u
′)|

dimKp(1,−1)

deg∇k−p |∆p+1(v)|
dimKp(1,−1)

deg∆p+1

∫
Kp(1,−1)

F1,−1φ(θu+v(A
′))ψ(b(A′, adu′w))dA′.

Using Proposion 2.2.8, 2’) (and the relation ∇k−p(u
′) = ∆̃k−p(u)

−1) we obtain:

f(w) = γα

∫
Kp(−1,1)

F1,−1φ(A)ψ(b(θu+vA, adu′w))dA

= γα

∫
Kp(−1,1)

F1,−1φ(A)ψ(b(A, θu+v ◦ adu′w))dA

= γα

∫
Kp(−1,1)

F1,−1φ(A)ψ(b(A,−θu+v ◦ adu′w))dA

= γαφ(−θu+v ◦ adu′w) = γαf([−θu+v ◦ adu′w, v])
= γαf(adv ◦ θu+v ◦ adu′w).

Define A′ ∈ Kp(1,−1) such that w = advA′ (always possible). Then (using (2.6))

f(w) = γαf(adv ◦ θu+v ◦ adu′ ◦ advA′) = γαf(adv ◦ θ2u+vA′) = γαf(advA′) = γαf(w).

Hence γα = 1.

Theorem 2.3.3.
1) For f ∈ L1(V +) we have∫

V +

f(X)dX =

∫
u∈Kp(2,0)

∫
A∈Kp(1,−1)

∫
v∈Kp(0,2)

f(eadA(u+ v))|∆p+1(v)|
(p+1)d

κ du dAdv,
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2) For g ∈ L1(V −) we have∫
V −

g(Y )dY =

∫
u′∈Kp(−2,0)

∫
A∈Kp(1,−1)

∫
v′∈Kp(0,−2)

g(eadA(u′ + v′))|∇p+1(u
′)|

(k−p)d
κ du′ dAdv′.

Proof. We only prove the first formula. The proof of the second is similar. The right hand side is
equal to∫

u∈Kp(2,0)

∫
A∈Kp(1,−1)

∫
v∈Kp(0,2)

f(u+
1

2
(adA)2v + (adA)v + v)|∆p+1(v)|

(p+1)d
κ du dAdv.

We make first the change of variable u −→ (u + 1
2
(adA)2v) (which is possible as 1

2
(adA)2v ∈

Kp(2, 0)) and we get∫
u∈Kp(2,0)

∫
A∈Kp(1,−1)

∫
v∈Kp(0,2)

f(u+ [A, v] + v)|∆p+1(v)|
(p+1)d

κ du dAdv,

and then, using Lemma 2.3.1, Proposition 2.3.2 and Proposition 2.2.11, we obtain∫
Kp(2,0)

∫
Kp(1,1)

∫
Kp(0,2)

f(u+ w + v)du dw dv =

∫
V +

f(X)dX.

Definition 2.3.4. (Introduced in ([12] Definition 4.3.1) for a special kind of maximal parabolic, see
also ([2] Definition 4.20).)
Let p ∈ {0, . . . , k} 1) For f ∈ L1(V +) and (u, v) ∈ Kp(2, 0)×Kp(0, 2), we define

T p,+f (u, v) = |∆p+1(v)|
(p+1)d

2κ

∫
Kp(1,−1)

f(eadA(u+ v))dA.

2) For g ∈ L1(V −) and (u′, v′) ∈ Kp(−2, 0)×Kp(0,−2), we define

T p,−g (u′, v′) = |∇k−p(u
′)|

(k−p)d
2κ

∫
Kp(1,−1)

f(eadA(u′ + v′))dA.

Then Theorem 2.3.3 can be re-formulated in the following manner:

Theorem 2.3.5.
1) Let f ∈ L1(V +), then the function (u, v) 7−→ T p,+f (u, v)|∆p+1(v)|

(p+1)d
2κ belongs to L1(Kp(2, 0)×

Kp(0, 2)) and ∫
V +

f(X)dX =

∫
u∈Kp(2,0)

∫
v∈Kp(0,2)

T p,+f (u, v)|∆p+1(v)|
(p+1)d

2κ du dv.

2) Let g ∈ L1(V −), then then the function (u′, v′) 7−→ T p,−g (u′, v′)|∇k−p(u
′)|

(k−p)d
2κ belongs to

L1(Kp(−2, 0)×Kp(0,−2)) and∫
V −

g(Y )dY =

∫
u′∈Kp(−2,0)

∫
v′∈Kp(0,−2)

T p,−g (u′, v′)|∇k−p(u
′)|

(k−p)d
2κ du′ dv′.

We investigate now the smoothness of T p,+f and T p,−g .

Theorem 2.3.6.
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(1) (a) For f ∈ S(V +), u ∈ Kp(2, 0), v ∈ Kp(0, 2)
′, A ∈ Kp(1,−1), the function

A 7−→ f(eadA(u+ v))

belongs to S(Kp(1,−1)) and T p,+f (u, v) is everywhere defined on Kp(2, 0) ×Kp(0, 2)
′.

Moreover T p,+f (u, v) is locally constant on Kp(2, 0)×Kp(0, 2)
′.

(b) If f ∈ S(V +) with compact support in O+
p+1 = {X ∈ V +, ∆p+1(X) ̸= 0}, then T p,+f is

everywhere defined on Kp(2, 0)×Kp(0, 2) and is locally constant with compact support
in Kp(2, 0)×Kp(0, 2)

′.
(2) (a) For g ∈ S(V −), u′ ∈ Kp(−2, 0)′, v′ ∈ Kp(0,−2), A ∈ Kp(1,−1), the function

A 7−→ g(eadA(u′ + v′))

belongs to S(Kp(1,−1)) and T p,−g (u′, v′) is everywhere defined onKp(−2, 0)′×Kp(0,−2).
Moreover T p,−g (u′, v′) is locally constant on Kp(−2, 0)′ ×Kp(0,−2).

(b) If g ∈ S(V −) with compact support in O−
k−p = {Y ∈ V −, ∇k−p ̸= 0}(Y ), then T p,−g

is everywhere defined on Kp(−2, 0) × Kp(0,−2) and is locally constant with compact
support in Kp(−2, 0)′ ×Kp(0,−2).

Proof.
We only prove the first assertion. The proof of the second one will be similar.
We fix f ∈ S(V +). By ( [14], II.1.3), we can suppose that there exist f1 ∈ S(Kp(2, 0)), f2 ∈
S(Kp(1, 1)) and f3 ∈ S(Kp(0, 2)) such that

f(u+ x+ v) = f1(u)f2(x)f3(v), u ∈ Kp(2, 0), x ∈ Kp(1, 1) and v ∈ Kp(0, 2).

Let u ∈ Kp(2, 0) and v ∈ Kp(0, 2)
′. We consider the map

α :

{
Kp(1,−1) −→ C

A 7−→ f(eadA(u+ v)) = f1(u+
1
2
(adA)2v)f2([A, v])f3(v).

Denote byK2 the (compact) support of f2. As the mapA 7−→ [A, v] = αv(A) is a linear isomorphism
from Kp(1,−1) onto Kp(1, 1) we see that there exists a compact subset K ′

2 ⊂ Kp(1,−1) such that
f2([A, v]) = 0 if A /∈ K ′

2.
This shows that α has compact support.

In the rest of the proof we will denote by || || a fixed norm on the various involved vector spaces.
We will now show that α is locally constant. This means that for A0 ∈ Kp(1,−1), there exists ε > 0

such that

h ∈ KP (1,−1), ∥h∥ < ε =⇒ α(A0 + h) = α(A0).

We consider first the function A 7−→ f1(u+
1
2
(adA)2v). As the map A 7→ (adA)2v is continuous, for

any ε > 0 there exists η > 0 such that

||h|| ≤ η ⇒ ∥ad(A0 + h)2v − ad(A0)
2v∥ < ϵ.

As f1 is locally constant, this implies that the functionA 7−→ f1(u+
1
2
(adA)2v) is locally constant. A

similar argument shows that the function A 7−→ f2([A, v]) is locally constant. Hence we have proved
that α ∈ S(Kp(1,−1)).
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But now, the fact that T p,+f (u, v) is everywhere defined on Kp(2, 0)×Kp(0, 2)
′ is clear as the integral

which defines T p,+f (u, v) is the integral of α over a compact set.
The fact that T p,+f is locally constant on Kp(2, 0) ×Kp(0, 2)

′ will be a consequence on the proof of
1)b). See below.

Let us now prove 1) b). Here we suppose that f ∈ S(Op+1). Denote by Ki the support of fi
(i = 1, 2, 3).
If ∆p+1(u + v) = ∆p+1(v) = 0 (in other words v /∈ Kp(0, 2)

′), then f(eadA(u + v)) = f(u +
1
2
(adA)2v + (adA)v + v) = 0 because Supp(f) ⊂ Op+1. Then K3 ⊂ Kp(0, 2)

′ and T p,+f is now
defined everywhere with support in Kp(2, 0)×Kp(0, 2)

′.

Let us now prove that T p,+f has compact support.
Remember from above that the map αv defined by αv(A) = [A, v] is an isomorphism form Kp(1,−1)

onto Kp(1, 1). Consider now the map

K3 ×K2
φ−→ Kp(1,−1)

(v, x) 7−→ φ(v, x) = α−1
v (x).

As it is continuous, its image K = φ(K3 ×K2) is compact. Moreover the support of the map

A 7−→ f2([A, v])

is contained in α−1
v (K2), so that the support of all the maps A 7−→ f2([A, v]) when v ∈ K3 is

contained in K = φ(K3 ×K2) ⊂ Kp(1,−1). In other words, the support of all the maps

A 7−→ f(eadA(u+ v))

when v ∈ K3, is contained in K.
Since the map ϕ : (A, v) 7→ 1

2
(adA)2v is continuous from Kp(1,−1) ×Kp(0, 2) to Kp(2, 0), the set

K0 = ϕ(K ×K3) is a compact subset of Kp(2, 0). Thus there exists C ∈ R∗+ such that for v ∈ K3

and A ∈ K, we have

||1
2
(adA)2v|| ≤ C.

Then ||u + 1
2
(adA)2v|| ≥ | ||u|| − ||1

2
(adA)2v|| | ≥ ||u|| − ||1

2
(adA)2v|| ≥ ||u|| − C. As f1 has

compact support, there exists C ′ > 0 such that for v ∈ K3 and A ∈ K,

||u|| > C ′ =⇒ f1(u+
1

2
(adA)2v) = 0.

Hence

T p,+f (u, v) = |∆p+1(v)|
(p+1)d

2κ

∫
Kp(1,−1)

f(eadA(u+ v))dA

has compact support for f ∈ S(Op+1).

It remains to prove that T p,+f is locally constant.
As the integral in the definition of T p,+f is equal to zero for v /∈ K3 and as |∆p+1(v)| is locally constant
on Kp(0, 2)

′, it is enough to prouve that

Ψ(u, v) =

∫
Kp(1,−1)

f1(u+
1

2
(adA)2v)f2([A, v])f3(v)dA

is locally constant.
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This means that, for u ∈ Kp(2, 0) and v ∈ Kp(0, 2), there exists ϵ > 0 such that

(h, k) ∈ Kp(2, 0)×Kp(0, 2), ||h|| ≤ ϵ, ||k|| ≤ ϵ =⇒ Ψ(u+ h, v + k) = Ψ(u, v).

As fi is locally constant with compact support, there exists ϵi > 0 such that fi is constant on each
ball of radius ϵi (i = 1, 2). Also there exists δ2 > 0, such that for ||k|| ≤ δ2, and A ∈ K, we have
||[A, k]|| ≤ c||A|| ||k|| ≤ ϵ2 (for a c ∈ R∗) , and hence

f2([A, v + k]) = f2([A, v] + [A, k]) = f2([A, v]). (2.10)

Similarly, there exists δ1 > 0 and c > 0 such that

||h+
1

2
(adA)2k|| ≤ ||h||+ c||A||2||k|| ≤ ϵ1 if ||h|| ≤ δ1, ||k|| ≤ δ1 and A ∈ K.

Hence

f1(u+h+
1

2
(adA)2(v+k)) = f1(u+

1

2
(adA)2(v)+h+

1

2
(adA)2(k)) = f1(u+

1

2
(adA)2(v)). (2.11)

Finally (2.10) and (2.11) imply that Ψ(u + h, v + k) = Ψ(u, v) if ||h||, ||k|| ≤ Min(δ1, δ2, ϵ3). This
ends the proof of 1)b).
Lets us return to the end of the proof of 1)a). Taking now K3 to be an open compact subset of
Kp(0, 2)

′ which contains a fixed element v (instead of the support of f3), and taking into account that
|∆p+1(.)|

(p+1)d
2κ is locally constant on K3, the same proof as before shows that T p,+f is locally constant

on Kp(0, 2)×Kp(0, 2)
′.

In the rest of the paper all the involved measures are normalized as in Definition 2.2.10.

2.4. Weil formula and the computation of T p,−Ff .

Notation 2.4.1. From now on, for sake of simplicity, and as the context will be clear, we will always
denote by the same letter F , the Fourier transforms between various subspaces of V +, V − and g.

In this section we will make a connection, roughly speaking, between T p,−Ff and FT p,+f (for the precise
statement see Theorem 2.4.4 below).
Define E = Kp(1,−1). Then E∗ is identified to Kp(−1, 1) through the normalized Killing form b

(see (1.3)). More precisely an element B ∈ Kp(−1, 1) is identified with the form y∗ ∈ E∗ defined by

⟨y∗, A⟩ = b(B,A) for A ∈ Kp(1,−1).

As usual the Fourier transform of a function f ∈ S(Kp(1,−1)) by

Ff(B) =
∧
f(y∗) =

∫
Kp(1,−1)

f(A)ψ(⟨y∗, A⟩)dA =

∫
Kp(1,−1)

f(A)ψ(b(B,A))dA.

(Remember that we have chosen, once and for all, a non trivial unitary additive character ψ of F ).
Suppose now that a non degenerate quadratic form Q is given on E. Denote by

β(A,A′) = Q(A+ A′)−Q(A)−Q(A′) for A,A′ ∈ E

the corresponding bilinear form. This bilinear form induces a linear isomorphism αβ between E and
E∗ given by

b(αβ(A), A
′) = β(A,A′) for A,A′ ∈ E.
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Then there exists a constant C > 0 such that for any f ∗ ∈ S(E∗)∫
E∗
f ∗(B)dB = C

∫
E

f ∗(αβ(A))dA. (2.12)

Theorem 2.4.2. (A. Weil)
There exists a constant γψ(Q) of module 1 such that for f ∈ S(E)∫

E

Ff(αβ(A))ψ(Q(A))dA =
1√
C
γψ(Q)

∫
E

f(A)ψ(−Q(A))dA.

Proof.
For another Haar measure dµ(A) on E, we consider for f ∈ S(E), a “new” Fourier transform by

F ′f(A′) =

∫
E

f(A)ψ(b(αβ(A
′), A)dµ(A) (A,A′ ∈ E).

First of all we determine λ > 0 such the measure dµ(A) = λdA is self dual for the Fourier transform
F ′. From the definitions we see that F ′f(A′) = λFf(αβ(A′)).
Then, using (2.12) above, the measure λdA is self dual for F ′ if and only if∫

E

F ′f(A′)λdA′ = λ2
∫
E

Ff(αβ(A′))dA′ =
λ2

C

∫
E∗

Ff(B)dB =
λ2

C
f(0) = f(0).

Hence the self dual measure for F ′ is
√
CdA. Once this self dual measure is known, the formula in the

Theorem is juste a rewriting of formula (1-4) p. 500 in [13] (where self-dual measures are needed).
And this is a particular case of a more general result of A. Weil concerning the Fourier transform of
quadratic characters of abelian groups ([17]).

We will now make a particular choice of Q. Consider two generic elements u′ ∈ Kp(−2, 0)′ and
v ∈ Kp(0, 2)

′. We define the quadratic form Qu′,v on Kp(1,−1) as in ([8], §3.5) by

Qu′,v(A) =
1

2
b((adA)2u′, v).

We compute now the bilinear form βu′,v corresponding to this form (the computation is the same as
in [2], p.106, we give it here for the convenience of the reader):

βu′,v(A,A
′) = Qu′,v(A+ A′)−Qu′,v(A)−Qu′,v(A

′)

= 1
2
b((adA+ adA′)2u′, v)− 1

2
b((adA)2u′, v)− 1

2
b((adA′)2u′, v)

= 1
2
b([A, [A′, u′]], v) + 1

2
b([A′, [A, u′]], v)

= −1
2
b([A′, u′], [A, v]) + 1

2
b(A′, [[A, u′], v])

= 1
2
b(A′, [[A, v], u′]) + 1

2
b(A′, [[A, u′], v])

= b(A′, [[A, v], u′]) (since adu′ adv = adv adu′)

= b(A′, [[A, u′], v])

Hence if the map αβu′,v : E −→ E∗ is defined by

⟨αβu′,v(A), A
′⟩ = βu′,v(A,A

′),
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we obtain (modulo the identification E∗ = Kp(−1, 1)):

αβu′,v(A) = advadu′(A) = adu′adv(A).

We have seen previously that there exists a constant cαβu′,v
> 0 such that for all f ∗ ∈ S(E∗)∫

E∗
f ∗(B)dB = cαβu′,v

∫
E

f ∗(αβu′,v(x))dx.

Using Lemma 2.3.1 we have:∫
Kp(1,−1)

f ∗(αβu′,v(A))dA =

∫
Kp(1,−1)

f ∗(adu′adv(A))dA

= |∆p+1(v)|−
(p+1)d

κ

∫
Kp(1,1)

f ∗(adu′(w))dw

= |∆p+1(v)|−
(p+1)d

κ |∇k−p(u
′)|−

(k−p)d
κ

∫
Kp(−1,1)

f ∗(B)dB

Hence
cαβu′,v

= |∆p+1(v)|−
(p+1)d

κ |∇k−p(u
′)|−

(k−p)d
κ

Then if we set γ(u′, v) = γψ(Qu′,v), Theorem 2.4.2, can be specialized to:

Theorem 2.4.3. (See Corollary 4.27 p. 107 of [2], for the case p = 0 and F = R)
Let u′ ∈ Kp(−2, 0)′ and v ∈ Kp(0, 2)

′. Then for f ∈ S(Kp(1,−1)) we have:∫
Kp(1,−1)

Ff(adu′adv(A))ψ(Qu′,v(A))dA

= γ(u′, v)|∆p+1(v)|−
(p+1)d

2κ |∇k−p(u
′)|−

(k−p)d
2κ

∫
Kp(1,−1)

f(A)ψ(−Qu′,v(A))dA

Theorem 2.4.4. (I. Muller ([12]), for the case ℓ = 1, and p = k− 1, see also Theorem 4.28 p. 107 of
[2] for the case p = 0 and F = R).
If f ∈ S(V +) and if (u′, v) ∈ Kp(−2, 0)′ ×Kp(0,−2) then

T p,−Ff (u
′, v′) = Fv(γ(u

′, v)(FuT
p,+
f )(u′, v))(v′).

Proof.
We know from Theorem 2.3.6, 1)a) and 1)b) that T p,+f (u, v) is everywhere defined for u ∈ Kp(2, 0)

and v ∈ Kp(0, 2)
′ and that T p,−Ff (u

′, v′) is everywhere defined for u′ ∈ Kp(−2, 0)′ and v′ ∈ Kp(0,−2).
The same Theorem tells us also that T p,+f (u, v) is almost everywhere defined on Kp(2, 0)×Kp(0, 2)

and that the function u 7−→ T p,+f (u, v) is integrable over Kp(2, 0) for almost all v ∈ Kp(0, 2).
We note also that here, although the base field F is p-adic and that we work with a general maximal
parabolic Pp, the main steps of the proof are the same as in ([2] Theorem 4.28, p.107) where F = R
and where p = 0.
In the rest of the proof we will omit the spaces where the integrations are performed, and we make the
following convention: the integration in the variables A,A′ will be on Kp(1,−1), in u on Kp(2, 0), in
v on Kp(0, 2).
Let f ∈ S(V +). As we have already seen we can suppose that

f(u+ w + v) = f1(u)f2(w)f3(v) where f1 ∈ S(Kp(2, 0)), f2 ∈ S(Kp(1, 1)), f3 ∈ S(Kp(0, 2)).

We suppose now that v is fixed in Kp(0, 2)
′. We have then
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∫
u

|T p,+f (u, v)|du ≤ |∆p+1(v)|
(p+1)d

2κ

∫
u

∫
A

|f(eadA(u+ v))|dAdu

= |∆p+1(v)|
(p+1)d

2κ |f3(v)|
∫
u

∫
A

|f1(u+
1

2
(adA)2v)| |f2([A, v])|dudA.

We make the change of variable u+ 1
2
(adA)2v → u in the u-integral and we note that the A-integral

is over a compact set (due to the fact that A 7−→ [A, v] is an isomorphism from Kp(1,−1) onto
Kp(1, 1)). Hence, for any v ∈ Kp(0, 2)

′∫
u

|T p,+f (u, v)|du ≤
∫
u

T p,+|f | (u, v)du < +∞. (2.13)

Therefore

u 7−→ T p,+f (u, v) ∈ L1(Kp(2, 0)) for v ∈ Kp(0, 2)
′.

Let us now compute the u-Fourier transform of T p,+f given by

FuT
p,+
f (u′, v) = |∆p+1(v)|

(p+1)d
2κ

∫
u,A

f(u+
1

2
(adA)2v + [A, v] + v)ψ(b(u, u′))dAdu.

Due to (2.13) the order of the integrations does not matter. Making the change of variable u +
1
2
(adA)2v → u we obtain

FuT
p,+
f (u′, v) = |∆p+1(v)|

(p+1)d
2κ

∫
u,A

f(u+ [A, v] + v)ψ(b(u− 1

2
(adA)2v, u′))dAdu.

We introduce now the function

J(u′, A, v) =

∫
u

f(u+ [A, v] + v)ψ(b(u, u′))du = (Fuf)(u
′, [A, v], v).

