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LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (II)

PASCALE HARINCK AND HUBERT RUBENTHALER

Part II:
Explicit functional equation for zeta functions attached to the minimal spherical principal series.

Abstract: In this paper we study the zeta functions associated to the minimal spherical principal
series of representations for a class of reductive p-adic symmetric spaces, which are realized as open
orbits of some prehomogeneous spaces. These symmetric spaces have been studied in the paper
arXiv: 2003.05764. We prove that the zeta functions satisfy a functional equation which is given
explicitly (see Theorem 4.3.9 and Theorem 4.4.5). Moreover, for a subclass of these spaces, we define

L-functions and s-factors associated to the representations.

AMS classification: 22E50, 11540, 43A85, 22E35.
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INTRODUCTION

In this second part we define and study the local zeta functions associated to spherical representations
for the class of symmetric spaces introduced in the first part (see [8]).

Let us first describe, formally, the general setting where this paper takes place. Let GG be a connected
reductive algebraic group over a p-adic local field F' of characteristic zero. Suppose we are given
an irreducible regular prehomogeneous vector space (G, V') defined over F' (see [15] for example)
and denote by A, the fundamental relative invariant. Then the dual representation (G, V*) is still a
prehomogeneous vector space of the same type. We denote by Aj its fundamental relative invariant.

Suppose, for sake of simplicity, only in this introduction, that (G, V') has only one open orbit ). Let
H be the isotropy subgroup of an element / € §2. Moreover, suppose that G/H ~ () is a symmetric
space corresponding to an involution ¢ of G.

Then the dual space (G, V*) has the same property. More precisely the open orbit {2* C V* contains
the element [* = %(I ) (see [15]) and the isotropy subgroup of [* is still H.

Consider now a minimal o-split parabolic subgroup P of GG (this means that P and o(P) are opposite
and that P is minimal for this property). Again for sake of simplicity, we suppose that P also has
a unique open orbit in V. It is well known (see [1]) that if x is a character of L which is trivial on
L N H, the induced representation m, = Indg(x) is generically H- distinguished (or H-spherical).
This means that for “almost all” characters x the dual space I of the space I, of m, contains a
nonzero H-invariant vector §. Therefore if w € I, the coefficient (77 (g)&, w) is right H-invariant
and hence can be considered as a function on € (or 2*). The minimal spherical series for G/ H is the
set of the representations .

Let S(V) (respectively S(V*)) be the spaces of locally constant functions with compact support on
V' (respectively V*). Let also d*X (resp. d*Y) be the G-invariant measure on V' (resp. V*). For
$ e S(V)and U € S(V*), and s € C, let us define (formally!) the following local zeta functions:

2(05,6.0) = [ SO0 (m(X)E )X,

2 sg0) = [ VNSO wd'Y

It is expected that these zeta functions can be correctly defined (via absolute convergence and mero-

morphic continuation) and that they should verify a functional of the type:

Z*<‘F((I)>7m - S,f,l[)) = /7(87X>Z((I)757£>w)7

where F : S(V) — S(V*) is the Fourier transform, m is a suitable “shift”, and (s, x) a meromor-
phic function.

The aim of this paper is to perform this program, including an explicit form of 7(s, x) in terms of
local Tate factors and Weil constants related to the Fourier transform of some quadratic characters.
This is done even in the case where GG has several open orbits, each of it being a symmetric space, for
a class of p-adic prehomogeneous vector spaces (which is essentially the class described in the first
part ([8])). See Theorem 4.3.9 and 4.4.5 below.
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Our results contain, as a particular case, the case of GL,,(F') x GL,(F) acting on the space M,,(F)
of n by n matrices, which gives rise to the Godement-Jacquet zeta function for the principal minimal
series for G L, (F).

Moreover, in the case where GG and P have a unique open orbit in V', the space of H-invariant
linear form on I, is 1-dimensional. In that case we define and prove the existence of L-functions
which describe the poles of the zeta functions Z(®, s, &, w) and Z*(V, s, &, w) for all ® € S(VT),
U e §S(V7)and w € I,. We define also the corresponding e-factors. This generalizes the results of
Godement-Jacquet for the principal minimal series for G L, (F'). See Proposition 4.5.3 and Theorem
4.5.5 below.

Let us now describe briefly the content of the paper.
e In section 1 we re-define briefly the class of commutative prehomogeneous vector spaces we are

interested in. These spaces are associated to 3-gradings of a reductive Lie algebra g of the form
g=V @go V"

which satisfy some regularity and irreducibility conditions. The facts about this objects which are
needed in the sequel are recalled from [8] . For technical reasons we also introduce a subgroup P of
the o-split parabolic P which will play an important role. The representations (P, V*) and (P, V¥)

are prehomogeneous and the open orbits are described.

e Section 2 is devoted to fix some imported tools. First of all we define the Fourier transform F :
S(V*t) — S(V7) and prove that there exists a unique pair of measures on V' x V= which are
dual for F and verify some additional compatibility condition. We also define and study the so-called
mean functions (see definition 2.3.4) which correspond, roughly speaking, to integration on an N
orbit where A is the nilradical of a o-split parabolic, non necessarily minimal. We also normalize
the measures on various subspaces of g. These normalizations are necessary to compute precisely
the factors in the final functional equations. In this section these normalizations are also needed
to compute precisely the Weil constants corresponding to some quadratic forms occurring in the
classification of the orbits (see Proposition 2.5.5).

e As said before the representations (]5, V%) are prehomogeneous and regular. But there are several
fundamental relative invariants named Ay, Ay, ..., Ag. In this situation one can classically define
zeta functions associated to this prehomogeneous space. Roughly speaking they are of the form
K(f,s) = [, F(X)|A(X)[*dX where f € S(VT), s = (so,...,s,) € CF and where |A(X)|* =
|Ag(X)]% ... |Ag(X)|**. See Definition 3.2.2. In such a situation it is known from the work of F.
Sato ([15]) that there exists a functional equation if the prehomogeneous spaces satisfies a certain
condition (A2’). In section 3 we prove that the spaces (15, V*) satisfy this condition (Theorem 3.1.3)
and compute explicitly the constants in the functional equation (Theorem 3.3.3).

e Section 4 contains the main results. The symmetric spaces G/H; (i=1,...,p) we consider are the
open G-orbits in V. Let o; be the corresponding involution of GG. The key point here is the fact that
the parabolic subgroup P defined previously is minimal o;-split for all o;. Therefore these symmetric
spaces have the same minimal spherical series.

The zeta functions associated to such representations are defined in 4.3.1 as integrals depending on

several complex parameters p; and z. We prove that they are rational functions in the variables
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g™, ¢** (q is the residual characteristic), that they satisfy a functional equation which is explicitly
computed (see Theorem 4.3.9). The main ingredient of the proofs is the work of P. Blanc and P.
Delorme ([1]) and the close relation, via the Poisson kernel, between these zeta functions associated
to representations and the zeta functions of the prehomogeneous space (P, V") studied in section 3.
We also give a second version of the main Theorem, which modulo the introduction of a operator
valued “gamma” factor, has a very simple form (see Theorem 4.4.5). Finally, in the case where G
and P have a unique open orbit si V', we define and prove the existence of L-functions e-factors

associated to these representations (Proposition 4.5.3 and Theorem 4.5.5).

Acknowledgments. We would like to express our sincere thanks to Giuseppe Ancona, Jan Denef,
Guy Rousseau, Marcus Slupinski who helped us, through discussions or mails, to improve greatly
this paper.

1. A CLASS OF COMMUTATIVE PREHOMOGENEOUS VECTOR SPACES

1.1. Notations and preliminaries.

Let F' be a p-adic field of characteristic 0, i.e. a finite extension of Q,. Moreover we will always
suppose that the residue class field k has characteristic # 2 (non dyadic case) and we let ¢ denote the
cardinal of k.

Let Or be the ring of integers of F' and denote by & the subgroup of units of F™*.

We fix a set of representatives {1,¢, 7, em} of € = F*/F*? , where ¢ is a unit which is not a square

in F* and 7 is a uniformizer of F'.

We will denote by F an algebraic closure of F'. In the sequel, if U is a F-vector space, we will set
U=U® F F.

Definition 1.1.1. Throughout this paper, a reductive Lie algebra g over F satisfying the following
three hypothesis will be called a regular graded Lie algebra:

(Hy) There exists an element Hy € g such that ad Hy defines a Z-grading of the form

g=V_aga V" (VT #{0}),

0 for X € g;
where [Hy, X] =< 2X for X e V+t
—2X forX eV—.

(Therefore, in fact, Hy € g)
(Hz) The (bracket) representation of g on V' is irreducible. (In other words, the representation
(g, V") is absolutely irreducible)
(H3) There exist IT € V™ and I~ € V'~ such that {I~, Hy, I} is an sly-triple.

Let us first recall the structure results of such algebras which were obtained in [8] and used in the rest
of the paper.

We fix a maximal split abelian Lie subalgebra a of g containing Hy. Then a is also maximal split
abelian in g. We denote by 3 and ¥ the roots system of (g, a) and (g, a) respectively.



LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (II) 5
Let H) be the coroot of \ € 3. For u € a*, we denote by g/ the subspace of weight 1 of g.

From Theorem 1.6.1, Proposition 1.7.7 and Theorem 1.8.1 in [8], we know that there exists a unique
k € N and a family of 2 by 2 strongly orthogonal roots Ao, ..., Ax in St \ X, unique modulo the
action of the Weyl group of 3, such that:

(S1) Hy= Hy,+ H), +---+ H),,

(S2) If we set a’ = EB?ZOFHA], and if for p, ¢ € Z, we define E; ;(p, ¢) to be the space of X € g

pX ifs=uq;
such that [H),, X] =< ¢X ifs=j;
0 if s ¢ {i,5}.

Then we have the following decompositions

(@) 9= 24(a") & (Bin; Fis(1,-1)) 5

(b) V"= (95-08") @ (Bic;Eiy(1,1)) 5

(c) V= (®_od ™) D (Bic;Eij(—1,-1)) .
In the rest of the paper, we fix such a family (A, ..., \x) of roots. The integer k£ + 1 is called the
rank of the graded Lie algebra g. From Proposition 1.9.3 in [8], we know that for j = 0, ...k, the

spaces g have the same dimension and also that for i # j, the spaces F; j(+1, +1) have the same

dimension.

Notation 1.1.2. In the rest of the paper we will use the following notations:

¢ =dimgh forj=0,....k
d = dim E; ;(£1, +1) fori # j € {0,...,k}
e = dim gt/ fori # j € {0,..., k} (e may be equal to 0).

From the classification of the simple graded Lie algebras ([8] §2.2), the integer / is either the square

of an integer, or equal to 3 and e € {0, 1,2, 3,4}. Moreover d — e is even.

Let € be a reductive Lie algebra. Denote by Aut(£) the group of automorphisms of £ and by Aut,(¢)
the subgroup of elementary automorphisms, that is the automorphisms which are finite products of
e*¥ where ad(z) is nilpotent on €. Define

Auty(€) = Aut(€) N Aut (E® F).
Let G = Zawy @ (Ho) = {g € Auty(g), g.Ho = Hp} be the centralizer of Hy in Auty(g).

From loc.cit., the group G is the group of F'-point of an algebraic group defined over F'. Moreover,
the Lie algebra of the group G'is gN [g,g] = [g,9] + [V, V1]

We recall also that (G, V™) is an absolutely irreducible prehomogeneous vector space, of commuta-
tive type, and regular. By ([8] Theorem 1.11.4), there exists on V' a unique (up to scalar multiplica-
tion) relative invariant polynomial Ay which is absolutely irreducible (i.e. irreducible as a polynomial
on VT). We denote by X, the character of G associated to Ay.
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Similarly , (G, V™) is a prehomogeneous vector space of the same type, whose absolutely irreducible

polynomial relative invariant is denoted by V. Its associated character is denoted by X, .

We set .
dim V
m=——-. (L.1)
deg(Ao)
Let dX (resp. dY') be arbitrary Haar measures on V' (resp. V7). As we know from ([8], proof of

Lemma 4.5.4) that detg|,, = xo(g)™ and detg| _ = xo(g)™™, it is worth noticing that

dX ay
dX =—o— andd"Y = ——F— (1.2)
[Ao(X)[™ [Vo(Y)|™
are G-invariant measures on V1 and V'~ respectively.

In this article, we will always suppose that / = 1, except in section 2 in which the results of §2.1,

kd
§2.2, §2.3 and §2.4 are valid without any condition on /. For / = 1, we have m = 1 + >

According to ([8] §1.10), we fix a non degenerate extension B of the Killing form of [g, g] to g. We

define the normalized Killing form by setting:
E+1

4 dimV+

Let X, € g* fors = 0,...k. Fori # j let us consider the quadratic form ¢y, x, on E; j(—1,—1)

defined by

b(X,Y) = B(X,Y) Xe,Yeg. (1.3)

0x,, (V) = ~ 501X, V] [X, V). (14

Definition 1.1.3. We fix sly-triples {Y,, Hy,, X}, s € {0,...,k}, with Y, € g~ and X, € g’ such
that, for i # j, the quadratic forms qx, x, are all G-equivalent (this means that there exists g € G
such that qx, x, = qx; x; © g), and such that each of the forms qx;. x, represents 1 (i.e. there exists
u € Ej;(—1,—1) such that qx, x,(u) = 1). The existence of such triples is given in ([8] Proposition
3.5.2). We set

Ge ‘= 4Xo,X1> ]+:X0++Xk7 et I"=Yy+...Y.
We normalize the polynomials Ay and YV by setting Ao(I1) = Vo(I7) = 1.

From Proposition 3.5.2 of [8] (and its proof) we know the following facts concerning ¢.:

- The quadratic form gy is hyperbolic of rank d = dimEj;(—1, —1) (sum of d/2 hyperbolic planes).
- If e # 0, the quadratic form ¢, is the sum of an anisotropic form g, . of rank e, which represents 1,
and of an hyperbolic form ¢y, 4. of rank d — e.

Setting ¢un,0 = 0, we can Write ge = Gane + Ghyp,d—e-

From Lemma 3.8.6 of [8], the form ¢,,, » represents exactly two classes of squares. As 1 is represented,
there exists another class of squares, say —a.(F*)? which is represented (here —a ¢ (F™*)? of course).
- Suppose first that @ ¢ (F*)%. Then the quadratic extension £ = F[\/a] of F is such that
Ng/p(E*) =1Im(gan,2)*, where N, p is the norm associated to E.

-If @ € (F*)?. Then we are in the case where —1 ¢ (F*)? and g, represents the two classes 1
and —1. In that case g4, 2 =~ 2?2 + y? because two anisotropic forms of rank 2 are equivalent if and

only if they represent the same two classes of squares ([8] Lemma 3.8.6) and because —1 is the sum
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of two squares ([11] Chapter VI, Corollary 2.6. p.154). In that case if we set £ = F[\/—1], we have
Ng/p(E*) = Im(qan,2)"

Hence we have shown that there exists a quadratic extension £ = F' [f] of F' (unique up to isomor-
phism) such that Ng,p(E£*) = Im(qqn2)*

Definition 1.1.4.
Define S, = {a € F*,aq. ~ q.}. Then

F* for e=0o0r4
S, = 2 for e=1or3
Ng/p(E*) = Im(qane)* for e=2.

We denote by .7, a set of representatives of F* /S, in F* | F*2.

As two hyperbolic forms of the same rank are always equivalent, we also have S, = {a € F™*, aqup . ~
Qan,e}-
The precise description of the G-orbits in V' has been given in ([8] §3). The number of orbits depends

on e and, in some cases, on k (cf. [8] Theorem 3.6.3). This is summarized as follows:

(1) If e = 0 or 4, the group G has a unique open orbit in V',
(2) ife € {1, 2, 3}, the number of open G-orbits in V™ depends on e and on the parity of :
(a) if e = 2 then G has a unique open orbit in V' if k is even and 2 open orbits if & is odd,
(b) if ¢ = 1 then G has a unique open orbit in V' if & = 0, it has 4 open orbits if k& = 1, it
has 2 open orbits if £ > 2 is even , and 5 open orbits if £ > 2 is odd .
(c) if e = 3, then G has 4 open orbits.

Let us denote by F the union of the open G-orbits VV*. Then one has:
QO ={X eV ANX)#0} and Q ={Y eV ;V,(Y) #0}.

If X € QF, there exists a unique element (X)) € Q~ such that {¢(X), Hy, X'} is an sly-triple.
From ([8] Remark after Definition 4.5.5), we know that the mapping ¢« : Q7 — Q~ is a G-equivariant

isomorphism from Q% on Q.

Definition 1.1.5. Let {y, h, x} be a sly-triple withy € V~ h € aand x € V*. Fort € F*, we define
the following elements of G

Qm(t> _ et adﬁmet—l adgyet adgz and hm (t) — ez (t)ez(—l)

By ([4] Chap. VIII, §1, Proposition 6), h,(t) acts by t" on the weight space of weight n under the
action of h.

By ([8] Lemma 1.11.3), the element h;+(+\/t) belongs to G (and even to the Levi subgroup L defined
below). It stabilizes g and acts by t.Idy+ on V. We set

my = h[+<\/¥)
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1.2. The subgroups P and P and their open orbits in V' *.
Seta’ = @g‘?:oF H,,. Consider the parabolic subgroup P of G defined as follows (see [8] §4.2):

P = LN, where L = Zg(a”) and N = expad n, n = ®o<icj<p i (1, —1).
The representations (P, V') and (P,V~) are prehomogeneous (see [8] Proposition 4.3.1). The
corresponding sets of fundamental relative invariants are respectively denoted by Ay, ..., A, and
Vo,..., Vg These polynomials are normalized by the conditions A;(IT) = V;(I7) = 1 for
J = 0,...,k Let x; and x; be the characters of P associated respectively to A; and V; pour
j=0,... k.

From ([8] Theorem 4.3.6 and Theorem 4.5.3), we know that the union O of the open P-orbits in VV*
is given by

OF={XeVHAX)#0,j=0,....,k} and O ={Y eV V,;Y)#0,j=0,...,k}.

Definition 1.2.1.

(1) As ¢ = 1 and as L centralizes a° = @?ZOF H,,, each element | € L acts by scalar multiplica-
tionon X for j =0, ..., k. Define the character x; of L by

1.X;j=z;()X;, €L
(2) The subgroups L and P are defined by
E:{ZEL;xj(l)eSe,j:O,...,k}, P:LN

Remark 1.2.2.
Define the map 7 by
T:L — (F*)kt!
I — (zo(l),...,zx(l))
From Theorem 3.8.8, Theorem 3.8.9 (1) and (2)(d), and Theorem 3.8.10 (1) and (2)(d) in [8] we can
see that
Im7 = Upcs, xS

In particular we have 7(L) = S¥*1.

Definition 1.2.3. For a = (ay, .. .,a;) € .7+, define the sets
Of(a)={X e VY A;(X)a;...a, € S,, for j=0,...,k},

and

O (a)={Y eV;V,(Y)ag...ar_j € S, for j=0,...,k}.

Lemma 1.2.4.

Remember that m, € L, x € F* is the element of L whose action on V" is the multiplication by x
(cf. Definition 1.1.5).

1) One has

L= UIE(VmeL

2) The representations (ﬁ, V*) are prehomogeneous vector spaces which have the same sets of fun-

damental relative invariants as (P,V?*),
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3) The open orbits off’ in V't (resp. V) are the sets
Ot (a) = P.I"(a), where It (a) = agXo + ... + a; X,

(respectively O (a) = P.I"(a), where I~ (a) = ay 'Yy + ... + a; ' Yz),

fora = (ag,...,a) € LFH,

Moreover; any open P-orbit in V* is given by U,c »,m,O*(a) for a = (ag, ..., ap_1,1) € SF1,

Proof.
If e = 0 or 4, we have S, = F* and hence ./, = {1} and P = P. Then Theorem 4.3.6 and Theorem
4.5.3 in [8] imply the result.

Suppose now that e € {1,2,3}. This implies k£ > 1.

Using Theorem 3.8.8, Theorem 3.8.9 (1) et (2)(d), and Theorem 3.8.10 (1) et (2)(d) in [8] , we know
that two diagonal elements agXg + ... + ap Xy and by Xg + . .. + by X are L-conjugated if and only
if there exists € ./, such that za;b; € S, forall j =0, ..., k.

Ifl € L, then I.I" = xo(1) X + ... + 24x(1) X). Hence there exists x € .7, such that zz;(l) € S, for
all j = 0,..., k. Therefore m,l € L, this proves assertion 1).

As P/ P is a finite group, assertion 2) is true.

Let us now show assertion 3). Let a = (aq, ..., ax) € 478’““. From Theorem 4.3.2 in [8], we have for
le Landn € N:

k
Aj(In.(apXo + ... +apXy)) = Ha:s(l)as.
s=j

Asxi(l) € S, fors =0, ..., k, we obtain from the definition of O (ay, . . ., a;) that p.(aoXo +...+
aka) - O+(a0, e ,CLk).

Conversely, let Z € O (ay, . . ., a;). From Lemma 4.3.3 in [8], there exists n € N et z, ...z in F*
such that n.Z = 2, Xy + - - - + 2, X. From the definition of O (ay, ..., a;) (and as F'*? C S.), there
exist 1; € S, such that z; = a;u; forj =0,... k.

From Remark 1.2.2 there exists | € L such that zi(l) = uj_l for j = 0,...,k. Then we have
In.Z = apXg+ ...+ ap X, and hence

O*(ag, ..., a;) = P.I"(a).

The proof concerning the open P-orbits in V'~ is similar. And the last assertion is a consequence of
the description of the P-orbits in V* given in ([8] Theorem 4.3.6 and Theorem 4.5.3). a

2. MEAN FUNCTIONS AND WEIL FORMULA

Except for the last section §2.5 which is only valid for ¢ = 1, the results of this paragraph are valid for
any regular graded algebra (see Definition 1.1.1). Hence / is either the square of an integer, or { = 3
(Notation 1.1.2).
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2.1. A class of parabolic subgroups.

Letus fix p € {0,...,k — 1} and define the following elements:

p p p
+ _ p71 _ - —
i=0 i=0 i=0
and
k k Kk
+ J— p72 _ - N
i=p+1 i=p+1 i=p+1
Hence we have

Hy=HY'+H}?, and [ =1, +1I,

D,2>

and {1, HY I} is an sly-triple, for j = 1, 2.
Forafixedp € {0,1,...,k} and i, j € Z we define the following spaces:
Ky (i,7) = {X € g, [H;,, X] =X, [Hf,, X] = jX}.

The same way as in ([8] Theorem 1.8.1) one shows that K,(¢, j) # {0} = || + |j] < 2.

More precisely one obtains the following decompositions:

Vo = Ky(—2,0)® Ky(—1,-1) ® K,(0, —-2),

g = K,(1,-1)® K,(0,0) ® K,(—1,1),

Vt = K,(2,0)® K,(1,1) & K,(0,2).
Hence there are four new regular prehomogeneous vector spaces (corresponding to graded algebras) at
hand. Namely (/,(0,0), K,(2,0)), (£,(0,0), K,(0,2)), (K,(0,0), K,(—2,0)), (K,(0,0), K,(0, —2)).
For further use we need to make explicit the fundamental relative invariants corresponding to these
spaces.
The graded Lie algebra [; = g~ @ [§7%, §V] @ gV satisfies also the conditions of Definition 1.1.1.
We denote by « the common degree of the corresponding relative invariants (see [8], section 1.13).

More precisely k = § if ¢ = 6> and k = 2if £ = 3.

Definition 2.1.1.

