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Abstract: UV Light-promoted synthesis of -sulfonyl amides from N-sulfonyl ynamides without any additives is report-

ed. The reaction proceeds through a radical chain mechanism involving the photo-induced cleavage of the nitrogen-sulfur 

bond, addition of electrophilic sulfonyl radical to the triple bond of the ynamide followed by beta-fragmentation of the 

sulfonyl group leading to a ketenimine hydrated upon work-up. This highly efficient rearrangement leads, after acidic 

treatment, to a wide range of -sulfonyl amides in high yields. 

 

Introduction. -Sulfonyl amides are building blocks for organic synthesis and key structural motifs present in biologi-

cally active compounds.1 Therefore, the development of efficient and rapid syntheses of these compounds is of great in-

terest to the community of organic chemists. Current methods for the construction of the C—SO2 bond of -sulfonyl 

amides are based on a two-step strategy involving the formation of a C—S bond followed by oxidation of the sulfur atom 

in the presence of m-CPBA or H2O2.
2 Direct introduction of the SO2R moiety can be achieved through sulfonylation of -

amide-carbanion intermediates1d or by reacting amides with sulfinates in the presence of oxidants.3 However, these meth-

ods suffer from the use of strong bases or oxidants, and for some of them, i.e. sulfonylation of -amide-carbanion inter-

mediates, low to moderate yields are obtained.  

Due to the presence of a nitrogen atom—bearing an electron-withdrawing substituent— directly linked to their car-

bon-carbon triple bond, ynamides behave as activated polarized alkynes that show unique reactivity and stability. These 

compounds are currently known as powerful synthetic intermediates for elegant constructions of versatile N-containing 
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molecules.4,5 Regarding the direct synthesis of -sulfonyl amides, only few reports involve the use of ynamides as sub-

strates6 (Scheme 1). Wudl7 described in 2006 that ynamide A can undergo upon heating the N-to-C thermal migration of 

the tosyl group leading to a ketenimine intermediate that can be hydrated to give the -tosylated amide A’ (Scheme 1(a)). 

More recently, Yuan and Zhu8 have reported a radical chain isomerization of N-sulfonyl ynamides in the presence of cata-

lytic tosylchloride and an iridium-based photocatalyst to give stable ketenimines. They have shown that this process can 

be combined with an aza-Claisen rearrangement. During their work, closely related to our ongoing study, as an applica-

tion of their study, they showed that the ketenimine resulting from the use of tosyl ynamide B can be transformed in -

tosyl amide B’ via hydration (Scheme 1(b)). Finally, Yue and Feng9 described a visible-light-promoted oxo-sulfonylation of 

ynamides C to give -sulfonyl imides C’ in the presence of sulfonic acids through the in-situ formation of a vinylsulfonate 

D. They proposed that this latter, activated through energy transfer process could undergoes homolytic cleavage of the 

O—S bond (Scheme 1(c)), that would imply subsequent sulfonyl radical addition/-fragmentation sequence. 

 

Scheme 1. Direct synthesis of -sulfonylated amides from ynamides. (PC : Photocatalyst) 

For some years now, our group has been interested in the involvement of ynamides in free-radical transformations.10 In 

the course of our investigations, we found out that upon activation under irradiation at 365 nm at room temperature, in 

the absence of any additives, N-sulfonyl ynamides 3 could be converted into -sulfonyl amides 4 in high yield through a N 

to C migration of the sulfonyl group11 (Scheme 1(d)). As compared with the other methodologies, our strategy offers sev-

eral advantages such as easy implementation, use of readily available starting materials, neutral conditions, diversity with 

respect to the sulfonyl groups that can be used, and neither expensive metals nor photocatalysts are needed. The scope 



 

 

3 

and limits of this light-promoted synthesis of a wide range of -sulfonyl amides from N-sulfonyl ynamides are discussed 

in the following section. 

 

Results and discussion. To find the appropriate reaction conditions, ynamide 3aa prepared from bromohexyne 1a and 

N-benzyl-4-methylbenzenesulfonamide 2a according to Hsung methodology12 was selected as model substrate and sub-

mitted to irradiation using 18 W LED lamps (Evoluchem® lamps,  nm, light intensity: 16.7 mW/cm2 at 10 cm distance) at 

different wavelengths in degassed dichloromethane by varying the reaction time (Table 1). For a reaction time fixed at 24 

h, irradiation at 365 nm gives excellent results compared with the other wavelengths studied, i.e. 400 nm and 450nm, for 

which ynamide 3aa is not fully consumed (entry 3 / entries 1,2). The reaction time can be reduced to 18 h or even 4 h13 

without loss of efficiency, leading to the desired compound in 98% yield after acidic treatment (entries 4,5). Optimized 

reaction conditions, i.e. irradiation at 365 nm in degassed dichloromethane followed by work-up with a 2 M aqueous solu-

tion of HCl, were used to explore the scope of the transformation . 