Then from the definition of the form Qu′,v

FuT
p,+
f (u′, v) = |∆p+1(v)|

(p+1)d
2κ

∫
A

J(u′, A, v)ψ(−Qu′,v(A))dA. (2.14)

We suppose now that u′ ∈ Kp(−2, 0)′.
As v is generic in Kp(0, 2) the function (u,A) 7−→ f(u + [A, v] + v) belongs to S(Kp(2, 0) ×
Kp(1,−1)) and the function A 7−→ J(u′, A, v) belongs to S(Kp(1,−1)). As u′ is generic too, the
quadratic form Qu′,v is non degenerate and we can apply the Weil formula as in Theorem 2.4.3 to the
integral in the right hand side of (4). We obtain∫

A

J(u′, A, v)ψ(−Qu′,v(A))dA

= γ(u′, v)−1|∆p+1(v)|
(p+1)d

2κ |∇k−p(u
′)|

(k−p)d
2κ

∫
A′
(FAJ)(u

′, adu′adv(A′), v)ψ(Qu′,v(A
′))dA′, (2.15)

where

(FAJ)(u
′, adu′adv A′, v) =

∫
A

(Fuf)(u
′, [A, v], v)ψ(b((A, adu′adv A′))dA.

If we make the change of variable w = [A, v], and if we use Lemma 2.3.1, together with the fact that
b((A, adu′adv A′) = b([A, v], [u′, A′]) the preceding formula becomes

(FAJ)(u
′, adu′adv A′, v) = |∆p+1(v)|−

(p+1)d
κ (FwFuf)(u

′, [u′, A′], v). (2.16)
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From (2.14), (2.15) and (2.16), we obtain

γ(u′, v)(FuT
p,+
f )(u′, v) = |∇k−p(u

′)|
(k−p)d

2κ

∫
A′
(FwFuf)(u

′, [u′, A′], v)ψ(Qu′,v(A
′))dA′. (2.17)

From now on we only suppose that u′ is generic in Kp(−2, 0) (v may be singular).

The Fourier transform FwFuf ∈ S(Kp(−2, 0) × Kp(−1,−1) × Kp(0, 2)) and as u′ is generic we
obtain, as before, that ∫

v,A′
|(FwFuf)(u

′, [u′, A′], v)|dA′dv < +∞.

It follows than from (2.17) that the function v 7−→ γ(u′, v)(FuT
p,+
f )(u′, v) belongs to L1(Kp(0, 2) for

u′ generic in Kp(−2, 0) and this allows, by Fubini’s Theorem, to change the order of the integrations
in A′ and v in the following computation of its Fourier transform.
We have

Fv(γ(u
′, v)(FuT

p,+
f )(u′, v))(v′)

= |∇k−p(u
′)|

(k−p)d
2κ

∫
v

∫
A′
(FwFuf)(u

′, [u′, A′], v)ψ(b(
1

2
(adA′)2u′, v) + b(v′, v))dA′dv

= |∇k−p(u
′)|

(k−p)d
2κ

∫
A′

∫
v

(FwFuf)(u
′, [u′, A′], v)ψ(b(

1

2
(adA′)2u′, v) + b(v′, v))dvdA′

= |∇k−p(u
′)|

(k−p)d
2κ

∫
A′
(FvFwFuf)(u

′, [u′, A′], v′ +
1

2
(adA′)2u′)dA′.

But u′ + [u′, A′] + v′ + 1
2
(adA′)2u′ = ead(−A

′)(u′+v′) and FvFwFuf = Ff and we recognize the
definition of T p,−Ff (Definition 2.3.4, 2)). Hence

T p,−Ff (u
′, v′) = Fv(γ(u

′, v)(FuT
p,+
f )(u′, v))(v′)

for u′ generic in Kp(−2, 0).

Remark 2.4.5.
Godement and Jacquet have used a mean function φΦ ([7] p.37) which looks like our mean function
T p,+f (or T p,−g ) but which is not equal to our’s in the case of GLn(F ) × GLn(F ) acting on Mn(F )

which corresponds to their situation. Also they proved that F(φΦ) = φF(Φ) (Loc. cit Lemma 3.4.0 p.
38), which again looks similar to the preceeding Theorem 2.4.4.

2.5. Computation of the Weil constant γ(u′, v).

(Remember that in this section, we suppose that ℓ = 1).

The aim of this paragraph is to compute the Weil constant γ(u′, v) = γψ(Qu′,v) introduced in Theorem
2.4.2, in the case where u′ ∈ Kk−1(−2, 0)′ and v ∈ Kk−1(0, 2)

′ = g̃λk \ {0}. We recall first some
general results of A. Weil [17] and of S. Rallis et G. Schiffmann [13] concerning γψ(Q) .
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First of all, if Q and Q′ are two equivalent non degenerate quadratic forms ,we have

γψ(Q) = γψ(Q
′).

Remember that there are four classes modulo the squares in F , namely C = F ∗/F ∗2 = {1, ε, π, επ}
where ε is a unit which is not a square, and where π is a uniformizer for F .

For a, b ∈ F ∗, let us denote by (a, b)C the Hilbert symbol defined by

(a, b)C =

{
1 if b belongs to the norm group of F [

√
a]

−1 if not
.

Denote by χa the quadratic character of F ∗ (associated to the quadratic extension F [
√
a]) defined by

χa(b) = (a, b)C .

If q1 is the quadratic form on F defined by q1(x) = x2 we set:

α(a) = γψ(aq1), φ(a) =
α(a)

α(1)
a ∈ F ∗. (2.18)

As a2q1 is equivalent to q1 one can consider α and φ as functions on C .
A fundamental result of A. Weil ([13] (1-6)) tells us that

φ(ab) = φ(a)φ(b)(a, b)C , a, b ∈ F ∗.

As γψ(Q)γψ(−Q) = 1 for any non degenerate quadratic form Q, one has α(1)−1 = α(−1) and hence

α(ab) = α(a)α(b)(a, b)Cα(−1).

One has also the following result:

Lemma 2.5.1. ([13] Proposition I-7) Let Q be a non degenerate quadratic form on a vector space E
of dimension n, and discriminant disc(Q).

(1) If n = 2r is even then

γψ(xQ) = γψ(Q)(x, (−1)rdisc(Q))C , x ∈ F ∗

(2) If n = 2r + 1 is odd then

γψ(xQ) = γψ(Q)(x, (−1)rdisc(Q))Cα(x)α(−1).

Proof. The first assertion is exactly the assertion of Proposition I-7 of [13]. As our formulation of
assertion 2) is slightly different from that in [13], we give some details.

From ([13] Proposition 1-3), we know that if Q(x1, . . . , xn) =
∑n

s=1 asx
2
s then γψ(Q) =

∏n
s=1 α(as).

Using the fact that α(a)α(b) = α(ab)(a, b)Cα(1), one obtains by induction that

γψ(Q) = α(1)n−1α(a1 . . . an)
∏
i<j

(ai, aj)C .

Set D = disc(Q) = a1 . . . an modF ∗2. As (xai, xaj)C = (x, x)C (x, ai)C (x, aj)C (ai, aj)C , (x, x)C =

(−1, x)C , and
∏

i<j(x, ai)C (x, aj)C = (xn−1, D)C , one obtains

γψ(xQ) = γψ(Q)(x, (−1)
n(n−1)

2 )C (x
n−1, D)C

α(xnD)

α(D)
.
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If n is even then (xn−1, D)C = (x,D)C and α(xnD) = α(D). This gives the first assertion . And if
n is odd, we have (xn−1, D)C = 1 and α(xnD) = α(xD) = α(x)α(D)(x,D)Cα(−1). This gives the
second assertion.

In what follows we assume that k ≥ 1.

Notation 2.5.2. We denote by l̃k the Lie algebra generated by g̃±λk , that is

l̃k = g̃−λk ⊕ FHλk ⊕ g̃λk .

Let g̃ be the centralizer of l̃k in g̃ . We will denote by underlined letters the elements and algebras
associated to g̃. The algebra g̃ is 3-graded by the element H0 =

∑k−1
j=0 Hλj , and is regular of rank

k. We denote by g̃ = V − ⊕ g ⊕ V + the corresponding decomposition. It can be noted that in the
notations of §2.1 we have V ± = Kk−1(±2, 0) and g = Kk−1(0, 0) and g̃±λk = Kk−1(0,±2). We
have also g = Zg̃(a

0)⊕ (⊕i ̸=j<kEi,j(1,−1)) .

If a0 = ⊕j<kFHλj , then G stands for the group ZAut0(g̃)(H0) whose Lie algebra is g and P = LN is
the parabolic subgroup of G corresponding to the Lie algebra

p = Zg(a
0)⊕⊕r<s<kEr,s(1,−1).

Let ∆j be the polynomial relative invariants of (P , V +) normalized such ∆j(X0 + . . .+Xk−1) = 1,
etc... (in the notations of Definition 2.1.1, we have for example ∆0 = ∆̃1).

Lemma 2.5.3. (i) Let u, v and A be respectively in V +, g̃λk and Kk−1(1,−1), then

∆j(e
adA(u+ v)) =

{
∆j(u)∆k(v) if j = 0, . . . , k − 1,

∆k(v) if j = k.

(ii) If v′ = νYk, we set ∇̃k(v
′) = ν. Then , for u′, v′ and A respectively in V −, g̃−λk and Kk−1(1,−1),

we have

∇j(e
adA(u′ + v′)) =

{
∇0(u

′)∇̃k(v
′) if j = 0,

∇j−1(u
′) if j = 1, . . . , k.

Proof. See ([2] Lemma 5.18).

Corollary 2.5.4. Let k ≥ 1 and a = (a0, . . . , ak) ∈ S k+1
e .

(1) Let u ∈ V + and v ∈ g̃λk then

u+ v ∈ O+(a0, . . . ak) ⇐⇒ u ∈ O+(a0, . . . ak−1), and ∆k(v)ak ∈ Se.

(2) Let u′ ∈ V − and v′ ∈ g̃−λk then

u′ + v′ ∈ O−(a0, . . . ak) ⇐⇒ u′ ∈ O−(a0, . . . ak−1) and ∇̃k(v
′)ak ∈ Se.
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Proof. Let u ∈ V + and v ∈ g̃λk . By Lemma 2.5.3, we have ∆j(u + v) = ∆j(u)∆k(v) for 0 ≤
j ≤ k − 1 and ∆k(u + v) = ∆k(v). Then the definition of the open sets O+(a0, . . . , ak) implies
immediately the first assertion.

Let u′ ∈ V − and v′ ∈ g̃−λk . By Lemma 2.5.3 we have ∇j(u
′ + v′) = ∇j−1(u

′) if j = 1, . . . , k and
∇0(u

′ + v′) = ∇0(u
′)∇̃k(v

′), where ∇̃k(ykYk) = yk. Therefore u′ + v′ ∈ O−(a0, . . . ak) if and only
if ∇j−1(u

′)a0 . . . ak−j ∈ Se for j = 1, . . . , k et ∇0(u
′)∇̃k(v

′)a0 . . . ak ∈ Se. These conditions are
equivalent to ∇j(u

′)a0 . . . ak−1−j ∈ Se for j = 0, . . . , k−1 and ∇̃k(v
′)ak ∈ Se. This gives the second

assertion.

Proposition 2.5.5. Let k ≥ 1. Fix a = (a0, . . . , ak−1) ∈ S k
e and ck ∈ Se. Let u′ ∈ O−(a) and let

v ∈ g̃λk \ {0}such that ∆k(v)ck ∈ Se. Then γ(u′, v) depends only on a and on ck.
Therefore let us set:

γk(a, ck) = γ(u′, v), for u′ ∈ O−(a), v ∈ Kp(0, 2), ∆k(v)ck ∈ Se.

Remember that α(a) = γψ(aq1) for a ∈ F ∗, where q1(x) = x2, x ∈ F . Remember also that if e = 2,
we have Se = NE/F (E

∗) where E is the quadratic extension of F such that NE/F (E
∗) = Im(qan,2)

∗

(see Definition 1.1.4). Denote by ϖE the quadratic character associated to E, that is ϖE(a) = 1 if
a ∈ NE/F (E

∗) and ϖE(a) = −1 if a /∈ NE/F (E
∗) (hence if E = F [

√
ξ], one has ϖE = χξ). Then

γk(a, ck) =

− γψ(qe)
k if e = 0 or e = 4 (case where Se = {1})

− γψ(qe)
kϖE(ck)

k

k−1∏
j=0

ϖE(aj) if e = 2 (case where Se = F ∗/NE/F (E
∗))

−
k−1∏
j=0

γψ(qe)((−1)
d−1
2 disc(qe), ajck)Cα(ajck)α(−1) if e = 1 or e = 3, (case where Se = C = F ∗/F ∗2).

(disc(qe) is the discriminant of qe).

Proof. Let u′ ∈ O−(a) and v ∈ g̃λk = FXk such that ∆k(v)ck ∈ Se. This implies that v = ckνXk

with ν ∈ Se. Set Ya = a0Y0 + . . . ak−1Yk−1. We will prove simultaneously the two assertions.

Let us first show that there exists p ∈ P̃ such that pu′ = Ya and pXk = Xk.
From Lemma 4.3.3) in [8], applied to the algebra g̃, there exists n ∈ N and scalars y0, . . . yk−1 such
that nu′ = y0Y0 + . . .+ yk−1Yk−1. From the definition of N , one has N ⊂ N and n.v = v.
As y0Y0 + . . .+ yk−1Yk−1 ∈ O−(a), there exists µj ∈ Se such that yj = µjaj for j = 0, . . . , k − 1.
From Remark 1.2.2, the elements µ−1

0 X0+ . . .+µ
−1
k−1Xk−1+Xk andX0+ . . .+Xk are L̃-conjugated.

Hence, there exists l ∈ L̃ such that xj(l) = µ−1
j for j = 0, . . . , k − 1 and xk(l) = 1. The element

p = ln satisfies then the required property.

Then pu′ = Ya and pv = v = νckXk with p ∈ P̃ .
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Hence the quadratic form Qu′,v is equivalent to the form ckνQYa,Xk
, and therefore

γ(u′, v) = γψ(ckνQYa,Xk
).

The space Kk−1(1,−1) (on which the forms live) is the direct sum of the spaces Ej,k(1,−1) for
j = 0, . . . , k−1. These spaces are orthogonal forQa0Y0+...+ak−1Yk−1,Xk

. Moreover, ifA ∈ Ej,k(1,−1),
we have b((adA)2Yi, Xk) = 0 for j ̸= i. Therefore

Qu′,v ∼ (⊕k−1
j=0ckνajQj,k), where Qj,k(A) =

1

2
b((adA)2Yj, Xk), for A ∈ Ej,k(1,−1).

Using ([8] Remark 3.5.3) we see that for Y ∈ Ej,k(−1,−1), one has Qj,k([Xj, Y ]) = qXj ,Xk
(Y )

where qXi,Xj
is defined as in (1.4). As adXj is an isomorphism from Ej,k(−1,−1) onto Ej,k(1,−1),

the quadratic forms Qj,k and qXj ,Xk
are equivalent. And as all the forms qXi,Xj

are equivalent, we
obtain that Qj,k ∼ qX0,X1 = qe.
From ([13] Proposition I-3) we obtain that

γ(u′, v) =
k−1∏
j=0

γψ(ckajνqe).

If e is odd then ν ∈ Se = F ∗2 and hence γψ(ckajνqe) = γψ(ckajqe). Moreover is e is odd then d is
odd too (see table 1 in [2]). As the rank of qe is d, the result is a consequence of Lemma 2.5.1 (2).

If e = 0 or 4, the form qe is the sum of an anisotropic quadratic form of rank e and a hyperbolic
form of rank d− e. As all the anisotropic quadratic forms of rank 4 are equivalent, and as the same is
true for the hyperbolic forms of rank d − e, we obtain that ckajνqe is equivalent to qe, and therefore
γψ(ckajνqe) = γψ(qe). This gives the result in that case.

Suppose now that e = 2. Then q2 is equivalent to qan,2 + qhyp,2 where qhyp,2 is a hyperbolic form of
rank d− 2 and qan,2 is an anisotropic form of rank 2 such that Im(qan,2)

∗ = NE/F (E
∗). It follows that

qan,2 is equivalent to x2 − ξy2. Therefore (−1)d/2disc(q2) = −disc(qan,2) = ξ. As χξ coincides with
the quadratic character ϖE associated to E and as ν ∈ Se = NE/F (E

∗), Lemma 2.5.1 (1) implies that

γψ(ckajνq2) = γψ(q2)(ckajν, ξ)C = γψ(q2)ϖE(ckaj).

Hence

γ(u′, v) =
k−1∏
j=0

γψ(q2)ϖE(ckaj),

and this ends the proof.

3. FUNCTIONAL EQUATION OF THE ZETA FUNCTIONS ASSOCIATED TO (P̃ , V +)

3.1. The (A2’) Condition in the Theorem kp of F. Sato.

In this paragraph, we suppose that F is algebraically closed.

A maximal split abelian subalgebra a of g is then a Cartan subalgebra of g̃ and of g. We denote by
Σ̃ and Σ the corresponding root systems. Let Σ+ ⊂ Σ̃+ the positive subsystems defined in Theorem
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1.2.1. in [8]. Then µ ∈ Σ̃+ \ Σ+ if and only if g̃µ ⊂ V + and µ ∈ Σ+ if and only if g̃µ = gµ ⊂
Ei,j(1,−1) ⊂ g for i > j (cf. [8] Proposition 1.9.1).

Proposition 3.1.1. Let k ≥ 1. Let µ ∈ Σ̃+ \Σ+. Let Hµ be the coroot of µ and let {X−µ, Hµ, Xµ} be
an sl2-triple. Let us denote by l̃[µ] the subalgebra (isomorphic to sl2(F )) generated by FX±µ and set

g̃[µ] = Zg̃(̃l[µ]).

If g̃[µ] ∩ V + ̸= {0} then

(1) the Lie algebra g̃[µ] is reductive and 3-graded by the element H0 − Hµ. The corresponding
grading will be denoted by

g̃[µ] = V [µ]− ⊕ g[µ]⊕ V [µ]+.

(2) The algebra a[µ] = {H ∈ a, µ(H) = 0} is a Cartan subalgebra of g̃[µ] and the corresponding
root system is given by

Σ̃[µ] = {α ∈ Σ̃; (α, µ) = 0}.

We will set: Σ̃[µ]+ = Σ̃[µ] ∩ Σ̃+.

(3) Moreover, the Lie algebra g̃[µ] is regular of rank k if µ is a long root, and of rank of k − 1 if
µ is a short root.

Proof. Although the root µ is here arbitrary, the proof of the 2 first points is similar to ([8] Proposition
1.5.3).

If µ is a long root of Σ̃ then by ([8] Proposition 1.7.7), there exists a element w of the Weyl group
such that wµ = λ0. The third assertion follows from ([8] Corollary 1.8.4).

Suppose that µ is a short root in Σ̃. From Table 1 in [8], the root system Σ̃ is of type Bn or Cn with
n ≥ 2.

If Σ̃ is of type Bn then k = 1 and µ =
λ0 + λ1

2
. As λ0 and λ1 are long and orthogonal, we have

Hµ = H0 and then g̃[µ] ∩ V + = {0}.

As we suppose that g̃[µ] ∩ V + ̸= {0} the root system Σ̃ is of type Cn with n = k + 1 ≥ 3 and we
have

Σ̃+ = {λi + λj
2

; 0 ≤ i ≤ j ≤ k}.

For our purpose, we can suppose that µ =
λk + λk−1

2
. Hence Hµ = Hλk + Hλk−1

and H0 − Hµ =

Hλ0 + . . . + Hλk−2
. Then Σ̃[µ] is equal to {±λ0} if k = 2 and Σ̃[µ] is of type Ck−1 if k ≥ 3. This

gives the last assertion.

Define

N0 = exp ad n0, where n0 = ⊕µ∈Σ+ g̃−µ.
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Proposition 3.1.2. (compare with [12] Lemme 2.2.1 and Proposition 2.3.1).
Let x ∈ V +. Then there exists a family of two by two strongly orthogonal roots {µ1, . . . , µr} such
that

N0.x ∩ (⊕r
j=1g̃

µj) ̸= ∅.

Proof. The proof goes by induction on the rank of g̃. The result is clear for k = 0 since V + = g̃λ0 .
Suppose now that the result is true for any irreducible graded regular algebra of rank strictly less than
k + 1.

If µ ∈ Σ̃+ \Σ+, then µ(H0) = 2, and hence for all µ, µ′ in Σ̃+ \Σ+, µ+ µ′ is never a root. Therefore
n(µ, µ′) ≥ 0. From the classification of the 3-graded Lie algebras we consider, we know that G2 does
never occur and hence n(µ, µ′) ∈ {0, 1, 2} for µ, µ′ ∈ Σ̃+ \ Σ+.

We will also use the fact that for µ, µ′ in Σ̃+ \ Σ+, we have µ ⊥ µ′ ⇐⇒ µ µ′ (the proof is similar
to the proof of Corollary 1.8.2. in [8]).

Let x ∈ V +. Then x =
∑

µ∈Σ̃+\Σ+

Xµ with Xµ ∈ g̃µ ⊂ V +. We denote

s(x) = {µ ∈ Σ̃+ \ Σ+, Xµ ̸= 0}.

1st case: We suppose that there exists a long root µ0 among the roots of maximal height in s(x).

For j = 0, 1, 2, we set s(x)j = {µ ∈ s(x);n(µ, µ0) = j}. As µ0 is a long root, n(µ, µ0) = 2 if and
only if µ = µ0. Hence

s(x) = {µ0} ∪ s(x)0 ∪ s(x)1. (3.1)

Let x = Xµ0 +
∑

µ∈s(x)0 Xµ +
∑

µ∈s(x)1 Xµ.