Letp =0,...,k—1. From the definition in ([8] §1.14 and §4.5) the fundamental relative invariant of
(K,(0,0), K,(0,2)) is Apyq whose degree is k(k+1—(p+1)) = k(k—p). Similarly the fundamental
relative invariant of (K,(0,0), K,(—2,0) is Vi_, whose degree is k(k +1 — (k —p)) = k(p + 1).
We denote by ﬁk_p the fundamental relative invariant of (K,(0,0), K,(2,0)) whose degree is (k +
1~ (k—p)) = slp+ 1)

We denote by V.1 the fundamental relative invariant of (K,(0,0), K,(0, —2)) whose degree is r(k+
1—(p+1))=r(k—p) N

It is easy to see from the definitions that the polynomials A, (p = 0, ...,k — 1) are the fundamental
relative invariants of the prehomogeneous vector space (P~, V) where P~ is the parabolic subgroup
opposite to P. Also the polynomials §p (p=0,...,k—1)are the fundamental relative invariants of

the prehomogeneous vector space (P, V™).

Lemma 2.1.2. The representations (K,(0,0), K,(2,0)) and (K,(0,0), K,(0,2)) are absolutely irre-
ducible.
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Proof. Recall that we denote by F the algebraic closure of Fand for any F-vector space U, we define
U=U® F F

The space m contains the highest weight vector of 1+ (for the action of g). Let v; be such a
non zero vector. Of course v; is also a highest weight vector for the action of W. Suppose that
W is reducible under the action of m. Then it would exist a second highest weight vector
vy for this action. Let us examine how these vectors move under the action of 7 (= the sum of the

negative root spaces in g). One has

7 =Ky, —1)®E,0,0) .

The action of K,(1,—1) on K,(0,2) is as follows:

adKp(1,—1) adKp(1,—1

v € Kp(0,2) Y Ay etV K@)

N

On the other hand the action of K,(0,0) stabilizes K,,(0, 2)

—————— adK,(0,0)

V1, V9 € Kp(0,2> — Kp(O,Q)

Let U(K,(0,0)) be the enveloping algebra of K,(0,0). As K,(0, 2) is supposed to be reducible under
K,(0,0) we obtain

Vl = U(Kp(oa 0))U1 - KP(O’ 2)'

As V+ is irreducible under g we should have:

VF = UK, (T, —1)U(K,(0,0))v,
= UK, 1) c Vi@ K,(1,1) ® K,(2,0) C K,(0,2) & K,(1,1) ® K,(2,0) = V.

But this is not possible as V; C K,,(0,2).
As K,(2,0) contains a lowest weight vector of the representation (g, V+), the proof for K,(2,0) is
analogue. O

It is worth noticing that from the preceding Lemma 2.1.2 and from Proposition 1.5.2 in [8] the Lie
algebras K,(—2,0) & [K,(2,0), K,(—2,0)] & K,(2,0) and K,(0,—-2) & [K,(0,2), K,(0,—2)] &
K,(0,2) are absolutely simple.

Letus fix p € {0,1, ..., k}. Consider now the maximal parabolic subalgebra of g given by

pp = ZQ(H(},p) > KP<17 _1) - Zg<Hg,p> D KP(17 _1) = ZG(F‘H(%,p D FHg,p) D KP(L _1)
= Kp(07 O) S KP(L _1)

(As Hy = Hg, + Hj, and as g = Z5(H,), we get Z,(H; ) = Z4(Hj,) = Z4(F.Hy,, ® F.Hj,).)
The maximal parabolic subgroup P, corresponding to p,, is now defined as follows. Define first:
N, = exp adK,(1,—1)
L,=Zq(F.Hy,® F.H;,) = Zxug (F.Hy, ® F.HS ) = Zo(F.H;,) = Zo(F.Hj ).

Then
Pp = Lpr
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The Lie algebra of L, is K,(0,0), the Lie algebra of N, is K,(1, —1) and hence the Lie algebra of P,
is K,(0,0) & K,(1,—1).

2.2. Fourier transform and normalization of measures.

We will, in the sequel of this paragraph, normalize the Haar measures such that there is no constant
appearing in some integral formulas occurring later, in particular in Theorem 2.3.3 and Theorem
2.4.2. We use here the same method as in ([2] chap. 4) and in ([12] §3.2). For the convenience of the
reader we give some details.

Remember that we use the normalized Fourier Killing form b(-, -) defined by

k+1 =~ .

Using b the space V ~ is identified with the dual space V", and the natural action of g € G on V'~

b(X,Y) =

corresponds to the dual action of g on V7.
We fix once and for all a non trivial additive character 1) of F'. Consider Haar measures d.X and dY

on V' and V™ respectively.

Definition 2.2.1. The Fourier transform f € S(V7) is the function F(f) € S(V~) defined by
FHY) = - FX)PBX,Y))dX, Y eV,

and the inverse Fourier transform of g € S(V ™) is the function F(g) € S(V*) defined by

FX) = [ B TNAY. X eV,

Using the same character 1 and the same form b, we define similarly:

- Fourier transforms Fy o anf Fo o between S(K,(2,0)) and S(K,(—2,0)),
- Fourier transforms Fy 5 anf Fo 5 between S(K,(0,2)) and S(K,(0, —2)),

- Fourier transforms JF 1 anf F1 1 between S(K,(1,1)) and S(K,(—1, 1)),

- Fourier transforms F_y 1 anf F _1 1 between S(K,(—1,1)) and S(K,(1,—1)).

It is well known that there exists a pair of Haar measures (dX,dY’) on V™ and V'~ respectively wich
are so-called dual for F. This means that F o F = [ ds(v+). Moreover if such a pair (dX,dY") of
dual measures is given, any other pair of dual measures is of the form (adX, idY), with a € RT.

Let us indicate one way to construct such dual measures. Define the Fourier transform on F' by
Fih(y) = / h(x)b(ay)de, he S(F), Fh € S(F),
F

and fix once and for all a self-dual measure (for F;) dx on F'.
Let us choose a basis (e1, ..., e,) of VT which contains a base of each root space contained in V.
Consider the dual base (e7,...,e;) of V™~ (i.e b(e;, €j) = d;;). Denote by X = > " wje; (resp.

Y = Z;‘:l y;e;) a general element in VT (resp. in V™) and define the measures
le = d.fl:l . dl’n d1Y = dy1 . dyn,

where dx;, dy; are copies of du.
Then the measures d; X, d,Y are dual for 7. Let us denote by ¢ the bijective map from QF to 2™,
defined for X € QT by the fact that (.(X), Hy, X) is an sly-triple. This map is clearly G-equivariant:
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1(9.X) = g.o(X) for X € Q* and g € G. Moreover this map can also be defined as a map from Q-+
onto 2, which is G-equivariant, where G is the group which is defined the same way as G, but for
the extended grading of g.

It is worth noticing that similarly one can consider maps still denoted by ¢ from K,(2,0)" onto
K,(—2,0)" and from K,(0,2)" onto K,(0, —2)" defined by the conditions that (:(u), HY"', u) and
(v(v), HY? v) are sly-triples (u € K,(2,0), v € K,(0,2)).

We then normalize the various relative invariants by the conditions:

1
Vo(u(X)) = forall X € QF,

Ap(X)
Vi—p(t(u)) = ; forall u € K,(2,0),
Ap—p(u)
_ 1
Vor1(t(v)) = forall v € K,(0,2).
P+1< ( )) Ap+1(7}) p( )

It is easy to see, due to the G-equivariance and the Zg(F Hg’l + FHY ’2)—equivariance, that these
conditions are equivalent to the same equalities holding only for fixed elements X, u, v.
We will also impose the conditions:

Aot +v) = Ap_p(u) Ay (v) forallu € K,(2,0), ve Kp(0,2),
Vo(t! 4 v') = Vi_p(t/)V,pir (v) forall v’ € K,(—2,0), v’ € Kp(0,—2).
Let (Y, Hy, X) be an sl,-triple with X € V*, Y € V~. Recall from Definition 1.1.5 that we have set
fort € F*
1 1 1
Ox(t) = exp(tadX) exp(zadY) exp(tadX) = exp(;adY) exp(tadX) exp(;adY),
and 0x = 6x(—1). Then
Ox(X) = (—=1)*Y =Y, 0x(Y) = (-1)2X, 0x(Hy) = — H.

Moreover 63 acts by (—1)" on the weight r space for any finite dimensional module. Hence 0 is an
involution of g. Is is also easy to see that for g € G and X € QF we have O,x = gOxg™ "

The restriction 6 x|, 1s a linear map from V* to V. From the preceding identity one obtains

det(QgX|V+) = (detg|v_)det(@x‘w)(detg_l‘w) = (detg|v_)2det(9x‘v+).

Hence det(fx) , ) is a relative invariant whose character is (detg) _)*. As we know ([2], p.95) that

dimV+t _ dimV*
deg(Ao) — k(k+1)°

det(fx) . ) = cAo(X)™>™. .1)

detg),_ = xo(g)™"™, where m = we get that there exists ¢ € F™* such that

Fix X, € QF, and remark that g0y, € G. Then

Vo(bx,(9X)) = Vo(Ox,90%,0x,(X)) = X0 (Ox,90%.) Vo(Ox, (X))

Therefore the map X — V(fx,(X)) is a polynomial relative invariant with the same degree as V,
(hence the same degree as Ag). Thus V(0x,(X)) = alAy(X) with a« € F*. Replacing X by X,
and using the normalization above we obtain

1

alo(Xo) = Vo(bx,(Xo)) = Vo(u(Xo)) = Ag(Xo)'
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1
Hence « = ——— and
Ag(X)? 0
Ag(X
Ox, (X)) = ——= (X €Qh). 2.2
Volbx,(X)) = o (X €9) 22)
Proposition 2.2.2.

There exists a unique pair of Haar measures (dX,dY ) on V't x V'~ such that
1)FoF = Idsgy+y (in other words the measures are dual for F)
2)Vf e LY(V™)and VX, € QF

/V+ F(0x,(X))dX = [Ag(Xo) " . f(Y)ay. (2.3)

In fact if the identity (2.3) is true for one fixed X, then it holds for all.

Moreover if d* X = ﬁ and d*Y = % denote the corresponding G-invariant measures on

VT and V™ respectively, we have for ¥ € L'(Q~,d*Y) and ® € L'(QF, d*X):

[ v conax -

(Y)Y and / (B, (Y)Y = / B(X)d"X.

0- ot

Proof.

Let us start with the pair of dual Haar measures (d; X, d;Y") described before. Suppose that (dX, dY")
is a couple of Haar measures satisfying the condition 1). Then there exists A € R** such that
dX = A\d, X and dY = ;d,Y. We make the change of variable Y = x,(X) in the left hand side of

2). From the definition of d; X and d,Y we get d;Y = |det(0XO|V+)|d1X. Hence

1
- f(O0x,(X))dX = - J(Ox,(X))Ad1 X = - f(y)—|det(9X0|V+)|/\d1Y
1 2 _ )\2 2m
= / f(”m)\ dY = H|A0(Xo)| /v f(Y)dY),

where the last equality comes from (2.1).

Therefore if we take A = /[c| = |det(9X0|v+)|% |Ao(Xo)[*™ we have proved the first part of the
statement. And the fact that ¢ does not depend on X, implies that if (2.3) holds for one X, then it
holds for all.

Using (2.2) and 2) we obtain:

e X
| vosonex = [ s 00) 5 Gm

dX
— 180(Xo) | [ (b, ()
ve 0 Ve (X))
= / U(Y)d.
Setting ¢ = U o fx, in this identity, we obtain the last assertion. O

Proposition 2.2.3.
Fix Xo € Q" and let Yy = 1(Xy). Define H = Z5(Xy) = Z¢(Yy). One defines two G-invariant
measures dy g and dsg on G/ H by setting for & € S(G.Xy) and V € S(G.Yy)

/ O(X)d* X = ®(g.Xo)drg and / \IJ(Y)d*Y:/ U(g.Yp)dag.
G.Xo G/H G.Yo G/H
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Then dlg = dgg

Proof.

From the last assertion of Proposition 2.2.2 we obtain

fG/H (9-Xo)drg = fQ+ X)d"'X = fo (0x,(Y))dY = fG/H ®(0x,(9-Y0))d2g

= fG/H (0x,90x,0x,(Y0))d2g = fG/H (9-Xo)dag

(The last equality is obtained by taking into account that the conjugation g — 0x,g0x, is an involu-

tion of G which stabilizes H, so we make the change of variable g = 0x,g0x,). O

Definition 2.2.4. We will denote by dg the G-invariant measure appearing in Proposition 2.2.3.

Proposition 2.2.5.
Let o be an involution of § such that o(Hy) = —Hy. We also suppose that there exists Xo € V' such
that (0(Xy), Hy, Xo) is an sly-triple. Then for V € L*(Q2~,d*Y") we have
/ U(o(X))d"X = U(Y)d'Y.
ot Q-
Proof.
One should note that if o is such an involution, then o(g) = g and o(V ) = V~. From Proposition
2.2.2 we obtain
/ U(o(X))d"X = Vo obx,(0x,(X))d" X = U(o0x,(Y))d"Y.
o+ ot Q-
It is easy to see that if we set Yy = 0(X() we have

x, 00 = 0 0 exp(—ad(Yp)) exp(—ad(Xo)) exp(—ad(¥y)) = o 0 bx,.

Therefore o o fx, is an involution preserving VV~. Hence if we make the change of variable Y =

00x,(Y) we obtain the assertion. O

Proposition 2.2.6.
Remember that for X € Q7, the element «(X) € Q is defined by the fact that (.(X), Hy, X) is an
sly-triple. For U € L' (27, d*Y") we have

/\IJ(L(X))d*X: (Y)dY.
Qt V-

Proof.

Let QT = U2, Q0 be the decomposition of 2 into open G-orbits. Let ; = +(Q;"). Take X; € QF
and define Y; = «(X;) € Q. Define also H; = Z¢(X;) = Z4(Y;). Itis enough to prove the assertion
for ¥ € S (Q ). Using Proposmon 2.2.3 we obtain:

fm Nd"X = fG/H ((gX:))dg = fG/Hi gu(X))dg = fc;/m V(gY:)dg = fg; U(Y)dy.
D
We now consider the subset (e;,, ..., e; ) of (e1,...,e,) which is a basis of K,(1, 1) (see the discus-

sion after definition 2.2.1). Then (e} e; ) is the dual basis of K,(—1,—1) with respect to the
form b. If dyw and dyw' are the Haar measures on K,(1,1) and K,(—1, —1) respectively, defined

7/17.“’
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through the preceding basis and the choice of a self dual measure on F', then these measures are dual
for ./—'.171.

Proposition 2.2.7.

There exists a unique pair of Haar measures (dw, dw') on K,(1,1) x K,(—1, —1) such that
1) ?171 oFi1= de(Kp(l,l) (in other words the measures are dual for Fi 1)

2) Vg € L'(K,(1,1)) and Vu € K,(2,0)" and Vv € K,(0,2)’

dim(Kp(1,1)) __ dim(Kp(1,1))
/ 9(Ouro(w))dw = [Api(v)] =Erer) [Ay_p ()] = Enr) / g(w)dw'.
Kp(1,1) Kp(=1,-1)

As 9u+U‘QK = Idg,(~1,-1) it is easy to see that condition 2) is equivalent to the following condition
2').
2VVf e LYKy(—1,-1)) and Vu € K,(2,0) and Vv € K,(0,2)’

N dim(Kp(1,1))

dim(Kp(1,1)) g
[ e = 18,00 FE B @) S [ o)
Kp(lvl) Kp(_lv_l)

Proof.
For u,v as in 2), the map 6, is a linear isomorphism from /,(1,1) onto K,(—1,—1) and for
g € Zo(FHY' + FHY?) we have:

det(eg(uﬂ,) ) = det(g|Kp(—1,—1) )Zdet(9”+”\1{p(1,1) )

lrp1,1)

Therefore det(Quﬂle(m) is a relative invariant of the prehomogeneous vector space (K,(0,0), K,(2,0)&®
K,(0,2). Hence there exist ¢ € [™* and «, 5 € Z such that

det(Butop,, \,)) = A p (W) Ay (). (2.4)
For t1,t, € F, let us consider the element gy = h,(t1)h,(t2) € ZG(FH(’;’1 + FHé”Z) (see Definition
1.1.5). This element acts by 5 't; ' on K,(—1,—1), by £? on K,,(2,0) and by 2 on K,(0,2) Hence

—2dim Kp(—1,—-1) ,—2dim K, (—1,—-1
det(QO\Kp(,l,,l>)2:t2 im Kp( )tl im K ( )

But from (2.4) above we also have:

20 deg Ag_,p ,28deg A 41

det(6 =ct Pt P det(6 .

( 90(“+“)|Kp(1,1)) 1 2 ( (“'H’)\Kp(l,n)
dim K, (1,1 dim K, (1,1

Therefore o = — 32 EeLD - 44 g = —dmELD Hepce
deg Ap_p deg Apy1
. _ dim Kp(1,1) dim Kp(1,1)
_ deg Ay _ T Tdeg A
det(0u+U|Kp(l,1)) - CAkJ—p(“z) 82k _p AP+1(U) ©8 Sp+1 | (25)

Let us start with the pair of dual Haar measures (d;w, dyw’) described before. Suppose that (dw, dw'’)
is a couple of Haar measures satisfying the condition 1). Then there exists A € R*' such that
dw = Adyw and dw' = $d,w’. We make the change of variable w’ = 6,,,.,(w) in the left hand side of
2). From the definition of d;w and dyw’ we get djw’ = |det(9u+v|Kp(l’1))|d1w. Hence
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1
| euawnde = [ g = [ ) Adi
Kp(1,1) Kp(1,1) Kp(—1,-1) ]det(&wv‘Kp(mJ
1
— g(w/> /\2de
/1(,,(—1,—1) |det(9u+v\Kp(1’1>)|
)\2 dim Kp(1,1) dim Kp(1,1)

= _‘zkfp(u” des Bep ‘Aerl(U)’ ot / g(w’)dw'7
| Kp(—1,—1)

where the last equality comes from (2.5). Therefore if we take A = 4/|c| the result is proved.

As above we consider Haar measures d; A and d; A’ on K,,(—1,1) and K,(1, —1) respectively, which
are dual for F_; ; (see Definition 2.2.1). These measures are defined through the choice of a basis of
K,(—1,1) C V™, the dual basis of K,(1,—1) C V~ (via the form b) and the choice of a self dual
measure on F'.

Proposition 2.2.8.

There exists a unique pair of Haar measures (dA,dA’) on K,(—1,1) x K,(1, —1) such that
1) 7"_1,1 o F_11 = Ids(k,(-1,1) (in other words the measures are dual for F_, 1)

2) Vg € LY(K,(1,-1)) and Vu € K,(2,0)" and Vv € K,(0,2)

dim(Kp(l,—1)) __ _ dim(Kp(1,-1))
/ 9(Ouro(A)dA = [Apr (0)| 5B A (u)| k) / g(A)dA'
Kp(—1,1) Kp(1,-1)

As QU+UI2K o = Idg,(—1,1) it is easy to see that condition is equivalent to the following condition
p(—1,

2.
2VVf e LYK,(—1,1)) and Vu € K,(2,0)" and Vv € K,(0,2)

dim(Kp(1,-1) _ dim(Kp(1,-1))
[ A =@ T By S [ (G (a)dA
Kp(—l,l) Kp(l,—l)

Proof.
The proof is almost the same as for the preceding Proposition. The only change comes from the fact
that the element gy = h,(t1)h,(t2) acts by 15! on K,(1, —1). O

Remark 2.2.9. It is clear that Proposition 2.2.2 applies to the graded algebras K,(—2,0)® K,(0,0)®
K,(2,0) and K,(0, —2) & K,(0,0) & K,(0, 2).

Therefore there exists a unique pair of measures (du, du') on K,(2,0) x K,(—2,0) such that

1) These measures are dual for the Fourier transform F; o between S(K,(2,0)) and S(K,(—2,0)),
2)Vf € LMK, (—2,0) and Yug € K,(2,0)

N 2dim Kp(2.0)
[ futtu= ) = [ s
Kp(2,0) K,(—2,0)

Similarly there exists a unique pair of measures (dv, dv’) on K,(0,2) x K,(0, —2) such that
1) These measures are dual for the Fourier transform F; » between S(/K,(0,2)) and S(K,(0, —2))
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2)Vf € L'(K,(0,—2) and Vuy € K,(0,2)
[ o) = 8yl S [ fa
Kp(0,2) Kp(0,—2)

Definition 2.2.10. Normalization of the measures

From now on we will always make the following choice of measures:

a) On V' x V7~ we take the measures (dX,dY") which were defined in Proposition 2.2.2.

b) On K,(2,0) x K,(—2,0) and on K,(0,2) x K,(0, —2) respectively, we take the pairs measures
(du, du’) and (dv, dv") which were defined in Remark 2.2.9.

c) On K,(1,1) x K,(—1, —1) we take the pair of measures (dw, dw") which were defined in Propo-
sition 2.2.7.

d) On K,(—1,1) x K,(1,—1) we take the pair of measures (dA,dA’) which were defined in Propo-
sition 2.2.8.

Proposition 2.2.11.
a) dX = dudvdw
b)dY = du/dv'dw’

Proof.

Define dX = dudvdw and dY = du'dv'dw’. It is now enough to prove that the pair (dX,dY’)
satisfies the two conditions of Proposition 2.2.2.

1) It is clear from the definitions that the measures d.X, dY are dual for F.

D)Let f € S(V*1),up € K,(2,0),v9 € K,(0,2)". Then we have, using Remark 2.2.9 and Proposition
2.2.7:

J(Ougtvo (u+ v+ w))dudvdw = / J(Ouo (1) 4 0o (V) + Oug v (W) ) dudvdw
v+

V+~ 2dim Kp(2,0)+dim Kp(1,1) 2dim Kp(0,2)+dim Kp(1,1)
= Riplue)l R [Apa(w)| T A F o+ ) dv'duw
V-

From Proposition 1.9.5 p.26 in [8] we know that dim V™ = (k + 1)(¢ + &), dim K,,(2,0) = (p +

1)(€+ 2, dim K,(0,2) = (k—p) (¢ + W). Moreover as K,(1,1) = Go<i<ppri<j<iEij(1, 1),

we obtain that dim K,(1,1) = (p + 1)(k — p)d. We also have deg A,_, = r(p+ 1) and deg A, =
k(k — p). A simple calculation shows then that

2dim 16,(2,0) + dim K (1,1) _ 2dim £,(0,2) + dim 5, (1,1) _ 2, Fd

deg Ay, deg Apiq K 2

) =2m.
Finally we get

F(Bug v (u + v+ w))dudvdw = | Ag(ug + vg)|*™ fu' 4+ 0"+ w')du'dv'dw’
v V-

2.3. Mean functions.

We will first define the mean functions 7 (u,v) (u € K,(2,0),v € K,(0,2)) and T; (u',v") (u' €
K,(-2,0),v € K,(0,—2)) which were introduced by I. Muller ([12] Definition 4.3.1 p. 83) and used
in the real case by N. Bopp and H. Rubenthaler ([2] p.104).
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Let us denote K,(£2,0)" and K,(0,+2)’ the sets of generic elements in /,(£2,0) and K,(0, £2),
respectively (as (L,, K,(£2,0)) and (L,, K,(0, £2)) are prehomogeneous, the notion of generic ele-

ment is clear).

