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Abstract—The accurate estimation of the remaining useful life
plays a crucial role in ensuring the reliability and efficiency
of turbofan engines. In this study we address this objective by
resorting to a virtual health indicator, previously developed by the
authors for the estimation of the turbofan state of health, which
is propagated in the future for estimating the engine end of life.
The proposed approach consists in a combination of a multi-
layer perceptron whose parameters are identified by a particle
filter, in which the network act as a surrogate model for the
hidden degradation state. The model is initialized on the basis
of known degradation trajectories, and is recursively updated by
the particle filter when new observations are available, providing
flexibility to the method. To assess the effectiveness of the
proposed approach, a comparison is made with a commonly used
combination in the literature, which utilises a particle filter and a
sum of two exponential functions. The results of the comparison
demonstrate that the new approach achieves at least comparable
results, and in the majority of cases, it outperforms the usual
combination.

Index Terms—remaining useful life (RUL), particle filter (PF),
multi-layer perceptron (MLP), prognosis and health monitoring
(PHM), health indicator (HI)

I. INTRODUCTION

Prognosis and health management (PHM) seeks to enhance
maintenance strategies and gain insights into the internal dy-
namics of degradation in industrial assets or complex systems
by leveraging monitoring data. Data-driven models in PHM
primarily address tasks such as anomaly detection [1], [2],
degradation level assessment [3]–[5], remaining useful life
(RUL) prediction [3]–[6], and failure mode identification [7]–
[9]. The use of health indicators (HIs) is potentially at the
core of most of these tasks. While HIs are fundamental to
degradation level assessment and widely used for RUL prog-
nostics [3]–[6], they are also valuable in anomaly detection,
where monitoring HIs for sudden changes is an effective
approach [1]. Additionally, HI trajectories can be analyzed to

identify failure modes [10]. Recognizing the central role of HI
construction in PHM, the development of HI-based strategies
is therefore promoted.

In cases where a measurable quantity of interest (QoI)
directly linked to the system health exists, it can serve as
a physical HI. However, when no such QoI is available, a
virtual HI must be constructed by fusing multiple monitored
time series. Various methods have recently been proposed
for VHI construction. Dimensionality reduction techniques,
such as principal component analysis (PCA), holds significant
importance [11]–[13], while supervised neural networks (NN)
have emerged as alternative approaches [4], [14]. Genetic
algorithms have also been used to construct VHIs, ensuring
properties like monotonicity or scale-similarity [15], [16].
Other recent approaches employ unsupervized NN to generate
VHIs while also optimizing the monotonicity property [10],
[17].

In this study, we employ the HI generated through the
approach proposed in [10]. This approach involves training
a triplet siamese NN to encode available signal samples into
a latent space. The siamese NN is then trained using a triplet
loss, which drives samples to be represented in the latent space
based on their temporal proximity to other samples. The HI
is then constructed by measuring the distance in the latent
space between a sample at current time and a sample taken at
the start of life. By adopting this HI construction method, the
present work proposes a novel approach for propagating the
HI for RUL prognosis, which is the primary objective of the
study.

The developed HI allows us to identify the current state of
health (SOH) of the system, which can be used for monitoring
and diagnostic purposes. To extend its utility to also perform
the tasks of prognostics and estimation of the system RUL,
it is necessary to develop a methodology to propagate the



indicator in the future, giving a prediction of the system SOH.
Different methodologies have already been proposed in the
literature to tackle this task, as summarized in [18] and [19],
with applications respectively on machinery and lithium-ion
batteries. RUL prediction techniques are generally classified
in model-based, data-driven and hybrid, according to their
reliance on the system physics.

Among all, particle filter (PF) has been widely used in
the last years for prognostic purposes in different fields of
application: [20] provides a list of different application cases in
which PF based algorithm have been used as a prognostic tool,
varying from crack growth, Li-Ion batteries, rolling bearings
to wind turbines and jet engines. The reason of its success in
this field can be summarized (but not limited) in:

• It is a recursive Bayesian algorithm, therefore well suited
to solve real-time estimation problem.

• It is capable of accounting for the stochasticity of the
problem and the noise affecting the measurements.