If s(x)1 = ∅ then s(x − Xµ0) ⊂ µ⊥
0 . From Proposition 3.1.1, one has x − Xµ0 ∈ V [µ0]

+ and we
obtain the result by induction from g̃[µ0], which is of rank k (as n[µ0] ⊂ n from our definition of
Σ̃[µ0]

+).
We suppose that s(x)1 ̸= ∅.
For µ ∈ s(x)1, we have µ − µ0 ∈ −Σ+ (it is a root because n(µ, µ0) = 1 and it is negative because
µ0 is of maximal height). Let us fix Zµ−µ0 ∈ g̃µ−µ0 ⊂ n0 such that [Zµ−µ0 , Xµ0 ] = −Xµ.

Define A =
∑

µ∈s(x)1 Zµ−µ0 ∈ n0.

Let µ ∈ s(x)1 and µ′ ∈ s(x)0. Suppose that µ − µ0 + µ′ ∈ Σ̃. As n(µ − µ0 + µ′, µ0) = −1, then
the linear form µ− µ0 + µ′ + µ0 = µ+ µ′ would be a root of Σ̃+ and this is not possible. Therefore
µ− µ0 + µ′ /∈ Σ̃ and hence [Zµ−µ0 , Xµ′ ] = 0. Then

∑
µ′∈s(x)0 [A,Xµ′ ] = 0, and this implies that

eadA(
∑

µ′∈s(x)0

Xµ′) =
∑

µ′∈s(x)0

Xµ′ .

Take µ and µ′ in s(x)1. Then n(µ−µ0+µ
′, µ0) = 0. And therefore the element y = [A,

∑
µ′∈s(x)1 Xµ′ ] =∑

µ∈s(x)1
∑

µ′∈s(x)1 [Zµ−µ0 , Xµ′ ] is such that s(y) ⊂ µ⊥
0 . Considering the preceding case one obtains

ad(A)2
∑

µ′∈s(x)1 Xµ′ = [A, y] = 0. Then

eadA(
∑

µ′∈s(x)1

Xµ′) =
∑

µ′∈s(x)1

Xµ′ + y, where s(y) ⊂ µ⊥
0 .
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As [A,Xµ0 ] =
∑

µ∈s(x)1 [Zµ−µ0 , Xµ0 ] = −
∑

µ∈s(x)1 Xµ, we have

ead AXµ0 = Xµ0 −
∑

µ∈s(x)1

Xµ −
1

2
[A,

∑
µ∈s(x)1

Xµ] = Xµ0 −
∑

µ∈s(x)1

Xµ −
y

2
.

Finally we get

ead Ax = ead AXµ0 + ead A(
∑

µ′∈s(x)0

Xµ′) + ead A(
∑

µ′∈s(x)1

Xµ′)

= (Xµ0 −
∑

µ∈s(x)1

Xµ −
y

2
) + (

∑
µ′∈s(x)0

Xµ′) + (
∑

µ′∈s(x)1

Xµ′ + y)

= Xµ0 +
∑

µ′∈s(x)0

Xµ′ +
y

2
, where s(y) ⊂ µ⊥

0 .

If we set y0 =
∑

µ′∈s(x)0 Xµ′ +
y
2
, then s(y0) ⊂ µ⊥

0 and hence y0 ∈ V [µ0]
+. Again the result is

obtained by induction from g̃[µ0].

3rd case: We suppose that all roots of maximal height in s(x) are short. From Table 1 in [8], we
know that the only cases were there are roots of different length correspond to cases where Σ̃ is of
type Bn or of type Cn for n ≥ 2.

• If Σ̃ is of type Cn, we have Σ̃+ \ Σ+ = {λj; 0 ≤ j ≤ k} ∪ {λj + λi
2

; 0 ≤ i < j ≤ k} where

n = k + 1. We also have λk /∈ s(x) (because the long root λk is the greatest root in Σ̃+).

If s(x) ⊂ λ⊥k then x ∈ V [λk]
+. Again the result is obtained by induction from g̃[λk].

We suppose that s(x) ̸⊂ λ⊥k . This implies that there exists i < k such that
λk + λi

2
∈ s(x).

If k = 1, then x ∈ g̃µ0 and the result follows.
From know on, we suppose that k ≥ 2. Define

i0 = max{i; λk + λi
2

∈ s(x)} and µ0 =
λk + λi0

2
.

Hence
s(x) ⊂ {µ0} ∪ {λi + λk

2
, i < i0} ∪ {λi + λj

2
; 0 ≤ i ≤ j < k}.

And therefore one can write

x = Xµ0 + x1 + x2, with s(x1) ⊂ {λi + λk
2

, i < i0} and s(x2) ⊂ {λi + λj
2

; 0 ≤ i ≤ j < k}.

If µ =
λi + λk

2
, with i < i0, belongs to s(x), one has µ− µ0 ∈ Σ̃ (as n(µ, µ0) = 1).

Then we fix the elements Zµ−µ0 ∈ g̃µ−µ0 ⊂ Ei,i0(1,−1) ⊂ n0 such that [Zµ−µ0 , Xµ0 ] = −Xµ.

Let us define A =
∑

µ=
(λi+λk)

2
,0≤i<i0

Zµ−µ0 ∈ n0 and n0 = eadA. One has then [A,Xµ0 ] = −x1 and

[A, x1] ∈ ⊕i<i0,j<i0 [Ei,i0(1,−1), Ej,k(1, 1)] = {0}. Therefore (adA)2x1 = 0.
Let i < i0. For r, s ≤ k, one has [Ei,i0(1,−1), Er,i0(1, 1)] ⊂ Ei,r(1, 1) and [Ei,i0(1,−1), Er,s(1, 1)] =

{0} for r ̸= i0 and s ̸= i0. AsA ∈ ⊕i<i0Ei,i0(1,−1), we deduce that eadA normalizes ⊕r≤s<kEr,s(1, 1)

And therefore
n0.x = Xµ0 + y with s(y) ⊂ {λi + λj

2
; 0 ≤ i ≤ j < k}.

Set y = y0 + y1 with s(y0) ⊂ µ⊥
0 = {λi + λj

2
; {i, j} ∩ {i0, k} = ∅} and s(y1) ⊂ {λi + λj

2
; 1 ≤ i ≤

j < k; i0 ∈ {i, j}}.
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Under the action of Hµ0 the elements in Ei,k(1,−1) are of weight 0 if i = i0 and of weight −1 if
i ̸= i0. This implies that ad(Xµ0) is surjective from ⊕k−1

i=0Ei,k(1,−1) onto ⊕k−1
i=0Ei,i0(1, 1). Hence

there exists B ∈ ⊕k−1
i=0Ei,k(1,−1) such that [Xµ0 , B] = y1.

As [Ei,k(1,−1), Er,s(1, 1)] = {0} for i < k and r ≤ s < k, one has [B, y1] = [B, y0] = 0.
Therefore the element n1 = eadB ∈ N0 is such that n1n0x = n1(Xµ0 + y0 + y1) = Xµ0 + y0 with
s(y0) ⊂ µ⊥

0 . We obtain the result by applying the induction to the element n1n0x−Xµ0 ∈ g̃[µ0].

• If Σ̃ is of type Bn for n ≥ 2, then k = 1 and V + = g̃λ0 ⊕ E0,1(1, 1)⊕ g̃λ1 .
From the tables and notations in ([3] Chapitre VI) , if we take Σ̃+ = {εi±εj; 1 ≤ i < j ≤ n}∪{εi; 1 ≤
i ≤ n}, then λ0 = ε1 − ε2 = α1, and λ1 = ε1 + ε2 is the greatest root. Therefore g̃µ ⊂ V + if and
only if µ = ε1 or µ = ε1 ± εj for j ≥ 2.

Moreover, µ0 =
λ0 + λ1

2
= ε1 is the unique short root in Σ̃+ such that g̃µ0 ⊂ V +. As λ0 and λ1 are

orthogonal, one has Hµ0 = Hλ0 +Hλ1 = H0.

From the assumption on s(x), the root µ0 is of maximal height in s(x). Let µ ∈ s(x), µ ̸= µ0. As
n(µ, µ0) = 2 , one has µ− µ0 ∈ Σ̃−. Let us fix Zµ−µ0 ∈ g̃µ−µ0 ⊂ n0 such that [Zµ−µ0 , Xµ0 ] = −Xµ

and set A =
∑

µ∈s(x),µ̸=µ0 Zµ−µ0 .

As Σ̃ is of type Bn, we have that if µ ̸= µ0 is such that µ(H0) = 2, the root µ − µ0 is short and
orthogonal to µ0 (in the preceding notations, one has µ − µ0 = ±εi for i ≥ 2). It follows that if
µ and µ′ are two elements of s(x), distinct from µ0, then µ − µ0 is a short negative root and hence
µ+ µ′ − µ0 /∈ Σ̃ ( because µ− µ0 = −εi with i ≥ 2 and µ′ = ε1 − εj with j ≥ 2).

Therefore [A,
∑

µ∈s(x),µ ̸=µ0 Xµ] = 0. Then if n = ead A, we have n.x = Xµ0 .

This ends the proof.

As F is algebraically closed, the group P has a unique open orbit in V + given by

O+ = {X ∈ V +;
k∏
j=0

∆j(X) ̸= 0}.

We define S = V + −O+. If χj (j = 0, . . . , k) is the character of P corresponding to ∆j , we denote
by XV +(P ) the group of characters of P generated by the χj ′s.

Theorem 3.1.3. (Condition (A2’) of F. Sato)(see [15] §2.3)

(1) P has a finite number of orbits in S (and hence in V +).
(2) Let x ∈ S and let P 0

x the identity component of the centralizer of x in P . Then there exists a
non trivial character χ in XV +(P ) and p ∈ P 0

x such that χ(p) ̸= 1.

Proof. Of course N0 ⊂ P and P = LN0. From Proposition 3.1.2, for any element x in S, there exists
a family R ⊂ Σ̃+

2 of strongly orthogonal roots such that N0.X ∩ (⊕µ∈Rg̃
µ) ̸= ∅.

As Σ̃+ \ Σ+ is finite, there are also only a finite number of families of strongly orthogonal roots in
Σ̃+\Σ+. Therefore, in order to prove assertion 1), it will be enough to show that if R = {µ1, . . . µr} ⊂
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Σ̃+ \ Σ+ is such a family of strongly orthogonal roots then ⊕r
j=1g̃

µj is included in a finite number of
L-orbits .
Fix such a family R = {µ1, . . . µr}. If µ ∈ R, we denote by Hµ the coroot µ and by l̃[µ] the algebra
generated by g̃±µ, that is l̃[µ] = g̃−µ ⊕ FHµ ⊕ g̃µ. Let L[µ] the group associated to this graded
algebra. As F is algebraically closed, the group L[µ] is the centralizer in Aute(̃l[µ]) of Hµ, and hence
L[µ] ⊂ Aute(g̃).

Let us show that L[µ] ⊂ L. Let l ∈ L[µ]. Then l.Hµ = Hµ. If Z ∈ a is orthogonal to µ then
[̃l[µ], Z] = {0} and therefore l.Z = Z. If µ is one of the roots λj , we get immediately that l ∈ L. If
not, there exist i < j such that g̃µ ⊂ Ei,j(1, 1). Then µ(Hµ − 2Hλi) = µ(Hµ − 2Hλj) = 0, and then
l.Hλi = Hλi and l.Hλj = Hλj , and µ(Hλs) = 0 for s ̸= i, j. Therefore l centralizes a0, and hence
L[µ] ⊂ L.

From ([8] Theorem 1.12.4), each L[µj] has a finite number of orbits in g̃µj . As the roots µj are
strongly orthogonal, the subgroups L[µj] commute 2 by 2. Therefore the group L[µ1] . . . L[µr] ⊂ L

has a finite number of orbits in ⊕µ∈Rg̃
µ. This proves assertion 1).

Assertion 2) will be proved by induction on k. The case k = 0 is obvious. Suppose that k ≥ 1.
We suppose that assertion 2) is true for all regular graded algebras (in the sense of Definition 1.1.1)
of rank k and we will prove it if g̃ is of rank k + 1.

Remember the notations 2.5.2, that is

g̃ = g̃[λk], et V ± = V [λk]
±.

( where g̃[λk] = Zg̃(̃lk) and l̃k = g̃−λk ⊕ [g̃−λk , g̃λk ]⊕ g̃λk).
The Lie algebra g̃, which is of rank k, is graded by the element H0 =

∑k−1
j=0 Hλj . We will denote by

underlined letters all the elements or spaces attached to g̃.
As we have supposed that F is algebraically closed, we have Aut0(g̃) = Aute(g̃) and hence L is the
centralizer of a0 = ⊕k

j=0FHλj in Aute(g̃). Let l ∈ Aute(g̃). As [̃lk, g̃] = {0}, we have l.Hλk = Hλk

and l acts trivially on g̃λk .
Therefore any element of L defines an element in L which acts trivially on g̃λk .
Remember that χj is the character of P attached to ∆j (j = 0, . . . , k) and that XV +(P ) is the group
of characters of P generated by the χj ′s.
Let l ∈ L ⊂ L and j = 0, . . . , k − 1. By Lemma 2.5.3, we have χ

j
(l) = χj(l) and χk(l) = 1.

As n = ⊕i<j<kEi,j(1,−1) ⊂ n, we have P ⊂ P and any element of P acts trivially on g̃λk . As any
character in XV +(P ) is trivial on N , the mapping χ

j
−→ χj (j = 0, . . . , k − 1) can be seen as an

inclusion XV +(P ) ↪→ XV +(P ).

Let x ∈ S. By Proposition 3.1.2, there exists n0 ∈ N0 and a family R = {µ1, . . . µr} of stronly
orthogonal roots in Σ̃+ \Σ+ such that the element X = n0.x belongs to g̃µ1 ⊕ . . .⊕ g̃µr . We suppose
that r is minimal, that is X = Xµ1 + . . . + Xµr with Xµj ∈ g̃µj − {0}. As n−1

0 P 0
Xn0 = P 0

x , it is
enough to prove assertion 2) for X .

For j = 1, . . . , r, let Hµj be the coroot of µj and fix X−µj ∈ g̃−µj such that {X−µj , Hµj , Xµj} is an
sl2-triple. Define

h = Hµ1 + . . . Hµr .
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As the roots µj are strongly orthogonal, if we set Y = X−µ1 + · · · + X−µr ∈ V − and X = Xµ1 +

· · · + Xµr ∈ V +, then {Y, h,X} is an sl2-triple. If Z ∈ V +, then [X,Z] = 0 and ad(Y )3Z = 0.
Therefore the element Z generates a submodule of dimension at most 3 under the action of this triple.
It follows that the weights of ad(h) in V + belong to {0, 1, 2}.

Remember from Definition 1.1.5, that if {Z−, u, Z} is an sl2-triple where Z− ∈ V −, u ∈ a, and
Z ∈ V +, we denote by hZ(t) the element in L which acts by tm on the space of weight m under ad u.

1st case : If ∆k(X) ̸= 0 then λk ∈ R. Hence X = Z0 + Z2 with Z0 ∈ V + and Z2 ∈ g̃λk . As
X ∈ S and ∆k(X) ̸= 0, there exists j < k such that ∆j(X) = 0. By Lemma 2.5.3, we have
∆k(X) = ∆k(Z2) ̸= 0 and ∆j(Z0 + Z2) = ∆j(Z0)∆k(Z2) = 0, and hence Z0 ∈ S . By induction,
there exists χ ∈ XV +(P ) ⊂ XV +(P ) and p ∈ P 0

Z0
⊂ P such that χ(p) ̸= 1. As p ∈ P , one has

p.Z2 = Z2, and hence p ∈ P 0
X . This gives the result in that case.

2nd case. Suppose ∆k(X) = 0 and X ∈ V + (this is equivalent to the condition λk(h) = 0). Then
for all t ∈ F ∗, the element lt = hXλk

(t) ∈ L satisfies lt.X = X and χk(lt) = t2. Hence lt ∈ P 0
X and

for t ̸= ±1, we have χk(lt) ̸= 1.

3rd case. Suppose ∆k(X) = 0 and X /∈ V + (this is equivalent to λk /∈ R and λk(h) = 1 or 2).

If λk(h) = 1 then there exists a unique root µ in R such that λk(Hµ) = n(λk, µ) = 1. One can
suppose that µ = µ1 and then, for j ≥ 2, the root µj is orthogonal to λk. As λk is a long root, we have
n(µ1, λk) = 1. It follows that [Hλk , Xµ1 ] = Xµ1 and [Hλk , Xµj ] = [Hµ1 , Xµj ] = 0 for j ≥ 2. For
t ∈ F ∗ we define lt = hXλk

(t)2hX−µ1
(t). Then lt.X = X (because hX−µ1

(t).(Xµ1 + . . . + Xµr) =

t−2Xµ1 + Xµ2 + . . . + Xµr , hXλk
(t)(Xµ1) = tXµ1 and hXλk

(t)(Xµj) = Xµj for j ≥ 2 ). We
have also lt.Xλk = t3Xλk (because [H−µ1 , Xλk ] = −Xλk implies hX−µ1

(t)(Xλk) = t−1Xλk and
hXλk

(t)2(Xλk) = t4Xλk). Hence χk(lt) = t3. As lt ∈ P 0
X (product of exponentials), assertion 2) is

proved.

If λk(h) = 2, there are two possible cases. Up to a permutation of the µj’s, we can suppose that:
- either n(λk, µ1) = n(λk, µ2) = 1 and n(λk, µj) = 0 for j ≥ 3,
- or n(λk, µ1) = 2 and n(λk, µj) = 0 for j ≥ 2.

If n(λk, µ1) = n(λk, µ2) = 1 and n(λk, µj) = 0 for j ≥ 3, then, as λk is long, one has n(µ1, λk) =

µ1(Hλk) = n(µ2, λk) = µ2(Hλk) = 1. Therefore the element u = 2Hλk − Hµ1 − Hµ2 commutes
with X and for Z ∈ g̃λk , one has [u, Z] = 2Z. Then, as before, if t ∈ F ∗, the element lt =

hXλk
(t)2hX−µ1

(t)hX−µ2
(t) ∈ L fixes X and χk(lt) = t2. Again assertion 2) is proved.

If n(λk, µ1) = 2 and n(λk, µj) = 0 for j ≥ 2, then we have n(µ1, λk) = 1 (from the tables in
[3] we know that if n(λk, µ1) = 2 then n(µ1, λk) = 1 or 2; n(µ1, λk) = 2 would imply µ1 = λk,
but λk /∈ R). As µ1(H0) = 2, there exists a unique j < k such that µ1(Hλj) = 1. As λk and
λj have the same length, we have n(λj, µ1) = 2 (n(λk, µ1) = 2 and n(µ1, λk) = 1 imply that
||λk|| =

√
2||µ1|| = ||λj||, and then n(µ1, λj) = 1 implies n(λj, µ1) = 2). As λj(h) ∈ {0, 1, 2},

we have n(λj, µs) = 0 for s ≥ 2. Hence [Hλk − Hλj , X] = 0. Then, for t ∈ F ∗, the element
lt = hXλk

(t)hX−λj
(t) = hXλk

+X−λj
(t) is such that lt.X = X and χk(lt) = t2.

This ends the proof of the Theorem.
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3.2. Zeta functions associated to (P̃ , V +): existence of a functional equation.

We denote by F̂ ∗ and Ô∗
F the groups of characters of F ∗ and O∗

F respectively. A character ω in Ô∗
F

will be identified with a character in F̂ ∗ by setting ω(π) = 1. Then, for any ω ∈ F̂ ∗, there exists
a unique δ ∈ Ô∗

F and s ∈ C such that ω(x) = δ(x)|x|s for x ∈ F ∗. The complex number s is

only defined modulo
(

2πi

log q

)
Z, but its real part Re(s) is uniquely defined by ω. We therefore set

Re(ω) = Re(s).

Definition 3.2.1. Let ω = (ω0, . . . , ωk) ∈ F̂ ∗k+1
and s = (s0, . . . , sk) ∈ Ck+1. Remember that we

have defined m = dimV +

deg∆0
. As we have said we consider here the case where ℓ = 1, and then we have

m = 1 + kd
2

. We set

ω♯ = ((ω0 . . . ωk)
−1, ωk, . . . , ω1), and s♯ = (s♯0, s

♯
1, . . . , s

♯
k) = (−(s0 + . . .+ sk), sk, . . . , s1)

and s♯ −m = (s♯0 −m, s♯1, . . . , s
♯
k) = (−(s0 + . . .+ sk)−m, sk, . . . , s1).

For ω = (ωj)j ∈ (F̂ ∗)k+1 and s = (s0, . . . , sk) ∈ Ck+1, we define

(ω, s)(∆(X)) =
k∏
j=0

ωj(∆j(X)) |∆j(X)|sj , X ∈ V +

and

(ω, s)(∇(Y )) =
k∏
j=0

ωj(∇j(Y )) |∇j(Y )|sj , Y ∈ V −.

Definition 3.2.2. Let a ∈ S k+1
e and (ω, s) ∈ F̂ ∗k+1

×Ck+1. The zeta functions associated to (P̃ , V +)

and to (P̃ , V −) are the functions:

K+
a (f, ω, s) =

∫
O+(a)

f(X)(ω, s)(∆(X))dX, f ∈ S(V +),

and

K−
a (g, ω, s) =

∫
O−(a)

g(Y )(ω, s)(∇(Y ))dY, g ∈ S(V −).

It is clear that the integrals defining these functions are absolutely convergent for Re(sj)+Re(ωj) > 0,
j = 0, . . . , k.

Theorem 3.2.3.
Let a ∈ S k+1

e and (ω, s) ∈ F̂ ∗k+1
× Ck+1.

1) The zeta functions K+
a (f, ω, s) for f ∈ S(V +) and K−

a (g, ω, s) for g ∈ S(V −) are rational
functions in qsj and q−sj , and hence they admit a meromorphic continuation on Ck+1.