In the rest of the section we adopt the following convention concerning the variables:
u e Ky(2,0),v € Ky(0,2), v € K,(—2,0), v € K,(0,-2), A € K,(—-1,1), A € K,(1,-1),
we Ky(l,1),w e K,(-1,-1), X eVt Y eV.

Lemma 2.3.1.
There exist positive constants o, 3, and d which depend on the choice of Lebesgue measures on the

different spaces such that the following assertions hold.
1) If v € K,(0,2), then forall f € L*(K,(1,1)) one has :

dim Kp(1,—1)
/ fw)dw = a|Ayi(v)]| =2+ / F([A v])dA'.
Kp(1,1) Kp(1,-1)

2)Ifv € K,(0,2), then forall g € L'(K,(—1,1)) one has :

dim Kp(1,—1)
/ G(A)IA = B Ay er (v)] 5oris / o[, v])du
Kp(—l,l) Kp(—l,—l)

3)Ifu' € K,(—2,0), thenforall f € L'(K,(—1,—1)) one has :
dim Kp(1,—1)
| =V S [ aaaa
Kp(—=1,—1) Kyp(1,-1)
4)Ifu' € K,(—2,0), then forall g € L'(K,(—1,1)) one has :

dim Kp(1,—1)
/ 9(A)dA = 0|V —p(u)] = Vr / 9([w, u])dw.
Ky(—1,1) Kp(1,1)
(Remember that dim K,(1, —1) = dim K,(—1,1) = dim K,(1,1) = dim K,(—1,—1)).

Proof. :
We only prove assertion 1). The proofs of 2), 3) and 4) are similar.
If v € K,(0,2)" the map :

ad(v) : K,(1, —1) — K,(1,1)

is an isomorphism (classical result for sly-modules). Therefore there exists a non zero positive con-
stant «(v) such that

/Kp(l,l) Jw)dw = a(v)/ (A v])dA

Ky(1,-1)

On the other hand the subspace K,(1, —1) is stable under L,. This implies that there exists a character
X, of L, such that for F € L'(K,(1,—1)) and g € L,, one has:

/ F(gA)dA = yi(g) / F(A)dA
Kp(l,—l)

Kp(1,-1)
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Moreover, the set K,(0,2)’ is also L,-invariant. Hence:
[ fwde = age) [ g
Kp(1,1) Kp(1,-1)

= a(gv)/ flglg™ A v))d A’

K,(1,-1)

= algv)x; ' (9) / f(glA” v])dA’

Ky(1,-1)

1 1
= algv)x; (g)a(v>/K f(gw)dw.

But there is also a character x, of L, such that
/ flgw)dw = x, (9)/ flw)dw.
Kp(1,1) Kp(1,1)
Hence
a(gv) = X, (9)x.(9) " e (v).
This means that o(v) is a positive relative invariant on K, (0, 2) under the action of L,,, hence there
existn € Z and o € R*" such that

o(v) = al Ay (0)]",

To compute n, let us take g = h+ (¢) as defined in Definition 1.1.5. Then gv = t?v.
P,

Thus, we have

[ fwde = e [ g

P(L_l)

= at?v) (A, t20])d A’
Kp(1,-1)
= ot?v) f([PA, v])dA
Kp(1,-1)
— a(t2v)t72dim(Kp(1,fl)) f([A/, U])dA/
Kp(1,-1)

Hence o(t?v) = t249™(K»(1.=1) o (1)), We obtain then:

Al At (P0)]" = abm B A A, L ()] = a2 IS0 A (o)
dim Kp(1,—1)

Therefore n = %&:1) and a(v) = a| Ay (v)] *E5pe

This ends the proof of assertion 1).

Proposition 2.3.2.
If the measures are normalized as in Definition 2.2.10, then the four constants o, 3,0, occuring in

Lemma 2.3.1 are equal to 1.

Proof.
Let u € Kp(2,0), v € K,(0,2), and define v’ = v(u), v = 1(v). If A € K,(1,-1), then
aduA = adv’A = 0 and hence advadu’'A = adu’advA = adv/ad(u + v)A = ad[v/,u + v]A +
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ad(u + v)adu’A = A + ad(u + v)adu’A = A + ad(u + v)ad(u' + v')A = 6,,,(A) (for the last
equality see Theorem 4.1.1 in [8]). Hence we have

VA € Kp(1,-1), advadu'A = adu’ advA = 0,,,(A). (2.6)

It is equivalent to say that the following diagram is commutative:

K, (—1,1
K,(—1,-1) Outo K,(1,1)

\ /d4

adu K,(1,—1) adv
Take now w’ € K,(—1, —1). Then (recall that 0, ,(v) = v')
adfy,,(v)advw' = ad[l,4,(v), v] W + advadf, ., (v)w' = —w' + ad v adb, 1, (v)w = —w'.
Hence

advol,,cadvw = 0,4,00,,0advol, ,cadvw = 0,,0adl,,(v)cadvw’ = —0,,(w'). (2.7)

Similarly one can also prove that for all w € K,(1,1):
adu’ 00,4, 0 adu'w = —0,,(w) (2.8)

— Step 1. We will first prove that ad = a5 = Sy =~y = 1.
Letu € K,(2,0) and v € K,(0,2)".
Using successively relation 4) and 1) in Lemma 2.3.1, the relation V;_,(u') = ﬁk_p(u)*l and equa-

tion (2.6) we obtain:

dim Kp(1,—1)
[ e =V, @) ST [ gadiu)de
Kp(-1,1) Kp(1,1)

dim Kp(1,—1) dim Kp(1,—1)

= ad|Vi_p(u')] *#Vkr |Ap1(v)]| TESpH / g(adu’advA’)dA’
Kp(1,-1)

dim Kp(1,—-1) dim Kp(1,—-1)

— 08| Bpy ()] T Ay ()] e / g(adu'advA')dA"
Kp(1,-1)

dim Kp(1,—-1) dim Kp(1,—-1)

= ad Ay ()| E V[ (0)] TR / (O (A))dA
Kp(1,-1)

Then Proposition 2.2.8 implies that ad = 1.
Using successively relation 1) in Lemma 2.3.1, Proposition 2.2.8, equation 2) in Lemma 2.3.1, and

finally equation (2.7) above we obtain:

dim Kp(1,—1)
/ flw)dw = a|Apa(v)] S / F(A v])dA’
Kp(L,1) Kp(1,-1)

dim Kp(1,1) dim Kp(1,1) __ dim Kp(1,1)

:Oé|Ap+1(U)| Apt+1 |Ap+1(7))’7 Apt1 |Ak_p(u)|deg£k—p/ f([eu—i-'u(A)?U])dA
dim Kp(1,1) dim K (1,-1) Kp(—1,1)

— 08Bu ) B Ay EE [ ()

dim Kp(1,1) dim Kp(1,—1)

= oBBu )] s A T [ b
Kp(—1,-1)
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Then Proposition 2.2.7 implies that a5 = 1.

The proofs that 5y = 1 and 7 = 1 are similar.

- Step 2 We will now prove that ay = 1. From Step 1, this will imply thata = =7y =6 = 1.
Let f € S(K,(1,1). Then by Lemma 2.3.1, 3), for w € K,(1,1)

fw) = (Fryo Finf)(w) = / Fo f (w500, ) d’
aim iy 1,1y TR (2.9)
=) [ Fa (O A

On the other hand, using Lemma 2.3.1, 1) we have
Fuaw) = [ )b, w)de
Kp(1,1)

dim Kp(1,—1)

= aldpp(v)] "= /K oy T DR [ )

If we define p(A’) = f([A’, v]) the preceding equation becomes:

dipr(l,—l)_
Fri(w') = a|Api1(v)| =201 Fi_1o(—[v,w']) (see Definition 2.2.1).
Then, from equation (2.6) we get

dim Kp(1,—1) dim Kp(1,—1)

Fra([A W) = aflApi(v)]| =20 Fy jp(advadu’A') = al Ay (v)] =500 Fy _19(0,40(A")).

Therefore equation (2.9) above can be written as

dim Kp(1,—1) dim Kp(1,—1)

fw) = va|Vi_p(u)| =V |A,1(v)] TE3t1 /( ).7-“1,,1@(9%1,(14’))1&(6(14’,adu’w))dA’.
Kp(1,—1

Using Proposion 2.2.8, 2’) (and the relation V;,_,(v') = Kk_,,(u)—l) we obtain:
fw) =va [ P A A )
Kp(—1,1)

= va F110(A)(b(A, 0,1, 0 adu'w))dA

K,(—1,1)

=Y« Fr1ap(A)(b(A, —0,4, 0 adu'w))dA
Ky(—1,1)

= yap(—0y1, 0 adu'w) = yaf ([0 0 adu'w, v])

= vaf(adv o 0,4, o adu'w).
Define A’ € K,(1, —1) such that w = advA’ (always possible). Then (using (2.6))
f(w) =~vaf(adv o 0,4, 0 adu’ o advA’) = yaf(advo b2, A') = yaf(advA') = yaf(w).

Hence ya = 1.

Theorem 2.3.3.
1) For f € LY(V') we have

(p+1)d

feoax=[ [ e o)) duda de,
v+ u€Kp(2,0) JAEK,(1,—-1) JveK,(0,2)
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2) For g € L*(V™) we have

|, stvar = | / / G A (W + ) [Tpia (o) ! dA v
- WeKy(~2,0) J AcK,(1,-1) Jv ek, (0,—2)

Proof. We only prove the first formula. The proof of the second is similar. The right hand side is

equal to

(p+1)d

1
/ / / flu+ =(adA)*v + (adA)v +v)| A1 (V)| = dudAdv.
wEK(2,0) J AcK,(1,-1) JveK,(0,2) 2

We make first the change of variable u — (u + 3(adA)?v) (which is possible as 1(adA)*v €

2
K,(2,0)) and we get

/ / / Flut [A, 0]+ 0) Ay (0)] 2 du dA do,
u€K,(2,0) J A€K,(1,—1) JveK,(0,2)

and then, using Lemma 2.3.1, Proposition 2.3.2 and Proposition 2.2.11, we obtain

/ / / flu+w+v)dudwdv = f(X)dX.
Kp(2,0) JKp(1,1) J Kp(0,2) \%

Definition 2.3.4. (Introduced in ([12] Definition 4.3.1) for a special kind of maximal parabolic, see
also ([2] Definition 4.20).)
Letp € {0,...,k} I) For f € LY(V') and (u,v) € K,(2,0) x K,(0,2), we define
TP (1, 0) = [Apy (v)] 55 / F( A (u 4 v))dA.
Kp(1,—1)
2)Forg e LY (V™) and (u/',v") € K,(—2,0) x K,(0,—2), we define

(k—p)d

Tyl f) = [Vasy )| 5 [ et o)aa,
Kp(1,-1)

Then Theorem 2.3.3 can be re-formulated in the following manner:

Theorem 2.3.5.
1) Let f € LY(V'), then the function (u,v) — T}D’Jr(u, V)| Api1(v)] e belongs to L'(K,(2,0) x
K,(0,2)) and

(p+1)d

f(X)dX:/ / Tf’+(u,v)|Ap+1(v)| 2 dudv.
v+ ueKp(2,0) JveK,(0,2)

2) Let g € L'(V™), then then the function (u',v') +— TP~ (u/,v")|Vi_p(u)|
LY K,(—2,0) x K,(0,—2)) and

/ (V)dY = / / TP () Wiy () 52 dd
- weK,(~2,0) Ju ek, (0,~2)

We investigate now the smoothness of T]’Z " and .

(k—p)d
2= belongs to

Theorem 2.3.6.
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(1) (@ For f e S(V'), ue Ky(2,0), v e K,0,2), Ae Ky(1,—1), the function
A— f(e(u+v))

belongs to S(K,(1,—1)) and T}”Jr(u, v) is everywhere defined on K,(2,0) x K,(0,2)".
Moreover T}”’L(u, v) is locally constant on K,(2,0) x K,(0,2)".
(b) If f € S(VT) with compact support in OF, = {X € VT, Ap1(X) # 0}, then T}”Jr is
everywhere defined on K,(2,0) x K,(0,2) and is locally constant with compact support
in K,(2,0) x K,(0,2).
(2) (@ Forge S(V7), v € K,(—2,0), v € K,(0,—2), A € K,(1,—1), the function

Av—s g(eadA(u' +))

belongs to S(K,(1, 1)) and TP~ (u',v') is everywhere defined on K,(—2,0)" x K,(0, —2).
Moreover TV~ (u',v') is locally constant on K,(—2,0)" x K,(0, —2).

(b) If g € S(V7) with compact support in O, = {Y € V=, Vj_, # 0}(Y), then T}~
is everywhere defined on K,(—2,0) x K,(0,—2) and is locally constant with compact
support in K,(—2,0) x K,(0,—2).

Proof.

We only prove the first assertion. The proof of the second one will be similar.

We fix f € S(V*). By ( [14], I1.1.3), we can suppose that there exist f; € S(K,(2,0)), fo €
S(K,(1,1)) and f3 € S(K,(0,2)) such that

flu+z+v)= fiu)fo(x)f3(v), wue K,(2,0),x € K,(1,1) and v € K,(0,2).
Letu € K,(2,0) and v € K,(0,2)". We consider the map

a'{Kp(1,—1) . C
' A — (e u+v)) = fi(u+ 3(adA)®v) fo([A,v]) fs(v).

Denote by K the (compact) support of f5. As the map A — [A,v] = a,(A) is a linear isomorphism
from K,(1,—1) onto K,(1,1) we see that there exists a compact subset K, C K,(1, —1) such that
fa([A;0]) = 0if A & K.

This shows that o has compact support.

In the rest of the proof we will denote by || || a fixed norm on the various involved vector spaces.

We will now show that « is locally constant. This means that for A, € K,(1, —1), there exists ¢ > 0
such that

he Kp(l,-1), |h|| <e = a(Ay+ h) = a(Ay).
We consider first the function A — f;(u+ 3(adA4)?v). As the map A — (adA)?v is continuous, for
any € > 0 there exists 7 > 0 such that

[h]] < n = |lad(Ap + h)*v — ad(Ay)*v]| < e

As fy is locally constant, this implies that the function A — f(u+ 3(adA)?v) is locally constant. A
similar argument shows that the function A — f5([A, v]) is locally constant. Hence we have proved
that o« € S(K,(1, —1)).
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But now, the fact that T} " (u,v) is everywhere defined on K,(2,0) x K,(0,2)" is clear as the integral
which defines Tff "™ (u,v) is the integral of o over a compact set.

The fact that 77 " is locally constant on K,,(2,0) x K,(0,2)" will be a consequence on the proof of
1)b). See below.

Let us now prove 1) b). Here we suppose that f € S(O,.1). Denote by K; the support of f;
(i=1,23).

If Apyi(u+v) = Apyi(v) = 0 (in other words v ¢ K,(0,2)"), then f(e*(u +v)) = f(u +
1(adA)?v + (adA)v + v) = 0 because Supp(f) C Opy1. Then K3 C K,(0,2) and TJ’Z’+ is now
defined everywhere with support in K,(2,0) x K,(0, 2)".

Let us now prove that T}) " has compact support.
Remember from above that the map «,, defined by a,(A) = [A, v] is an isomorphism form K, (1, —1)
onto K,(1,1). Consider now the map

Ky x Ky % K,(1,-1)
(v,2) — p(v,2) = a, (2).

As it is continuous, its image K = p(K3 x Kj) is compact. Moreover the support of the map
A — fo([A,v])

is contained in «'(K>), so that the support of all the maps A — f5([A,v]) when v € K3 is
contained in K = p(K3 x K3) C K,(1,—1). In other words, the support of all the maps

Ar— f(e™(u+v))

when v € K3, is contained in K.

Since the map ¢ : (A, v) — 3(adA)?v is continuous from K,(1, —1) x K,(0,2) to K,(2,0), the set
Ky = ¢(K x Kj) is a compact subset of K,(2,0). Thus there exists C' € R** such that for v € K3
and A € K, we have

1
15 (ad Ay < .

Then [[u + 5(adA)*v]| > [[ul| — [I3(adA)*0[|| > |[ul| — [|5(adA)*v]] = [ul| — C. As f; has
compact support, there exists C’ > 0 such that forv € K3and A € K,

1
|ul| > C" = fi(u+ E(adA)Qv) = 0.

Hence
(p+1)d

T (0,0) = By 5 [ ek v))da
Kp(lvfl)
has compact support for f € S(O,1).

It remains to prove that T}D " is locally constant.
As the integral in the definition of 7% " is equal to zero for v ¢ K3 and as |A,;(v)] is locally constant
on K,(0,2)’, it is enough to prouve that

U(u,v) = /K - fi(u+ %(adA)Qv)fg([A,v])fg(v)dA

is locally constant.
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This means that, for u € K,(2,0) and v € K,(0, 2), there exists ¢ > 0 such that
(h,k) € Kp(2,0) x K,(0,2), ||h]| <€ k]| <e= V(u+h,v+k)=T(u,v).

As f; is locally constant with compact support, there exists ¢; > 0 such that f; is constant on each
ball of radius ¢; (i = 1,2). Also there exists o > 0, such that for ||k|| < Jy, and A € K, we have
II[A, k]|] < c||A]|]|k]| < €3 (for a ¢ € R*), and hence

fQ([A7U + k]) = fg([A,’U] + [Av k:]) = fQ([A7U]> (210)
Similarly, there exists 9; > 0 and ¢ > 0 such that
1 .
1+ 5 (ad A)Y*k|| < [|]] + cl| A[*|[K]] < evif [[A]] < 6y, [[k]] < 6y and A € K.
Hence
1 2 1 2 1 2 1 2

fl(u+h+§(adA) (v+k)) = fl(u+§(adA) (v)+h+§(adA) (k) = fl(u—|—§(adA) (v)). (2.11)
Finally (2.10) and (2.11) imply that U(u + h,v + k) = W (u,v) if ||h]|, ||k|| < Min(d1, 2, €3). This
ends the proof of 1)b).
Lets us return to the end of the proof of 1)a). Taking now K3 to be an open compact subset of
K,(0,2)" which contains a fixed element v (instead of the support of f3), and taking into account that

(p+1)d .
|A,41(.)| 2= is locally constant on K, the same proof as before shows that Tf " is locally constant

on K,(0,2) x K,(0,2)". O

In the rest of the paper all the involved measures are normalized as in Definition 2.2.10.

2.4. Weil formula and the computation of 77 .

Notation 2.4.1. From now on, for sake of simplicity, and as the context will be clear, we will always

denote by the same letter F, the Fourier transforms between various subspaces of V', V'~ and g.

In this section we will make a connection, roughly speaking, between T]’é’; and FT' ;’ " (for the precise
statement see Theorem 2.4.4 below).

Define £ = K,(1,—1). Then E* is identified to /,(—1, 1) through the normalized Killing form b
(see (1.3)). More precisely an element B € K,(—1, 1) is identified with the form y* € E* defined by

(y*, A) = b(B, A) for A € K,(1,-1).

As usual the Fourier transform of a function f € S(K,(1,—1)) by
A
FIE) =10 = [ feapdia= [ faus. )
Kp(1,—1) Kp(1,—1)
(Remember that we have chosen, once and for all, a non trivial unitary additive character ) of F').

Suppose now that a non degenerate quadratic form () is given on F. Denote by
BAA) = QA+ A) = Q(A) - Q(A)  for A, A € E

the corresponding bilinear form. This bilinear form induces a linear isomorphism o between £ and
E* given by
b(ag(A),A") = B(A,A") for A,A' € E.
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Then there exists a constant C' > 0 such that for any f* € S(E*)

/ F(B)dB = C / £ (as(A))dA. 2.12)
E* E
Theorem 2.4.2. (A. Weil)

There exists a constant vy, (Q) of module 1 such that for feSE)

[ Fras @i = 21, [ fap-Quaa

Proof.
For another Haar measure dj(A) on E, we consider for f € S(FE), a “new” Fourier transform by

F A = / F(AYD(b(ag(A), Adu(A) (A, A € B).

First of all we determine A > 0 such the measure dy(A) = AdA is self dual for the Fourier transform
F'. From the definitions we see that ' f(A’) = AF f(ag(A")).
Then, using (2.12) above, the measure A\dA is self dual for F” if and only if

A2 A2

/]—"’ FAYNDA = >\2/]-"f ag(AN))dA = el E*Ff( )dB = = f(0) = £(0).

Hence the self dual measure for F' is v/C'd A. Once this self dual measure is known, the formula in the
Theorem is juste a rewriting of formula (1-4) p. 500 in [13] (where self-dual measures are needed).
And this is a particular case of a more general result of A. Weil concerning the Fourier transform of

quadratic characters of abelian groups ([17]).

We will now make a particular choice of ). Consider two generic elements ' € K,(—2,0)" and
v € K,(0,2)". We define the quadratic form @, , on K,(1, —1) as in ([8], §3.5) by

Qu o(A) = %b((adA)zu’, ).

We compute now the bilinear form 3,/ , corresponding to this form (the computation is the same as

in [2], p.106, we give it here for the convenience of the reader):

6u’,v(A7 A/) - Qu’,v(A + A/) - Qu’,v(A) - Qu’,v(A/)
= 1b((adA +adA')*/,v) — 3b((adA)*u, v) — $b((adA")*u, v)
30([A, [A W]] ) + 3b([A [A ], v)
= _%b<[A/7ul]’ [A’U]) + %b(A/> HA’UI]?U])
= (A [[A, 0], u]) + 5b(A [[A, '], v))
= b(A[[A,v],u]) (since adu’ adv = adv adu’)
= b(A/v [[Avul]vv])

Hence if the map g, : &/ — £ is defined by

<Ckgu/ v (A>7 Al> = ﬁu/,v<A7 AI)v



28 PASCALE HARINCK AND HUBERT RUBENTHALER
we obtain (modulo the identification Ex = K,(—1,1)):
ag, (A) = advadu'(A) = adu’adv(A).

We have seen previously that there exists a constant c,, , > 0 such that for all f* € S(E£*)

/ f(B)AB = ca, / F(as, . (x))de
E* , B

Using Lemma 2.3.1 we have:

/ f(ap, (A)dA = / f*(adu’adv(A))dA
Kp(1,—1) ' Kp(1,~1)
(p+1)d/ F(adu’ (w))duw
Kp(1,1)

— Ay (v)| 5
_ (p+1)d (k—p)d

= @ T s

Hence
_(pt1l)d _ (k=p)d

Cas,, | = [Bpra (V)75 [Viep(W)]

v

Then if we set (v, v) = 7,(Quw ), Theorem 2.4.2, can be specialized to:

Theorem 2.4.3. (See Corollary 4.27 p. 107 of [2], for the case p = 0 and F' = R)
Letu € K,(—2,0) and v € K,(0,2)". Then for f € S(K,(1,—1)) we have:

/K ! (adu'adv(A))1(Qu.(A))dA

_ (pt)d _ (k—p)d

=B T A Qa4

Theorem 2.4.4. (I. Muller ([12]), for the case { = 1, and p = k — 1, see also Theorem 4.28 p. 107 of
[2] for the case p = 0 and F' = R).
If feS(VT)andif (v,v) € K,(—2,0) x K,(0,—2) then

T (', v') = Fo(y(, o) (FIF ) () (V).

Proof.

We know from Theorem 2.3.6, 1)a) and 1)b) that 77 " (u,v) is everywhere defined for u € K,(2,0)
andv € K,(0,2)" and that 7%, (u',v") is everywhere defined for v’ € K,(—2,0) and v’ € K,(0, —2).
The same Theorem tells us also that 77 " (u, v) is almost everywhere defined on K,,(2,0) x K,(0,2)
and that the function v — T% " (u, v) is integrable over K,(2,0) for almost all v € K,(0,2).