• It is applicable to non-linear and non-gaussian processes
• It is able to dynamically adjust model parameters
Recently, in the context of Li-Ion batteries and crack growth

propagation, a PF coupled with a multi-layer perceptron
(MLP) model has been proposed for RUL prediction based on
HI trajectories. In the context of Turbofan prognostic however,
particle filter is often coupled with a sum of two exponential
functions to estimate the end of life (EOL) on the basis
of some VHI [21]–[23]. The exponential-like degradation of
turbofans explains this common choice, which would be ill-
suited in the context of Li-Ion batteries. In this work, we
recourse to the virtual health indicator presented in [10], and
we propose a combination of a PF with a new architec-
ture of multi-layer perceptron (MLP) model better suited for
exponential-like degradation. The MLP acts as a surrogate
model used to describe the process (or state) equation in
the PF state space model. The PF thus aims at continuously
optimizing the parameters of the MLP based on the already
observed HI values. Additionally, we propose to initialize the
particles with parameters found when fitting MLP on known
VHI trajectories. Finally we investigate the use of an internal
perturbation dynamics of the particles proposed in [24] for the
first time in a context of RUL prediction. A brief explanation
on particle filters is laid out in Section II, then we detail
the proposed algorithm in Section III. The method is finally
tested in Section IV on the turbofan experimental dataset and
compared with a PF coupled with a sum of two exponential
models, commonly used in the literature.

II. PARTICLE FILTER

Particle filter, also called sequential Monte-Carlo [25], is
an algorithm to sequentially estimate the posterior probability
density function (PDF) of a hidden state xk, given a series of
noisy observations z0:k−1, k denoting the current time step.
The state-space evolution is described as a hidden Markov
model defined by:

xk = f(xk−1, ωk−1) (1)

zk = g(xk, k) + ηk (2)

where f in (1) describes the process equation and g in
(2) the measurement equation, and where ω and η are the
process and measurement noises, respectively. To recursively
estimate the posterior PDF p(xk|z0:k), the algorithm uses
the prediction-update recurrence: first, a prior distribution
p(xk|z0:k−1) is computed using the measurement available
until time step k − 1. The distribution is built by generating
np state trajectories, also called particles, based on the process
model (1). The second step consists in an update of the
distribution: an importance weight is assigned to each particle:

wi
k = wi

k−1p(zk|xi
k);

i = 1, ..., Ns

(3)

in which p(zk|xi
k) is the likelihood Li

k of the particle i. ηk
is being considered normally distributed with zero mean and
variance σ2

η independent from k. The likelihood is therefore
computed as:

L(i)
k = p(z0:k|xi

k) = ((2π)k+1|Ση|)−0.5

exp

{
−1

2

(
z0:k − g(xi

k, 0 : k)
)T

Σ−1
η

(
z0:k − g(xi

k, 0 : k)
)}
(4)

representing the probability of observing zk given the state
xi
k. Here Ση and Σ−1

η denotes for (k+ 1)× (k+ 1) diagonal
matrices respectively filled with σ2

η and 1
σ2
η

on their diagonals,
i.e. the covariance matrix and its inverse. z0:k and g(xi

k, 0 : k)
are (k + 1)-sized vectors gathering the values until time k
respectively of, the observations and trajectory of particle i
at time k. It is worth noticing that this two terms z0:k and
g(xi

k, 0 : k) in Eq. (4) indicate that L(i)
k is computed for the

entire set of available measurements; this is in contrast with
the classical PF, in which the likelihood is usually computed
just based on the last observation, exploiting the Markov
hypothesis.

In its original form, PF suffers from the degeneracy problem
[26]: all particles but one tend to have an importance weight
close to zero, hence the entire distribution collapses to one
single particle. A common way of tackling this issue is
the sampling importance resampling (SIR) scheme [27]: the
importance weights are normalized as

ŵi
k =

wi
k∑Ns

j=1 w
j
k

(5)

and the trajectories xi
k are hence resampled on the basis

of the normalized importance weights. This means that the
trajectories with high importance weights are more likely to be
resampled, thus avoiding the degeneracy problem, introducing
on the other hand a loss of diversity on the particles [25].

A. Surrogate-based PF

The classical PF methodology relies on the availability of
the process model Eq. (1) and on the measurement model
Eq. (2). However, the use of a VHI, with no physical meaning



and thus no evolution model, renders the process and mea-
surement equations unknown. To solve this issue, a common
method is to use a parameterized surrogate model to which
a white noise is added for the measurement equation. The
states are then considered as the parameters of this surrogate
model to which a white noise is added at each cycle. For
more details please refer to Eqs. (6) and (7). The choice
of the surrogate model is therefore crucial. In this work we
compare two different hybrid methods: in one case we resort
to a combination of PF and a double-exponential model (i.e.
sum of two exponential functions) as it was used extensively
in the literature [21]–[23], while in the second case, a new
architecture of multi-layer perceptron (MLP) is used as a
surrogate model.