Moreover, if ωj = τj ⊗ | · |νj with τj ∈ Ô∗
F and νj ∈ C, there exist polynomials R+(ω, s) and

R−(ω, s) in the variables q−sj , product of polynomials of type (1− q−N−
∑k

j=0Nj(sj+νj)) with N,Nj ∈
N, such that, for all f ∈ S(V +) and all g ∈ S(V −), the functions R+(ω, s)K+

a (f, ω, s) and
R−(ω, s)K−

a (g, ω, s) are polynomials in qsj et q−sj .
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2) For a ∈ S k+1
e and g ∈ S(V −), the zeta functions satisfy the following functional equation:

K+
a (Fg, ω♯, s♯ −m) =

∑
c∈S k+1

e

Ck
(a,c)(ω, s)K−

c (g, ω, s)

where Ck
(a,c)(ω, s) are rational functions in qsj and q−sj .

There is a similar result for f ∈ S(V +) and a ∈ S k+1
e :

K−
a (F(f), ω♯, s♯ −m) =

∑
c∈S k+1

e

Dk
(a,c)(ω, s)K+

c (f, ω, s).

(again Dk
(a,c)(ω, s) ∈ C(q±s0 , . . . , q±sk)).

Proof.
1) This result was first proved, for integrals of the same kind as K+

a (f, ω, s) and K−
a (g, ω, s), and for

one variable, by J-I Igusa (see Lemma 2 in [9]) and sketched for several variables by F. Sato (see
Lemma 2.1 in [15]), both proofs using a result of J. Denef ([6]). But these authors did not point out
the fact that the analogue of the integers N and Nj are positive. For the convenience of the reader, we
sketch briefly the proof for K+

a (f, ω, s). This is essentially Igusa’s proof.
First of all we identify V + with F r (r = dimF V

+). We can assume that f is the characteristic
function of an open compact subset C of F r. We choose an integer m satisfying τmj = 1 for j =

0, . . . , k. For x = παu (α ∈ Z, u ∈ O∗
F ) we set τj(x) = τj(u). We also define the map ∆ : F r −→

F k+1 by ∆(X) = (∆0(X), . . . ,∆k(X)) (X ∈ V + = F r).
Let A be a complete set of representatives of F ∗/F ∗m, where F ∗m is the set of elements am for
a ∈ F ∗. We denote by c = (c0, . . . , ck) the elements of Ak+1.Then we obtain

K+
a (f, ω, s) =

∑
c=(ci)∈Ak+1

τ0(c0) . . . τk(ck)

∫
Dc

|∆0(X)|s0+ν0 . . . |∆k(X)|sk+νkdX

where Dc = O+(a) ∩ C ∩∆−1(cF ∗m).
It is now enough to prove that assertion 1) is true for the integral

∫
Dc

|∆0(X)|s0+ν0 . . . |∆k(X)|sk+νkdX .
Let θ : F −→ Qα

p be a Qp-linear isomorphism. We still denote by θ its extension as a Qp-linear iso-
morphism from V + = F r to Qrα

p . Let dY be the measure on Qrα
p which is the image of the measure

dX under θ and let Ec = θ(Dc). Let also N be the norm map from F to Qp and denote by | |p the
absolute value on Qp. Then

∫
Dc

|∆0(X)|s0+ν0 . . . |∆k(X)|sk+νkdX =

∫
Ec

|N(∆0(θ
−1(Y ))|s0+ν0p . . . |N(∆k(θ

−1(Y ))|sk+νkp dY.

Of course the functions Pj(X) = ∆j(θ
−1(Y )) are polynomials.Therefore we must consider integrals

of the form ∫
Ec

|P0(Y )|s0+ν0 . . . |Pk(Y )|sk+νkdY

where the Pj’s are polynomials.
But a result of Denef ([6], Theorem 3.2)1 tells us that, under the condition that Ec is a so-called
boolean combination of sets of type I , II and III ([6], p. 2-3) and is contained in a compact set,
this kind of integrals are always rational functions in the variables p±sj . The second condition on

1This result is still true for several polynomials with the same proof (private communication of J. Denef)
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the integration domain is of course true for our set E. The proof that E is a boolean combination is
exactly the same as the proof of Igusa in the one variable case (see [9], p.1018-1019).
It is easily seen that the integrals under consideration are absolutely convergent Laurent series in q±sj

(for Re(sj) + νj > 0. This implies that they are rational functions in q±sj .
Finally the fact that there exist polynomials polynomials R+(ω, s) and R−(ω, s) in the variables q−sj

having the asserted properties is a consequence of the proof of Denef’s result (see [6], p.5-6).
2) As the prehomogeneous vector space (G, V +) is regular, the relative invariant ∆0 is non degenerate
in the sense of Definition 1.2 in [15]. As ∆0 is also a relative invariant for (P, V +), the prehomoge-
neous vector space (P̃ , V +) satisfies the regularity condition condition (A.1) of F. Sato ([15]).
By Theorem 3.1.3, the prehomogeneous vector space (P̃ , V +) satisfies also condition (A.2′) in [15],
and therefore the second assertion is a consequence of Theorem kp in loc. cit (§2.4).

3.3. Explicit functional equation.

We compute first the factors Dk
(a,c)(ω, s) appearing in Theorem 3.2.3 in the case where k = 0 (rank

1). In that case, V + and V − are isomorphic to F , and F ∗ is the unique open orbit of the group G = P

in V +, and P̃ has |Se| open orbits in V + and in V −.

We will identify the spaces V ± with F . Then the zeta functions K±
a (f, δ, s) appearing in Definition

3.2.2 are equal and we will omit the exponents ± in the notations below.

If dt is a (additive) Haar measure on F , d∗t =
dt

|t|
is a Haar measure on F ∗.

Tate’s zeta function (see [16]) is then defined, for f ∈ S(F ), s ∈ C and δ ∈ F̂ ∗, by

Z(f, δ, s) =

∫
F ∗
f(t)δ(t)|t|sd∗t.

This integral is absolutely convergent for s ∈ C such that Re(s) + Re(δ) − 1 > 0 and Z(f, δ, s)
extends to a meromorphic function on C which satisfies the following functional equation:

Z(f, δ, s) = ρ(δ, s)Z(F(f), δ−1, 1− s),

where ρ(δ, s) is the so-called ρ factor of Tate (see [16]).
In the notation of Definition 3.2.2 we have for f ∈ S(F ):

K(f, δ, s) =

∫
F

f(t)|t|sδ(t)dt = Z(f, δ, s+ 1).

Therefore Tate’s functional equation can be re-written as follows:

K(f, δ, s) = ρ(δ, s+1)K(F(f), δ−1,−s−1) and K(F(f), δ, s) = δ(−1)ρ(δ, s+1)K(f, δ−1,−s−1).

Let Ŝe be the group of characters of Se. Any element χ ∈ Ŝe extends uniquely to a character of F ∗

which is trivial on Se. We still denote by χ this extension.

Definition 3.3.1. Let δ ∈ F̂ ∗ and s ∈ C. For x ∈ Se, we define

ρ̃(δ, s;x) =
1

|Se|
∑
χ∈Ŝe

χ(x)ρ(δχ, s).
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As a function of x, ρ̃(δ, s;x) is the Fourier transform of the function χ ∈ Ŝe 7→ ρ(δχ, s). Therefore
ρ(δχ, s) =

∑
x∈Se

χ(x)ρ̃(δ, s;x), for χ ∈ Ŝe.

Lemma 3.3.2. (compare with [12] Corollaire 3.6.3).
Let δ ∈ F̂ ∗ and a ∈ Se. The functions Ka(f, δ, s) satisfy the following functional equations:

Ka(f, δ, s) =
∑
c∈Se

ρ̃(δ, s+ 1; ac)Kc(F(f), δ−1,−s− 1), f ∈ S(F ),

and

Ka(F(g), δ, s) =
∑
c∈Se

δ(−1)ρ̃(δ, s+ 1;−ac)Kc(g, δ
−1,−s− 1) g ∈ S(F ).

Proof. :
From the definition K(f, δχ, s) =

∑
a∈Se

χ(a)Ka(f, δ, s), By Fourier inversion on the group Se, we
obtain:

Ka(f, δ, s) =
1

|Se|
∑
χ∈Ŝe

χ(a)K(f, δχ, s), a ∈ Se.

From Tate’s functional equation, we obtain

Ka(f, δ, s) =
1

|Se|
∑
χ∈Ŝe

χ(a)ρ(δχ, s+ 1)K(F(f), δ−1χ,−s− 1))

=
1

|Se|
∑
c∈Se

∑
χ∈Ŝe

χ(ac)ρ(δχ, s+ 1)Kc(F(f), δ−1,−s− 1))

=
∑
c∈Se

ρ̃(δ, s+ 1; ac)Kc(F(f), δ−1,−s− 1)).

This is the first assertion.
For the second assertion we have similarly:

Ka(F(g), δ, s) =
1

|Se|
∑
χ∈Ŝe

χ(a)K(F(g), δχ, s)

=
1

|Se|
∑
χ∈Ŝe

χ(a)ρ(δχ, s+ 1)(δ−1χ)(−1)K(g, δ−1χ,−s− 1)

=
1

|Se|
∑
c∈Se

∑
χ∈Ŝe

χ(−ac)ρ(δχ, s+ 1)δ−1(−1)Kc(g, δ
−1,−s− 1)

=
∑
c∈Se

δ(−1)ρ̃(δ, s+ 1;−ac)Kc(g, δ
−1,−s− 1).

If x = (x0, . . . , xk) is a k + 1-tuple of elements (taken in any set), we will set x = (x0, . . . , xk−1).
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Theorem 3.3.3.
Let k ≥ 0. Let ω ∈ F̂ ∗k+1

, s ∈ Ck+1 and f ∈ S(V +). For a ∈ S k+1
e , we have

K−
a (Ff, ω♯, s♯ −m) =

∑
c∈S k+1

e

Dk
(a,c)(ω, s)K+

c (f, ω, s),

where
D0

(a0,c0)
(ω0, s0) = ω0(−1)ρ̃(ω−1

0 ,−s0;−a0c0)

and where for k ≥ 1:

Dk
(a,c)(ω, s)

= γk(a, ck))(ω0 . . . ωk)(−1)ρ̃((ω0 . . . ωk)
−1,−(s0 + . . .+ sk +

kd

2
);−akck)Dk−1

(a,c)(ω, s)

=
k∏
j=1

γj((a0, . . . , aj−1), cj)
k∏
j=0

(ω0 . . . ωj)(−1)ρ̃((ω0 . . . ωj)
−1,−(s0 + . . .+ sj +

jd

2
);−ajcj),

where the constant γj((a0, . . . , aj−1), cj) is the one given in Proposition 2.5.5 (depending on e).

Proof.
If k = 0, the result is just Lemma 3.3.2.

The proof is by induction on k. Let us suppose that k ≥ 1. From Theorem 3.2.3, the constants
Dk

(a,c)(ω, s) do not depend on the function f ∈ S(V +). Therefore to compute these constants we can
take f ∈ S(O+) and suppose that Re((s♯−m)j)+Re(ω♯j) > 0. Then the functions K−

a (Ff, ω♯, s♯−m)

and K+
c (f, ω, s) are defined by the converging integrals given in Definition 3.2.2.

Notations will be as in 2.5.2. From the integration formula in Theorem 2.3.5, we obtain

K−
a (Ff, ω♯, s♯ −m)

=

∫
u′∈V −

∫
v′∈g̃−λk

T k−1,−
Ff (u′, v′)1O−(a)(u

′ + v′)ω♯(∇(u′ + v′)) |∇(u′ + v′)|s♯−m |∇1(u
′)|

d
2du′dv′

and then from Corollary 2.5.4, we get

K−
a (Ff, ω♯, s♯ −m)

=

∫
u′∈O−(a0,...,ak−1)

∫
v′∈g̃−λk ;∇̃k(v′)ak∈Se

T k−1,−
Ff (u′, v′)ω♯(∇(u′+v′)) |∇(u′+v′)|s♯−m |∇1(u

′)|
d
2du′dv′.

From Lemma 2.5.3 we have

∇j((u
′ + v′)) =

{
∇0(u

′)∇̃k(v
′) for j = 0

∇j−1(u
′) for j = 1, . . . , k

Define (ω, s) = ((ω0, . . . , ωk−1), (s0, . . . , sk−1)) and [ω] =
∏k

j=0 ωj . We also note that m = 1+ kd
2
=

m+ d
2
. Then:

|∇(u′ + v′)|s♯−m |∇1(u
′)|

d
2 = |∇0(u

′)∇̃k(v
′)|s

♯
0−m

k∏
j=1

|∇j−1(u
′)|s

♯
j |∇1(u

′)|
d
2

= |∇0(u
′)∇̃k(v

′)|−(s0+...+sk)−(1+ kd
2
)|∇0(u

′)|sk |∇1(u
′)|sk−1 . . . |∇k−1(u

′)|s1 |∇0(u
′)|

d
2
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= |∇(u′)|s♯−m|∇̃k(v
′)|−(s0+...+sk+

kd
2
)−1,

and similarly we have

ω♯(∇(u′ + v′)) = ω♯(∇(u′))
(
[ω](∇̃k(v

′))
)−1

.

Therefore

K−
a (Ff, ω♯, s♯ −m)

=

∫
u′∈O−(a0,...,ak−1)

∫
v′∈g̃−λk ;∇̃k(v′)ak∈Se

T k−1,−
Ff (u′, v′)ω♯(∇(u′))

(
[ω](∇̃k(v

′))
)−1

× |∇(u′)|s♯−m|∇̃k(v
′)|−(s0+...+sk+

kd
2
)−1du′dv′

For u′ ∈ V −, define the function

Gu′(v) = γk(u
′, v)(FuT

k−1,+
f )(u′, v), v ∈ g̃λk .

Theorem 2.4.4, says that

Fv(Gu′)(v
′) = T k−1,−

Ff (u′, v′).

The maps v ∈ g̃λk 7→ ∆k(v) and v′ ∈ g̃−λk 7→ ∇̃k(v
′) are isomorphisms from g̃λk and g̃−λk respec-

tively onto F . Therefore the functional equation obtained in Lemma 3.3.2 for k = 0 implies∫
v′∈g̃−λk ;∇̃k(v′)ak∈Se

T k−1,−
Ff (u′, v′)

(
[ω](∇̃k(v

′))
)−1|∇̃k(v

′)|−(s0+...+sk+
kd
2
)−1dv′

=
∑
ck∈Se

[ω](−1)ρ̃([ω]−1,−(s0 + . . .+ sk +
kd

2
);−akck)

×
∫
v∈g̃λk ;∆k(v)ck∈Se

γk(u
′, v)(FuT

k−1,+
f )(u′, v)[ω](∆k(v))|v|s0+...+sk+

kd
2 dv.

We know from Proposition 2.5.5, that for u′ ∈ O−(a) and v ∈ g̃λk with ∆k(v)ck ∈ Se, one has
γ(u′, v) = γk(a, ck). Hence

K−
a (Ff, ω♯, s♯ −m)

=
∑
ck∈Se

[ω](−1)ρ̃([ω]−1,−(s0 + . . .+ sk +
kd

2
);−akck)γk(a, ck)

×
∫
v∈g̃λk ;∆k(v)ck∈Se

[ω](∆k(v))|v|s0+...+sk+
kd
2

∫
u′∈O−(a)

(FuT
k−1,+
f )(u′, v)ω♯(∇(u′))|∇(u′)|s♯−mdu′dv.

The induction hypothesis applied to the function u 7→ T k−1,+
f (u, v), gives the following equation:

∫
u′∈O−(a)

(FuT
k−1,+
f )(u′, v)ω♯(∇(u′))|∇(u′)|s♯−mdu′

=
∑

c=(c0,...ck−1)∈S k
e

Dk−1
(a,c)(ω, s)

∫
u∈O+(c)

T k−1,+
f (u, v)ω(∆)(u)|∆(u)|sdu.
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The preceding equation becomes now:

K−
a (Ff, ω♯, s♯ −m)

=
∑

c∈S k+1
e

[ω](−1)ρ̃([ω]−1,−(s0 + . . .+ sk +
kd

2
);−akck)γk(a, ck)Dk−1

(a,c)(ω, s)

×
∫
v∈g̃λk ;∆k(v)ck∈Se

∫
u∈O+(c)

T k−1,+
f (u, v)ω(∆)(u)|∆(u)|s[ω](∆k(v))|v|s0+...+sk+

kd
2 dvdu.

From Lemma 2.5.3 we have:

∆j(u+ v) =

{
∆j(u)∆k(v) for j = 0, . . . , k − 1

∆k(v) for j = k
,

which implies

ω(∆)(u+ v) =
k∏
j=0

ωj(∆j(u+ v)) =
k−1∏
j=0

ωj(∆j(u))[ω](∆k(v)) = ω(∆)(u)[ω](∆k(v))

and

|∆(u+ v)|s =
k∏
j=0

|∆j(u+ v)|sj =
k−1∏
j=0

|∆j(u)|sj |∆k(v)|s0+...+sk .

Moreover from Corollary 2.5.4 we have

u ∈ O+(c), and ∆k(v)ck ∈ Se ⇐⇒ u+ v ∈ O+(c).

Then, if we define

Dk
(a,c)(ω, s) = γk(a, ck)[ω](−1)ρ̃([ω]−1,−(s0 + . . .+ sk +

kd

2
);−akck)Dk−1

(a,c)(ω, s)

(which is the announced relation between Dk
(a,c)(ω, s) and Dk−1

(a,c)(ω, s)),
we obtain finally:

K−
a (Ff, ω♯, s♯ −m)

=
∑

c∈S k+1
e

Dk
(a,c)(ω, s)

∫
u∈V +

∫
v∈g̃λk

1O+(c)(u+ v)T k−1,+
f (u, v)ω(∆)(u+ v)|∆(u+ v)|s|∆k(v)|

kd
2 dudv

=
∑

c∈S k+1
e

Dk
(a,c)(ω, s)K+

c (f, ω, s).

As by Lemma 3.3.2 , we have D0
(a0,c0)

(ω0, s0) = ω0(−1)ρ̃(ω0,−s0;−c0a0), the explicit computation
of Dk

(a,c)(ω, s) follows easily by induction.

In the case where e is even, the explicit value of γk(a, ck) allows to obtain a more simple expression
for Dk

(a,c)(ω, s).

Corollary 3.3.4.
Let ω ∈ F̂ ∗k+1

and s ∈ Ck+1.
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1. If e = 0 or 4, then Se = {1} and we omit the dependance on the variables a, c. For f ∈ S(V +),
we have

K−(Ff, ω♯, s♯ −m) = Dk(ω, s)K+(f, ω, s),

where

Dk(ω, s) = γψ(q)
k(k+1)

2

k∏
j=0

(ω0 . . . ωj)(−1)ρ
(
(ω0 . . . ωj)

−1,−(s0 + . . .+ sj +
jd

2
)
)
.

2. If e = 2, remember that Se = NE/F (E
∗) where E is a quadratic extension of F with ϖE as

associated quadratic character . Let a = (a0, . . . , ak) and c = (c0, . . . , ck) be elements of S k+1
e .

Then

Dk
(a,c)(ω, s)

= γψ(qe)
k(k+1)

2

k∏
j=1

ϖE(cj)
jϖE(a0 . . . aj−1)

k∏
j=0

(ω0 . . . ωj)(−1)ρ̃((ω0 . . . ωj)
−1,−(s0 + . . .+ sj +

jd

2
);−ajcj).

Proof.
If e = 0 or 4 then Se = {1}. In that case, for all x ∈ Se, z ∈ C and δ ∈ F̂ ∗, one has ρ̃(δ, z;x) =
ρ(δ, z). The corollary is the an easy consequence of Proposition 2.5.5 and of Theorem 3.3.3.

4. ZETA FUNCTIONS ASSOCIATED TO THE H -DISTINGUISHED MINIMAL PRINCIPAL SERIES

4.1. Characters of the group L which are trivial on L ∩Hp.
Let (Ω±

p ), p ∈ {1, . . . , r0} be the open G-orbits in V ± ([8] Theorem 3.6.3), The integer r0 depends
on k and on e, and r0 ≤ 5 (see([8], Theorem 3.6.3).
For 1 ≤ p ≤ r0, we fix an element I+p in Ω+

p which is in the "diagonal" ⊕k
j=0g̃

λj . We suppose
moreover that I+1 = I+. We set I−p = ι(I+p ) ∈ ⊕k

j=1g̃
−λj and hence {I−p , H0, I

+
p } is an sl2-triple.

The non trivial element of the Weyl group associated to this sl2-triple acts on g̃ by the element wp ∈
Aut0(g̃) given by wp = eadI

+
p eadI

−
p eadI

+
p . Let σp be the automorphism of Aut0(g̃) defined by σp(g) =

wpgw
−1
p (for g ∈ Aut0(g̃)).

We know that σp is an involution of G ([8] Theorem 4.1.1). Moreover the group Hp = ZG(I
+
p ) =

ZG(I
−
p ) is an open subgroup of the group of fixed points of σp. Therefore Ω±

p is isomorphic to the
symmetric space G/Hp.

We recall also that we denote by P the parabolic subgroup defined by P = LN where L = ZG(a
0),

N = exp adn, and n = ⊕0≤i<j≤kEi,j(1,−1) (cf. 1.2).
The key point is that the group P is a minimal σp-split parabolic subgroup for p = 1, . . . , r0 (see
[8] §4.2) (this means that σp(P ) is the parabolic subgroup opposite to P , and P is minimal for this
property). The subgroup L is then the unique Levi subgroup of P which is stable under σp.

As ℓ = 1, the group L acts by a character xj(·) on each g̃λj . Thus, for p ∈ {1, . . . , r0}, as I+p belongs
to the "diagonal", the group L∩Hp is the group of elements l ∈ L such that xj(l) = 1 for j = 0, . . . , k,
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hence L ∩Hp does not depend on p. We set

LH = {l ∈ L;xj(l) = 1, for j = 0, . . . , k} = L ∩Hp, p ∈ {1, . . . , r0}. (4.1)

Let AL the maximal split torus of the center of L. We denote by X(L) (resp. X(AL)) the group of
rational characters of L (resp. deAL) which are defined over F . The real vector space aL is defined by
aL = HomZ(X(L),R). The restriction map from L to AL induces an injection from X(L) on X(AL),
and these 2 lattices have the same rank, which is equal to the dimension of aL (see [14] V.2.6). Then,
the dual space a∗L satisfies a∗L ≃ X(L) ⊗Z R ≃ X(AL) ⊗Z R and each root α ∈ Σ induces a linear
form of a∗L, which we also denote by α.