We note also that here, although the base field F' is p-adic and that we work with a general maximal
parabolic FP,, the main steps of the proof are the same as in ([2] Theorem 4.28, p.107) where ' = R
and where p = 0.

In the rest of the proof we will omit the spaces where the integrations are performed, and we make the
following convention: the integration in the variables A, A’ will be on K,(1, —1), in u on K,(2,0), in
von K,(0,2).

Let f € S(VT). As we have already seen we can suppose that

flu+w+v) = fi(u)fo(w) f3(v) where fi € S(Ky(2,0)),f € S(K,(1,1)), f3 € S(K,(0,2)).
We suppose now that v is fixed in K,(0,2)". We have then
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/ TP 0)ldu < Ay (v)] 5 / / £ adAu+v))|dAdu

(p+1)d

= By (0) S ()] / / i+ 5 (ad)0)] |fo([A.0]) dud A

We make the change of variable u + %(adA) v — wu in the u-integral and we note that the A-integral
is over a compact set (due to the fact that A — [A, ] is an isomorphism from K,(1,—1) onto
K,(1,1)). Hence, for any v € K,(0,2)’

/|T}”+(u,v)|du < /Tﬁll (u,v)du < +o0. (2.13)

Therefore
u — T]‘?""(’Ihv) c Ll(Kp(Q,O)) forv € Kp(072)/‘
Let us now compute the u-Fourier transform of Tp "+ given by

(p+1)d

FUTp,0) = @) 5 [ gt oA+ [4,0] 4 0)0 (00, ))dAdu

Due to (2.13) the order of the integrations does not matter. Making the change of variable u +
+(adA)?v — u we obtain

p+1 1
FT (W 0) = [Apia (v |( o / flu+ A, v] + v)Y(b(u — E(adA)Qv, u'))dAdu.
‘We introduce now the function

J(u, Av) = / £+ [, 0] + )b, o)) du = (Fuf) el [A, 0], 0).

Then from the definition of the form @), ,

Fup 0 0) = By (0] 5 [ 00, A,0)0(-Quen( ) Q.14
A
We suppose now that v’ € K,(—2,0)'.
As v is generic in K,(0,2) the function (u, A) — f(u + [A,v] + v) belongs to S(K,(2,0) x
K,(1,—1)) and the function A — J(u', A,v) belongs to S(K,(1,—1)). As u is generic too, the
quadratic form @), ,, is non degenerate and we can apply the Weil formula as in Theorem 2.4.3 to the
integral in the right hand side of (4). We obtain

/A J(Ul, A, U)Q/J(_Qu’,v(A))dA

(p+1)d

= (1, 0) | A (0)| T Ve () 5 / (Fad)(u adu/adv(A'), 0 (Quo(A))dA', 2.15)

where

(FaJ)(u',adu’adv A’ v) = /A(]-"uf)(u', [A, v],v)(b((A, adu'adv A"))dA.

If we make the change of variable w = [A, v], and if we use Lemma 2.3.1, together with the fact that
b((A, adu'adv A") = b([A, v], [u', A']) the preceding formula becomes

(p+1)d

(Fad)(u',adu’adv A", v) = |Apir(v)|” (FuFuf)W [u', Al v). (2.16)
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From (2.14), (2.15) and (2.16), we obtain

wmwvﬂﬁxmwzkaM“”/}ffn<hﬂﬂwW@wmmWﬂ (2.17)

From now on we only suppose that u' is generic in K,(—2,0) (v may be singular).

The Fourier transform F,,F, f € S(K,(—2,0) x K,(—1,—1) x K,(0,2)) and as u’ is generic we
obtain, as before, that

/I@mﬁ@@%ﬂmM%<ﬂn
v, A’

It follows than from (2.17) that the function v — (v, v) (]—"uT}”Jr) (u/,v) belongs to L' (K, (0, 2) for
v’ generic in K,(—2,0) and this allows, by Fubini’s Theorem, to change the order of the integrations
in A’ and v in the following computation of its Fourier transform.

We have

Foly(', o) (RTPT) (', 0)) (v)
= |Viop ()] 5 / / (FuFul) [, A, )w(b(%(adA’)Qu’,v)+b(v’,v))dA’dv

= Vi ()] 2 M///f Fuf)ad, [, A, )@Z)(b(%(adA’)Zu’,v)+b(v’,v))dvdA’

(k p)d

= [Viep@) T [ (FFFL AL + Slad AP0y

But o' + [u/, 4] + v + L(adA) = AV and F,F,F,f = Ff and we recognize the
definition of T]’;’f_ (Definition 2.3.4, 2)). Hence

T2y (W, v') = Fo(y(u/, o) (T (', 0)) (V)

for «’ generic in K,(—2,0).

Remark 2.4.5.

Godement and Jacquet have used a mean function g ([7] p.37) which looks like our mean function
Tf’Jr (or TP7) but which is not equal to our’s in the case of G'L,,(F) x GL,(F) acting on M, (F)
which corresponds to their situation. Also they proved that F(¢s) = @) (Loc. cit Lemma 3.4.0 p.

38), which again looks similar to the preceeding Theorem 2.4.4.

2.5. Computation of the Weil constant (', v).
(Remember that in this section, we suppose that ¢ = 1).
The aim of this paragraph is to compute the Weil constant y(u’, v) = 7, (Qu ) introduced in Theorem

2.4.2, in the case where v/ € K;_1(—2,0) and v € K;_1(0,2)" = g* \ {0}. We recall first some
general results of A. Weil [17] and of S. Rallis et G. Schiffmann [13] concerning %p(Q) .
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First of all, if ) and Q" are two equivalent non degenerate quadratic forms ,we have

1(Q) = 7(Q).

Remember that there are four classes modulo the squares in F', namely ¢ = F*/F*? = {1,¢, 7, en}

where ¢ is a unit which is not a square, and where 7 is a uniformizer for F'.
For a,b € F*, let us denote by (a, b)y the Hilbert symbol defined by

(a.b) 1 if b belongs to the norm group of F[\/a]
a, 5 = .
‘ -1 if not

Denote by y, the quadratic character of F™* (associated to the quadratic extension F'[\/a]) defined by

Xa(b) = (a, ).

If q; is the quadratic form on F defined by q;(z) = 22 we set:

afa) .
ala) = y(aqr), ¢(a) = o) a€ F*. (2.18)

As a?q; is equivalent to q; one can consider « and ¢ as functions on %
A fundamental result of A. Weil ([13] (1-6)) tells us that

plab) = (a)p(b)(a,b)e, a,be F*.
As 7, (Q)7,(—Q) = 1 for any non degenerate quadratic form (), one has a(1)~' = a(—1) and hence
a(ab) = a(a)a(b)(a,b)ya(—1).
One has also the following result:

Lemma 2.5.1. ([13] Proposition I-7) Let () be a non degenerate quadratic form on a vector space E

of dimension n, and discriminant disc(Q).

(1) If n = 2r is even then

Y (2Q) = Y (Q)(z, (—1)"disc(Q))y, z € F*
(2) If n = 2r + 1 is odd then

Y(2Q) = 1(Q)(, (=1)"disc(Q))g(w)a(=1).

Proof. The first assertion is exactly the assertion of Proposition I-7 of [13]. As our formulation of
assertion 2) is slightly different from that in [13], we give some details.

From ([13] Proposition 1-3), we know that if Q(z1, ..., 2,) = > o, as,22 then v, (Q) = [, a(as).
Using the fact that «(a)a(b) = a(ab)(a, b)y(1), one obtains by induction that
¥(Q) = a(1)"afas ... an) [ [ (i, a5)¢.
i<j
Set D = disc(Q) = aj . ..a, modF*2. As (za;, xa;)y = (v, 2)¢ (2, a;)¢(x, a;)% (i, a;)z, (2, 2)¢ =
(=1,7)g, and [[; (2, a;)¢ (v, a;)¢ = ("', D), one obtains
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If n is even then (2", D)y = (z, D)y and a(2"D) = «(D). This gives the first assertion . And if
n is odd, we have ("1, D)y = 1 and a(2"D) = a(zD) = a(z)a(D)(z, D)ga(—1). This gives the
second assertion. O

In what follows we assume that £ > 1.
Notation 2.5.2. We denote by I, the Lie algebra generated by g**, that is
[, =g @ FH, @ §*.

Let g be the centralizer of I, in g . We will denote by underlined letters the elements and algebras
associated to g. The algebra g is 3-graded by the element H, = Zf;ol Hy;, and is regular of rank
k. We denoteby g =V~ © g V™ the corresponding decomposition. It can be noted that in the
notations of §2.1 we have V= = Kj_;(+2,0) and g = K;_(0,0) and g** = Kj,_;(0,£2). We
have also g = Zg(ao) @ (Bigj<rbij(l,-1)).

Ifa’ = @©j<xf Hy,, then G stands for the group Zau, g (Ho) whose Lie algebra is g and P = LN is

the parabolic subgroup of G corresponding to the Lie algebra
E = Zg(QO) D @r<s<kEr,s(17 _1)

Let A, be the polynomial relative invariants of (2, V') normalized such A A Xo+ .+ X)) =1,
etc... (in the notations of Definition 2.1.1, we have for example A, = A,).

Lemma 2.5.3. (i) Let u,v and A be respectively in V", g™ and Kj,_,(1,—1), then

Aj(u)Ag(v) if j=0,...,k—1,

Aj(eadA(u+v)):{ Ap(v) if j=k.

(ii) If V' = vYy, we set Vi (v') = v. Then, for u/,v' and A respectively in V=, § and Kj,_1(1, —1),
we have

/ it / .f . —
vj(eadA(u/ + U/)) _ ZO(U )Vk(v) 1 . J 07
Vi (W) if j=1,... k.

Proof. See ([2] Lemma 5.18).

Corollary 2.54. Letk > 1l and a = (ay, . .., a;) € S*H
(1) Letw € V" and v € g** then

u+v e O (ag,...ar) <= u e O (ag,...ar_1), and Ap(v)ag € S..
(2) Letu' € V™ andv' € §~** then

u v € O (ag,...ax) <= u' € O (ay,...ap_1) and Vi(v')ay € Se.
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Proof. Let u € V" and v € g*. By Lemma 2.5.3, we have Aj(u + v) = A;(u)Ax(v) for 0 <
J < k—1and Ag(u+ v) = Ag(v). Then the definition of the open sets O (ay, ..., ax) implies
immediately the first assertion.

Letu' € V™ and v’ € g~*. By Lemma 2.5.3 we have V;(u' +v') = V,_,(v/) if j = 1,...,k and
Vo(u' + ') = YV, (v)Vi(v), where Vi (yrYs) = k. Therefore v’ + v € O~ (ao, . . . a;) if and only
it V, ((u)ag...ap; € Scforj =1,... ket Zo(u’)@k(v')ao ...ap € S.. These conditions are
equivalent to V,(u')ag . .. ap—1-j € Scfor j = 0,..., k—1and V,(v')a;, € S.. This gives the second

assertion.

Proposition 2.5.5. Let k > 1. Fixa = (ag,...,ax_1) € SFand ¢, € S,. Letu' € O (a) and let
v € g™ \ {0}such that Ay (v)cy, € Se. Then (', v) depends only on a and on c.
Therefore let us set:

Ye(a, cx) =y(u',v), for v € O (a), v e K,(0,2), Ap(v)ey € Se.

Remember that a(a) = vy(aqy) for a € F*, where q;(z) = 2, © € F. Remember also that if e = 2,
we have S, = Ng/p(E*) where E is the quadratic extension of F such that Ng,p(E*) = Im(qan,2)"
(see Definition 1.1.4). Denote by wy, the quadratic character associated to E, that is wg(a) = 1 if
a € Ng/p(E*) and wg(a) = —1ifa ¢ Ng/r(E*) (hence if E = F[\/€], one has wg = X¢). Then

Ye(a, cx) =

- Vw(qte)k if e =0 or e = 4 (case where .7, = {1})
k—1
- %ﬁ(%)kwE(Ck)k H wg(a;) ife =2 (case where /., = F* /[Ng,p(E"))

=0

k—1
- H%b(qe)((—l)%disc(qe), ajer)galajep)a(=1) if e = 1 or e = 3, (case where ./, = € = F*|F*?).
=0

(disc(qe) is the discriminant of q.).

Proof. Let v’ € O (a) and v € g* = F X}, such that Ag(v)c, € S.. This implies that v = ¢, X}

withv € S.. SetY, = apYy + ... ar_1Yx_1. We will prove simultaneously the two assertions.

Let us first show that there exists p € P such that pu’ = Y, and pX; = X;.

From Lemma 4.3.3) in [8], applied to the algebra Q, there exists n € N and scalars ¥, ... yx_1 such
that nu’ = yoYo + ... + yx_1Yx_1. From the definition of N, one has N C N and n.v = v.
AsyoYo+ ...+ yr—1Yi—1 € O (a), there exists y; € S such that y; = pja; forj =0,...,k — 1.
From Remark 1.2.2, the elements ungo +.. .+u,;_11Xk_1 + X, and Xo+...4+ X} are f/—conjugated.
Hence, there exists [ € L such that 2;(]) = pu; ' for j = 0,...,k — 1 and z(l) = 1. The element
p = In satisfies then the required property.

Then pu’ =Y, and pv = v = v X, with p € P.
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Hence the quadratic form (), ,, is equivalent to the form c;vQy, x, , and therefore

Y(u',v) = Y (crrQy, x, )

The space K;_;(1,—1) (on which the forms live) is the direct sum of the spaces £ (1, —1) for
j =0,...,k—1. These spaces are orthogonal for Q oy, +...+a,_,vi_1.X,- Moreover,if A € E; (1, 1),
we have b((adA)?Y;, X) = 0 for j # i. Therefore

1
Quo ~ (D derva;Q;r), where Q;(A) = §b((adA)2Yj,Xk), for A e E;,(1,-1).

=
Using ([8] Remark 3.5.3) we see that for Y € Ej;(—1,—1), one has Q;([X;,Y]) = ¢x, x,(Y)
where gy, x, is defined as in (1.4). As ad X is an isomorphism from Ej ;(—1, —1) onto £; (1, —1),
the quadratic forms @);x and qx; x, are equivalent. And as all the forms ¢y, x, are equivalent, we
obtain that Q; r ~ ¢x,,x; = Ge-
From ([13] Proposition I-3) we obtain that

k-1

~y(u',v) = Hw,(ckajl/qe).

=0
If e is odd then v € S, = F*? and hence 7y (cra;vq.) = vy (cra;jq.). Moreover is e is odd then d is
odd too (see table 1 in [2]). As the rank of ¢, is d, the result is a consequence of Lemma 2.5.1 (2).

If e = 0 or 4, the form ¢, is the sum of an anisotropic quadratic form of rank e and a hyperbolic
form of rank d — e. As all the anisotropic quadratic forms of rank 4 are equivalent, and as the same is
true for the hyperbolic forms of rank d — e, we obtain that c,a;vq. is equivalent to ¢., and therefore
Yo (cra;vqe) = vy(ge). This gives the result in that case.

Suppose now that e = 2. Then g5 is equivalent to ¢, 2 + Gnyp,2 Where gy, 2 18 a hyperbolic form of
rank d — 2 and ¢qy, 2 is an anisotropic form of rank 2 such that Im(gay,2)* = Ng/r(E*). It follows that
Gan 2 s equivalent to 22 — £y, Therefore (—1)¥2disc(g2) = —disc(qan2) = €. As ¢ coincides with
the quadratic character g associated to F andas v € S, = Ng, r(E*), Lemma 2.5.1 (1) implies that

Yy (cra;vg) = () (crav, §)e = vy (qe)wr(cray).

Hence
k—1

V(Ul» v) = H W(%)WE(Ckaj)a

and this ends the proof.

3. FUNCTIONAL EQUATION OF THE ZETA FUNCTIONS ASSOCIATED TO (P, V)

3.1. The (A2’) Condition in the Theorem £, of F. Sato.

In this paragraph, we suppose that /' is algebraically closed.

A maximal split abelian subalgebra a of g is then a Cartan subalgebra of g and of g. We denote by

S and X the corresponding root systems. Let X1 C >+ the positive subsystems defined in Theorem
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1.2.1. in [8]. Then x € X+ \ ¥ if and only if §* € V* and € XV if and only if g* = g* C
E; ;(1,—1) C g fori > j (cf. [8] Proposition 1.9.1).

Proposition 3.1.1. Let k > 1. Let yp € XY\ ©*. Let H,, be the coroot of juand let {X_,,, H,, X,,} be
an slo-triple. Let us denote by f[u] the subalgebra (isomorphic to sly(F')) generated by F X, and set

glu) = Zz(1[u)).

I3[1) N V* # {0} then
(1) the Lie algebra g[] is reductive and 3-graded by the element Hy — H,. The corresponding
grading will be denoted by

alu] = Viul” @ glu] @ Vil

(2) The algebra a[u] = {H € a, u(H) = 0} is a Cartan subalgebra of §[j1| and the corresponding

root system is given by

X[p) = {a € 5 (a, ) = 0}.
We will set: X[p]* = ] N L.

(3) Moreover; the Lie algebra g|u| is regular of rank k if 11 is a long root, and of rank of k — 1 if

W is a short root.

Proof. Although the root 1 is here arbitrary, the proof of the 2 first points is similar to ([8] Proposition
1.5.3).

If 1 1s a long root of S then by ([8] Proposition 1.7.7), there exists a element w of the Weyl group
such that wy = Ag. The third assertion follows from ([8] Corollary 1.8.4).

Suppose that 1 is a short root in 3. From Table 1 in [8], the root system 3. is of type B,, or C,, with
n > 2.

. Ao+ A
If X is of type B,, then £k = 1 and px = oA

H, = Hj and then g[u] NVt = {0}.

. As )¢ and \; are long and orthogonal, we have

As we suppose that §[u] NV # {0} the root system . is of type C,, withn = k + 1 > 3 and we

have

2+:{%;0§@§jgk}.

M + A
%. Hence H, = H,, + H,, , and Hy — H, =

Hy, + ...+ Hy,_,. Then X[u] is equal to {#)\} if & = 2 and ¥[y] is of type Cy_; if k > 3. This

gives the last assertion.

For our purpose, we can suppose that y =

Define

Ny = exp ad ny, where ny = @ e+ g "
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Proposition 3.1.2. (compare with [12] Lemme 2.2.1 and Proposition 2.3.1).
Let © € V. Then there exists a family of two by two strongly orthogonal roots {1, . .., p.} such
that

No.w N (©j_19") # 0.

Proof. The proof goes by induction on the rank of §. The result is clear for k¥ = 0 since V* = g
Suppose now that the result is true for any irreducible graded regular algebra of rank strictly less than
k+1.

If u € 1\ ©F, then pu(Hy) = 2, and hence for all 2, ¢/ in 1\ %, y + 11/ is never a root. Therefore
n(u, 1) > 0. From the classification of the 3-graded Lie algebras we consider, we know that G5 does
never occur and hence n(u, i') € {0,1,2} for pu, pf/ € £\ o+,

We will also use the fact that for p, 1/ in £+ \ %, we have p L /<= p AL 4/ (the proof is similar
to the proof of Corollary 1.8.2. in [8]).

Letz € V*. Thenx = Z X, with X, € g* C V. We denote
peESH\T+

s(x) = {n € TF\ T, X, £ 0}.
1st case: We suppose that there exists a long root ;1o among the roots of maximal height in s(z).

For j = 0,1,2, we set s(z); = {p € s(x);n(u, o) = j}. As po is a long root, n(pu, pp) = 2 if and
only if y© = . Hence

s(z) = {no} Us(@)o U s(2)1. (3.1

Letz = Xy + D ey Xn + 22 X,

HeES x)l

If s(x); = 0 then s(x — X,,) C g From Proposition 3.1.1, one has © — X,,, € V|[uo|" and we
obtain the result by induction from g[su|, which is of rank & (as n[ug] C n from our definition of
2ol .

We suppose that s(z); # (.

For i € s(x)1, we have 1 — g € —XT (it is a root because n(yu, 11o) = 1 and it is negative because

X, ]=-X

to is of maximal height). Let us fix Z,,_,,, € g* *° C ng such that [Z o) -

H—H0 )

Define A =) Zy—py € No.

pes(x)
Let u € s(x); and u’ € s(x)o. Suppose that j1 — g + ' € 3. As n(p — po + 4/, p1o) = —1, then
the linear form p — pio + i/ 4 1o = pu + 1/ would be a root of X1 and this is not possible. Therefore
ft— o + ' ¢ ¥ and hence [Z,_,,,, X,s] = 0. Then 3" , jo[A4, X,v] = 0, and this implies that

wes(x)
€adA( Z Z X
wes(z)o pes(z)o

Take o and i’ in s(2)1. Then n(u—po+4/, p1o) = 0. And therefore the elementy = [A, >~ ), Xw] =
D pes(an Dowesay [ Zu—mos Xyv] is such that s(y) C pg. Considering the preceding case one obtains

ad(A)2 ZMIES($)1 XH/ — [A,y} — 0. Thel’l

A Z X)) = Z X,s +y, where s(y) C pp.

wes(x)r wes(z)
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AS [A, Xl = 2oty [Zn—nos Xpo) = — ZMES(@ X,,, we have

Xy = Xy — Y X, A Z X, =X, — X“—%.

nes(x)1 pnes(xz) pnes(xz)1

Finally we get

eadAx:eadAXuO_i_eadA( ddA Z Xu/
wes(z)o wes(z)1
Yy
:(Xuo_ Z #__)+<Z Xﬂ’)+< X,u""y)
2
nes(z)y wes(z)o wes(z)1
Yy
=X, + Z X, + 3 where s(y) C gy
W Es(T)o

If we set Yo = 3 ey, Xw + 5> then s(yo) C py and hence yo € V[uo]*. Again the result is

obtained by induction from @[]

3rd case: We suppose that all roots of maximal height in s(z) are short. From Table 1 in [8], we
know that the only cases were there are roots of different length correspond to cases where S is of
type B,, or of type C,, for n > 2.

o If 3 is of type C,,, we have ¥+ \ &t = {);;0 < j < k}U{ Z';O < i < j < k} where

n =k + 1. We also have \; ¢ s(x) (because the long root )\ is the greatest root in ¥.F).

If s(x) C A then z € V[\;]T. Again the result is obtained by induction from g[\;].

A+ N\
We suppose that s(z) ¢ Aif. This implies that there exists ¢ < k such that kT € s(x).
If k = 1, then x € g"° and the result follows.
From know on, we suppose that £ > 2. Define
i = max{i; = ;_ s(z)} and po = 2~ —; 2.
Hence )\ .
()C{uo}u{ Ei<iglU{ 0 <i< )<k}
And therefore one can write
= X,,, + 1 + 2, with s(z;) C { i <o) and s(zs) C { ; 10<i<j<k}
L =
If p = , with 7 < i, belongs to s(x), one has p — po € X (as n(u, po) = 1).
Then we fix the elements Z,,_,,, € g C E;;,(1,—1) C ng such that [Z,,_,,,, X,,,] = —X,..
Let us define A = ZM:(Ai-g)\k)70§i<io Z - € g and ng = €4, One has then [A, X,,,] = —; and

[A, 1] € Biciy j<io [ Eiio (1, —1), E; x(1,1)] = {0}. Therefore (adA)*z; = 0.
Leti < ig. Forr, s < k, one has [E; ;,(1,—1), E,;,(1,1)] C E;,(1,1) and [E;;,(1,—-1), E, s(1,1)] =
{0} forr # igand s # ig. As A € D;<i, i, (1, —1), we deduce that €244 normalizes <1 Eys(1, 1)

And therefore
i + A

no.x = X, +y with s(y) C { 0<i<j<k}

)\+)\j

{7} 0 {io, k} = 0} and s(y1) C {

Set y = yo + y1 with s(yo) C g = { 1 <i <

j <kiige {i,j}}.