 

entry  (nm) Time (h) 4aa Isolated yield 
(%) 

1 450 24 40 

2 400 24 Not detected 

3 365 24 97 

4 365 18 98 

5 365 4 98 

Table 1. Optimization of synthesis of -sulfonyl amide 4aa from N-sulfonyl ynamide 3aa.
 a18 W LEDs (Evoluchem® lamps, 

 nm, light intensity: 16.7 mW/cm2 at 10 cm distance) 
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Scheme 2. Synthesis of -sulfonyl amides. a18 W LEDs (Evoluchem® lamps, 365 nm, light intensity: 16.7 mW/cm2 at 10 

cm distance) 

 

The results of irradiation experiments conducted with N-sulfonyl ynamides 3xy are reported in Scheme 2. All ynamides 

were submitted to irradiation at 365 nm for 18 h at room temperature,14 and all reactions were conducted on 0.16 mmol of 

substrates. Most of the tested ynamides behave as expected leading to the desired products in high yields, especially those 

bearing aryl- and heteroaryl sulfonyl groups. It is to be noted that N-mesyl ynamides were also reactive giving -mesyl 

amides 4al, 4bl, 4am and 4bo in moderate to good yields. Surprisingly ynamide 3ah derived from N-tosylaniline did not 

lead to any transformation and was totally recovered after 18 h of irradiation. This point will be discussed later on. 
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Two plausible mechanisms are proposed in scheme 3. A radical chain mechanism involving the photo-induced 

homolytic cleavage of the nitrogen-sulfur bond, addition of electrophilic sulfonyl radical E to the ynamide triple bond 

followed by beta-fragmentation of the sulfonyl group of G leading to ketenimine 5 can explain the formation of -sulfonyl 

amide 4 after hydration15 (Scheme 3(a)). Calculations of the first singlet excited state (vertical * transition) at the 

TD/B97X-D/6-31+G(d,p) level of theory show that the latter spontaneously evolves via homolytic cleavage of the N-S 

bond when optimizing energy (see SI). Concerted 1,3-migration or in cage recombination of radicals E and F formed 

through the above initiation step could also be suggested at this stage (Scheme 3(b)).  

 

 

Scheme 3. Mechanistic Studies. aRadical chain process. bIn cage radical recombination. cBlank experiments: i) DCM 

(0.2M), 18 h. ii) DCM (0.2M), 18 h, light protected. iii) h 365 nm, DCM (0.2M), 18 h, TEMPO (1 equiv). dCross experi-
ments, 1H NMR molar ratio of 4aa:4al:4bd:4bo = 0.4:0.5:0.35:0.5.  

 

Several experiments were carried out to prove the involvement of radicals and to determine which of the two mecha-
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tion by TEMPO). To confirm that the chain radical mechanism was responsible for the rearrangement, a cross-over exper-

iment involving an equimolar mixture of ynamides 3al and 3bd was also performed (Scheme 3(d)). If cage recombination 

was involved, then only products 4al and 4bd should be obtained. In the case of a chain process, products 4al and 4bd in 

admixture with 4aa and 4bo should be expected. After 18h, four -sulfonyl amides were formed, thus supporting the 

radical chain process. The 0.4:0.5:0.35:0.5 molar ratio of compounds 4aa:4al:4bd:4bo was determined from the 1H NMR 

spectrum of the crude reaction mixture.  

Since the proposed mechanism involves the homolytic cleavage of the N—S bond, theoretical investigations were con-

ducted in order to estimate N—S bond dissociation energy in ynamides H, I, and J chosen as models for N-aryl- and N-

alkyl-sulfonyl ynamides (Scheme 4). Additional calculation of the C—S BDE in ketenimines showed the exothermicity of 

the process. It is to be noted that the presence of the triple bond lowers the N—S BDE by approximately 18 kcal/mol as 

compared to N, N-dimethyl-N-phenylsulfonyl amine K. 

 

 

Scheme 4. Molecular Modelling: N—S and C—S bond dissociation enthalpies calculated in kcal/mol at the M06-2X/6-

311++G(3df,3pd)//M06-2X/6-31+G(d,p) level for model ynamides and ketenimines. 

The behaviour of 3ah recovered unchanged after 18 h of irradiation is surprising.16 Both the similarity of UV absorption 

spectra and the lowering of the N—S bond BDE (Scheme 4, ynamide J) with respect to the others ynamides would lead to 

the conclusion that rearrangement should be very easy in that particular case. Reaction pathways, i.e., addition followed 

by -fragmentation, calculated at the M06-2X/6-311++G(3df,3pd)//M06-2X/6-31+G(d,p) level for model ynamides HPh and 

JPh. confirmed the expected similar reactivity. Even the possibility of a competitive photo-Fries rearrangement17 was simu-

lated for JPh; it might be a plausible alternative path (see SI). Finally, we tried to carry out N to C migration of sulfonyl 

group of 3ah under thermic activation. While the reaction conducted in decaline at 120 °C on ynamide 3aa led after acidic 

treatment to -sulfonyl amide 4aa in 96 %yield, a complex mixture was obtained when reacting 3ah under the same ex-
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perimental conditions. The desired compound 4ah was detected as traces in the crude mixture on the 1H NMR spectrum. 

Thus the presence of a phenyl group at nitrogen remains the unexplained limitation of the scope of the reaction.  

 

Scheme 5. Scale up 

Finally, this protocol was scaled up to 1.6 mmol of ynamides 3aa and 3al. (Scheme 5). -Sulfonyl amides 4aa and 4al 

were isolated in quantitative yields, showing the synthetic utility of the process. 

Conclusion. In summary, a light-promoted synthesis of -sulfonylated amides from N-sulfonyl ynamides has been de-

veloped. A wide range of -sulfonyl amides were prepared through a radical chain process initiated by homolytic cleavage 

of the N—S bond under irradiation at 365 nm. This photochemical rearrangement features high atom economy, large 

substrate scope, mild / neutral reaction conditions, and high efficiency. 
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