The canonical map HL : L→ aL is then defined by

e⟨HL(l),χ⟩ = |χ(l)|, l ∈ L, χ ∈ X(L).

The group of non ramified characters of L is then defined by:

X(L) = Hom(L/KerHL,C∗),

The map ν 7−→ χν from (a∗L)C to X(L) defined by χν : l 7→ e⟨ν,HL(l)⟩ (or equivalently the map
χ ⊗ s ∈ X(L) ⊗Z C 7−→ (l 7→ |χ(l)|s)) is surjective and its kernel is a lattice in (a∗L)C. This defines
a structure of algebraic variety on X(L). More precisely X(L) is a complex torus whose Lie algebra
is (a∗L)C.
Let p ∈ {1, . . . , r0}. The involution σp on L induces an involution on aL and a∗L, which we denote
by the same letter. From the proof of Lemma 4.1.5 in [8], the Lie algebra of AL decomposes as
aL = aL ∩ hp ⊕ a0 where hp is the Lie algebra of Hp. Since the groups L ∩ Hp, p = 1, . . . , r0 are
equal (see (4.1)), this decomposition does not depend on σp. Hence, the induced involution on aL
does not depend on p. We set aL = aσL ⊕ a0 and a∗L = (aσL)

∗ ⊕ a0∗ the decompositions of aL and a∗L
in invariant and anti-invariant spaces under the action of σp for all p. By definition of a0, a basis of
(a0,∗)C is given by λ0, . . . , λk.

Let X(L)σ be the image of (a0∗)C by the map ν 7→ χν . Then, the torus X(L)σ is the group of non
ramified characters given by

l 7→
k∏
j=0

|xj(l)|µj for µ = µ1λ1 + . . .+ µkλk ∈ (a0∗)C.

Let δP be the modular function of P , which is given by δP (ln) = e2⟨ρP ,HL(l)⟩. Here ρP is half the sum
of the roots of AL in N (counted with multiplicity).

Lemma 4.1.1. We have

2ρP =
d

2

k∑
j=0

(k − 2j)λj.

This implies that for l ∈ L,

δP (l)
1/2 =

l∏
j=0

|xj(l)|ρj , where ρj =
d

4
(k − 2j).
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Proof. The Lie algebra of P decomposes as p = l ⊕ n with l = Zg(a
0) and n = ⊕i<jEi,j(1,−1).

Let Si,j be the set of roots µ such that µ ̸= (λi − λj)/2 and g̃µ ⊂ Ei,j(1,−1). Let mµ = dim g̃µ be
the multiplicity of µ. We know from ([8] Remark 3.3.3), that if µ ∈ Si,j then µ′ = λi − λj − µ is a
root in Si,j which is not equal to µ but has the same multiplicity, and of course µ+ µ′ = λi − λj . As
dim(g̃(λi−λj)/2) = e, and d = dim Ei,j(1,−1) = e+

∑
µ∈Si,j

mµ, we obtain∑
µ∈Si,j

mµµ =
1

2

∑
µ∈Si,j

mµ(λi − λj) =
d− e

2
(λi − λj).

Therefore

2ρP = e
∑
i<j

(λi − λj)

2
+
d− e

2

∑
i<j

(λi − λj) =
d

2

∑
i<j

(λi − λj).

A simple computation gives then the first assertion. The second assertion is then an immediate con-
sequence of the first one.

From Remark 1.2.2 we know now that the map T : l 7→ (x0(l), . . . , xk(l)) induces an isomorphism
of groups from L/L ∩Hp = L/LH onto ∪x∈SexS

k+1
e .

Hence, any character of F ∗k+1 induces, by restriction to ImT , a character of L trivial on L ∩ Hp for
any p ∈ {1, . . . , N}. If δ = (δ0, . . . , δk) is a character of (F ∗)k+1 the corresponding character of L,
which is invariant on L/L ∩Hp = L/LH , is still denoted by δ and is given by

δ(l) =
k∏
i=0

δi(xj(l)).

This is made more precise in the following Lemma.

Lemma 4.1.2.
1. Any character of ImT = ∪xSexS

k+1
e is the restriction to ImT of a (non unique) character of

(F ∗)k+1.

2. Two characters δ = (δ0, . . . , δk) and δ′ = (δ′0, . . . , δ
′
k) of (F ∗)k+1 coincide on ImT = ∪x∈SexS

k+1
e ,

if and only if for all j = 0 . . . k, there exists a character χj of F ∗ with values in {±1}, and trivial on
Se such that

δj(x) = χj(x)δ′j(x), et
k∏
j=0

χj(x) = 1, x ∈ F ∗.

Proof. Note first that as F ∗2 ⊂ Se, the group (F ∗)k+1/ImT is a finite abelian group whose non trivial
elements are of order 2.
Let δ̃ be a character of ImT and take x ∈ (F ∗)k+1 \ ImT . Then, as F ∗2 ⊂ ImT , we have x2 ∈ ImT .
Let ϖx be a square root of δ̃(x2), and let M1 be the subgroup of (F ∗)k+1 generated by ImT and x.
One can now define a character of M1 by setting δ̃1(ax) = δ̃(a)ϖx for a ∈ ImT . As (F ∗)k+1/ImT
is finite, we obtain the first assertion by induction.
As Se = F ∗/Se and F ∗2 ⊂ Se, the second assertion is clear.
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4.2. The minimal principal H-distinguished series.
Let p ∈ {1, . . . r0}. A smooth representation (π, Vπ) of G is said to be Hp-distinguished if the space
(V ∗

π )
Hp of Hp-invariant linear forms on Vπ is non-trivial. This is also equivalent to the condition

HomHp(Vπ, C
∞(G/Hp)) ̸= {0} (where C∞(G/Hp) is the space of locally constant functions on

G/Hp).

If χ is a character of P we define as usual the space Iχ to be the space of functions v : G→ C which
are right invariant under a compact open subgroup of G and which satisfy the condition:

v(nlg) = δP (l)
1/2χ(l)v(g), n ∈ N, l ∈ L, g ∈ G.

The induced representation IGP (χ) is the right regular representation of G on Iχ.
One knows from ([1] Théorème 2.8), that if there exists an open P - orbit PγHp in G/Hp (or equiva-
lently an open orbit PγI+p in Ω+

p ) with γ ∈ G, such that χ is trivial on L∩ γHpγ
−1, then (under some

additional conditions, see below), the representation IGP (χ) is Hp-distinguished.
But as any open P -orbit in Ωp meets the diagonal we can suppose that γ.I+p ∈ ⊕k

j=0g̃
λj and hence,

using (4.1), the character χ is trivial on L ∩ γHpγ
−1 = LH = L ∩ Hp. Therefore we make the

following definition.

Definition 4.2.1. The minimal principal H-distinguished series is the set of representations IGP (χ)
where χ is a character of L trivial on LH such that IGP (χ) is Hp-distinguished for any p ∈ {1, . . . , r0}.

Fix a unitary character δ = (δ0, . . . , δk) of (F ∗)k+1 and fix also µ = µ0λ0 + . . . + µkλk ∈ (a0 ∗)C.
This defines a character δµ of L which is trivial on L ∩Hp by

δµ(l) =
k∏
j=0

δj(xj(l))|xj(l)|µj , l ∈ L.

We set πδ,µ = IGP (δµ) and denote by Iδ,µ = Iδµ its space.
LetK be a maximal compact subgroup ofGwhich is the stabilizer of a special point in the appartment
associated to A in the building of G. Let I(δ) be the space of functions v : K 7−→ C which are right
invariant under an open compact subgroup of K and satisfy the following condition:

v(nlk) = δ(l)v(k) for nl ∈ P ∩K and k ∈ K.

Then the restriction of functions in Iδ,µ to K gives an isomorphism of K-modules from Iδ,µ onto I(δ)
and we denote by πδ,µ the representation of G on I(δ) obtained from πδ,µ through this isomorphism
(this is the so called compact picture of the induced representation).

We identify the spaces (a0∗)C and Ck+1 by the isomorphism µ =
∑k

j=0 µjλj 7→ (µ0, . . . , µk).
From ([1] Théorème 2.8), we know that there exists a rational function on Rp on X(L)σ ≃ (a0∗)C,
which is a product of functions of the form (1 − cq

∑k
j=0 ajµj), where c ∈ C∗ and aj ∈ Z, such that

if Rp(µ) ̸= 0, the representation (πδ,µ, Iδ,µ) is Hp-distinguished. Moreover, in that case, dim(I∗δ,µ)
Hp

is equal to the number of open P -orbits in G/Hp (or equivalently in Ωp) and a basis of (I∗δ,µ)
Hp is

explicitly described in [1] (see also below for our case). Differences between our notations and the
results of [1] come from the fact that there the authors consider non normalized induction.
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Definition 4.2.2. Set R =
∏r0

p=1Rp where Rp are the rational functions mentioned above. Let U be
the open dense subset of (a0∗)C defined by U = {µ ∈ (a0∗)C,R(µ) ̸= 0}. Hence for all µ ∈ U and
p = 1, . . . , k, the representation (πδ,µ, Iδ,µ) is Hp-distinguished.

We will now describe, in our case, the basis of(I∗δ,µ)
Hp given in ([1] Théorème 2.8 and Théorème 2.16,

[10] §4.2).

Let p ∈ {1, . . . , r0}. The open (P,Hp)-orbits in G can be view as the open P -orbits in V + contained
in Ω+

p ≃ G/Hp. Remember that the open P -orbits in V + are the sets P.I+(a) where I+(a) =

a0X0 + . . . + ak−1Xk−1 + Xk for a = (a0, . . . , ak−1, 1) in S k
e × {1} (see Lemma 1.2.4). For

a = (a0, . . . , ak−1) ∈ S k
e , we set (a, 1) = (a0, . . . , ak−1, 1).

Definition 4.2.3. For p ∈ {1, . . . , r0}, we denote by Sp the set of a ∈ S k
e such that I+(a, 1) ∈ Ω+

p .
Let us fix γa ∈ G such that γaI+p = I+(a, 1). Hence ∪a∈SpPγaHp is the union of the open (P,Hp)-
orbits in G.

Definition 4.2.4. Let µ ∈ (a0∗)C , p ∈ {1, . . . , r0} and a ∈ Sp. The Poisson kernel Paδ,µ is the function
on G defined by:

Paδ,µ(g) =

{
δP (l)

1/2(δµ)
−1(l) if g = nlγah ∈ NLγaHp,

0 if g /∈ PγaHp.

Let C(G,P, δ∗, µ) be the space of continuous functions w : G 7−→ C such that

w(nlg) = δ
1/2
P (l)δµ(l)

−1w(g) n ∈ N, l ∈ L, g ∈ G. (4.2)

We will say that Re(δ−1/2
P δµ) is strictly P -dominant if ⟨Re(µ) − ρP , α⟩ > 0 for all roots α of A in

N . From ([1] Théorème 2.16) and ([10] Théorème 4 (ii)), we know that if µ ∈ (a0∗)C is such that
Re(δ−1/2

P δµ) is strictly P -dominant and if a ∈ S k
e , the function Paδ,µ is a right Hp-invariant element

of C(G,P, δ∗, µ).
Moreover by ([1] (2.29)), the map

(w, v) ∈ C(G,P, δ∗, µ)× Iδ,µ 7→ ⟨w, v⟩ =
∫
K

w(k)v(k)dk (4.3)

defines a G-invariant duality between C(G,P, δ∗, µ) and Iδ,µ. Hence C(G,P, δ∗, µ) can be viewed as
a subspace of I∗δ,µ and Paδ,µ is identified to a Hp-invariant linear form on Iδ,µ. Let us make this more
precise in the following definition.

Definition 4.2.5. Let C+ be the set of µ ∈ (a0∗)C such that Re(δ−1/2
P δµ) is strictly P -dominant.

Let µ ∈ U ∩C+, p ∈ {1, . . . , N} and a ∈ Sp. We denote by ξaδ,µ ∈ (I∗δ,µ)
Hp the Hp-invariant linear

form which corresponds to Paδ,µ via the preceding duality between C(G,P, δ∗, µ) and Iδ,µ.

The isomorphism Iδ,µ ≃ I(δ) (given by restriction to K) induces an isomorphism ξ 7→ ξ from
I∗δ,µ onto I(δ)∗. From Théorème 2.8 in [1], the map µ ∈ U ∩ C+ 7→ ξaδ,µ has a meromorphic
continuation to (a0∗)C such that R(µ)ξaδ,µ is a polynomial function in the variables q±µj . Moreover,
for p ∈ {1, . . . , N}, a ∈ Sp and µ ∈ U, the set of ξaδ,µ is a basis of (I∗δ,µ)

Hp (loc.cit) .
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In the rest of the paper we fix Haar measures dg and dk on G and K respectively and a right Haar
measure drp on P such that∫

G

f(g)dg =

∫
P

∫
K

f(pk)δP (p)
−1drp dk, f ∈ L1(G).

The character δµ is extended to P by setting δµ(ln) = δµ(l) for l ∈ L and n ∈ N .
Let C∞

c (G) be the space of locally constant functions on G with compact support and define Lδ,µ :

C∞
c (G) 7−→ Iδ,µ by

Lδ,µ(φ)(g) =

∫
P

δP (p)
−1/2δµ(p)

−1φ(pg)drp, g ∈ G.

It is well known that the map Lδ,µ is surjective G-equivariant (here G acts on C∞
c (G) by the right

regular representation).

Lemma 4.2.6. For ψ ∈ C(G,P, δ∗, µ) and φ ∈ C∞
c (G), one has∫

G

ψ(g)φ(g)dg =

∫
K

ψ(k)Lδ,µ(φ)(k)dk

Proof. From the above given decomposition of dg and from and the definition of C(G,P, δ∗, µ), we
have ∫

G

ψ(g)φ(g)dg =

∫
P

∫
K

ψ(pk)φ(pk)δP (p)
−1drp dk

=

∫
P

∫
K

δP (p)
−1/2ψ(k)δµ(p)

−1φ(pk)drp dk

=

∫
K

ψ(k)

∫
P

δP (p)
−1/2δµ(p)

−1φ(pk)drpdk =

∫
K

ψ(k)Lδ,µ(φ)(k)dk.

Corollary 4.2.7. Let µ ∈ U ∩C+and v ∈ Iδ,µ. Then, for x ∈ G, one has

⟨π∗
δ,µ(x)ξ

a
δ,µ, v⟩ =

∫
K

Paδ,µ(k)v(kx
−1)dk =

∫
K

Paδ,µ(kx)v(k)dk.

Proof. One has ⟨π∗
δ,µ(x)ξ

a
δ,µ, v⟩ = ⟨ξaδ,µ, πδ,µ(x−1)v⟩. As µ ∈ U ∩C+, the linear form ξaδ,µ is given by

the Poisson kernel. Hence

⟨π∗
δ,µ(x)ξ

a
δ,µ, v⟩ =

∫
K

Paδ,µ(k)
(
πδ,µ(x

−1)v
)
(k)dk =

∫
K

Paδ,µ(k)v(kx
−1)dk.

This gives the first equality.

Take φ ∈ C∞
c (G) such that Lδ,µ(φ) = v. As Paδ,µ ∈ C(G,P, δ∗, µ), Lemma 4.2.6 implies∫

K

Paδ,µ(k)v(kx
−1)dk =

∫
G

Paδ,µ(g)φ(gx
−1)dg =

∫
G

Paδ,µ(gx)φ(g)dg.

For x fixed, the map g 7→ Paδ,µ(gx) belongs also to C(G,P, δ∗, µ). Again Lemma 4.2.6 implies that∫
G
Paδ,µ(gx)φ(g)dg =

∫
K
Paδ,µ(kx)v(k)dk.
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4.3. Zeta functions associated to the minimal principal H-distinguished series.
Let (dX, dY ) be the pair of Haar measures on V + and V − which were determined in Proposition
2.2.2. Recall that d∗X and d∗Y are the G-invariant measures on V + and V − defined by

d∗X =
dX

|∆0(X)|m
, dX and d∗Y =

dY

|∇0(X)|m
where m = 1 +

kd

2
.

(see (1.2)).

By Proposition 2.2.3, this determines uniquely a G-invariant measure dpġ on G/Hp, for all p ∈
{1, . . . r0}.
Then the fixed Haar measure dg on G determines a Haar measure dph on Hp such that∫

G

f(g)dg =

∫
G/Hp

∫
Hp

f(gh)dph dpġ, f ∈ L1(G).

Definition 4.3.1. Let p = 1, . . . , r0 and let ξ be a Hp-invariant linear form on Iδ,µ (i.e. an element of
(I∗δ,µ)

Hp). For X ∈ G.I+p and Y ∈ G.I−p , we define

π∗
δ,µ(X)ξ = π∗

δ,µ(g)ξ if X = g.I+p , g ∈ G, π∗
δ,µ(Y )ξ = π∗(g)ξ if Y = g.I−p , g ∈ G.

(Remember that Hp is the stabilizer of I+p and of I−p ).
Let z ∈ C and w ∈ Iδ,µ. The zeta fonction associated to (πδ,µ, z, ξ, w) are formally defined, for
Φ ∈ S(V +), by

Z+
p (Φ, z, ξ, w) =

∫
Ω+

p

Φ(X)|∆0(X)|z⟨π∗
δ,µ(X)ξ, w⟩d∗X,

and for Ψ ∈ S(V −), by

Z−
p (Ψ, z, ξ, w) =

∫
Ω−

p

Ψ(Y )|∇0(Y )|z⟨π∗
δ,µ(Y )ξ, w⟩d∗Y.

Remark 4.3.2. 1) If k = 0, then G and P are equal and isomorphic to F ∗. Thus we have πδ,µ = δµ

and we can take the generalized coefficient ⟨π∗(g)ξ, w⟩ to be equal to (δµ)
−1(g), g ∈ G. The spaces

V ± are isomorphic to F and an element a ∈ F ∗ acts by the multiplication by a on V + = F , and by
the multiplication by a−1 on V −. Thus, we have

Z+(Φ, z, ξ, w) = Z(Φ, δ−1, z − µ), and Z−(Ψ, z, ξ, w) = Z(Ψ, δ, z + µ),

where Z(g, δ, s) is Tate’s zeta function (see section 3.3).

2) Let µ ∈ U, ξ ∈ (I∗δ,µ)
Hp and w ∈ Iδ,µ. Then for z ∈ C and Φ ∈ S(Ω+), the zeta func-

tion Z+
p (Φ, z, ξ, w) can be seen as a generalized coefficient of πδ,µ. More precisely if φ ∈ C∞

c (G)

is such that Φ(g.I+p ) =
∫
Hp
φ(gh)dph and if φz ∈ C∞

c (G) is the function defined by φz(g) =

φ(g)|∆0(g.I
+
p )|z, it is easily seen that

Z+
p (Φ, z, ξ, w) = ⟨π∗

δ,µ(φz)ξ, w⟩.

A similar result holds for the zeta functions Z−
p (Ψ, z, ξ, w), for Ψ ∈ S(Ω−).

We will now study the zeta functions associated to the linear forms ξaδ,µ by giving a connection be-
tween them and the zeta function K±

c (f, ω, s) (c ∈ S k+1
e ) introduced in Definition 3.2.2.
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Definition 4.3.3. For µ =
∑k

j=0 µjλj ∈ (a0∗)C, we define s(µ) = (s0, . . . , sk) ∈ (C∗)k+1 by the
relation

ρP − µ = s0λ0 + (s0 + s1)λ1 + . . .+ (s0 + . . .+ sk)λk.

If δ = (δ0, . . . , δk) is a unitary character of (F ∗)k+1, we define ω(δ) ∈ ̂(F ∗)k+1 by

ω(δ) = (ω0, . . . , ωk) = (δ−1
0 , δ0δ

−1
1 , . . . , δk−1δ

−1
k ).

Then

ω0 . . . ωj = δ−1
j , ( for j = 0, . . . , k)

and, using Lemma 4.1.1:

s0 =
kd

4
− µ0, sj = µj−1 − µj −

d

2
, ( for j = 1, . . . , k).

Also if s = (s0, . . . , sk) ∈ Ck+1 and z ∈ C, we set s− z = (s0 − z, s1, . . . , sk).

Lemma 4.3.4. Let µ ∈ (a∗0)C. Then δ−1/2
P δµ is strictly P -dominant (or equivalently µ ∈ C+) if and

only if s(µ) = (s0, . . . , sk) satisfies the condition Re(sj) > 0 for j = 1, . . . , k.

Proof. By definition µ ∈ C+ if and only if ⟨Re(µ) − ρP , α⟩ > 0 for any root α of A in N . From
the definition of N , for such a root, there exists a pair i < j such that g̃α ⊂ Ei,j(1,−1). Let
ρP =

∑k
s=0 ρsλs and µ =

∑k
s=0 µsλs.

Then the condition µ ∈ C+ is equivalent to Re(µi − µj)− (ρi − ρj) > 0 for any pair i < j.
From Lemma 4.1.1, we get ρi−1 − ρi =

d
2
, and therefore µ ∈ C+ if and only if Re(µi−1 −µi) >

d
2

for
i = 1, . . . , k.
As we have seen in the preceding definition that si = µi−1 − µi − d

2
for i = 1, . . . , k, the Lemma is

proved.

Definition 4.3.5. Let p ∈ {1, . . . r0}, a ∈ Sp, ω = (ω0, . . . , ωk) ∈ (F̂ ∗)k+1 and s = (s0, . . . , sk) ∈
Ck+1. Define the functions Pa,±

ω,s on V ± by

Pa,+
ω,s (X) =

{
(ω, s)(∆(X)) if X ∈ P.I+(a, 1),

0 if X ∈ V + \ P.I+(a, 1).

and

Pa,−
ω,s (Y ) =

{
(ω, s)(∇(Y )) if Y ∈ P.I−(a, 1),

0 if Y ∈ V − \ P.I−(a, 1).