A+ A
2
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Under the action of H,,, the elements in E; ;(1,—1) are of weight 0 if ¢ = i( and of weight —1 if
i # io. This implies that ad(X,,,) is surjective from @ F; (1, —1) onto &} E;;, (1,1). Hence
there exists B € @} F; (1, —1) such that [X,,, B] = y.

As [Eix(1,-1),E,.5(1,1)] = {0} fori < kand r < s < k, one has [B,y:] = [B,y] = 0.

Therefore the element n; = €2 € N, is such that nyngz = ny (X + 0o +y1) = X, + yo with

s(yo) C py- We obtain the result by applying the induction to the element ninoz — X, € §[uo].

o If X is of type B, forn > 2,thenk = 1and V*+ = g @ Ey(1,1) @ gh.
From the tables and notations in ([3] Chapitre VI) , if we take Nt = {eitej;1 <i<j<njUu{e;1<
i < n},then \g = e — ey = g, and \; = &1 + &5 is the greatest root. Therefore g* C V7 if and
onlyif p =¢e;orp=e¢; £¢;forj>2.

Ao+ A1

Moreover, iy = = ¢, is the unique short root in X" such that §*° C V. As Ao and \; are

orthogonal, one has H,,, = Hy, + Hy, = H,.

From the assumption on s(x), the root yq is of maximal height in s(z). Let u € s(z), u # po. As
n(u, o) = 2, one has j1 — pup € 7. Letus fix Z,,_,, € g C ng such that [Z,, ., X,] = — X,
andset A =) Z

pES(z),uFpo “HTHO

As X is of type B,, we have that if ;1 # g is such that u(Hy) = 2, the root . — pyg is short and
orthogonal to p (in the preceding notations, one has p — g = +¢; for ¢ > 2). It follows that if
p and p/ are two elements of s(x), distinct from g, then o — 110 is a short negative root and hence

u+u’—u0éi(because,u—uo:—eiwithi22andu’:€1—sjwithj22).

Therefore [A, X,] =0. Thenifn = ¢4, we have n.x = X

pes(a),uFpo Ho*

This ends the proof.

As F is algebraically closed, the group P has a unique open orbit in V' given by

k
OF ={X e Vv ][A;X) #0}.
§=0
We define S =Vt — O . If x; (j =0,..., k) is the character of P corresponding to A;, we denote
by Xy+(P) the group of characters of P generated by the y;’s.

Theorem 3.1.3. (Condition (A2’) of F. Sato)(see [15] §2.3)
(1) P has a finite number of orbits in S (and hence in V).

(2) Let x € S and let P? the identity component of the centralizer of x in P. Then there exists a
non trivial character x in Xy+(P) and p € P? such that x(p) # 1.

Proof. Of course Ny C P and P = LNy. From Proposition 3.1.2, for any element x in S, there exists
a family R C %3 of strongly orthogonal roots such that No. X N (®,er ") # 0.

As $t \ 7 is finite, there are also only a finite number of families of strongly orthogonal roots in
>+\ X+, Therefore, in order to prove assertion 1), it will be enough to show that if R = {y1,... .} C
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St \ X7 is such a family of strongly orthogonal roots then ©’_,g" is included in a finite number of
L-orbits .

Fix such a family R = {j1,... - }. If 4 € R, we denote by H,, the coroot 1 and by [[] the algebra
generated by g, that is [[] = §* @ FH, ® g". Let L[u] the group associated to this graded

algebra. As F' is algebraically closed, the group L] is the centralizer in Aut, ([u:]) of H,,, and hence
Liu] C Aut.(g).

Let us show that L] C L. Letl € L{u|. Then {.H, = H,. If Z € ais orthogonal to y then
[[[1], Z] = {0} and therefore I.Z = Z. If ;1 is one of the roots );, we get immediately that [ € L. If
not, there exist 7 < j such that g C Ej ;(1,1). Then pu(H, — 2H),) = u(H, — 2H,,) = 0, and then
[.H), = Hy, and [.H,, = H,,, and w(Hy,) = 0 for s # i, j. Therefore [ centralizes a°, and hence
Lip] C L.

From ([8] Theorem 1.12.4), each L[u;| has a finite number of orbits in g/. As the roots y; are
strongly orthogonal, the subgroups L[;;] commute 2 by 2. Therefore the group L{u] ... L{p,] C L

has a finite number of orbits in &,z g". This proves assertion 1).

Assertion 2) will be proved by induction on k. The case k = 0 is obvious. Suppose that k£ > 1.
We suppose that assertion 2) is true for all regular graded algebras (in the sense of Definition 1.1.1)
of rank k and we will prove it if g is of rank k + 1.

Remember the notations 2.5.2, that is

a=g[\, et V5 =VI\JE

(where §[\] = Z5(1,) and [y = g™ @ [g7%, g™ @ g).

The Lie algebra g, which is of rank £, is graded by the element H, = Zf;é H),;. We will denote by
underlined letters all the elements or spaces attached to g.

As we have supposed that F' is algebraically closed, we have Auty(g) = Aut.(g) and hence L is the
centralizer of a’ = @fZOFH,\j in Aut.(g). Let[ € Aut.(g). As [fk,g] = {0}, we have [.H), = H),
and [ acts trivially on g**.

Therefore any element of L defines an element in L which acts trivially on g**.

Remember that ; is the character of P attached to A; (j = 0,. .., k) and that X+ (P) is the group
of characters of P generated by the x,’s.

Let/le L C Landj=0,...,k— 1. By Lemma 2.5.3, we have Xj(l) = x; (1) and xx(I) = 1.

Asn = @, F; j(1,—1) C n, we have P C P and any element of P acts trivially on g**. As any
character in Xy+(P) is trivial on NN, the mapping X; =X (j =0,...,k — 1) can be seen as an
inclusion Xy+ (P) — Xy+(P).

Let x € S. By Proposition 3.1.2, there exists ng € Ny and a family R = {u, ... u,} of stronly
orthogonal roots in 3t \ * such that the element X = ng.z belongs to §/* @ ... @ gt . We suppose
that r is minimal, that is X = X, + ...+ X, with X,,, € g — {0}. Asng'Pyng = P2, it is

enough to prove assertion 2) for X.

For j = 1,...,r, let H,, be the coroot of y; and fix X_,,, € g~ such that {X_, , H, , X, }isan
sly-triple. Define
h=H, +.. H,.
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As the roots p; are strongly orthogonal, if wesetY = X_, +---+X_, € V- and X = X, +
o+ X, € VT then {Y,h, X} is an sly-triple. If Z € VT, then [X, Z] = 0 and ad(Y)*Z = 0.
Therefore the element Z generates a submodule of dimension at most 3 under the action of this triple.
It follows that the weights of ad(h) in V" belong to {0, 1, 2}.

Remember from Definition 1.1.5, that if {Z~,u, Z} is an sly-triple where Z~ € V~, u € a, and
Z € VT, we denote by hy(t) the element in L which acts by ¢" on the space of weight m under ad w.

1st case : If Ay(X) # Othen A\, € R. Hence X = Z, + Z, with Zy € V' and Z, € g . As
X € S and Ay(X) # 0, there exists j < k such that A;(X) = 0. By Lemma 2.5.3, we have
Ap(X) = Ap(Z2) # 0 and Aj(Zy + Z2) = A;(Zo)Ar(Z2) = 0, and hence Z, € S. By induction,
there exists xy € Xy+(P) C Xy+(P) and p € Py C P such that x(p) # 1. Asp € P, one has
p.Zy = Zs, and hence p € P$. This gives the result in that case.

2nd case. Suppose A(X) = 0and X € V7 (this is equivalent to the condition \y(h) = 0). Then
for all t € I'*, the element [, = hX,\k (t) € L satisfies [;. X = X and . (l;) = t*. Hence [; € P¥ and
for t # +1, we have x.(l;) # 1.

3rd case. Suppose A (X) =0and X ¢ V™ (this is equivalent to A, ¢ R and \;(h) = 1 or 2).

If A;(h) = 1 then there exists a unique root £ in R such that A\, (H,) = n(\;, 1) = 1. One can
suppose that ;o = p1 and then, for 7 > 2, the root ; is orthogonal to \;. As )\ is a long root, we have
n(p, Ax) = 1. It follows that [H),, X,,] = X, and [H,,, X, ] = [H,,,X,,] = 0for j > 2. For
t € F* we define I, = hx, (t)*hx_,, (t). Then [, X = X (because hx_, (1).(X, + ...+ X, ) =
72X + X + o+ X hx, (D(X,,) = tX,,, and hy, (8)(X,,) = X, forj > 2). We
have also ;. X, = t°X,, (because [H_,,, X),] = —X,, implies hx_, ()(X,,) = t7'X), and
hx,, ()*(Xy,) = t'X),). Hence xx(l;) = t*. Asl; € P} (product of exponentials), assertion 2) is
proved.

If A\, (h) = 2, there are two possible cases. Up to a permutation of the ;;’s, we can suppose that:
- either n(Ag, 1) = n(Ag, p2) = 1 and n(Ay, p;) = 0 for j > 3,
- or n(Ag, p1) = 2 and n(Ag, p;) = 0 for j > 2.

If n(Ag, 1) = n(Ag, p2) = 1 and n(Ag, ;) = 0 for j > 3, then, as \ is long, one has n(uy, A\y) =
p(Hy,) = n(pe, A) = p2(Hy,) = 1. Therefore the element u = 2H,, — H,, — H,, commutes
with X and for Z € g™, one has [u, Z] = 2Z. Then, as before, if t € F*, the element [, =
hx,, (t)*hx_, (t)hx_,, () € L fixes X and x(l;) = t*. Again assertion 2) is proved.

If n(Ag,p1) = 2 and n(Ag, p;) = 0 for j > 2, then we have n(uy, Ay) = 1 (from the tables in
[3] we know that if n(Ag, 1) = 2 then n(py, \g) = 1 or 2; n(p, A\p) = 2 would imply py = Ay,
but Ay ¢ R). As ui(Hp) = 2, there exists a unique j < k such that p;(Hy;) = 1. As )\; and
A; have the same length, we have n(\;, 1) = 2 (n(Ag, 1) = 2 and n(pg, \y) = 1 imply that
Ml = V2llpall = [[A;]], and then n(uy, A;) = 1 implies n(X;, 1) = 2). As \;(h) € {0,1,2},
we have n(\;, p1s) = 0 for s > 2. Hence [H), — H,,,X] = 0. Then, for ¢t € F*, the element
Iy = hx,, (t)hx,xj (t) = hXAﬁXﬂj (t) is such that [;. X = X and x(l;) = %

This ends the proof of the Theorem.
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3.2. Zeta functions associated to (P, *): existence of a functional equation.

We denote by F* and 6’ & the groups of characters of F™* and O} respectively. A character w in ﬁ*
will be identified with a character in 7'** by setting w(m) = 1. Then, for any w € I, there exists
a unique § € 6"}; and s € C such that w(z) = 0(x)|z|® for x € F*. The complex number s is

2
only defined modulo ( m

log q
Re(w) = Re(s).

) Z, but its real part Re(s) is uniquely defined by w. We therefore set

.. k41

Definition 3.2.1. Let w = (wy,...,wy) € F*  and s = (sg,...,s;) € CF*L. Remember that we
have deﬁned m = ‘Ee“glx As we have said we consider here the case where { = 1, and then we have

=1 —i— . We set

wh = ((wo...wk)_l,wk,...,wl), and  sf = (s5,s%,...,55) = (=(So+ ...+ 5k), 5k ..., 51)
and st —m = (sh —m, s, .. st) = (=(s0+ ... + s§) — M, 5k, ..., 51).
Forw = (w;); € (F*)¥and s = (s, ..., sp) € CF!, we define

(w, s) Hw] A;(X)]57, XeVt

and

(w, 8)(V(Y)) = H%(Vj(Y)) V()P VeV

—~k+1 ~
Definition 3.2.2. Leta € /! and (w, s) € F* X CHL, The zeta functions associated to (P, V™)
and to (P, V™) are the functions:

K (f.w,5) = / F0) (@, 8)(A(X))dX, feSV),
Ot (a)

and
K (g, w,5) = / LI TONY, g €S0

It is clear that the integrals defining these functions are absolutely convergent for Re(s;)+Re(w;) > 0,
j=0,... k.

Theorem 3.2.3.
k1
Leta € F ' and (w,s) € F* xR,
1) The zeta functions K (f,w,s) for f € S(VT) and K, (g,w,s) for g € S(V~) are rational

functions in ¢° and q~%, and hence they admit a meromorphic continuation on CF+1,

Moreover, if w; = 7, ® | - |9 with 7; € 5\)} and v; € C, there exist polynomials R"(w, s) and
R~ (w, s) in the variables q~*, product of polynomials of type (1 — q’N’Z?ﬂ) Ni(sitvi)) with N, N; €
N, such that, for all f € S(VT) and all ¢ € S(V7), the functions R*(w,s)KS(f,w,s) and
R~ (w, $)KC, (g,w, s) are polynomials in q¢° et q~*
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2) Fora € S and g € S(V ™), the zeta functions satisfy the following functional equation.:

KH(Fg,wh s* —m) = Z Clooy(w, )K7 (g, w, 5)
cGVekJrl
where C’(kw) (w, s) are rational functions in ¢* and q~*%.
There is a similar result for f € S(V') and a € S F1:

Ko (F(f), o, sF =m) = ) Dfyg(w, )k (f.w,9).

cE,VfH

(again Df, ,(w,s) € C(g™°, ..., ¢™F)).

Proof.

1) This result was first proved, for integrals of the same kind as K] (f,w, s) and K (g, w, s), and for
one variable, by J-I Igusa (see Lemma 2 in [9]) and sketched for several variables by F. Sato (see
Lemma 2.1 in [15]), both proofs using a result of J. Denef ([6]). But these authors did not point out
the fact that the analogue of the integers /N and /N are positive. For the convenience of the reader, we
sketch briefly the proof for I (f,w, s). This is essentially Igusa’s proof.

First of all we identify V* with F" (r = dimz V). We can assume that f is the characteristic
function of an open compact subset C' of F". We choose an integer m satisfying 7;* = 1 for j =
0,....,k Forz = m%u (a € Z,u € O,) we set 7;(x) = 7j(u). We also define the map A : F" —
FFby A(X) = (Ag(X),..., Ap(X)) (X e VT = F7).

Let A be a complete set of representatives of F™*/F*™, where F*™ is the set of elements a™ for
a € F*. We denote by ¢ = (cq, . .., c;) the elements of A**!. Then we obtain

KH(f,w,s) = Z To(Co) - - .Tk(6k>/ |Ao( X)L | Ar(X) [P d X
o=(c;) € ARF De
where D, = O%(a) NC' N AT cF*™).
Itis now enough to prove that assertion 1) is true for the integral [, [Ag(X)[**0 .. [Ay(X)[*F"dX.
Let 0 : FF — Q) be a Q,-linear isomorphism. We still denote by 6 its extension as a Q,-linear iso-
morphism from V*t = F" to Q. Let dY be the measure on Q) which is the image of the measure
dX under # and let £, = 6(D,.). Let also N be the norm map from F' to QQ, and denote by ||, the

absolute value on Q,,. Then

[AoX)T AKX = [N (Bo(0T (YD IN(AKO V) aY,

D, E.
Of course the functions P;(X) = A;(6~1(Y")) are polynomials.Therefore we must consider integrals
of the form
/ P (Y[ | Pu(Y)[+HdY
Ec

where the P;’s are polynomials.
But a result of Denef ([6], Theorem 3.2)! tells us that, under the condition that E. is a so-called
boolean combination of sets of type I, Il and I11 ([6], p. 2-3) and is contained in a compact set,

this kind of integrals are always rational functions in the variables p**. The second condition on

IThis result is still true for several polynomials with the same proof (private communication of J. Denef)
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the integration domain is of course true for our set /. The proof that £’ is a boolean combination is
exactly the same as the proof of Igusa in the one variable case (see [9], p.1018-1019).

It is easily seen that the integrals under consideration are absolutely convergent Laurent series in ¢=*/
(for Re(s;) + v; > 0. This implies that they are rational functions in ¢**

Finally the fact that there exist polynomials polynomials R (w, s) and R~ (w, s) in the variables ¢~/
having the asserted properties is a consequence of the proof of Denef’s result (see [6], p.5-6).

2) As the prehomogeneous vector space (G, V1) is regular, the relative invariant A is non degenerate
in the sense of Definition 1.2 in [15]. As Ay is also a relative invariant for (P, V"), the prehomoge-
neous vector space (P, V") satisfies the regularity condition condition (A.1) of F. Sato ([15]).

By Theorem 3.1.3, the prehomogeneous vector space (P, V'*) satisfies also condition (A.2') in [15],
and therefore the second assertion is a consequence of Theorem k;, in loc. cit (§2.4).

3.3. Explicit functional equation.

We compute first the factors Déga,c) (w, s) appearing in Theorem 3.2.3 in the case where k£ = 0 (rank
1). In that case, V™ and V'~ are isomorphic to F', and F* is the unique open orbit of the group G = P
in V*, and P has |.7,| open orbits in V* and in V'~

We will identify the spaces V= with F. Then the zeta functions K (f, 6, s) appearing in Definition

3.2.2 are equal and we will omit the exponents + in the notations below.

dt
If dt is a (additive) Haar measure on F', d*t = — is a Haar measure on F™.

Tate’s zeta function (see [16]) is then defined, for feS(F),seCando € F*, by

Z(f,0,s) = . F(@)o(t)|t]*d"t.

This integral is absolutely convergent for s € C such that Re(s) + Re(d) — 1 > 0 and Z(f,0, s)
extends to a meromorphic function on C which satisfies the following functional equation:

Z(fa 57 S) = p(év S)Z<"r(f)75_1’ 1- S),

where p(9, s) is the so-called p factor of Tate (see [16]).
In the notation of Definition 3.2.2 we have for f € S(F):

K(8.5) = [ FOles0)de = 2(7.8.5+ 1)
F
Therefore Tate’s functional equation can be re-written as follows:
’C(fa 57 S) = p((5, S+1)K:<‘F(f)7 5717 _8_1) and K(f(f>7 67 3) = 6(_1)p(57 $+1)’C(f7 6717 _5_1)

Let ,/Yz be the group of characters of ... Any element x € 3’2 extends uniquely to a character of F™*

which is trivial on S.. We still denote by  this extension.

Definition 3.3.1. Let§ € F* and s € C. Forz € ., we define

p(0,s;x) = ’y|z p(0x,s)

XEe




44 PASCALE HARINCK AND HUBERT RUBENTHALER

As a function of x, p(9, s; x) is the Fourier transform of the function x € ,/72 — p(dx, s). Therefore
PO, 8) = X pes X(@)p(0, 5:3), for x € .

Lemma 3.3.2. (compare with [12] Corollaire 3.6.3).
LetS € F*anda € . The functions K, (f, 0, s) satisfy the following functional equations:

Ka(f,0.5) = pl0.5+ Liac)KCo(F(f), 67, —s = 1), f€S(F),

cESe

and
Ka( 25 p(0, s+ 1;—ac)Ke(g, 6, —s—1) g€ S(F).

cESe
Proof. :
From the definition K(f,dx,5) = >, x(a)Ka(f,9,s), By Fourier inversion on the group .7, we
obtain:

1
Kal£,8,8) = = > x(a)K(f,0x.5), a€ .
“ xeZ

From Tate’s functional equation, we obtain

|y| CESﬂeXE_Sﬂe
= Z 8,8+ Lac)K(F(f), 67", —s—1))
CESe

This is the first assertion.

For the second assertion we have similarly:

Ku(Fl0).6.9) = 2 HOK )50
- 3 x(@plors £ 0ERD05 1)
Zy Z p(8x, s +1)6 7 (=1)Ke(g, 67, —s — 1)
= 6(=1)p(5, s+ L —ac)Ke(g, 67", —s — 1).
k]

If z = (zo,...,x) is a k + 1-tuple of elements (taken in any set), we will set x = (xq, ..., Tx_1).
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Theorem 3.3.3.
ket 1
Letk > 0. Let w € F* " ,s €CtHland f € S(VY). Fora € ¥+, we have
Ko (Ff,wh s* = Z D KH(f,w,s),
cGYkJrl
where

D?QO»CO)(WO’ S0) = wo(—l)ﬁ(wal, —50; —ayCo)

and where for k > 1:

D(a c)( )
3 kd b1
= 0l ) (e ) ™ (504 5k ;g Dl (w5
k k id

H CL(),.. y Aj— 1 HU )ﬁ((wo...w]—)_l,—(so+...—i—sj+?);—ajcj),

: ]:
where the constant y;((ao, . . ., a;_1), ¢;) is the one given in Proposition 2.5.5 (depending on e).
Proof.

If £ = 0, the result is just Lemma 3.3.2.

The proof is by induction on k. Let us suppose that £ > 1. From Theorem 3.2.3, the constants
Dé‘/’w) (w, s) do not depend on the function f € S(V). Therefore to compute these constants we can
take f € S(O") and suppose that Re((s*—m);)+Re(w ) > (. Then the functions KC; (F f,w*, s*—m)
and K (f,w, s) are defined by the converging integrals given in Definition 3.2.2.

Notations will be as in 2.5.2. From the integration formula in Theorem 2.3.5, we obtain

K;(Ff,wﬁ,sﬁ _m)

B / / T3 (W 0) 1o (o) (0 + 0 ) (V(u! + ) [V (0 + o) [V ()| 2dudof
wWeVT Ju'egT Mk

and then from Corollary 2.5.4, we get
K, (Ff,wh s* —m)

:/ / : T () (V (/+0)) [V (0 40) [ |V () |2
u' €O (ao ,,,,, ag 1) v'eg Ak Vk( )akESe

From Lemma 2.5.3 we have
V ! CN "1 1 =0
Vj((u' U/)) { —0(“ ) k(v ) or J

V, () for j=1,...)k

Define (w, s) = ((wo, - - -, wWk—1), (S0, - - -, Sk—1)) and [w] = Hf:o w;. We also note that m = 1+ % =
m + g. Then:

d
2

[V 40 (Vi ()5 = Vo) Vi@ |5 mH!ZJ 1 V()|

~ k d
2

— S o T8k )— kd S Sk— S
= [V (1) V(o) |0t S0 () [, ()[40 [y () [ ()]
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and similarly we have

Therefore
K, (Ff,wh s* —m)

-1,— / - Ay L
:/ / _ T3 (W 0w (V) (W (Vi(v)))
W €O (ag,..,ak—1) J v'€EFT Vi (v)arESe

For v/ € V', define the function
Gu(v) = fyk(u’,v)(]:qufl’J“)(u’,v), v E g
Theorem 2.4.4, says that
Fo(Gu) (W) = Tig " (', 0).