Remark 4.3.6. The union of the open P -orbits in V + is the set {X ∈ V +,∆j(X) ̸= 0 for j =

0, . . . , k}. On the other hand we have Ω+
p ⊂ Ω+ = {X ∈ V +; ∆0(X) ̸= 0}. Hence, if Re(sj) > 0

for j = 1, . . . k, the function Pa,+
ω,s is continuous on Ω+

p . If moreover Re(s0) > 0, Pa,+
ω,s is continuous

on V +.
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Similarly the union of the open P -orbits in V − is the set {Y ∈ V −,∇j(Y ) ̸= 0 for j = 0, . . . , k} and
we have Ω−

p ⊂ Ω− = {Y ∈ V −;∇0(Y ) ̸= 0}. Hence if Re(sj) > 0 for j = 1, . . . k, the function
Pa,−
ω,s is continuous on Ω−

p and if moreover Re(s0) > 0, then Pa,−
ω,s is continuous on V −.

Lemma 4.3.7. Let p ∈ {1, . . . , r0} and a ∈ Sp. For g ∈ G, we have

Paδ,µ(g) = cδ,µ(a)P
a,+
ω(δ),s(µ)(g.I

+
p ) = cδ,µ(a)P

a,−
ω(δ)♯,s(µ)♯

(g.I−p ),

where ω(δ)♯ and s(µ)♯ are given in definition 3.2.1 and cδ,µ(a) =
∏k−1

j=0 δj(aj)|aj|−(ρj−µj).

Proof. Let us prove the first equality. Remember that I(a, 1)+ = γa.I
+
p (cf. Definition 4.2.3) . If

g /∈ PγaHp, then g.I+p /∈ P.I+(a, 1), and hence the two members of the first equality are equal to
zero. These two members are also left invariant by N and right invariant by Hp. Therefore it is
enough to show the results for g = lγa where l ∈ L. Define then X = g.I+p = l.I+(a, 1). From
Definition 4.3.3 we have

ω(δ)(∆(X)) =
k∏
j=0

ωj(∆j(X)) = δ−1
0 (∆0(X))(δ−1

1 δ0)(∆1(X)) . . . (δ−1
k δk−1)(∆k(X))

= δ−1
0 (

∆0(X)

∆1(X)
) δ−1

1 (
∆1(X)

∆2(X)
) . . . δ−1

k−1(
∆k−1(X)

∆k(X)
)δ−1
k (∆k(X)).

As X = l.I+(a, 1) = a0x0(l)X0 + a1x1(l)X1 + . . .+ ak−1xk−1(l)Xk−1 + xk(l)Xk, we obtain:

ω(δ)(∆(X)) = δk(xk(l))
−1

k−1∏
j=0

δj(xj(l)aj)
−1 = δ(l)−1

k−1∏
j=0

δj(aj)
−1.

Also, as s(µ) = (s0, . . . , sk) is such that s0 + . . . sj = ρj − µj , we obtain

|∆(X)|s(µ) = |∆0(X)|s0|∆1(X)|s1|∆2(X)|s2 . . . |∆k(X)|sk

=

(
|∆0(X)|
|∆1(X)|

)s0 ( |∆1(X)|
|∆2(X)|

)s0+s1
. . .

(
|∆k−1(X)|
|∆k(X)|

)s0+...+sk−1

|∆k(X)|s0+...+sk

= |xk(l)|ρk−µk
k−1∏
j=0

(aj|xj(l)|)ρj−µj .

Using Lemma 4.1.1, we get

|∆(X)|s(µ) =
( k−1∏
j=0

|aj|ρj−µj
)
δP (l)

1/2

k∏
j=0

|xj(l)|−µj .

Therefore

Pa,+
ω(δ),s(µ)(g.I

+
p ) = ω(δ)(∆(X))|∆(X)|s(µ)

= δ(l)−1

k−1∏
j=0

δj(aj)
−1
( k−1∏
j=0

|aj|ρj−µj
)
δP (l)

1/2

k∏
j=0

|xj(l)|−µj

= (cδ,µ(a))
−1Paδ,µ(g).

The first equality is proved.

If l ∈ L then {l.I−(a, 1), H0, l.I
+(a, 1)} is an sl2-triple. From ([8] corollaire 4.5.9) we know that

|∇(l.I−(a, 1))|s(µ)♯ = |∆(l.I+(a, 1))|s(µ), similarly it is easy to see that ω(δ)♯(∇(l.I−(a, 1))) =

ω(δ)(∆(l.I+(a, 1))). Hence Pa,+
ω(δ),s(µ)(g.I

+
p ) = Pa,−

ω(δ)♯,s(µ)♯
(g.I−p ). This gives the second equality.
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Theorem 4.3.8. Let p ∈ {1, . . . , r0}, a ∈ Sp and z ∈ C. Let also δ = (δ0, δ1, . . . , δk) be a unitary
character of (F ∗)k+1.

(1) (a) Let µ = µ0λ0 + . . . µkλk ∈ U ∩C+. Suppose Re(z − µ0) > m− kd

4
= 1 +

kd

4
.

Then, for all Φ ∈ S(V +), ξ ∈ (I∗δ,µ)
Hp and w ∈ Iδ,µ, the integral defining the zeta

function Z+
p (Φ, z, ξ, w) (cf. Definition 4.3.1) is absolutely convergent and the following

relation holds:

Z+
p (Φ, z, ξ

a
δ,µ, w) = cδ,µ(a)

∑
x∈Se

∫
K

K+
(xa,x)(L(k)Φ, ω(δ), s(µ) + z −m)w(k)dk,

where L is the left regular representation.
(b) The function Z+

p (Φ, z, ξ
a
δ,µ, w) is a rational function in the variables q±µj and q±z and

hence admits a meromorphic continuation. Moreover there exists a polynomial R+(δ, µ, z)

in the variables qµj , q−µj and q−z, which is a product of polynomials of type (1 −
djq

−Nz−
∑k

j=0mjµj), where N ∈ N, mj ∈ Z and dj ∈ C are independent of z and
of the µj’s, such that for all Φ ∈ S(V +), ξ ∈ (I∗δ,µ)

Hp and w ∈ Iδ,µ, the function
R+(δ, µ, z)Z+

p (Φ, z, ξ, w) is a polynomial in q±µj and q±z.

(2) (a) Let µ = µ0λ0+ . . . µkλk ∈ U∩C+. Suppose that Re(z+µk) > m− kd

4
= 1+

kd

4
. Then

for all Ψ ∈ S(V −), ξ ∈ (I∗δ,µ)
Hp and w ∈ Iδ,µ, the integral defining the zeta function

Z−
p (Ψ, z, ξ, w) is absolutely convergent and the following relation holds:

Z−
p (Ψ, z, ξ

a
δ,µ, w) = cδ,µ(a)

∑
x∈Se

∫
K

K−
(xa,x)(L(k)Ψ, ω(δ)

♯, s(µ)♯ + z −m)w(k)dk,

(b) The function Z−
p (Ψ, z, ξ

a
δ,µ, w) is a rational function in the variables q±µj and q±z and

hence admits a meromorphic continuation. Moreover there exists a polynomial R−(δ, µ, z)

in the variables qµj , q−µj and q−z, which is a product of polynomials of type (1 −
djq

−Nz−
∑k

j=0mjµj) where N ∈ N, mj ∈ Z and dj ∈ C are independent of z and
of the µj’s, such that for all Ψ ∈ S(V −), ξ ∈ (I∗δ,µ)

Hp and w ∈ Iδ,µ, the function
R−(δ, µ, z)Z−

p (Ψ, z, ξ, w) is polynomial in q±µj and q±z.

Proof. For k = 0, the zeta functions considered here coincide with Tate’s zeta functions (see Remark
4.3.2, 1)), for which the results are well-known.

From now on , we suppose that k ≥ 1.

We have already mentioned that the set of ξaδ,µ for a ∈ S k
e is a basis of (I∗δ,µ)

Hp . Therefore it is enough
to prove the results for ξ = ξaδ,µ. Let us prove assertion (1).

Let µ = µ0λ0 + . . .+ µkλk ∈ U∩C+. To simplify the notations we set s = s(µ) = (s0, . . . , sk) and
ω = ω(δ). From Definition 4.3.3 and Lemma 4.3.4, one has

a) Re(sj) = Re(µj−1 − µj)−
d

2
> 0 if j = 1, . . . k and s0 =

kd

4
− µ0.

b) Also from our condition on z, we have Re(z + s0)−m = Re(z − µ0) +
kd

4
−m > 0.
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Taking into account that δ is here a unitary character, we know from Definition 3.2.2 that these con-
ditions imply that the functions K+

c (f, ω(δ), z + s(µ) −m), c ∈ S k+1
e , are defined by an absolutely

convergent integral for all f ∈ S(V +).
Using Lemma 1.2.4, we obtain for f ∈ S(V +):

∑
x∈Se

K+
(xa,x)(f, ω(δ), z + s(µ)−m) =

∑
x∈Se

∫
O(xa,x)+

f(X)ω(δ)(∆(X))|∆(X)|s(µ)+z−mdX

=

∫
P.I(a,1)+

f(X)|∆0(X)|z−mPa,+
ω(δ),s(µ)(X)dX =

∫
V +

f(X)|∆0(X)|z−mPa,+
ω(δ),s(µ)(X)dX.

Remark 4.3.6 and the conditions on µ, z and Φ, imply that the the function

(k,X) 7→ (L(k)Φ)(X)|∆0(X)|z−mPa,+
ω(δ),s(µ)(X)

is continuous with compact support on K × V +.
Then, from Lemma 4.3.7 and the Theorem of Fubini, we get

cδ,µ(a)
∑
x∈Se

∫
K

K+
(xa,x)(L(k)Φ, ω(δ), s(µ) + z −m)w(k)dk

= cδ,µ(a)

∫
K

(∫
Ω+

p

(L(k)Φ)(X)|∆0(X)|zPa,+
ω(δ),s(µ)(X)d∗X

)
w(k)dk

=

∫
K

(∫
G/Hp

Φ(k−1g.I+p )|∆0(g.I
+
p )|zP

a,+
δ,µ (g)dpġ

)
w(k)dk

=

∫
K

(∫
G/Hp

Φ(g.I+p )|∆0(g.I
+
p )|zP

a,+
δ,µ (kg)dpġ

)
w(k)dk

(because |χ0| is trivial on K)

=

∫
G/Hp

Φ(g.I+p )|∆0(g.I
+
p )|z

(∫
K

Pa,+δ,µ (kg)w(k)dk
)
dpġ.

Then from Corollary 4.2.7, we obtain:

cδ,µ(a)
∑
x∈Se

∫
K

K+
(xa,x)(L(k)Φ, ω(δ), z + s(µ)−m)w(k)dk

=

∫
G/Hp

Φ(g.I+p )|∆0(g.I
+
p )|z⟨π∗

δ,µ(g)ξ
a
δ,µ, w⟩dpġ

= Z+
p (Φ, z, ξ

a
δ,µ, w),

which is assertion (1)(a).

From Theorem 3.2.3 there exists a polynomial R+(ω, s) ∈ C[q−s0 , q−s1 , . . . , q−sk ] in the variables
q−sj , product of polynomials of type (1 − bjq

−
∑k

j=0Njsj) with Nj ∈ N and bj ∈ C, such that
R+(ω, s)K+

c (f, ω, s) ∈ C[q±s0 , q±s1 , . . . , q±sk ] for all f ∈ S(V +) and c ∈ S k+1
e . But here we

must consider integrals of the form K+
(xa,x)(L(k)Φ, ω(δ), z + s(µ)−m), where by Definition 4.3.3,

(z + s(µ)−m) = (
kd

4
− µ0 + z −m,µ0 − µ1 −

d

2
, . . . , µk−1 − µk −

d

2
).

This implies immediately assertion (1)(b).
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Remember that s(µ)♯ = (−(s0 + . . . + sk), sk, . . . , s1) with s0 + . . . + sk = −kd
4

− µk. Therefore

Re(z − (s0 + . . .+ sk))−m = Re(z + µk) +
kd

4
−m > 0.

A similar computation to the one in the proof of 1) b) above shows thats for g ∈ S(V −) one has

cδ,µ(a)
∑
x∈Se

K−
(xa,x)(g, ω(δ)

♯, z + s(µ)♯ −m) =

∫
V −

g(Y )|∇0(Y )|z−mPa,−
ω(δ)♯,s(µ)♯

(Y )dY.

Then the same arguments prove assertion 2)a) and 2)b).

Theorem 4.3.9. (Main Theorem, version 1)
Let k ≥ 1 (for k = 0, the zeta functions we consider coincide with Tate’s zeta functions by Remark
4.3.2). Let δ be a unitary character of (F ∗)k+1 and µ ∈ U. If a ∈ S k

e , we denote by pa the unique
integer in {1, . . . , r0} such that P.I(a, 1)+ ⊂ Ω+

pa . Let also γj (j ∈ N∗) be the function defined in
Proposition 2.5.5.
Then for Φ ∈ S(V +) and w ∈ Iδ,µ, the zeta functions satisfy the following functional equation:

Z−
pa(FΦ,

m+ 1

2
− z, ξaδ,µ, w) =

∑
c∈S k

e

Ba,c(δ, µ)(z)Z+
pc(Φ, z +

m− 1

2
, ξcδ,µ, w),

where the functions Ba,c(δ, µ)(z) are given by

Ba,c(δ, µ)(z) = cδ,µ(a)cδ,µ(c)
−1
∑
y∈Se

(
γk((a0, . . . , ak−1), y)δk(−1)ρ̃(δk, µk − z + 1;−y)

×
k−1∏
j=1

γj((a0, . . . , aj−1), ycj)
k−1∏
j=0

δj(−1)ρ̃(δj, µj − z + 1;−ajcjy)
)
.

Moreover these functions Ba,c(δ, µ)(z) do not depend on the character of (F ∗)k+1 which defines δµ
(see Lemma 4.1.2).

Proof. Let us first show that for k ∈ K, one has F(L(k)Φ) = L(k)F(Φ).
By definition we have

F(Φ)(Y ) =

∫
V +

Φ(X)τ ◦ b(X, Y )dX, Y ∈ V −.

As the measure d∗X = dX
|∆0(X)|m is G-invariant and as |∆0(k.X)| = |∆0(X)| for k ∈ K and X ∈ V +,

the measure dX is K-invariant.
As the bilinear form b(·, ·) is G-invariant, we see that the Fourier transform on V + commutes with the
action of K:

L(k)F(Φ) = F
(
L(k)Φ), for k ∈ K.

From Theorem 4.3.8 (2) (a), we obtain

Z−
pa(FΦ,

m+ 1

2
−z, ξaδ,µ, w) = cδ,µ(a)

∑
x∈Se

∫
K

K−
(xa,x)(F

(
L(k)Φ

)
, ω(δ)♯, s(µ)♯−z+m+ 1

2
−m)w(k)dk.
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As s(µ)♯ − z + m+1
2

= (s(µ) + z − m+1
2

)♯ (see Definition 3.2.1), Theorem 3.3.3 implies that

Z−
pa(FΦ,

m+ 1

2
− z, ξaδ,µ, w) = cδ,µ(a)

∑
x∈Se

∑
c∈S k+1

e

Dk
((xa,x),c)(ω(δ), s(µ) + z − m+ 1

2
)

×
∫
K

K+
c (L(k)Φ, ω(δ), s(µ) + z − m+ 1

2
)w(k)dk, (4.4)

where the functions Dk satisfy the following induction relation:

Dk
(a,c)(ω

′, s′)

= γk(a, ck))(ω
′
0 . . . ω

′
k)(−1)ρ̃((ω′

0 . . . ω
′
k)

−1,−(s′0 + . . .+ s′k +
kd

2
);−akck)Dk−1

(a,c)(ω
′, s′).

Proposition 2.5.5 implies that γk(xa, ck) = γk(a, xck) for x ∈ Se. Then by an easy induction from
Theorem 3.3.3 we see that Dk

((xa,x),c)(ω
′, s′) = Dk

((a,1),xc)(ω
′, s′).

It follows that if we defineA(ω′, s′)(a, c) =
∑

x∈Se
Dk

((xa,x),c)(ω
′, s′) thenA(ω′, s′)(a, yc) = A(ω′, s′)(a, c)

for all y ∈ Se. Then, for f ∈ S(V +),∑
x∈Se

∑
c∈S k+1

e

Dk
((xa,x),c)(ω

′, s′)K+
c (f, ω

′, s′) =
∑

c∈S k+1
e

Ak(ω
′, s′)(a, c)K+

c (f, ω
′, s′)

=
∑
c∈S k

e

∑
x∈Se

Ak(ω
′, s′)(a, (xc, x))K+

(xc,x)(f, ω
′, s′)

=
∑
c∈S k

e

Ak(ω
′, s′)(a, (c, 1))

∑
x∈Se

K+
(xc,x)(f, ω

′, s′).

Then by Theorem 4.3.8 and the expression of Z−
pa(FΦ, m+1

2
−z, ξaδ,µ, w) given in (4.4), we obtain that

Z−
pa(FΦ,

m+ 1

2
− z, ξaδ,µ, w)

= cδ,µ(a)
∑
c∈S k

e

Ak(ω(δ), s(µ) + z − m+ 1

2
)(a, (c, 1))cδ,µ(c)

−1Z+
pc(Φ, z +

m− 1

2
, ξcδ,µ, w).

In order to prove the functional equation it remains to show that the functions

Ba,c(δ, µ)(z) = cδ,µ(a)cδ,µ(c)
−1Ak(ω(δ), s(µ) + z − m+ 1

2
)(a, (c, 1))

have the form requested in the statement.

From Theorem 3.3.3, we obtain

Dk
((xa,x),(c,1))(ω(δ), s(µ) + z − m+ 1

2
) = Dk

((a,1),(xc,x))(ω(δ), s(µ) + z − m+ 1

2
)

= γk(a, x)(ω0 . . . ωk)(−1)ρ̃((ω0 . . . ωk)
−1,−(s0 + . . .+ sk + z − m+ 1

2
+
jd

2
);−x)

×
k−1∏
j=1

γj((a0, . . . , aj−1), xcj)
k∏
j=0

(ω0 . . . ωj)(−1)ρ̃((ω0 . . . ωj)
−1,−(s0+. . .+sj+z−

m+ 1

2
+
jd

2
);−xajcj).

From Definition 4.3.3 and the definition of s(µ) we have ω0 . . . ωj = δ−1
j (if ω(δ) = (ω0, . . . , ωk)) ,

and s0 + . . .+ sj = ρj − µj . Hence

−(s0 + . . .+ sj +
jd

2
+ z − m+ 1

2
) = −(

(k − 2j)d

4
− µj +

jd

2
+ z − kd

4
− 1)

= µj − z + 1.
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Hence
Dk

((xa,x),(c,1))(ω(δ), s(µ) + z − m+ 1

2
)

= γk(a, x)δk(−1)ρ̃(δk, µk−z+1;−x)
k−1∏
j=1

γj((a0, . . . , aj−1), xcj)
k∏
j=0

δj(−1)ρ̃(δj, µj−z+1;−xajcj).

This implies the result concerning the functional equation.
It remains to show that the functions Ba,c(δ, µ)(z) do not depend on the character of (F ∗)k+1 which
defines δµ.
To see this we take Φ ∈ S(Ω+

pa). Then from the functional equation we have

Ba,c(δ, µ)(z) =
Z−
pc(FΦ, m+1

2
− z, ξcδ,µ, w)

Z+
pa(Φ, z +

m−1
2
, ξaδ,µ, w)

.

By definition (4.3.1) the zeta functions do only depend on the induction parameters.

Remark 4.3.10. Of course one can also check directly that the functions Ba,c(δ, µ)(z) do not depend
on the choice of the character δ of (F ∗)k+1 defining the character δµ of L.
If δ′ is another character (F ∗)k+1 which defines the same character δµ then, by Lemma 4.1.2, for
j ∈ {0, . . . , k}, there exists a character χj of F ∗ with values in {±1} and trivial on Se, such that
δj(x) = χj(x)δ′j(x) and

∏k
j=0 χ

j(x) = 1 for x ∈ F ∗. By definition (cf. Lemma 4.3.7), we have
cδ,µ(a) =

∏k−1
j=0 δj(aj)|aj|−(ρj−µj). Hence

cδ′,µ(a)cδ′,µ(c)
−1 =

k−1∏
j=0

χj(cj)χ
j(aj)cδ,µ(a)cδ,µ(c)

−1. (4.5)

From the definition of ρ̃ (cf. Definition 3.3.1), for a character δ̃ of F ∗, s ∈ C and b ∈ Se, we have

ρ̃(δ̃, s; b) =
1

|Se|
∑
χ∈Ŝe

χ(b)ρ(δ̃χ, s).

Then, for y ∈ Se:

ρ̃(δkχ
k, µk − z + 1;−y) = χk(−y)ρ̃(δk, µk − z + 1;−y)

and ρ̃(δjχj, µj − z + 1;−ajcjy) = χj(−yajcj)ρ̃(δj, µj − z + 1;−ajcjy).

As
∏k

j=0 χ
j(−y) = 1, relation (4.5) implies that Ba,c(δ′, µ)(z) = Ba,c(δ, µ)(z).

In the case where e = 0 or 4 we have Se = {1} and the groups G and P have a unique open orbit
in V +. We therefore omit the indices p ∈ {1} and a ∈ S k

e . Moreover, L/L ∩ H is isomorphic to
(F ∗)k+1, therefore there exists a unique character δ of (F ∗)k+1 such that δ(l) = δ(x0(l), . . . , δk(l))

for l ∈ L. Then the functional equation is scalar and has the following form.