The maps v € g* — A,(v) and v/ € g — V(') are isomorphisms from g and §—** respec-
tively onto F'. Therefore the functional equation obtained in Lemma 3.3.2 for £ = 0 implies

/ ) T;;l,— (u17 U’) ([W} (ﬁk(vl))) -1 |@k(vl)|—(so+...+3k+%)—1dvl
v’Gﬁ_kk;Vk(v/)akESe

S DA~ 4 s+ ) —ager)
2

X / Vk (U/7 U)(-F.UT}C?LJF)(U/, ’U) [W](Ak(v>) ’U|SO+“'+Sk+%dv_
vEFMk ;AR (V)R ESe

We know from Proposition 2.5.5, that for v € O (a) and v € g* with Ag(v)cy € S., one has

~v(u',v) = v (a, cx ). Hence
K (Ff,wh s* —m)

= > W=Dl —(s0+ - 4 sk + @); —akcr) k(g cr)
2

< LD [ R ) B
vEF ;A (V) ek ESe u' €O (a)

k—1
TR

The induction hypothesis applied to the function u — T} (u,v), gives the following equation:

/‘ (FuTF ) 0)o (V) [ ()|l
w' €0 (a)

= Y P | e ee@@lamp

c=(co,...ck—1)ESLE
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The preceding equation becomes now:
K (Ff,wh, s* —m)

O [ (o O PR

5
ceyek"'l

X/ / T (u, 0)w(A) ()| A (w) ] (Ag (0) o] 055 dudu.
VEFME ;AL (V)R €ESe JueOT (c)

; —akck)ﬁ)/k(ga Ck)D(a c) <w 8)

From Lemma 2.5.3 we have:

Aj(u+y):{éj(u)Ak(v) for j7=0,...,k—1

Ay (v) for j=k ’

which implies

)(u+ ) Hw] (u+v)) ij w](Ak(v)) = w(A)(u) [w](Ak(v))

and

u+v| —H|A u—l—v SJ—H]A SJ’A )|80+-..+sk_

Moreover from Corollary 2.5.4 we have
u € O (c), and Ag(v)e, € Se <= u+v € OF(c).
Then, if we define

it 1 kd _
Déca,c) (w,8) = (@, ep) W] (=1)A([w] ™ —(so + ..+ s, + 7); —akck)D&,gl)(C_% s)

(which is the announced relation between Dk o(w,s) and Dk ! (@, 5)),

we obtain finally:
,C;(Ffvwﬁasﬁ - m)

= Y Dhows) / [ toratut 0T o)A+ o)A+ 0 |A0)| ¥ dud
ueV vEG K

cesktt

= > D, Kl (f,w,s).
ceskHt
As by Lemma 3.3.2 , we have D?QO,CO)(wO, 30) = wo(—1)p(wp, —So; —coap), the explicit computation

of Dé‘/’a o (w, s) follows easily by induction.

In the case where e is even, the explicit value of 7 (a, ¢x) allows to obtain a more simple expression
k
for Df, .\ (w, ).

Corollary 3.3.4.
~k
Let w € F* and s € Ck+L,
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1. If e = 0 or 4, then ., = {1} and we omit the dependance on the variables a,c. For f € S(VT),

we have
K™ (Ff,wh, s —m) = DM(w, s)KT(f,w, s),
where

D, 5) = 70(@) " TLwo- - w)) (=Dl -0) ™ ~(s0 5, +20).

2. If e = 2, remember that S, = NE/F(E*) where E is a quadratic extension of F' with wg as

associated quadratic character . Let a = (ag,...,a;) and ¢ = (cy, ..., cy) be elements of .S F 1,
Then
Déca,c) (w7 S)
k(k+1) k k gd
:fyw(qe) 2 HwE(cj)]wE(ao...aj_l) H(WO...Wj)(—l)ﬁ((wO...Wj)_l,—(80+... +Sj—|- 7);—ajcj).
j=1 =0
Proof.

If e = 0 or 4 then ., = {1}. In that case, forall z € ./, 2 € Cand § € 1/7\*, one has p(6, z;x) =

p(0, z). The corollary is the an easy consequence of Proposition 2.5.5 and of Theorem 3.3.3.

4. ZETA FUNCTIONS ASSOCIATED TO THE H-DISTINGUISHED MINIMAL PRINCIPAL SERIES

4.1. Characters of the group L which are trivial on L N H,,.

Let (Q;f), p € {1,...,7r9} be the open G-orbits in VV* ([8] Theorem 3.6.3), The integer ry depends
on k and on e, and ry < 5 (see([8], Theorem 3.6.3).

For 1 < p < 1y, we fix an element L in € which is in the "diagonal" &%_,g%. We suppose
moreover that I;” = I'". We set [, = (L) € @h_,g* and hence {1, Hy, I\ } is an sl,-triple.
The non trivial element of the Weyl group associated to this sl,-triple acts on g by the element w, €

adl;f gadly gadly

Auto(g) given by w, = e . Let 0, be the automorphism of Aut(g) defined by 0,(g) =

wpgw, ™ (for g € Auto(g)).

We know that o, is an involution of G ([8] Theorem 4.1.1). Moreover the group H, = ZG(I; ) =
Za(I)) is an open subgroup of the group of fixed points of o,,. Therefore Q;'E is isomorphic to the

symmetric space G/ H,.

We recall also that we denote by P the parabolic subgroup defined by P = LN where L = Zg(a"),
N = expadn, and n = Go<;j<pFi ;(1, —1) (cf. 1.2).

The key point is that the group P is a minimal o,-split parabolic subgroup for p = 1,...,7¢ (see
[8] §4.2) (this means that o, (P) is the parabolic subgroup opposite to P, and P is minimal for this
property). The subgroup L is then the unique Levi subgroup of P which is stable under o,.

As { = 1, the group L acts by a character z;(-) on each §*. Thus, forp € {1,..., 70}, as I belongs
to the "diagonal”, the group LNH,, is the group of elements | € L suchthatz;(l) = 1forj =0,...,k,
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hence L N H,, does not depend on p. We set
Ly={leLyz;(l)=1,forj=0,....,k}=LNH, pe{l,...,r}. 4.1)

Let A, the maximal split torus of the center of L. We denote by X(L) (resp. X(Ay)) the group of
rational characters of L (resp. de Ay ) which are defined over F'. The real vector space a, is defined by
ar, = Homz(X(L),R). The restriction map from L to Ay induces an injection from X(L) on X(Ay),
and these 2 lattices have the same rank, which is equal to the dimension of a;, (see [14] V.2.6). Then,
the dual space aj satisfies a} ~ X(L) ®z R ~ X(AL) ®z R and each root o € ¥ induces a linear

form of aj, which we also denote by .
The canonical map Hy, : L — ay, is then defined by

eHrWx) — |\ ()|, 1leL,xeX(L).
The group of non ramified characters of L is then defined by:

X(L) = Hom(L/KerHy, C"),

»HL (D) (or equivalently the map

The map v — Y, from (a} )¢ to X (L) defined by x,, : | > €
X®s € X(L)®z C—— (I — |x(I)]*)) is surjective and its kernel is a lattice in (a} )c. This defines
a structure of algebraic variety on X (L). More precisely X (L) is a complex torus whose Lie algebra
is (a})c.

Let p € {1,...,79}. The involution o, on L induces an involution on a;, and a}, which we denote
by the same letter. From the proof of Lemma 4.1.5 in [8], the Lie algebra of A; decomposes as
arpb =a,Nb, ® a’ where b, 1s the Lie algebra of H,,. Since the groups LN H,, p=1,...,ry are
equal (see (4.1)), this decomposition does not depend on o0,. Hence, the induced involution on ay,
does not depend on p. We set ar, = af @ a° and a} = (a9)* & a* the decompositions of ay, and a}
in invariant and anti-invariant spaces under the action of o, for all p. By definition of a”, a basis of

(a%*)c is given by A, . . ., .

Let X (L), be the image of (a°)c by the map v — Y,. Then, the torus X (L), is the group of non
ramified characters given by

k
Do T a1 for o= s + .+ pdi € (a™)e.
=0
Let §p be the modular function of P, which is given by dp(Iin) = e2P7-H () Here pp is half the sum

of the roots of Ay in N (counted with multiplicity).

Lemma 4.1.1. We have
k

d .
2pp = 5 ;(k — 2j)A;.

This implies that for | € L,

l
. d .
op('2 = [Tl )17, where p; = - (k —2j).

Jj=0
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Proof. The Lie algebra of P decomposes as p = [ @ n with [ = Z;(a’) and n = &, E; ;(1, —1).
Let S; ; be the set of roots 1 such that p # (A\; — A;)/2 and g* C E; ;(1,—1). Let m,, = dim g" be
the multiplicity of ;. We know from ([8] Remark 3.3.3), thatif € S;;then ' = X\, — \; — pisa
root in S; ; which is not equal to x but has the same multiplicity, and of course 1 + 1/ = \; — A;. As
dim(g4)%) = ¢, and d = dim E;5(1, 1) = e + 3 g, M, We obtain

1 d—e
> Mt = 5 > mu(\ = X) = 5 (A = Ay).

HES: ; HES;
Therefore ( )
A — s d—e d
i<j 1<j 1<j

A simple computation gives then the first assertion. The second assertion is then an immediate con-

sequence of the first one.

From Remark 1.2.2 we know now that the map 7 : [ — (zo((),...,zx(l)) induces an isomorphism
of groups from L/L NH, = L/Ly onto Uy,c o, xS¥.

Hence, any character of F**+1 induces, by restriction to Im7, a character of L trivial on L N H,, for
any p € {1,...,N}. If 6 = (Jo, ..., ) is a character of (F*)**! the corresponding character of L,
which is invariant on L/L NH, = L/Ly, is still denoted by ¢ and is given by

k

o(1) = [ [ ail; (1))

1=0

This is made more precise in the following Lemma.

Lemma 4.1.2.

1. Any character of ImT = U,y xS* is the restriction to ImT of a (non unique) character of
(F*)kz—i-l'

2. Two characters § = (&g, ..., 0x) and &' = (8, . .., 0},) of (F*)**L coincide on ImT = U,c.» 2S*T,
if and only if for all j = 0. .. k, there exists a character X’ of F* with values in {+1}, and trivial on

S, such that
k

0i(x) = X (2)0)(x), et [[¥(x)=1, xeF*
=0

Proof. Note first that as [** C S, the group (F*)*+1 /ImT is a finite abelian group whose non trivial
elements are of order 2.
Let 4 be a character of Im7” and take = € (F*)**1 \ Im7". Then, as F*> C Im7, we have 22 € Im7.
Let w, be a square root of 4(22), and let M, be the subgroup of (F*)**! generated by Im7 and z.
One can now define a character of M, by setting &1 (az) = 0(a)w, for a € ImT. As (F*)*1/ImT
is finite, we obtain the first assertion by induction.
As ., = F*/S, and F*? C S,, the second assertion is clear.
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4.2. The minimal principal H-distinguished series.

Letp € {1,...79}. A smooth representation (7, V) of G is said to be H,-distinguished if the space
(V*)*r of H,-invariant linear forms on V; is non-trivial. This is also equivalent to the condition
Homy,, (V, C=(G/H,)) # {0} (where C*°(G/H,) is the space of locally constant functions on
G/Hy).

If x is a character of P we define as usual the space I, to be the space of functions v : G — C which

are right invariant under a compact open subgroup of G and which satisfy the condition:
v(nlg) = 6p(1)*x(D)v(g), neN,leLgeq.

The induced representation 15 () is the right regular representation of G on I,.

One knows from ([1] Théoreme 2.8), that if there exists an open P- orbit Py#, in G /H,, (or equiva-
lently an open orbit Pv]; in Q;;) with v € G, such that x is trivial on L NyH,y ', then (under some
additional conditions, see below), the representation 1§ () is H,-distinguished.

But as any open P-orbit in (2, meets the diagonal we can suppose that 7.[1;“ € @FOQAJ' and hence,
using (4.1), the character y is trivial on L N yH,y' = Ly = L N H,. Therefore we make the
following definition.

Definition 4.2.1. The minimal principal H-distinguished series is the set of representations 15 (x)
where x is a character of L trivial on Ly such that IS (x) is H,-distinguished for anyp € {1, ... 7o}

Fix a unitary character 6 = (dg, ..., d;) of (F*)**! and fix also p = poAo + ... + e € (a®*)c.
This defines a character ¢,, of L which is trivial on L N H, by

We set w5, = I§(6,) and denote by I5,, = I, its space.

Let K be a maximal compact subgroup of GG which is the stabilizer of a special point in the appartment
associated to A in the building of G. Let /() be the space of functions v : K —— C which are right
invariant under an open compact subgroup of K and satisfy the following condition:

v(nlk) = 6(l)v(k) fornle PN K and k € K.

Then the restriction of functions in /5, to K gives an isomorphism of K-modules from /s, onto /(J)
and we denote by 75, the representation of G on /(§) obtained from 7, , through this isomorphism

(this is the so called compact picture of the induced representation).

We identify the spaces (a%*)c and C*! by the isomorphism p = Zf:o N = (Hoy - -y fg)-

From ([1] Théoréme 2.8), we know that there exists a rational function on R, on X (L), ~ (a%)c,
which is a product of functions of the form (1 — cqu:0 4#t7), where ¢ € C* and a; € Z, such that
if R, (1) # 0, the representation (75, I,,) is H,-distinguished. Moreover, in that case, dim(7; ,)*»
is equal to the number of open P-orbits in G'/H, (or equivalently in €2,) and a basis of (I} ,)"" is
explicitly described in [1] (see also below for our case). Differences between our notations and the

results of [1] come from the fact that there the authors consider non normalized induction.
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Definition 4.2.2. Set R = H;O:1 ‘R, where R, are the rational functions mentioned above. Let U be
the open dense subset of (a°*)c defined by U = {u € (a°*)c, R(1) # 0}. Hence for all ji € U and
p=1,...,k, the representation (75, I5,) is H,-distinguished.

We will now describe, in our case, the basis of (/5 u)HP givenin ([1] Théoréme 2.8 and Théoreme 2.16,
[10] §4.2).

Letp € {1,...,r0}. The open (P, H,)-orbits in G can be view as the open P-orbits in V' contained
in QFf ~ G/H, Remember that the open P-orbits in V* are the sets P.I*(a) where [ (a) =
aoXo + ... + a1 Xy + Xy for a = (ag,...,ax_1,1) in S* x {1} (see Lemma 1.2.4). For

a=(ag,...,a5_1) € SF weset(a,1) = (ag,...,ar 1,1).

Definition 4.2.3. For p € {1,...,7}, we denote by S, the set of a € ./ such that I (a,1) € Q.
Let us fix v, € G such that v, I} = I*(a,1). Hence Uges, PyoH, is the union of the open (P, H,)-

orbits in G.

Definition 4.2.4. Let pi € (a**)c, p € {1,...,r0} and a € S, The Poisson kernel 5 is the function
on G defined by:

(o) = Sp(DY2(0,)7H1) if g =nly,h € NLy,H,,
9= 0 if 9 ¢ PrH,.

Let C(G, P, 0*, i) be the space of continuous functions w : G — C such that
w(nlg) = 61°(1)6,(1) " w(g) ne N,l e L,geG. 4.2)

We will say that Re((Sgl/ ?5,,) is strictly P-dominant if (Re(u) — pp, ) > 0 for all roots o of A in
N. From ([1] Théoréme 2.16) and ([10] Théoréme 4 (ii)), we know that if ;1 € (a®*)c is such that
Re((S;l/ 25#) is strictly P-dominant and if a € .#*, the function P ., 18 a right #-invariant element
of C(G, P, 6, ).

Moreover by ([1] (2.29)), the map

(w,v) € C(G, P, 0%, ) x Is, — (w,v) = / w(k)v(k)dk 4.3)
K

defines a G-invariant duality between C'(G, P, §*, i) and I;,. Hence C(G, P, §*, i1) can be viewed as
a subspace of I5 , and P§ , is identified to a #,-invariant linear form on /5 ,. Let us make this more

precise in the following definition.

Definition 4.2.5. Let C" be the set of i € (a")c such that Re(dgl/ 25u) is strictly P-dominant.
Letp € UNCH pe{l,...,N}anda € S, Wedenote by &5, € (I )" the H,-invariant linear
form which corresponds to IP’% ., via the preceding duality between C' (G, P, 0%, i) and I .

The isomorphism /5, ~ I(J) (given by restriction to K) induces an isomorphism & +— & from
I5,, onto I(0)*. From Théoreme 2.8 in [1], the map p € UNCT — % has a meromorphic

continuation to (a**)c such that R ()5 ., is a polynomial function in the variables q™"i. Moreover,
forpe {1,...,N},a € S, and px € U, the set of f'ﬁ# is a basis of (][{u)HP (loc.cit) .



LOCAL ZETA FUNCTIONS FOR A CLASS OF P-ADIC SYMMETRIC SPACES (II) 53

In the rest of the paper we fix Haar measures dg and dk on G and K respectively and a right Haar
measure d,.p on P such that

Kywwzﬁﬁﬂmm@ﬂMMafevm»

The character J,, is extended to P by setting d,,(In) = 6,(I) forl € Landn € N.
Let C°(G) be the space of locally constant functions on G with compact support and define L, :
C(G) — I, by

Lé,u(@(g)=/P5P(p)_l/g%(p)_lso(pg)drp, g€G.

It is well known that the map L; , is surjective G-equivariant (here G acts on C2°(G) by the right
regular representation).

Lemma 4.2.6. For ¢ € C(G, P,6*, u) and p € CX°(QG), one has

/¢ @—/w ) La (0) (k) dk

Proof. From the above given decomposition of dg and from and the definition of C'(G, P, §*, i), we

/ U(9)p(9)dg = / / W(pk)o(pk)op(p)~ dyp dk
//@ )20 (k)5,(p) o (ph)dvp dk

jLWML%w*%NWMWMwM=L¢WMM@W%-

have

Corollary 4.2.7. Let pn € UN C*tand v € Is,,. Then, for v € G, one has
<7T§7M(.CE)€(%“,U> = /I(Piu(k)v(kx_l)dk’ = Ang(kx)v(k)dk.

Proof. One has (s ,(2)&5,,v) = (€5, Ts,u(x ™" )v). As p € UN CT, the linear form &, is given by

the Poisson kernel. Hence

(W}"H(x)fgu,w:/I{P;“(k)(m#(x_l)v)(k;)dk:/P;M(k)v(kx_l)dk.

K
This gives the first equality.

Take € C°(G) such that L ,(¢) = v. As Py, € C(G, P,6*, n), Lemma 4.2.6 implies

/Péu(k) (ka:_l)dk:—/Pgu(g /Pgu gx)e(g)dg.
K G G

For x fixed, the map g — ]P’6 .(gx) belongs also to C(G, P, 6", j1). Again Lemma 4.2.6 implies that
I P5 ,.(92)p(g)dg = [ P5, (kx)v(k)dk.
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4.3. Zeta functions associated to the minimal principal H-distinguished series.
Let (dX,dY") be the pair of Haar measures on V' and V'~ which were determined in Proposition
2.2.2. Recall that d* X and d*Y are the G-invariant measures on V' and V'~ defined by
dX ay kd
X =——, dXand dY = ———— where m=1+ —.
[ Ao (X)[™ [Vo(X)[™ 2

(see (1.2)).

By Proposition 2.2.3, this determines uniquely a G-invariant measure d,g on G/H,, for all p €

{1,...7’0}.

Then the fixed Haar measure dg on GG determines a Haar measure d,/ on #,, such that

/ f(g)dg = / flah)d,h dyg, | € LY(G).
e G/H, JH,

Definition 4.3.1. Letp =1, ... 1y and let § be a H,-invariant linear form on I, (i.e. an element of
(I;,)"r). For X € G.IF and Y € G.I, we define

T (X)) =m5 ()¢ if X =gl ,geCG, 75, (Y)=n"(g9)¢ if Y =gI ,9€G.

(Remember that M, is the stabilizer of I and of I)).
Let z € Cand w € I5,. The zeta fonction associated to (7s,,,2,&, w) are formally defined, for
® e S(VT), by

2} @ 56w) = [ COIMOF 55, (X)E wd' X,

+
Qp

and for ¥ € S(V ™), by
2, (W2 6w) = [ U)VolY)F (3, (V)6 w) Y.
Qp
Remark 4.3.2. 1) If £ = 0, then G and P are equal and isomorphic to F™*. Thus we have 75, = J,
and we can take the generalized coefficient (7*(g)&, w) to be equal to (6,)*(g), g € G. The spaces
V* are isomorphic to I’ and an element @ € F™* acts by the multiplication by a on V* = F, and by

the multiplication by a~* on V~. Thus, we have
ZH(®, 2,6, w) = Z(®,6 1, z—p), and Z (V,z & w) = Z(V,0,z + p),
where Z(g, 0, s) is Tate’s zeta function (see section 3.3).

2)Let p € U, & € (I;,)" and w € I;,. Then for = € C and & € S(Q"), the zeta func-
tion Z} (®, z,&, w) can be seen as a generalized coefficient of 7;,. More precisely if p € C°(G)
is such that ®(g.I}) = pr ©(gh)d,h and if ¢, € C*(G) is the function defined by ¢.(g) =

©(9)|Ao(g-1))

?, it 1s easily seen that

Z;(q), Z, 5, w) = <7Tg7u(¢z)€a w>

A similar result holds for the zeta functions Z (¥, z, §, w), for ¥ € S(Q27).

We will now study the zeta functions associated to the linear forms fgﬂ by giving a connection be-

tween them and the zeta function K= (f,w, s) (c € .#**1) introduced in Definition 3.2.2.
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Definition 4.3.3. For ;i = E?:o wih; € (a®)c, we define s(1) = (so,...,s5) € (C*)*! by the
relation
pP—ILLZSO)\O—F(SO—l-Sl))\l—l—...—|—(80+...—|—8k)>\k.

—

If6 = (8o, - - -, Ok) is a unitary character of (F*)**1, we define w(5) € (F*)k+1 by
W((S) = (u}o, Ce ,wk) = (50_1, 50(51_1, e ,(5k_1(5k_1).

Then
CL)Q...CL)J':(S;I, (fOI"j:O,...,]{?)

and, using Lemma 4.1.1:

kd d .
So = T Hos S5 = -1 T T o (forj=1,... k).
Also if s = (sg,...,s,) € C¥1and 2 € C, we set s — 2 = (sg — 2, 81, . - . , Sp).

Lemma 4.34. Let 1 € (aj)c. Then (5;1/ 25# is strictly P-dominant (or equivalently i € C7) if and
only if s(;t) = (So, - - ., Sk) satisfies the condition Re(s;) > 0forj=1,... k.

Proof. By definition ;1 € C* if and only if (Re(u) — pp, ) > 0 for any root o of A in N. From
the definition of IV, for such a root, there exists a pair ¢ < j such that g* C E;;(1,—1). Let
pp =3 o pshsand = 30 ).

Then the condition ¢ € C* is equivalent to Re(yu; — i) — (p; — p;) > 0 for any pair i < j.

From Lemma 4.1.1, we get p;_1 — p; = %, and therefore € C* if and only if Re(; 1 — ;) > g for
i=1,... .k

As we have seen in the preceding definition that s; = ;-1 — p; — g for: =1,...,k, the Lemma is

proved.