Corollary 4.3.11. Let e = 0 or 4. Then for Φ ∈ S(V +), ξ ∈ (I∗δ,µ)
H and w ∈ Iδ,µ, we have

Z−(FΦ,
(m+ 1)

2
− z, ξ, w) = d(δ, µ, z) Z+(Φ, z +

(m− 1)

2
, ξ, w))

where d(δ, µ, z) = γτ (q)
k(k+1)

2

∏k
j=0 δj(−1)ρ(δj, µj + 1− z).



62 PASCALE HARINCK AND HUBERT RUBENTHALER

Proof. As Se = {1}, we have ρ̃(χ, s; 1) = ρ(χ, s) for all χ ∈ F̂ ∗ and s ∈ C. Also γj(1, . . . , 1) =
γτ (q)

j from Proposition 2.5.5. The Corollary is then an immediate consequence of Theorem 4.3.9.

4.4. Another version of the functional equation.
Let δ be a unitary character of (F ∗)k+1 and µ ∈ U ∩C+.
It is known from Theorem 4.3.8 that if Re(µ0) < −1 − kd

4
then Z+

p (Φ, 0, ξ
a
δ,µ, w) is defined by an

absolutely convergent integral for any Φ ∈ S(V +) and that if Re(µk) > 1+ kd
4

, then Z−
p (Ψ, 0, ξ

a
δ,µ, w)

is also defined by an absolutely convergent integral for any Ψ ∈ S(V −).
We will first describe the linear form w 7−→ Z±

p (Φ, 0, ξ
a
δ,µ, w) in terms of the duality (4.3).

Definition 4.4.1. Let δ be a unitary character of (F ∗)k+1 and let µ ∈ U∩C+. Let also p ∈ {1, . . . , r0}
and a ∈ Sp. If Φ ∈ S(V +) and Ψ ∈ S(V −), we define the two following functions of C(G,P, δ∗, µ)
(cf. (4.2)) .

- for Re(µ0) < −1− kd
4

:

Z̃+
p (Φ, πδ,µ, ξ

a
δ,µ)(g) = cδ,µ(a)

∫
V +

Φ(g−1X)Pa,+
ω(δ),s(µ)(X)d∗X =

∫
G/Hp

Φ(yI+p )P
a
δ,µ(gy)dy (g ∈ G)

- for Re(µk) > 1 + kd
4

:

Z̃−
p (Ψ, πδ,µ, ξ

a
δ,µ)(g) = cδ,µ(a)

∫
V −

Ψ(g−1X)Pa,−
ω(δ)♯,s(µ)♯

(X)d∗X =

∫
G/Hp

ψ(yI−p )P
a
δ,µ(gy)dy (g ∈ G).

(The functions Paδ,µ, Pa,+
ω(δ),s(µ) et Pa,−

ω(δ)♯,s(µ)♯
were given in Definition 4.2.4 and 4.3.5 and the second

equalities are a consequence of Lemma 4.3.7).
Note also that these functions are well defined because the Poisson kernels Pa,+

ω(δ),s(µ) and Pa,−
ω(δ)♯,s(µ)♯

are continuous for µ ∈ U∩C+ satisfying the additional conditions Re(µ0) < −1− kd
4

and Re(µk) >
1 + kd

4
respectively (see Remark 4.3.6).

Let C(K,P ∩K, δ∗) be the space of continuous functions v : K −→ C such that v(pk) = δ(p)−1v(k)

for k ∈ K and p ∈ P ∩ K. The restriction to K is an isomorphism from C(G,P, δ∗, µ) onto
C(K,P ∩K, δ∗).

Proposition 4.4.2. Let δ be a unitary character of (F ∗)k+1 and let µ ∈ U ∩ C+. Let also p ∈
{1, . . . , r0} and a ∈ Sp
1) Let φ ∈ C∞

c (G), the linear form π∗
δ,µ(φ)ξ

a
δ,µ is given (via the duality (4.3)) by the following function

in C(G,P, δ∗, µ):

π∗
δ,µ(φ)ξ

a
δ,µ(g) =

∫
G

φ(y)Paδ,µ(gy)dy, g ∈ G.

2) If Φ± ∈ C∞
c (Ω±

p ) we fix φ± ∈ C∞
c (G) such that Φ±(g.I±p ) =

∫
Hp
φ±(gh)dph for g ∈ G. Then

Z̃±
p (Φ

±, πδ,µ, ξ
a
δ,µ) = π∗

δ,µ(φ
±)ξaδ,µ.
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Proof.
1) Using Corollary 4.2.7, we obtain for v ∈ Iδ,µ:

⟨π∗
δ,µ(φ)ξ

a
δ,µ, v⟩ =

∫
G

φ(y)⟨π∗
δ,µ(y)ξ

a
δ,µ, v⟩dy =

∫
K

(

∫
G

φ(y)Paδ,µ(ky)dy)v(k)dk.

Hence the linear form π∗
δ,µ(φ)ξ

a
δ,µ is given via the duality (4.3)) by the the function g 7→

∫
G
φ(y)Paδ,µ(gy)dy.

2) We only prove the assertion for Z̃+
p (Φ, πδ,µ, ξ

a
δ,µ), the proof for Z̃−

p (Ψ, πδ,µ, ξ
a
δ,µ) is similar.

From the definition of Z̃+
p (Φ

+, πδ,µ, ξ
a
δ,µ) and from 1) we get

Z̃+
p (Φ

+, πδ,µ, ξ
a
δ,µ)(g) =

∫
G/Hp

Φ+(yI+p )P
a
δ,µ(gy)dy =

∫
G/Hp

(

∫
Hp

φ+(yh)dph)Paδ,µ(gy)dy

=

∫
G

φ+(y)Paδ,µ(gy)dy = π∗
δ,µ(φ

+)ξaδ,µ(g).

Proposition 4.4.3. Let δ be a unitary character of (F ∗)k+1 and let µ ∈ U ∩ C+. Let also p ∈
{1, . . . , r0} and a ∈ Sp
1) Let Φ± ∈ S(V ±). Then the map

µ 7→ Z̃+
p (Φ

+, πδ,µ, ξ
a
δ,µ)|K ∈ C(K,P ∩K, δ∗)

extends meromorphically from the set {µ ∈ U ∩C+;Re(µ0) < −1− kd
4
} to U,

and the map

µ 7→ Z̃−
p (Φ

−, πδ,µ, ξ
a
δ,µ)|K ∈ C(K,P ∩K, δ∗)

extends meromorphically from the set {µ ∈ U ∩C+;Re(µk) > 1 + kd
4
} to U.

2) Using the duality bracket (4.3), the linear form on Iδ,µ represented by the functions Z̃±
p (Φ, πδ,µ, ξ

a
δ,µ)

are given for w ∈ Iδ,µ, by

⟨Z̃+
p (Φ, πδ,µ, ξ

a
δ,µ), w⟩ = Z+

p (Φ, 0, ξ
a
δ,µ, w), and ⟨Z̃−

p (Ψ, πδ,µ, ξ
a
δ,µ), w⟩ = Z−

p (Ψ, 0, ξ
a
δ,µ, w).

Proof. We only prove the two assertions for Z̃+
p (Φ, πδ,µ, ξ

a
δ,µ), the proof for Z̃−

p (Ψ, πδ,µ, ξ
a
δ,µ) is similar.

1) The proof of Theorem 4.3.8 shows that

Z̃+
p (Φ, πδ,µ, ξ

a
δ,µ)(g) = cδ,µ(a)

∫
V +

Φ(g−1X)Pa,+
ω(δ),s(µ)(X)d∗X

= cδ,µ(a)
∑
x∈Se

K+
(xa,x)(L(g)Φ, ω(δ), s(µ)−m).

Considering the right hand side of the preceding equality, Theorem 3.2.3 implies that, for a fixed
g ∈ G, the map

µ 7−→ Z̃+
p (Φ, πδ,µ, ξ

a
δ,µ)(g)

is a rational function in the variables q±µj and hence extends to U as a meromorphic function. As the
map g 7→ L(g)Φ is locally constant (because the representation L on S(V +) is smooth), the function
Z̃+
p (Φ, πδ,µ, ξ

a
δ,µ) is continuous for any value of the parameter µ for which it is defined.
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Moreover as Z̃+
p (Φ, πδ,µ, ξ

a
δ,µ)(g) = cδ,µ(a)

∫
V + Φ(X)Pa,+

ω(δ),s(µ)(gX)d∗X for µ ∈ U ∩ C+ such that
Re(µ0) < −1 − kd

4
, Lemma 4.3.7 implies that this function belongs to C(G,P, δ∗, µ). This remains

true by analytic continuation.

2) Again from the proof of Theorem 4.3.8 we get:

Z+
p (Φ, z, ξ

a
δ,µ, w) = cδ,µ(a)

∑
x∈Se

∫
K

K+
(xa,x)(L(k)Φ, ω(δ), s(µ)−m)w(k)dk

=

∫
K

(cδ,µ(a)
∑
x∈Se

K+
(xa,x)(L(k)Φ, ω(δ), s(µ)−m))w(k)dk

=

∫
K

Z̃+
p (Φ, πδ,µ, ξ

a
δ,µ)(k)w(k)dk

= ⟨Z̃+
p (Φ, πδ,µ, ξ

a
δ,µ), w⟩

Consider the representation |χ0|−m⊗πδ,µ ofG on Iδ,µ given by |χ0|−m⊗πδ,µ(g)w = |χ0(g)|−mπδ,µ(g)w.
If p ∈ {1, . . . , r0}, the Hp-invariant linear forms on Iδ,µ are the same for |χ0|−m ⊗ πδ,µ and for πδ,µ
and for a ∈ Sp, we have

(|χ0|−m ⊗ πδ,µ)
∗(g)ξaδ,µ = |χ0(g)|mπ∗

δ,µ(g)ξ
a
δ,µ.

From the definition, if Φ ∈ S(V +) and w ∈ Iδ,µ, we have

Z+
p (Φ,m, ξ

a
δ,µ, w) =

∫
Ω+

p

Φ(X)|∆0(X)|m⟨π∗
δ,µ(X)ξaδ,µ, w⟩d

∗X

=

∫
Ω+

p

Φ(X)⟨(|χ0|−m ⊗ πδ,µ)
∗(X)ξaδ,µ, w⟩d

∗X.

As in Definition 4.4.1, for µ ∈ U ∩C+ such that Re(µ0) <
kd
4

and Φ ∈ S(V +), we define

Z̃+
p (Φ, |χ0|−m ⊗ πδ,µ, ξ

a
δ,µ)(g) = cδ,µ(a)

∫
V +

Φ(g−1X)|∆0(g
−1X)|mPa,+

ω(δ),s(µ)(X)d∗X. (4.6)

Then the same arguments as in the proof of Proposition 4.4.3 show that

⟨Z̃+
p (Φ, |χ0|−m ⊗ πδ,µ, ξ

a
δ,µ), w⟩ = Z+

p (Φ,m, ξ
a
δ,µ, w). (4.7)

Definition 4.4.4. Let δ be a unitary character of (F ∗)k+1 and µ ∈ U. Let ξ = (ξ1, . . . , ξr0) ∈∏r0
p=1(I

∗
δ,µ)

Hp . For Φ ∈ S(V +), Ψ ∈ S(V −), we define the following linear forms on Iδ,µ :

Z̃+(Φ, |χ0|−m ⊗ πδ,µ, ξ) =

r0∑
p=1

Z̃+
p (Φ, |χ0|−m ⊗ πδ,µ, ξp)

and also

Z̃−(Ψ, πδ,µ, ξ) =

r0∑
p=1

Z̃−
p (Ψ, πδ,µ, ξp).
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Theorem 4.4.5. (Main Theorem, version 2)

Let δ be a unitary character of (F ∗)k+1 and µ ∈ U. There exists an operatorAδ,µ ∈ End
( r0∏
p=1

(I∗δ,µ)
Hp

)
such that for all Φ ∈ S(V +) and all ξ ∈

∏r0
p=1(I

∗
δ,µ)

Hp the following functional equation is satisfied:

Z̃−(F(Φ), πδ,µ, ξ) = Z̃+(Φ, |χ0|−m ⊗ πδ,µ, A
δ,µξ).

The operator Aδ,µ is represented by a square matrix of size r0 whose coefficients Aδ,µp,q belong to

Hom
(
(I∗δ,µ)

Hq , (I∗δ,µ)
Hp

)
. In the bases (ξaδ,µ)a∈Sp and (ξcδ,µ)c∈Sq of (I∗δ,µ)

Hp and (I∗δ,µ)
Hq respectively,

the matrix of of Aδ,µp,q is given by: (
Aδ,µp,q

)
a,c

= Ba,c(δ, µ)(
m+ 1

2
),

where Ba,c(δ, µ)(z) has been defined in Theorem 4.3.9.

Proof.
Soit p ∈ {1, . . . , r0} et a ∈ Sp.
Using Proposition 4.4.3, Theorem 4.3.9 and (4.6), we obtain for w ∈ Iδ,µ:

⟨Z̃−
p (F(Φ), πδ,µ, ξ

a
δ,µ), w⟩ = Z−

p (F(Φ), 0, ξaδ,µ, w) =
∑
c∈S k

e

Ba,c(δ, µ)(
m+ 1

2
)Z+

pc(Φ,m, ξ
c
δ,µ, w)

=

r0∑
q=1

∑
c∈Sq

Ba,c(δ, µ)(
m+ 1

2
)Z+

q (Φ,m, ξ
c
δ,µ, w)

=

r0∑
q=1

∑
c∈Sq

Ba,c(δ, µ)(
m+ 1

2
)⟨Z̃+

q (Φ, χ
−m
0 ⊗ πδ,µ, ξ

c
δ,µ), w⟩

= ⟨Z̃+(Φ, |χ0|−m ⊗ πδ,µ, A
δ,µξ), w⟩.

4.5. L-functions and ε-factors.
In this section we will always suppose that e = 0 or 4. This implies that the groups G and P have
both a unique open orbit in V ± which we denote by Ω± and O± respectively.
Then Ω± ≃ G/H where H is the centralizer of I± in G.

We fix a unitary character δ = (δ0, . . . , δk) ∈ F̂ ∗k+1
and µ ∈ U. As before we denote by (πδ,µ, Iδ,µ)

the minimal spherical principal series. As e = 0 or 4, the group Se is equal to F ∗ and hence Se = {1}.
Therefore, in what follows, we will omit the indexes in this space. The space (I∗δ,µ)

H is 1-dimensional
and we fix a non zero linear form ξ in this space.

The aim of this section is to prove an analogue of ([7] Theorem 3.3.3) for the minimal spherical
principal series.

Definition 4.5.1.

(1) An Euler factor is a function L on C of the form L(s) =
1

P (q−s)
where P ∈ C[T ] is a

polynomial such that P (0) = 1.
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(2) We denote by E± the set of Eulor factors L±(z) such that for all Φ± ∈ S(V ±) and all w ∈ Iδ,µ

the quotient
Z±(Φ±, z + 1

2
(m− 1), ξ, w)

L±(z)
is a polynomial in the variables q−z and qz.

We know from Theorem 4.3.8, that there exist polynomials R±(δ, µ, z) in the variable q−z, which are
products of polynomials of the form (1− cq−Nz) (c ∈ C and N ∈ N∗) such that, for all w ∈ Iδ,µ and
for all Φ± ∈ S(V ±), the product R±(δ, µ, z)Z±(Φ±, z, ξ, w) is a polynomial in the variables q−z and
qz.

Hence E± ̸= ∅.

Lemma 4.5.2.
(1) Let L+

0 (z) = P0(q
−z)−1 ∈ E+. We denote by JP0 the set of Laurent polynomials P ∈ C[T, T−1]

such that there exists finite families (Φj)j∈J in S(V +) and (wj)j∈J in Iδ,µ such that∑
j∈J

Z+(Φj, z +
1

2
(m− 1), ξ, wj) =

P (q−z, qz)

P0(q−z)
.

Then JP0 is an ideal of C[T, T−1].
(2) Let L−

0 (z) = Q0(q
−z)−1 ∈ E−. We denote by JQ0 the set of Laurent polynomials Q ∈ C[T, T−1]

such that there exists finite families (Ψj)j∈J in S(V +) and (wj)j∈J in Iδ,µ such that∑
j∈J

Z−(Ψj, z +
1

2
(m− 1), ξ, wj) =

Q(q−z, qz)

Q0(q−z)
.

Then JQ0 is an ideal of C[T, T−1].

Proof. We only prove assertion (1), the proof of (2) is similar. As e = 0 or 4, one has χ0(G) = F ∗

([8] Theorem 3.8.8), and therefore there exists g ∈ G such |χ0(g)| = q−r (for any r ∈ Z).
Let Φ ∈ S(V +) and w ∈ Iδ,µ. Define:

Φr(X) = Φ(g−1X)|χ0(g)|−
1
2
(m−1) and wr = πδ,µ(g)w

.
As m = 1 + kd

2
in our case, we know from Theorem 4.3.8 (1)(a), that for µ = µ0λ0 + . . . + µkλk ∈

U ∩ C+ such that Re(z − µ0) > 1, the zeta function Z+(Φr, z +
1
2
(m − 1), ξ, wr) is defined by an

absolutely convergent integral. More precisely we have:

Z+(Φr, z +
1

2
(m− 1), ξ, wr) =

∫
V +

Φr(X)|∆0(X)|z+
1
2
(m−1)⟨π∗

δ,µ(X)ξ, wr⟩d∗X

=

∫
V +

Φ(g−1X)|χ0(g)|−
1
2
(m−1)|∆0(X)|z+

1
2
(m−1)⟨π∗

δ,µ(X)ξ, πδ,µ(g)w⟩d∗X

=

∫
V +

Φ(g−1X)|χ0(g)|−
1
2
(m−1)|∆0(X)|z+

1
2
(m−1)⟨π∗

δ,µ(g
−1X)ξ, w⟩d∗X

=

∫
V +

Φ(X)|χ0(g)|z|∆0(X)|z+
1
2
(m−1)⟨π∗

δ,µ(X)ξ, w⟩d∗X

= q−zrZ+(Φ, z +
1

2
(m− 1), ξ, w).

By analytic continuation we obtain the following equality of rational functions:

Z+(Φr, z +
1

2
(m− 1), ξ, wr) = q−rzZ+(Φ, z +

1

2
(m− 1), ξ, w)
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This shows that if P (T, T−1) ∈ JP0 then, for all r ∈ Z, T rP (T, T−1) ∈ JP0 . Hence JP0 is an ideal
(the fact that JP0 is stable under addition is obvious from the definition).

Proposition 4.5.3.

(1) There exist unique Euler factors L±(πδ,µ, z) (called L-functions) satisfying the two following
conditions:

(a) For all Φ± ∈ S(V ±) and w ∈ Iδ,µ, the quotients

Z±(Φ±, z + m−1
2
, ξ, w)

L±(πδ,µ, z)

are polynomials in the variables qz and q−z,

(b) There exists two finite families (Φ±
i , vi)i∈I in S(V ±)× Iδ,µ such that

∑
i∈I

Z±(Φ±
i , z +

m−1
2
, ξ, vi)

L±(πδ,µ, z)
= 1.

(2) Moreover, if L± ∈ E±, then the quotients
L±(πδ,µ, z)

L±(z)
are polynomials in q−z.

Proof.
We only prove the result for L+(πδ,µ, z). The proof for L−(πδ,µ, z) is similar.

Let L0(z) = P0(q
−z)−1 ∈ E+. From Lemma 4.5.2, the set JP0 is an ideal of the principal ideal

domain C[T, T−1]. Hence there exists a polynomial R0 ∈ C[T ] such that JP0 = R0(T )C[T, T−1] and
we can suppose that either R0 = 0 or R0(0) = 1.

We show first that R0 ̸= 0.
Let w ∈ Iδ,µ such that ⟨ξ, w⟩ ̸= 0. As w is right invariant under an open compact subgroup, there
exists an open compact neighborhood V of I+ in Ω+ such that for all X ∈ V , ⟨π∗

δ,µ(X)ξ, w⟩ =

⟨ξ, w⟩ ≠ 0. Let Φ ∈ S(V +) be the characteristic function of V . Then for all z ∈ C, we have
Z+(Φ, z + 1

2
(m− 1), ξ, w) = ⟨ξ, w⟩

∫
V |∆0(X)|z+ 1

2
(m−1)d∗X ̸= 0. Hence JP0 ̸= {0} and R0 ̸= 0.

Therefore we can take R0(0) = 1.

Let Q(T ) be the HCF of R0 and P0 normalized by the condition Q(0) = 1. There exist coprime
polynomials R1 and P1 de C[T ] such that R0 = R1Q, P0 = P1Q and P1(0) = R1(0) = 1.

If R1 ̸= 1 then R1 has a non zero root, and it exists z1 ∈ C such that

R1(q
−z1) = 0, and P1(q

−z1) ̸= 0.

In that case, for all Φ ∈ S(V +) and w ∈ Iδ,µ we would have Z+(Φ, z1 +
1
2
(m − 1), ξ, w) = 0, and

this is not possible (take for example w and Φ as above).
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Therefore R1 = 1, Q = R0 and P0 = P1R0. Hence for any P ∈ C[T, T−1], there exist finite families
(Φi)i∈I in S(V +) and (wi)i∈I in Iδ,µ such that∑

i∈I

Z+(Φi, z +
1

2
(m− 1), ξ, wi) =

R0(T )P (T, T
−1)

P0(T )
=
P (T, T−1)

P1(T )
.

Define L+(πδ,µ, z) =
1

P1(q−z)
. Then from the discussion above we see that this Euler factor satisfies

condition (1) (a). Moreover if we take P = 1 in the equation above we obtain the condition (1)(b).

If L̃ is another Euler factor satisfying conditions (1) (a) (1)(b), then
L+(πδ,µ, z)

L̃(z)
∈ C[q−z] and

L̃(z)

L+(πδ,µ, z)
∈ C[q−z]. Hence L̃(z) = L(πδ,µ, z) and the uniqueness is proved.

Let us show assertion (2). From the construction of L(πδ,µ, z) above we see that we can take L+ = L0.