Definition 4.3.5. Letp € {1,...r}, a € Sp, w = (wo,...,wi) € (F)* and s = (so,...,si) €
CF*1. Define the functions P%E on V= by

put(X) = (w,$)(A(X)) if X e PIt(al),
e 0 if XeV*t\PI(al).

and
s (y) = (w,s)(V(Y)) if Y ePI (al),
0 it Yev-\PI (al)

Remark 4.3.6. The union of the open P-orbits in V't is the set {X € VT A;(X) # Oforj =
0,...,k}. On the other hand we have 0} C Q% = {X € V*;Ag(X) # 0}. Hence, if Re(s;) > 0
for j = 1,...k, the function P37 is continuous on §2.7. If moreover Re(sy) > 0, P& is continuous

on V.
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Similarly the union of the open P-orbitsin V™~ istheset {Y € V=, V,;(Y) #0forj =0,...,k} and
we have 7 C Q7 = {Y € V7;V(Y) # 0}. Hence if Re(s;) > 0 for j = 1,...k, the function
PZ 7 is continuous on ()" and if moreover Re(sp) > 0, then P is continuous on V™.

w,Ss w,S

Lemma 4.3.7. Letp € {1,...,70} and a € S,. For g € G, we have

Pﬁﬂ(g) csu(@) Py (JE) s(w) (g-f;) = C5,u(Q)Pi’(;)u7s(u)u(9'[_)v

where w(8)* and s(p)* are given in definition 3.2.1 and cs ,(a) = H? o 0i(aj)|aj| =i,

Proof. Let us prove the first equality. Remember that I(a,1)" = VQ.I; (cf. Definition 4.2.3) . If
g & PyaH,, then g.I.7 ¢ P.I"(a,1), and hence the two members of the first equality are equal to
zero. These two members are also left invariant by N and right invariant by #,. Therefore it is
enough to show the results for ¢ = I, where [ € L. Define then X = g.I;r = [.I"(a,1). From
Definition 4.3.3 we have

w(0)(A(X)) = ij(Aj(X)) = 0 (D0(X))(d7"d0) (A1(X) - .. (6 " r—1) (Ak(X))

1 Ap (X))
=0 (Al(X)) 1 (AQ(X))-~~5k71(m)5k (Ax(X)).

As X = 1.1 (a,1) = agxo(D) Xo + a121() X1 + . .. + ar_1251(1) X1 + x1(1) X, we obtain:

k-1 k-1
w(@)(AX)) = 0p(ar(@) ™ [T 8525 (Day) " = 6~ T d5a) "
i j=0
Also, as s(u) = (so, - . ., sx) is such that 5o + ... s; = p; — p1;, we obtain

AP = [Ao(X) 0| AL A2(X) 2 |AR(X)]™

(S ()™ (o e

k—1

=[x (O ] [ (el 1)

J=0

Using Lemma 4.1.1, we get

IA s(u H|a [P Hs 5P 1/2H|x] —Hj
Therefore

2t (L) = w(8) (ACO)|A)

=o()~ H 9;(aj H |a |~ MJ D2 H |25 (D)

= (cs,u(a)) "' P5,(9)-
The first equality is proved.

If { € Lthen {I.I (a,1),Hy,l.I"(a,1)} is an sly-triple. From ([8] corollaire 4.5.9) we know that
V(.17 (a,1)]F® = |A(.I"(a,1))]*™, similarly it is easy to see that w(8)(V(l.I (a,1))) =
w(0)(A(l.I"(a,1))). Hence Pi’;g)’s(#) (9.Lf) = P;(é)u ()t ;(g9-1,7). This gives the second equality.
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Theorem 4.3.8. Letp € {1,...,r0}, a € S, and z € C. Let also § = (¢, 01, ...,0;) be a unitary

character of (F*)*+1,

kd kd

(1) (a) Let p = pioho + - . . A € UNCT. Suppose Re(z — pg) > m — T= =1+ — 1
Then, for all ® € S(V71), £ € (I;‘#)HP and w € Is,, the integral defining the zeta
function Z;r (P, z,&,w) (cf. Definition 4.3.1) is absolutely convergent and the following

relation holds:
2305, 6800) = e3,(0) 3 [ K (EID.0(0),500) + 2 = m)u(R)a,
€S

where L is the left regular representation.

(b) The function Z; (P, 2, 55%#’ w) is a rational function in the variables ¢ and ¢** and
hence admits a meromorphic continuation. Moreover there exists a polynomial Rt (9, p, z)
in the variables q"i, q~"i and q %, which is a product of polynomials of type (1 —
djq_N’Z—Z?:O "iti), where N € N, m; € Z and d; € C are independent of z and
of the p;’s, such that for all ® € S(V*), £ € (I;,)" and w € Is,, the function

R0, p, 2) ZH (D, 2, &, w) is a polynomial in ¢ and ¢**.

kd kd
(2) (a) Let p = pigho+- .. A € UNCT. Suppose that Re(z + py) > m— T 1+I Then
Jorall W e S(V7), ¢ € (I3,)* and w € Is,, the integral defining the zeta function

Z _(\IJ z, &, w) is absolutely convergent and the following relation holds:

Z, (W, 2,5 ,,w) = csu(a Z / (za.z) (£ MW, w(6), s(p)f + 2 — m)w(k)dk,

zeSe
(b) The function Z,; (W, 2, {’g’u, w) is a rational function in the variables ¢** and q** and
hence admits a meromorphic continuation. Moreover there exists a polynomial R~ (9, p, z)
in the variables q"i, q~"i and q %, which is a product of polynomials of type (1 —
djq_Nz - o™iti) where N € N, m; € Z and d; € C are independent of z and
of the p;’s, such that for all W € S(V~), & € (I3,)" and w € Is,, the function
R=(6, 1, 2)Z, (¥, 2, &, w) is polynomial in gt and ¢

Proof. For k = 0, the zeta functions considered here coincide with Tate’s zeta functions (see Remark
4.3.2, 1)), for which the results are well-known.

From now on , we suppose that k£ > 1.

We have already mentioned that the set of £§ , for a € ¥ is abasis of (I} H)”P. Therefore it is enough

to prove the results for £ = f?u. Let us prove assertion (1).

Let i = pgho + . . . + upAx € UNCT. To simplify the notations we set s = s(u) = (so, - - ., Sx) and

w = w(d). From Definition 4.3.3 and Lemma 4.3.4, one has
d kd
a) Re(s;) :Re(uj,l—,uj)—i >0ifj=1,...kand sp = o Ho

kd
b) Also from our condition on z, we have Re(z + sg) — m = Re(z — o) + 7 m> 0.
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Taking into account that ¢ is here a unitary character, we know from Definition 3.2.2 that these con-
ditions imply that the functions K} (f,w(d), z + s(u) — m), ¢ € ##T1, are defined by an absolutely
convergent integral for all f € S(V).

Using Lemma 1.2.4, we obtain for f € S(V™):

S Ky (Fw(6), 2+ s(w) —m) = 3 / () (A (X)) A X)W max

rESe rESLe

[ HOOIACOE P (X)X = / PRI TP (X)X,
P.I(a,1)*
Remark 4.3.6 and the conditions on p, z and @, imply that the the function
(k, X) = (L(K)P)(X) Ao (X)FT P 0 (X)

is continuous with compact support on K x V',

Then, from Lemma 4.3.7 and the Theorem of Fubini, we get

cspula Z / (o) (L(B)P,w(0), s(p) + 2 — m)w(k)dk

TESe

— csula) /K ( / (L) (OB (X FPES (X >d*X> w(k)dk

-/ ( / @(k1g.zp+>1A0<g.f;>m@§::<g>dpg> w(k)dk
K \Ja/#,

- /K </G/H (I)(Q'I;r)|A0<9-IJ>’2P§V’:(/{:g)dpg'> w(k)dk

(because |xo| is trivial on K)

-/ LA ([ orwaemar) 4z

Then from Corollary 4.2.7, we obtain:

csula Z / (raz) (£ ,w(0), z+ s(u) — m)w(k)dk

TESLe

:/G/H ®(g.L0) Do(g.I)) P (7}, (9)E5 ,, w)dyg

= Z;(®7 Z? 5(%#7 w>7
which is assertion (1)(a).

From Theorem 3.2.3 there exists a polynomial R*(w,s) € Clg~®,¢~®,...,¢ %] in the variables
¢~ %, product of polynomials of type (1 — b;q~ =0 Ni%i) with N; € Nand b; € C, such that
Rt (w,s)KI(f,w,s) € ClgT*0, ¢, ... ¢**] for all f € S(V*') and ¢ € Z*+1. But here we
must consider integrals of the form ICJ;G o (L(k)D, w(9), z + s(u) — m), where by Definition 4.3.3,
kd d d
(z 4+ s(p) —m) = (Z_U0+2_m>ﬂﬂ_ﬂl_57--'a,uk—l_ﬂk_§)'
This implies immediately assertion (1)(b).
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kd
Remember that s(1)* = (—(sg + ... + k), Sk, .-, 51) With 89 + ... + 8 = 7 Mk Therefore

kd
Re(z—(sg+...+sk))—m:Re(z—l—,uk)%—I—m>O.

A similar computation to the one in the proof of 1) b) above shows thats for ¢ € S(V ™) one has

Cou(@) 3 Ko (9,0(0) 2+ s(u)f —m) = / Y)YV (Y)Y

€S

Then the same arguments prove assertion 2)a) and 2)b).

Theorem 4.3.9. (Main Theorem, version 1)

Let k > 1 (for k = 0, the zeta functions we consider coincide with Tate’s zeta functions by Remark
4.3.2). Let § be a unitary character of (F*)*** and pn € U. If a € /¥, we denote by p, the unique
integer in {1,...,ro} such that P.I(a,1)* C 0. Let also y; (j € N¥) be the function defined in
Proposition 2.5.5.

Then for ® € S(V*) and w € I, the zeta functions satisfy the following functional equation:

7o (Fe, M e )= S B0 ()2 (@, + P e ),

2
cesk

where the functions B, (0, pu)(z) are given by

B8 1)(2) = cau(@)csa() ™ 3 (llao, o k1), 9)u(=1)p(6k, 11 — 2 + 1)

yeSe

XH%‘((GO,.. L @j-1),YC; H5 (65, 115 — +1§_ajcjy)>-

Moreover these functions B, (0, i1)(z) do not depend on the character of (F*)**' which defines d,,
(see Lemma 4.1.2).

Proof. Let us first show that for k£ € K, one has F(L(k)®) = L(k)F (D).
By definition we have

F(@)(Y) = /V+<I>(X)Tob(X, V)X, Yev-,

As the measure d* X = W is G-invariant and as |Ag(k.X)| = |A¢(X)|fork € Kand X € VT,
the measure d.X is K-invariant.
As the bilinear form b(-, -) is G-invariant, we see that the Fourier transform on V' * commutes with the

action of K:

L(k)F(P) = }"(L’(k)@), fork € K.
From Theorem 4.3.8 (2) (a), we obtain

Zp;( m+1 —z 55#, =csula Z / (za.2) )@),w((S)ﬁ,s(u)ﬁ—z—i- 5 —m)w(k)dk.

TES e
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As s(p)f — z + ™ = (s(p) + 2 — ™)? (see Definition 3.2.1), Theorem 3.3.3 implies that

m+1 m+1

Zp_g(]:cI)’ T - Z’gt%,,u’ 65M Z Z D (za,z c) 5) (:u) +z T)
TE.Se CES/”“+1
+ m + 1
K

where the functions D* satisfy the following induction relation:
Dégap) (U)/, 8/)

_ kd
L—(sy+...+s,+ 2) akck)D/EC 1)(w s').

Proposition 2.5.5 implies that v (za, ¢x) = Yx(a, zcx) for © € 7,. Then by an easy induction from

= (@, c))(wo - i) (= 1)p((wp - - wi)

Theorem 3.3.3 we see that D{(,,, ,y (', 8') = Df, 1 o) (@', 5).
It follows that if we define A(w', s")(a,c) = > . Df(m’x)ﬁ) (W', ¢') then A(W', §')(a, yc) = A(W', §')(a, ¢)
for all y € ... Then, for f € S(V),

Y0 D Dlwamo W K (fol,s) = Y AW, )@ oKH(f,0',s)

IGEVE C€1y6k+1 ce yk+1
Z Z Ap(W', 8')(a, (zc x))ICJ;M (f,w', s
QG/’V TESe
:ZAk(w/,s , (¢, 1)) ZICQCM (f,w,s).
ce Sk €S

Then by Theorem 4.3.8 and the expression of 7, (]—" D, mTH -2, f(%u, w) given in (4.4), we obtain that

1
7, (Fo, = s, w)
= coul@) 3 Aulol T @ e D)es(d 2,5+ T ),

ceSk

In order to prove the functional equation it remains to show that the functions

m—+1
Ba (0, 11)(2) = c5u(@)cs ()™ Ag(w(0), s(p) + 2 — )(a, (¢, 1))
have the form requested in the statement.
From Theorem 3.3.3, we obtain
m+1 m+ 1
D?(xg,x),(g,l))(“u((s)v s(pu) + 2 — T) = D?(Q,l),(xg,x))<w(5)7 s(p) +2 — T)
- _ m+1 d
= (e @) (wo- - we) (~Dp((wo - wi) (0 + stz — o — %); 1)
i m-+1 jd
X H ’)/j((a,(), . ,aj,l), Z‘Cj) j]:[O(WQ e wj)(—l)ﬁ((wo e wj)fl, —(80+. . +8]+Z—T+?), —I‘CL]'Cj>.

From Definition 4.3.3 and the definition of s(i) we have wy . ..w; = §; ' (if w(8) = (wo, -+, wk)) ,
and so + ...+ s; = p; — p;. Hence

jd m+ 1 k—25)d jd kd
5 +Z—T)=—(%—m+—

=p; —z+ 1

—(80+...+Sj+
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Hence N
m
D wany, ey (W(0), 8(p) + 2 — T)
k—1 k
Jj=1 =0

This implies the result concerning the functional equation.

It remains to show that the functions B, .(, 1t)(z) do not depend on the character of (F*)**! which
defines ¢,.

To see this we take ® € S(€;;, ). Then from the functional equation we have

Z, (Fo, ™ — 2 &8 )
Zpg(@,w el & w)

By definition (4.3.1) the zeta functions do only depend on the induction parameters.

B, c(6,11)(2) =

Remark 4.3.10. Of course one can also check directly that the functions B, .(d, 1¢)(2) do not depend
on the choice of the character § of (F*)**! defining the character §,, of L.

If &’ is another character (F*)’qul which defines the same character ¢, then, by Lemma 4.1.2, for
j € {0,...,k}, there exists a character x’ of F* with values in {£1} and trivial on S,, such that
d;(x) = x’(x)d)(x) and Hf o X/(xz) = 1forx € F*. By definition (cf. Lemma 4.3.7), we have
csula) = Hf —o 0;(a;)]a |~ Hence

k—1

corp(a)es u(c) ™ = HXj(Cj)X (a;)csu(a)cs,(c) ™" (4.5)

J=0

From the definition of p (cf. Definition 3.3. 1) for a character 6 of F*, s € C and b € .%,, we have

p(d,5:b) W’ Z p(0x, 5)

Then, for y € .7,:
pORX" e — 2+ 15 —y) = X (=) p(0k, e — 2 + 15 =)

and p(0;x7, 1y — 2 + L —ajey) = X (—ya;c;) p(d5, uy — 2 + 1; —aje;y).
As H?:o X/ (—y) = 1, relation (4.5) implies that B, .(¢', 11)(2) = By..(d, ) (2).

In the case where e = 0 or 4 we have ., = {1} and the groups GG and P have a unique open orbit
in V. We therefore omit the indices p € {1} and a € .#*. Moreover, L/L N H is isomorphic to
(F*)**1, therefore there exists a unique character § of (F*)¥*! such that §(1) = §(zo(l),...,6,(1))
for [ € L. Then the functional equation is scalar and has the following form.

Corollary 4.3.11. Let e = 0 or 4. Then for ® € S(V™), £ € (I;,)" and w € I5,, we have

(m+1)
2

k(k+1)

Z(F,

) =dp,) 2@+ T )

where d((Sa 22 Z) = fYT(q) H?:O 5j(_1)p(6j7 Mg +1- Z)'
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Proof. As %, = {1}, we have p(x, s;1) = p(x,s) for all y € F*and s € C. Also vi(1,...,1) =

7+(q)’ from Proposition 2.5.5. The Corollary is then an immediate consequence of Theorem 4.3.9.

4.4. Another version of the functional equation.

Let 6 be a unitary character of (F*)¥*! and 4 € UN C*.

It is known from Theorem 4.3.8 that if Re(po) < —1 — % then Z5(®,0,&5,, w) is defined by an
absolutely convergent integral for any ® € S(V'*) and that if Re(ux) > 1+ %L, then Z, (¥, 0, &5, w)
is also defined by an absolutely convergent integral for any ¥ € S(V 7).

We will first describe the linear form w —— Zpi(q), 0, fiu, w) in terms of the duality (4.3).

Definition 4.4.1. Let § be a unitary character of (F*)*™! and let u € UNC™. Letalsop € {1,...,70}
anda € S,. If € S(V*) and V € S(V ), we define the two following functions of C(G, P, §*, i)
(cf (4.2)).

- for Re(pip) < —1 — %2

23 @5, €6,)(0) = csale) [ g XOPE (00X = [ @By (9 € C)
v+ G/ My

- for Re(py,) > 14 &

Zy (W, s, 5,)(9) = csu(a) / (g X)PE s (X)X = . Yyl )P, (gy)dy (g9 € G).

(The functions Py, Pi’;g)ﬁ(m et Pi’(;)tts(m,j were given in Definition 4.2.4 and 4.3.5 and the second
equalities are a consequence of Lemma 4.3.7).

Note also that these functions are well defined because the Poisson kernels Pi’(g)ﬁ(u) and Pi(_(s)u,s(,u)n
are continuous for p € U N C™ satisfying the additional conditions Re(po) < —1 — % and Re(py;) >

1+ % respectively (see Remark 4.3.6).

Let C'(K, PN K, §*) be the space of continuous functions v : K — C such that v(pk) = §(p) 1v(k)
for k € K and p € PN K. The restriction to K is an isomorphism from C(G, P,0*, 1) onto
C(K,PNK,d).

Proposition 4.4.2. Let § be a unitary character of (F*)**! and let u € U N C*. Let also p €
{1,...,r0}anda € S,

1) Let ¢ € C(G), the linear form Wg’H(QO)f(%M is given (via the duality (4.3)) by the following function
in C(G, P, 6%, p):

5 ()E5,.(9) = /G v(y)Ps,(9y)dy, g€ G.

2) If ©* € C(Q5) we fix o* € C(G) such that D*(g.177) = pr 0= (gh)dyh for g € G. Then

Z;t(éi) W67M7 é-é%#) = 7T§7M(g0:|:)€é%“
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Proof.
1) Using Corollary 4.2.7, we obtain for v € I ,:

T3 0) = [ 3,006y = [

K

( /G w(y)Ps . (ky)dy)v(k)dk.

Hence the linear form 7; , (#)&5, is given via the duality (4.3)) by the the function g — [, o(y)P;5 ,(gy)dy.

2) We only prove the assertion for Z;(CI), T, €5.,)» the proof for Zp_(\I!, Tou E5,,) 18 similar.

From the definition of Z;} (&%, s, £5,,) and from 1) we get

Zy (@ 75, E5,0(9) = / OF (yI,)P5 ,(9y)dy = / ( / ¢ (yh)d,h)P5 , (9y)dy
G/H, G/H, JH

P

= /G P ()P5,(9y)dy = 75, (97)85,,(9)-

Proposition 4.4.3. Let § be a unitary character of (F*)**! and let u € U N C*. Let also p €
{1,....r0}anda € S,
1) Let ®* € S(V*). Then the map

T Z;(@tm,u,ggu)m € C(K,PNK,d)

extends meromorphically from the set { € U N C™;Re(po) < —1 — 2} 10 U,
and the map

s 20 (D7, o, &5, 1 € C(K, PN K, 6
extends meromorphically from the set { € U N CT; Re(py,) > 1+ £} 10 UL

2) Using the duality bracket (4.3), the linear form on I, represented by the functions Z;E (D, 75,4, 5(% u)

are given for w € Is,, by
(Z3(®, 75, 65,),w) = ZF (9,0, ,,w), and (Z, (¥, s, &5,) w) = Z, (9,0,&5,,w).
Proof. We only prove the two assertions for Zl‘f (®, 751, E5,,)» the proof for Zp_ (U, 75, E5,,) is similar.

1) The proof of Theorem 4.3.8 shows that

2, (2,750, €5,)(9) = cs,(a) /V | PgTIXPG ) (X)X

= @) D K (£(9)®,0(6), 5(40) — ).

zeSe
Considering the right hand side of the preceding equality, Theorem 3.2.3 implies that, for a fixed
g € G, the map

w2y (@15, 65,0 (9)
is a rational function in the variables ¢** and hence extends to U as a meromorphic function. As the
map g — L(g)® is locally constant (because the representation £ on S(V'1) is smooth), the function

Z;r (P, 75,4, f(% #) is continuous for any value of the parameter p for which it is defined.
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Moreover as Z ((I> o, €5,0(9) = csu(a) [+ O w(a) soo(9X)d* X for p € UN C* such that
Re(pg) < —1 — %, Lemma 4.3.7 implies that this functlon belongs to C'(G, P, 0*, 11). This remains
true by analytic continuation.

2) Again from the proof of Theorem 4.3.8 we get:

Zy(®,2,65,,w) = csu(a Z / (ra2) VP, w(d), s(p) — m)w(k)dk

rE€ESe

@) > Ky (L) ®,w(3), 5(1) — m)Jw(k)dk

TESLe

e
_ /K ZH(®, s, €2 (k)w (k) dk
(

= Z;((I), TS, s 55%“)7 w>

Consider the representation |xo| ™" ®ms,, of G on I5, given by |xo| " ®ms . (g)w = |x0(g)| ™75, (g9)w.
If p € {1,...,70}, the H,-invariant linear forms on /;, are the same for |xo|™" ® 75, and for 75,

and for a € S, we have

(Ixol ™™ @ m5,,)"(9)85,. = X0 (D)™ 75,,(9)E5 -

From the definition, if ® € S(V*) and w € I;,,, we have

2 @m g0) = [ SCOIM(N) " m5, (X)68,0)d X

= [ @O (ol ™ @75, (X)€H, w)a X

QP
As in Definition 4.4.1, for 4 € U N C* such that Re(p9) < & and @ € S(V'), we define
25 (@ ol 75,0 68,)(0) = caule) | (70 Balg KPPy (XK. 46

Then the same arguments as in the proof of Proposition 4.4.3 show that
(Z5 (@, [xo| ™" @ o, &5,), w) = 2,5 (®,m, €5, w). (4.7)

Definition 4.4.4. Let § be a unitary character of (F*)**' and pn € U. Let ¢ = (&,...,&,) €
H;L(IE,N)HP- For ® € S(V1), ¥ € §(V7), we define the following linear forms on I, :

T0o
ZH(®, [xol ™™ @ 7o &) = D> Zy (@, x0T @ oy &)

and also
T0

Z(U, 750, 8) = Zy (U, 5. 6).

p=1
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Theorem 4.4.5. (Main Theorem, version 2)
ro

Let & be a unitary character of (F*)** and i € U. There exists an operator A** € End ( H([:{M)HP)
p=1
such that for all ® € S(V*) and all § € T]), (15 H)HP the following functional equation is satisfied:

Z7(F(®), T, &) = ZT(D, [x0| ™ @ w5, AVHE).

The operator A%" is represented by a square matrix of size To whose coefficients Ag’f; belong to
Hom((Ig{#)”q, (Ig,#)”f') In the bases (&5, )acs, and (&5, )ces, of (I3 ,)7r and (I3 ,)"4 respectively,
the matrix of of Agf; is given by:
s, m—+1
(43),, = BaclOom (5

where B, (9, j1)(z) has been defined in Theorem 4.3.9.

Proof.
Soitp € {1,...,rp}eta € S,.
Using Proposition 4.4.3, Theorem 4.3.9 and (4.6), we obtain for w € I;,:

> — a — a m + ]- c
<Zp (.F((I)),Wg,#,fau),w> = Zp (f(q)>707€g,uaw) = Z Bg,g(éu N)(T)Z;L(@am?f&ww)
ceSk

o m+1 .