Then
L(πδ,µ, z)

L0(z)
=
P0(q

−z)

P1(q−z)
= R0(q

−z).

Definition 4.5.4.
If w ∈ Iδ,µ, Φ ∈ S(V +) and Ψ ∈ S(V −), we define

Ξ+(Φ, z, ξ, w) =
Z+(Φ, z + 1

2
(m− 1), ξ, w)

L+(πδ,µ, z)
,

and

Ξ−(Ψ, z, ξ, w) =
Z−(Ψ, z + 1

2
(m− 1), ξ, w)

L−(πδ,µ, z)
.

From Proposition 4.5.3, these two functions are polynomials in q−z and qz.

If k = 0 (that is in the case of Tate’s theory) we denote by L0(δ, z) the L-function associated to the
character t 7−→ δ(t)|t|z (remember that here δ is a character of F ∗). It is given by

L0(δ, z) =

{
(1− δ(π)q−z)−1 if δ is unramified

1 if δ is ramified,
(4.8)

(see [5] (23.4.1))
We define now the ε-factor ε0(δ, z, ψ) by the equation:

δ(−1)ρ(δ−1, 1− z) = ρ(δ, z)−1 =
L0(δ

−1, 1− z)ε0(δ, z, ψ)

L0(δ, z)
, (4.9)

where Tate’s ρ function was defined in section 3.3. (This is the Definition given in ([5], §23.4 p.142),
taking into account that our ρ is the inverse of the γ function of Bushnell and Henniart).
The function ε0(z, δ, ψ) is explicitly known ([5] Theorem 23.4 p.144). It is always of the form c0q

−n0z

where c0 ∈ C and n0 ∈ Z.
Moreover we know from ([5] (23.4.2), p.142) that

ε0(δ, z, ψ) =
δ(−1)

ε0(δ−1, 1− z, ψ)
(4.10)
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Theorem 4.5.5.
(1) Let Φ ∈ S(V +) and Ψ ∈ S(V −). The functions Ξ+(Φ, z, ξ, w) and Ξ−(Ψ, z, ξ, w) satisfy the
following functional equations:

Ξ−(F(Φ), 1− z, ξ, w) = ε+(πδ,µ, z, ψ)Ξ
+(Φ, z, ξ, w),

Ξ+(F(Ψ), 1− z, ξ, w) = ε−(πδ,µ, z, ψ)Ξ
−(Ψ, z, ξ, w), ,

where

ε+(πδ,µ, z, ψ) = γψ(q)
k(k+1)

2
L+(πδ,µ, z)

L−(πδ,µ, 1− z)

k∏
j=0

L0(δj, 1− (z − µj))

L0(δ
−1
j , z − µj)

ε0(δ
−1
j , z − µj, ψ),

and

ε−(πδ,µ, z, ψ) = γψ(q)
− k(k+1)

2
L−(πδ,µ, z)

L+(πδ,µ, 1− z)

k∏
j=0

L0(δ
−1
j , 1− (µj + z))

L0(δj, µj + z)
ε0(δj, µj + z, ψ).

(2) The ε-factors ε+(πδ,µ, z, ψ) and ε−(πδ,µ, z, ψ) are monomials of the form cq−nz where c ∈ C and
n ∈ Z, and they satisfy the relation:

ε+(πδ,µ, z, ψ)ε
−(πδ,µ, 1− z, ψ) = (δ0 . . . δk)(−1).

Proof.
Let Φ ∈ S(V +). Corollary 4.3.11 implies that

Ξ−(F(Φ), 1− z, ξ, w) =
1

L−(πδ,µ, 1− z)
Z−(F(Φ), 1− z +

1

2
(m− 1), ξ, w)

=
d(δ, µ, z)

L−(πδ,µ, 1− z)
Z+(Φ, z +

1

2
(m− 1), ξ, w) = d(δ, µ, z)

L+(πδ,µ, z)

L−(πδ,µ, 1− z)
Ξ+(Φ, z, ξ, w),

where d(δ, µ, z) = γψ(q)
k(k+1)

2

∏k
j=0 δj(−1)ρ(δj, µj + 1− z). We define then

ε+(πδ,µ, z, ψ) = d(δ, µ, z)
L+(πδ,µ, z)

L−(πδ,µ, 1− z)
. (4.11)

From (4.9) and (4.10) we obtain

d(δ, µ, z) = γψ(q)
k(k+1)

2

k∏
j=0

ε0(δ
−1
j , z − µj, ψ)

L0(δj, 1− (z − µj))

L0(δ
−1
j , z − µj)

,

and this proves the first functional equation.

Let now Ψ ∈ S(V −). Applying Corollary 4.3.11 to the function Φ = F(Ψ), we get

Z−(F ◦ F(Ψ),
m+ 1

2
− z, ξ, w) = d(δ, µ, z)Z+(F(Ψ), z +

m− 1

2
, ξ, w). (4.12)

As F ◦ F(Ψ)(Y ) = Ψ(−Y ), Theorem 4.3.8 (2)(a) implies that for z ∈ C and µ ∈ U ∩C+ such that
Re(µk − z) > 0, we have:

Z−(F ◦ F(Ψ),
m+ 1

2
− z, ξ, w) =

∫
V −

Ψ(−Y )|∇0(Y )|
m+1

2
−z⟨π∗(Y )ξ, w⟩d∗Y.
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Remember that there exists an element m−1 ∈ G which acts by −1 on V + and V − and trivially on
g (cf. Definition 1.1.5). Hence m−1 is central in G and from the definition we have πδ,µ(m−1) =∏k

j=0 δj(−1)IdIδ,µ . Therefore

Z−(F ◦ F(Ψ),
m+ 1

2
− z, ξ, w) = (

k∏
j=0

δj(−1))Z−(Ψ,
m+ 1

2
− z, ξ, w). (4.13)

By analytic continuation, this equality between these two rational functions in the variables q−z and
qz remains true for all µ ∈ U. From (4.12), we get

Z+(F(Ψ), z +
m− 1

2
, ξ, w) =

(δ0 . . . δk)(−1)

d(δ, µ, z)
Z−(Ψ,

m+ 1

2
− z, ξ, w).

Making the change of variable z → 1− z, we get

Z+(F(Ψ),
m+ 1

2
− z, ξ, w) =

(δ0 . . . δk)(−1)

d(δ, µ, 1− z)
Z−(Ψ, z +

m− 1

2
, ξ, w),

and hence

Ξ+(F(Ψ), 1− z, ξ, w) =
(δ0 . . . δk)(−1)

d(δ, µ, 1− z)

L−(πδ,µ, z)

L+(πδ,µ, 1− z)
Ξ−(Ψ, z, ξ, w).

Therefore we set:

ε−(πδ,µ, z, ψ) =
(δ0 . . . δk)(−1)

d(δ, µ, 1− z)

L−(πδ,µ, z)

L+(πδ,µ, 1− z)
. (4.14)

From the knowledge of d(δ, µ, z) (Corollary 4.3.11) and (4.9), we obtain

(δ0 . . . δk)(−1)

d(δ, µ, 1− z)
= γψ(q)

− k(k+1)
2

k∏
j=0

ρ(δj, µj + z)−1

= γψ(q)
− k(k+1)

2

k∏
j=0

L0(δ
−1
j , 1− (µj + z))

L0(δj, µj + z)
ϵ0(δj, µj + z, ψ).

This gives the second functional equation and ends the proof of assertion (1).

Let Φ ∈ S(V +). Define Ψ(Y ) = F(Φ)(−Y ), then Φ = F(Ψ). From (4.13), we get

Ξ−(F(Φ), 1− z, ξ, w) = (δ0 . . . δk)(−1)Ξ−(Ψ, 1− z, ξ, w). (4.15)

Using the two functional equations and (4.15) we obtain

Ξ−(F(Φ), 1− z, ξ, w) = ε+(πδ,µ, z, ψ)Ξ
+(Φ, z, w) = ε+(πδ,µ, z, ψ)Ξ

+(F(Ψ), z, w)

= ε+(πδ,µ, z, ψ)ε
−(πδ,µ, 1− z, ψ)Ξ−(Ψ, 1− z, ξ, w)

= (δ0 . . . δk)(−1)ε+(πδ,µ, z, ψ)ε
−(πδ,µ, 1− z, ψ)Ξ−(F(Φ), 1− z, ξ, w),

which implies that
ε+(πδ,µ, z, ψ)ε

−(πδ,µ, 1− z, ψ) = (δ0 . . . δk)(−1). (4.16)

We know from Proposition 4.5.3, that there exist finite families (Φ±
i )i∈I ∈ S(V ±) and (w±

i )i∈I ∈ Iδ,µ

such that
∑

i∈I Ξ
±(Φ±

i , z, ξ, w
±
i ) = 1 and such that Ξ±(F(Φ±

i ), z, ξ, w
±
i ) are polynomials in q−z and

qz. The two preceding functional equations imply then that ε±(πδ,µ, z, ψ) are polynomials in q−z and
qz. Finally equation (4.16) implies that there are in fact monomials in q−z. This ends the proof of the
Theorem.
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Remark 4.5.6. The relation

ε+(πδ,µ, z, ψ)ε
−(πδ,µ, 1− z, ψ) = (δ0 . . . δk)(−1)

generalizes the one for GL(n, F ) (see [7] p.33 and [5] (23.4.2) p. 142)

Corollary 4.5.7. .
(1) There exists a positive integer d(δ, µ) and a polynomial Q+

δµ
(T ) =

∏d(δ,µ)
r=1 (1 − ar(δµ)T ) ∈ C[T ]

such that

L+(πδ,µ, z) =
1

Q+
δµ
(q−z)

k∏
j=0

L0(δ
−1
j , z − µj).

Then if we set Q−
δµ
(T ) =

∏d(δ,µ)
r=1 (1− ar(δµ)

−1qT ) we have also

L−(πδ,µ, z) =
1

Q−
δµ
(q−z)

k∏
j=0

L0(δj, z + µj).

(2) Let δ ∈ Ô∗
F

k+1
. There exist roots of the unit ur and rational numbers pr, pr,j ∈ Q (r =

1, . . . , d(δ, µ) and j = 0, . . . , k), such that

ar(δµ) = urq
−pr−

∑k
j=0 pr,jµj .

Proof. From the definition of Euler factor, there exist polynomials P±
δµ
(T ) ∈ C[T ] such that P±

δµ
(0) =

1 and L±(πδ,µ, z) =
1

P±
δµ
(q−z)

. Let us denote by

P+
δ,µ(T ) =

N∏
r=1

(1− arT ), and P−
δ,µ(T ) =

N ′∏
t=1

(1− btT ), (ar, bt ∈ C)

the decomposition into prime factors of these two polynomials.

As the factors ε0(δ−1
j , z − µj, ψ) and ε+(πδ,µ, z, ψ) are monomials in q−z (Theorem 4.5.5 (2)), we

obtain that there exists C ∈ C and n ∈ Z such that

Cq−nz =
L+(πδ,µ, z)

L−(πδ,µ, 1− z)

k∏
j=0

L0(δj, 1− (z − µj))

L0(δ
−1
j , z − µj)

.

Here L0(χ, s) = P0(χ, q
−s)−1 where P0(χ, T ) ∈ C[T ] and P0(χ, T ) = 1 if χ is ramified and

P0(χ, T ) = 1− χ(π)T if χ is non ramified (see (4.8)).

Then, we obtain easily

CT nP+
δµ
(T )

k∏
j=0

P0(δj, q
−1−µjT−1) = P−

δµ
(q−1T−1)

k∏
j=0

P0(δ
−1
j , qµjT ) (4.17)

And if all the δj’s are ramified, the preceding relation becomes

CT n
N∏
r=1

(1− arT ) =
N ′∏
t=1

(1− bt(qT )
−1) = T−N ′

N ′∏
t=1

(−btq−1)
N ′∏
t=1

(1− b−1
t qT ).

This implies that N = N ′ and that {a1, . . . , aN} = {qb−1
1 , . . . , qb−1

N }, and hence assertion (1) is
proved in this case by taking Q±

δµ
(T ) = P±

δµ
(T ).
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Suppose now that at least one δj is non ramified. Up to a change of the indexation of the δj’s, one can
suppose that there exists k0 ≥ 0 such that δj is non ramified for 0 ≤ j ≤ k0 and δj is ramified for
j > k0.
Equation (4.17) becomes then

P−
δµ
(q−1T−1)

∏k0
j=0(1− δ−1

j (π)qµjT ) = CT nP+
δµ
(T )

∏k0
j=0(1− δj(π)q

−1−µjT−1)

= CT n−(k0+1)
(∏k0

j=0(−δj(π)q−1−µj
)
P+
δµ
(T )

∏k0
j=0(1− δj(π)

−1q1+µjT ).

(4.18)

This shows that the polynomial
∏k0

j=0(1− δ−1
j (π)qµjT ) divides P+

δµ
(T ). We set

Q+
δµ
(T ) =

P+
δµ
(T )∏k0

j=0(1− δ−1
j (π)qµjT )

.

Relation (4.18) can now be written as

P−
δµ
(q−1T−1) = CT nQ+

δµ
(T )

k0∏
j=0

(1− δj(π)q
−1−µjT−1).

Therefore
∏k0

j=0(1− δj(π)q
−µjT ) divides P−

δµ
(T ) and we set

Q−
δµ
(T ) =

P−
δµ
(T )∏k0

j=0(1− δj(π)q−µjT )
.

Then

CT nQ+
δµ
(T ) = Q−

δµ
(q−1T−1).

As before, we obtain then the asserted form for the functions L±(πδ,µ, z).

Let us now show assertion (2).
From Theorem 3.2.3, we know that for ω ∈ Ô∗

F

k+1
, there exists a polynomial

R+(ω, s) =

d0∏
r=1

(1− q−Nr−
∑k

j=0Nr,jsj), Nr ∈ N, Nr,j ∈ N (4.19)

such that, for all Φ ∈ S(V +), the function R+(ω, s)K+(Φ, ω, s) is a polynomial is the variables qsj

and q−sj .
Remember that ω(δ) = (ω0, . . . , ωk) = (δ−1

0 , δ0δ
−1
1 , . . . , δk−1δ

−1
k ) and that s(µ) = (s0, . . . , sk) is

defined by the relations s0+ . . .+ sj =
d

4
(k− 2j)−µj (see Definition 4.3.3). Theorem 4.3.8 implies

that for Φ ∈ S(V +) w ∈ Iδ,µ and ξ ∈ (I∗δ,µ)
H , the function R+(ω(δ), s(µ) + z −m)Z+(Φ, z, ξ, w) is

a polynomial in q−z and qz.

Set P(T ) =
∏d0

r=1(1 − cr(δµ)T
Nr,0) with cr(δµ) = q−Nr+

Nr,0
2

(m+1)−
∑k

j=0Nr,jsj . Then P(q−z) =

R+(ω(δ), s(µ) + z − 1
2
(m+ 1)).

As z+ 1
2
(m− 1)−m = z− 1

2
(m+1), it is easily seen that the function L+(z) =

1

P(q−z)
is an Euler

factor in E+ (see Definition 4.5.1 (2)).

Then from Proposition 4.5.3, 2), the polynomial P+
δ,µ divides P in C[T ]. Hence, up to permutations

of the families (Nr, Nr,0, . . . , Nr,k), there exists r+0 ≤ d0, and for all r ∈ {1, . . . , r+0 }, a finite family
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U+
r of Nr,0-th root of unity such that

P+
δ,µ(T ) =

r+0∏
r=1

∏
u∈U+

r

(1− u br(δµ)T ), with br(δµ) = cr(δµ)
1/Nr,0 = q

− Nr
Nr,0

+m+1
2

−
∑k

j=0

Nr,j
Nr,0

sj
.

As s0 =
kd

4
− µ0 and sj = µj−1 − µj −

d

2
, we obtain assertion (2).

We will now describe how the ε-factors ε±(πδ,µ, z, ψ) depend on the additive character ψ.

Let a ∈ F ∗ Remember that ma is the element in G which acts by multiplication by a on V +, by
multiplication by a−1 on V − and trivially on g (Definition 1.1.5). Therefore ma is central in G. Let
µ = µ0λ0 + . . . µkλk and define ϖ(a) = (δ0 . . . δk)(a)|a|µ0+...+µk . Then πδ,µ(ma) = ϖ(a)IdIδ,µ .

Proposition 4.5.8. . Let a ∈ F ∗. Denote by ψa the character of F given by ψa(t) = ψ(at). Let
(daX, daY ) = (cadX, dadY ), with ca, da > 0, a pair of measures on (V +, V −) which are dual for
the Fourier transform Fa defined by ψa. Then cada = |a|dimV +

and

ε+(πδ,µ, z, ψ
a) =

ϖ(a)−1|a|(k+1)(m−1
2

+z)

ca
ε+(πδ,µ, z, ψ

a),

ε−(πδ,µ, z, ψ
a) = caϖ(a)|a|−(k+1)(m+1

2
−z)ε−(πδ,µ, z, ψ).

If da = ca = |a|dimV +

2 = |a|m
(k+1)

2 , the preceding formulas become

ε+(πδ,µ, z, ψ
a) = ϖ(a)−1|a|(k+1)(z− 1

2
)ε+(πδ,µ, z, ψ),

ε−(πδ,µ, z, ψ
a) = ϖ(a)|a|(k+1)(z− 1

2
)ε−(πδ,µ, z, ψ).

Proof.
From the definitions we have:

Fa(Φ)(Y ) = ca

∫
V +

Φ(X)ψ(a b(X, Y ))dX = caF(Φ)(aY ). (4.20)

It is easily seen that the measures cadX and dadY are dual for Fa if and only if

cada = |a|dimV +

.

From (4.11) and (4.14), the functions ε±(πδ,µ, z, ψ) are uniquely determined by d(δ, µ, z) which ap-
pears in the functional equation satisfied by Z±(Φ, z, ξ, w). The definition of these functions depends
on the choice of the dual measures (dX, dY ) on V + × V −. Let Za,±(Φ, z, ξ, w) be the new zeta
functions relative to (cadX, dadY ). Then Z1,±(Φ, z, ξ, w) = Z±(Φ, z, ξ, w).

Let Φ ∈ S(V +) and w ∈ Iδ,µ. Let also z ∈ C such that Re(µk − z) > 0. Then Z−(F(Φ), 1
2
(m +

1)− z, ξ, w) is given by an integral (Theorem 4.3.8 (2)(a)). Using (4.20) and the G-invariance of d∗Y
under the central element ma, we obtain:

Za,−(Fa(Φ),
m+ 1

2
− z, ξ, w) = Za,−(caF(Φ)(a ·)), m+ 1

2
− z, ξ, w)

= |a|dimV +

∫
V −

F(Φ)(m−1
a .Y )|∇0(Y )|

m+1
2

−z⟨π∗
δ,µ(Y )ξ, w⟩d∗Y

= |a|dimV +

∫
V −

F(Φ)(Y )
1

|a|(k+1)(m+1
2

−z)
|∇0(Y )|

m+1
2

−z⟨π∗
δ,µ(ma.Y )ξ, w⟩d∗Y
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= |a|dimV +

∫
V −

F(Φ)(Y )
1

|a|(k+1)(m+1
2

−z)
|∇0(Y )|

m+1
2

−z⟨π∗
δ,µ(Y )ξ, πδ,µ(m

−1
a )w⟩d∗Y

= ϖ(a)−1|a|dimV +

∫
V −

F(Φ)(Y )
1

|a|(k+1)(m+1
2

−z)
|∇0(Y )|

m+1
2

−z⟨π∗
δ,µ(Y )ξ, w⟩d∗Y

As m =
dimV +

k + 1
we have

Za,−(Fa(Φ),
m+ 1

2
− z, ξ, w) = ϖ(a)−1|a|(k+1)(m−1

2
+z)Z−(F(Φ),

m+ 1

2
− z, ξ, w).

Therefore Za,−(Fa(Φ), m+1
2

− z, ξ, w) = da(δ, µ, z)Za,+(Φ, z + m−1
2
, ξ, w) where

da(δ, µ, z) = d(δ, µ, z)
ϖ(a)−1|a|(k+1)(m−1

2
+z)

ca
,

which implies that

ε+(πδ,µ, z, ψ
a) =

ϖ(a)−1|a|(k+1)(m−1
2

+z)

ca
ε+(πδ,µ, z, ψ).

Similarly, taking again z ∈ C such that Re(µk − z) > 0, one has

Fa(Ψ)(X) = da

∫
V +

Ψ(Y )ψ(a b(X, Y ))dY = daF(Ψ)(aX)

and

Za,+(Fa(Ψ),
m+ 1

2
− z, ξ, w) = |a|dimV +

∫
V +

F(Ψ)(aX)|∆0(X)|
m+1

2
−z⟨π∗

δ,µ(X)ξ, w⟩d∗X

= |a|dimV +

∫
V +

F(Ψ)(X)|a|−(k+1)(m+1
2

−z)|∆0(X)|
m+1

2
−z⟨π∗

δ,µ(m
−1
a .X)ξ, w⟩d∗X

= |a|dimV +

ϖ(a)|a|−(k+1)(m+1
2

−z)Z+(F(Ψ),
m+ 1

2
− z, ξ, w)

If we divide both sides of the preceding identity by L(πδ,µ, 1− z) we obtain

Ξa,+(Fa(Ψ), 1− z, ξ, w) = |a|dimV +

ϖ(a)|a|−(k+1)(m+1
2

−z)Ξ+(F(Ψ), 1− z, ξ, w)

= |a|dimV +

ϖ(a)|a|−(k+1)(m+1
2

−z)ε−(πδ,µ, z, ψ)Ξ
−(Ψ, z, ξ, w)

=
1

da
|a|dimV +

ϖ(a)|a|−(k+1)(m+1
2

−z)ε−(πδ,µ, z, ψ)Ξ
a,−(Ψ, z, ξ, w).

And hence

ε−(πδ,µ, z, ψ
a) = caϖ(a)|a|−(k+1)(m+1

2
−z)ε−(πδ,µ, z, ψ).
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