= Z Z ‘8279(57 M)(T)Z;(q}? m, 5&#7 ’LU)
q=1 c€S,
= m+1, - m .

= Z Z B (9, M)(TKZ;(CI)? Xo & T 537“)7 w)
q=1 ce§,

= <Z+((D7 |XO|_m ® TS, A&Mf)’ w>

4.5. L-functions and c-factors.

In this section we will always suppose that e = 0 or 4. This implies that the groups GG and P have
both a unique open orbit in V* which we denote by QF and O respectively.

Then Q* ~ G /H where H is the centralizer of /= in G.

k1
We fix a unitary character 6 = (d,...,0;) € F* " and p € U. As before we denote by (75, 15,,,)
the minimal spherical principal series. As e = 0 or 4, the group S, is equal to F™* and hence .7, = {1}.
Therefore, in what follows, we will omit the indexes in this space. The space (I (; M)H is 1-dimensional

and we fix a non zero linear form ¢ in this space.

The aim of this section is to prove an analogue of ([7] Theorem 3.3.3) for the minimal spherical

principal series.

Definition 4.5.1.
(1) An Euler factor is a function L on C of the form L(s) =

where P € C|T] is a
P(q=*) 7)

polynomial such that P(0) = 1.



66 PASCALE HARINCK AND HUBERT RUBENTHALER
(2) We denote by E* the set of Eulor factors L*(z) such that for all ®* € S(V*) and all w € I,
Zi<(1)i7 zZ+ %(m - 1)7 67 U))
L*(2)

the quotient is a polynomial in the variables ¢~ and q~.

We know from Theorem 4.3.8, that there exist polynomials R* (4, i1, z) in the variable ¢~#, which are
products of polynomials of the form (1 — cq™"V?) (c € C and N € N*) such that, for all w € I, and
for all ®* € S(V*), the product RE(4, 1, 2) Z+ (P, 2, £, w) is a polynomial in the variables ¢—* and

z

q.
Hence £* # ().

Lemma 4.5.2.
(1) Let L (2) = Py(q~*)"' € ET. We denote by Jp, the set of Laurent polynomials P € C[T,T™!]
such that there exists finite families (®;);c; in S(V') and (w;) e in Is,, such that

> Z7(®, 2+ %(m —1),&w;) = %.

ey 0(q7%)
Then Jp, is an ideal of C[T, T ).
(2) Let Ly (2) = Qo(q*)' € £ We denote by Jq, the set of Laurent polynomials Q € C[T,T™!]
such that there exists finite families (V) ;c; in S(V*1) and (w;) e in Is, such that

1 L Q)
;Z (0 2ty 1),5,%)_—@0((]_2) .

Then Jo, is an ideal of C[T, T
Proof. We only prove assertion (1), the proof of (2) is similar. As e = 0 or 4, one has xo(G) = F*

([8] Theorem 3.8.8), and therefore there exists g € G such |xo(g)| = ¢~ (for any r € Z).
Let ® € S(V*) and w € I;,,. Define:

P,(X) = (g X)|x0(g)| 2" Y and w, = 75,(g)w

Asm =1+ % in our case, we know from Theorem 4.3.8 (1)(a), that for u = pgAo + ... + i €
U N C* such that Re(z — po) > 1, the zeta function Z(®,, z 4+ 3(m — 1), w,) is defined by an

absolutely convergent integral. More precisely we have:

2@zt = .6w) = [ OIAXFH Y (V)€ wn)a X
V+

B / O(g7 X) x0(9) |72V AG(X) 2D (s (X)E, 5, (g)w)d" X

V+

= [ el el A g (7 X06 whd X

= | SO R@FIAOFTH Y (X)5, wh
= T2 m 1), € w)

By analytic continuation we obtain the following equality of rational functions:

1 1
Z+((I)ra z+ E(m - 1)a§>wr‘) = q_TZZ—i_((I)?Z + §(m - 1),5,11})
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This shows that if P(T,T~') € Jp, then, forall r € Z, T"P(T, T~') € Jp,. Hence Jp, is an ideal
(the fact that Jp, is stable under addition is obvious from the definition).

Proposition 4.5.3.

(1) There exist unique Euler factors L* (s, z) (called L-functions) satisfying the two following
conditions:
(a) For all ®* € S(V*) and w € I, the quotients

ZE(@F, 2 + 2 £ w)
L* (s, 2)

are polynomials in the variables q° and ¢,

(b) There exists two finite families (95, v;)ics in S(VF) x I, such that

Zi(q)iiwz + mTil7£7'Ui)

=1
2 )
L:I:
(2) Moreover, if L* € £%, then the quotients % are polynomials in q>.
z

Proof.
We only prove the result for L™ (s, z). The proof for L™ (7s,,, z) is similar.

Let Lo(z) = Py(q~*)"" € £'. From Lemma 4.5.2, the set Jp, is an ideal of the principal ideal
domain C[T, T~']. Hence there exists a polynomial Ry € C[T] such that Jp, = Ro(T)C[T, T~ '] and
we can suppose that either Ry = 0 or Ry(0) = 1.

We show first that Ry # 0.

Let w € I, such that (£, w) # 0. As w is right invariant under an open compact subgroup, there
exists an open compact neighborhood V of I* in QF such that for all X € V, (75 (X)), w) =
(€,w) # 0. Let & € S(VT) be the characteristic function of V. Then for all z € C, we have
ZH®, 2+ L(m — 1), & w) = (€, w) [, [Ag(X)[7F2""Dd*X # 0. Hence Jp, # {0} and Ry # 0,

Therefore we can take R, (0) = 1.

Let Q(T') be the HCF of R, and P, normalized by the condition Q)(0) = 1. There exist coprime
polynomials R; and P, de C[T] such that Ry = R1Q, Py = P/ and P;(0) = R;(0) = 1.

If Ry # 1then R; has a non zero root, and it exists z; € C such that
Ri(¢*) =0, and P (¢ ™) #0.

In that case, for all ® € S(V*) and w € I, we would have Z(®, z; + 5(m — 1), &, w) = 0, and

this is not possible (take for example w and ® as above).
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Therefore Ry = 1, Q = Ry and Py = P, R,. Hence for any P € C[T, T'], there exist finite families
(®;)icr in S(VT) and (w;);er in s, such that
RO(T)P<T» T_l) P(T7 T_1>

+ 1 — —
;Z (@i,z—i—é(m—l),&,wi) = BT G

Define L™ (75,,2) = Pilg) Then from the discussion above we see that this Euler factor satisfies
1~

condition (1) (a). Moreover if we take P = 1 in the equation above we obtain the condition (1)(b).

- I+
If L is another Euler factor satisfying conditions (1) (a) (1)(b), then M € Cl¢g 7] and

L(z)

L g
#:Z,Z) € Clg™*]. Hence L(z) = L(7s,, z) and the uniqueness is proved.
Let us show assertion (2). From the construction of L(7s,,, z) above we see that we can take L™ = L.

L(ms,,z)  Po(q™?) —z
Then L(f(z) = P Ro(q™).

Definition 4.5.4.
Ifwels, e SVT)and ¥ € S(V ™), we define
Z+((I)7 zZ+ %(m _ 1)7€a w)

=ET(® =
s s

and
Z_(\I/,Z—|— %(m - 1>,£,UJ)

L~ (Wﬁ,ua z )
From Proposition 4.5.3, these two functions are polynomials in q—* and ¢*.

= (U, 2,6 w) =

If £ = 0 (that is in the case of Tate’s theory) we denote by Ly(J, z) the L-function associated to the
character t — §(t)|t|* (remember that here § is a character of F™*). It is given by

1— )7t if ifi
Lo(6,2) = (1—=4d(m)g?) 1 J %s unréml ed 4.8)
1 if ¢ is ramified,
(see [5] (23.4.1))
We define now the e-factor £¢(d, z, ¢) by the equation:
-1 o
S(=D)p(67 1 —2)=p(6,2) " = Lo(07, 1 = 2)e0(9,2, ) 4.9)

Lo(0, 2 ’
where Tate’s p function was defined in section 3.3. (This is the Delgnitiz)n given in ([5], §23.4 p.142),
taking into account that our p is the inverse of the « function of Bushnell and Henniart).

The function g¢(z, 0, ¥) is explicitly known ([5] Theorem 23.4 p.144). It is always of the form cyq~"°*
where ¢y € C and ng € Z.

Moreover we know from ([5] (23.4.2), p.142) that

- §(—1)
go(0, 2,9) = co(6-1,1— 2, 1)

(4.10)
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Theorem 4.5.5.
(1) Let ® € S(V*) and ¥V € S(V™). The functions =t (®, 2z, &, w) and =2~ (V, 2, &, w) satisfy the

following functional equations:
ET(F(@),1 = 2,6 w) = e (M5, 2, V)= (D, 2,6, w),

E+(‘F(\Ij)7 1- Z7§’w) - 5_(71'57“72,’40)5_(\1/72,6,11]), )

where
k

k(k+1 L )
(g2, ) = g (0) 2 e T2 H o0 = 2= mi)) 51— g, ),

L~ (75/” ] Lo( :U’J)

and

005, pj + 2,1).

S b Lo(57 1 — (1
e (s 28) = () (”’“’Z))H o071~ (s +2))

L+(7T5“u7 1—=2 iy Lo((;j,,uj + Z)

(2) The e-factors €* (75, 2,) and €~ (75 ,,, 2, 1) are monomials of the form cq~"* where ¢ € C and
n € Z, and they satisfy the relation:

et (M, 2, 0)e (Mo 1 — 2,00) = (G- 0k)(—1).

Proof.
Let ® € S(V). Corollary 4.3.11 implies that
1 1
= (F(P),1 - = Z7(F(P),1— —(m—1
(‘F( )7 Z?S? w) L7<7T6”ul, 1 _ Z) (‘F( )7 Z + 2(m )757 w)
d(d, p, 2) 1 Lt (mws,,2)  —
= - ZT(® = d(o, e =T
L= (w01 = 2) ( ’Z+2( D)8w) = diG, )[7(775,#71_*2) (& 58w),
where d(8, 1, 2) = 7u(q)" - [1'_o 6;(~1)p(8;, 115 + 1 — 2). We define then
L (7o, 2)
+ =d(¢ b : 4.11
€ (7T5,;L7z7¢) ( 7M72)L_(7T57M,1 _2) ( )

From (4.9) and (4.10) we obtain

k
k(k+1) _ Lo(0;,1 — (2 — 1))
d((S?u?Z):fy (q) 2 € (6'172_,“‘72/}) : _ )
P g 0 J ) LO((S] 1,Z_ﬂj)

and this proves the first functional equation.

Let now U € S(V ). Applying Corollary 4.3.11 to the function & = F (), we get
1 —1
Z(FoF(0), "= — 2 6w) = do, 1 2) 2N (F (W), 2+ = gw). @12)

As Fo F(U)(Y) = W¥(-Y), Theorem 4.3.8 (2)(a) implies that for z € C and x € U N C* such that
Re(p, — 2) > 0, we have:

27(F o F(@), "L 2 g w) = / U (Y| Vo (V) (V)E, w)d" Y.
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Remember that there exists an element m_; € G which acts by —1 on V™ and V'~ and trivially on
g (cf. Definition 1.1.5). Hence m_; is central in G and from the definition we have 75 ,(m_;) =
I 0j(—=1)Idy, ,. Therefore

J=0

k
Z-(F o F(0), mT“ 2 6w) = ([[o,(-1) 2~ (¥, mTH _abw). @I13)

=0
By analytic continuation, this equality between these two rational functions in the variables ¢—* and
q° remains true for all © € U. From (4.12), we get

—1 (0g...0k)(—=1),_  m+1
ZH(F(V m-- =7 (¥, ——— — .
('F< )7Z+ 2 7£7w) d(é,u, Z) ( ? 2 Z7€7w)
Making the change of variable 2 — 1 — z, we get
N m+1 (00 0k)(—1) m—1
Z (f(\ll),—2 Z’g’w)_—d((S,u,l—z)Z (\I/,z+—2 L& w),

and hence

(0g...0k)(=1) L~ (msp,2)

=+ — =
ENF(Y), 1= 28 w) d(6, 1,1 — 2) L (ms,,1— 2)

E7(U, 2, & w).

Therefore we set:
(0g...0k)(=1) L~ (msp,2)

e (o, 2,0) = 006,101 —2) Lo (mspl—2) (4.14)
From the knowledge of d(0, y, z) (Corollary 4.3.11) and (4.9), we obtain
k
—(2?—5,‘,;,6 ’I)Sf = () H P01+ 2)7"
k —1
= ()T ]li[D LO(%O{;’;}T; Z))EO(&" i + 2, 0).
This gives the second functional equation and ends the proof of assertion (1).
Let ® € S(V'). Define V(YY) = F(®)(—Y), then & = F (V). From (4.13), we get
E(F(P),1 —z,&w)=(0g...0x)(—)=7 (P, 1 — 2, & w). (4.15)
Using the two functional equations and (4.15) we obtain
ET(F(P),1 - z,&w) = e (Mo, 2, )ET(D, 2,w) = e (T, 2, ) ET(F(V), 2, w)
= e (Mo, 2, 0)e (Mo 1 — 2, V)27 (U, 1 — 2,§, w)
= (0p...0k) (=) (m5 0, 2, ) (W50, L — 2,0) 27 (F(P), 1 — 2,&,w),
which implies that
et (Mo, 2,0)e (Mo, 1 — 2,0) = (0p ... 0k) (—1). (4.16)

We know from Proposition 4.5.3, that there exist finite families (®F);c; € S(V*) and (wi)ics € I,
such that >, ; E5(®7, 2, £, w;") = 1 and such that = (F(®;), 2, , w;") are polynomials in ¢~* and
¢*. The two preceding functional equations imply then that e (75 ,,, z, 1) are polynomials in ¢—* and
q°. Finally equation (4.16) implies that there are in fact monomials in ¢~ *. This ends the proof of the
Theorem. O
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Remark 4.5.6. The relation

e (Topy 2, 0)e (Mo, 1 — 2,0) = (0g - .. 0k) (—1)
generalizes the one for GL(n, F') (see [7] p.33 and [5] (23.4.2) p. 142)
Corollary 4.5.7.

(1) There exists a positive integer d(0, i) and a polynomial Q;ﬂ (T) = Hr( ; M1 — a.(6,)T) € C[T|
such that

k
1 -
L+(7T57#’Z) = W H_[/O(é‘7 1,2 - ILL]>
" 7=0

Then if we set Qs (T') = Hff’lu)(l — a,(8,)"1qT) we have also
k
_ 1
L (77'57“, Z) = m HLO<5J7 z 4+ /1/])
Iz 7=0

~ k1
(2) Let 6 € OF . There exist roots of the unit u, and rational numbers p,,p,; € Q (r =
1,...,d(0,pn) and j = 0,..., k), such that

k .
0r(8,) = g P Th-omrans,

Proof. From the definition of Euler factor, there exist polynomials P(;i# (T') € C[T] such that Pi (0) =

1 and L*= (75, 2) = Let us denote by

1
P (q7%)
N N’

P(T)=]]1-aT), and P (T)=]]Q-0T), (a,b€C)

r=1 t=1

the decomposition into prime factors of these two polynomials.

As the factors 50(5 .,z — pj, ) and €t (75, 2, 1) are monomials in ¢~ (Theorem 4.5.5 (2)), we
obtain that there exists C' € C and n € Z such that
k
, Lo (9, ,1 —
Oq_nz _ 7T5,u H 0 j Z ﬂ’]))
L= (7T6/m ] Lo( j :Z_,UJ)

Here Lo(x,s) = Po(x,q*)~" where Py(x,T) € C[T] and Py(x,T) = 1 if x is ramified and
Py(x,T) =1 — x(m)T if x is non ramified (see (4.8)).

Then, we obtain easily
k k
CT P (T) [[ Po(6j. a7 T ~") = Py (¢ T ) ] Pol6;, ¢ T) (4.17)
=0 j=0
And if all the ;s are ramified, the preceding relation becomes
N N’ N’ N’

o [0 —a1) = T1 = buaD) ™) =TV [ [(=beg™) [ ] (1 = b7"aT).

r=1 t=1 t=1 t=1
This implies that N = N’ and that {a;,...,an} = {gb;’,...,qby'}, and hence assertion (1) is
proved in this case by taking Q5 (T') = P;.(T).
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Suppose now that at least one ¢; is non ramified. Up to a change of the indexation of the ¢§;’s, one can
suppose that there exists ko > 0 such that J; is non ramified for 0 < j < kg and 9, is ramified for
j > k.
Equation (4.17) becomes then
Py (7' T T2 (1 = 651 ()@ T) = CT Byl (T) T2 (1 — 8;(m)g ™ T ")
(4.18)
n— k ey, k _ .
= o7 kot (Hjoz()(_éj(ﬂ-)q ! MJ) P(S—:(T) HjO:O(]' — 0;(m) Lt T).

This shows that the polynomial Hé?ozo(l - 6]-_1(7r)q“j T)) divides P;; (T'). We set

Py (T)
[T}%(1 = 6 (Mg T)

Qy,(T) =

Relation (4.18) can now be written as

ko

Py (q ' T =CT"Qi (T) [ (1 = 6;(m)g T 7).

=0
Therefore Hfozo(l — 0j(m)q~"T) divides F; (T') and we set
B (T)

S (T) = 5 :
@) IT}2(1 = 8;(m)q—T)

Then
CT"Qy (T) = Q5 (7' T7H).

As before, we obtain then the asserted form for the functions L= (s, 2).

Let us now show assertion (2).
— k1 : :
From Theorem 3.2.3, we know that forw € 0}, there exists a polynomial

do
R (w,s) = [J(1 - ¢ M M%) N, €N,N,; €N (4.19)
r=1
such that, for all & € S(V'*), the function R (w, s)K*(P,w, s) is a polynomial is the variables ¢%
and ¢~%.
Remember that w(§) = (wp,...,wr) = (65", 000", .,0k_16; ") and that s(u) = (o, ..., k) is
defined by the relations so + ... +s; = g(k —2j) — p; (see Definition 4.3.3). Theorem 4.3.8 implies
that for ® € S(V*) w € I5, and € € (I;,)", the function R* (w(d), s(p) + 2z — m)ZH (P, 2, &, w) is
a polynomial in ¢~ * and ¢°.
Set P(T) = [1%,(1 — ¢,(8,)T™) with ¢,(5,) = g N+ 320mH)-S50Nessi - Then P(g~2) =
R*(w(9), s(n) + 2 — 5(m +1)).
Asz+ 3(m—1)—m = z— J(m+1), itis easily seen that the function L*(z) =

factor in £ (see Definition 4.5.1 (2)).

is an Euler

1
Pg=)

Then from Proposition 4.5.3, 2), the polynomial Py’ , divides P in C[T'|. Hence, up to permutations
of the families (N, N,.q, ..., N, ), there exists ry < do, and for all r € {1,...,7d }, a finite family
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U,F of N, o-th root of unity such that
- 1/N, R R WAL
L@ =11 T] @ = ub(8)T). with b,(5,) = (5,)"/N0 = ¢~ Nro J-o e
r=1yeu;t

kd d
As sp = o Mo and s; = pj_1 — pj — 5 we obtain assertion (2). O

We will now describe how the e-factors % (s, 2, 1) depend on the additive character .

Let a € F* Remember that m, is the element in G which acts by multiplication by a on V', by
multiplication by a~! on V'~ and trivially on g (Definition 1.1.5). Therefore m, is central in G. Let
= fioAo + . .. A and define ww(a) = (o . .. 6x)(a)|altoTFH+. Then 75, (m,) = w(a)ldy; .

Proposition 4.5.8. . Let a € F*. Denote by 1)* the character of F given by 1)*(t) = 1 (at). Let
(d*X,d*Y) = (c,dX,d,dY), with c,,d, > 0, a pair of measures on (V*,V =) which are dual for
the Fourier transform F* defined by ¢*. Then cod, = |a|%™V" and

w( ) 1|a’ (k+1)( +z)

€+(7r6,;u 2, ?ﬂa) = c €+(7r5,;u 2, wa)a
a

_ a _ mtl oy
€ (77'5“72 w ) :Caw< )|a’ (k+1)( 2 )5 (Wé,u,Zﬂ/J)-

Ifd, =c,=la im0 |a\m , the preceding formulas become

e (Top % 0) = w(a) o D (5, 2,0),

e (Mo 2, ¥") = w(a)|a| M2 (mg ., 2,90).
Proof.
From the definitions we have:
FP)(Y) = Ca/+ O(X)(ab(X,Y))dX = c, F(P)(aY). (4.20)
It is easily seen that the measures cad;/( and d,dY are dual for F° if and only if
Cady = |a] TV

From (4.11) and (4.14), the functions e*(ms,,, z,1)) are uniquely determined by d(d, 41, z) which ap-
pears in the functional equation satisfied by Z*(®, z, £, w). The definition of these functions depends
on the choice of the dual measures (dX,dY) on V* x V=, Let Z4%(®, z,£,w) be the new zeta
functions relative to (c,dX,d,dY). Then Z1*(®, 2, &, w) = ZH(D, 2, &, w).

Let ® € S(VT) and w € I5,. Let also z € C such that Re(uy — 2) > 0. Then Z~(F(®), 2(m +

2
1) — z,&, w) is given by an integral (Theorem 4.3.8 (2)(a)). Using (4.20) and the G-invariance of d*Y

under the central element m,, we obtain:

2 (F(®), T — s w) = 2 (e F(@) (@), T s )
=l [ @)y V0 i, (V)€ )y

m—+1

2T (ma Y)E w)d™Y

) 1
dimV+
— F(®)(Y VoY
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. 1 m+1
_y,dimVF 1L, vy
=faf [ FOW )i o 0,00 o ol
. 1 41
_ -1 dimV+ = —z * *
— (@) o [ PO )y o) ) vy
T
Asm = dim V we have
k+1
1 m—1 1
70 (FU(@), T = 26 w) = w(a) ol FOE 2 (F(0), T s w)
Therefore Z%~ (F*(®), 2 — z,&,w) = d*(6, p, 2) 2% (P, z + 251, €, w) where
w(a)—1|a|(k+1)(m;1+z)
d*(o =d(d
(0,1, 2) = d(6, p, 2) ” ,
which implies that
)(Pgttz)

w(a)—1’a|(k+1

€+(7T5,u7zawa) = c €+(7T5,u7zaw)‘
a

Similarly, taking again z € C such that Re(u; — 2) > 0, one has

FUU)(X) = da/ U(Y)(ab(X,Y))dY = d, F(¥)(aX)

V+

and
20 (o), T = s ) = ™ [ R @X)| A1 (08 ) X

2
imV+t m+1—z +1_
=1l [ )OIl DA X XS, wh
. 1
= afmV (@) ol 2 (F (@), T 2 w)

If we divide both sides of the preceding identity by L(m;,, 1 — 2) we obtain

la| 4V o5 (q)|a - DD (F(W), 1 — 2, €, w)

ECT(FUP), 1 — 2, w) =
[ (@) o] DT e (s, 2, 0)ET(W, 2, € )

1 im _ m+l_z _ —_aq,—
= —lal’ Vw(a)almFIEE e (g, 2,9) 20 (U, 2,6, w).

And hence

_ mil_ Ly
(k+1)( 2 )8 (7T5,;L727¢)'

€ (71—57#7 2y 1/}(1) - Caw(a)|a|
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