The PF state-space formulation when using a surrogate
model f with parameters x is now rewritten as:

xk = xk−1 + ωk−1 (6)

zk = g(xk, k) + ηk (7)

in which xk is now a state vector containing the parameters
of the surrogate model at time step k.

The evolution of the model parameter in Eq. (6) is a random
perturbation of the previous state vector xk−1, which performs
an exploration of the parameterized function family of g,
depending on the Gaussian process noise ωk−1 with zero
mean. The choice of ωk−1 variance is of prime importance
in this application: a too low value will not guarantee a large
enough exploration of the state, while a too large value will
results in the algorithm instability. This choice is detailed in
III-C.

As mentioned previously two different surrogate models are
compared in this work: a sum of two exponential also referred
as double exponential (DE) in the literature, and a multi-layer
perceptron (MLP).

1) DE surrogates: DE is defined by a sum of two expo-
nential functions as follows:

g(k, (ak, bk, ck, dk)) = ak exp bkk + ck exp dkk (8)

where (ak, bk, ck, dk) are the function parameters and thus
the states xk in the PF state-space equations in Eqs. (6)
and (7). This choice of surrogate model is very common in
the literature of HI prediction with PF. This is due to the
degradation dynamics of most of the complex systems that
tend to follow an exponential growth. It is in particular verified
for the application case studied here in Section IV, where
HI trajectories show an exponential-like behaviour when the
degradation appears (see Fig. 2).

2) MLP surrogates: A combination of particle filter and
neural network has been firstly proposed by [28] and later
investigated in different applications fields [29]. In this work
we resort to a simple MLP architecture composed by four
layers (one input, two hidden layers and one output layer),
with three neurons per hidden layer. The input is a single
value, i.e. the time step k, and the output is composed of
a single neuron returning the predicted HI value. The MLP

consists then of 15 weights and 7 biases, for a total of 22
parameters to completely describe the network represented in
Fig. 1. The input-output relationship is described as:

g(Θk, bk, k) = hO(

3∑
j=1

Θ
(j)
k H

(j)
2 (k) + b

(0)
k ) (9)

H
(j)
2 (k) = h2(

3∑
i=1

Θ
(i,j)
k H

(i)
1 (k) + b

(j)
k ) (10)

H
(i)
1 (k) = h1(Θ

(i)
k k + b

(i)
k ) (11)

where Θk and bk represent the MLP weights and biases
and thus the states xk in the PF state-space equations in
Eqs. (6) and (7). i and j respectively refer to the neuron
number of the first and second hidden layers, while hO, h2,
h1 refer to the activation functions of the output, second
hidden and first hidden layers, respectively. In this work, the
activation functions hO(·), h2(·) and h1(·) are respectively
set as linear, exponential and scale exponential linear unit
(SELU) functions. The choice of the two last layers activation
functions is to perform a sum of exponential, which is well
fitted to an exponential-like degradation. The first hidden layer
activation function choice is for previously adding some non-
linearity, expanding the possibilities of the defined parame-
terized function family, and therefore improve its adaptability
to degradation trajectories containing exponential growths. It
is also advised in the literature on neural network to use
pseudo-linear unit activation functions e.g. rectified linear unit
(ReLU), SELU. The choice of such a simple network archi-
tecture is motivated by the low computational efficiency of
PF, whose task is to recursively estimate the MLP parameters.
Increasing the network complexity could on one side improve
the approximation capability of the algorithm, but on the other
side it would drastically increase the number of parameters and
the computational burden of the entire PF algorithm.

Input Hidden Layer 1 Hidden Layer 2 Output Layer

1

1 11

Fig. 1: Proposed MLP architecture

III. ALGORITHM DETAILS

A. Particles initialization and reintroduction

The initialization of the PF with plausible particles plays a
crucial role in the algorithm performances. Randomly initializ-
ing the particles, i.e. the parameters x0 in Eq. (7), would lead
to poor results, especially with g lying in a large parameterized
function family as defined in the previous section. To do so,
it is here proposed to initialize the particles with parameters
found when fitting g on training HI trajectories. Once all the



training trajectories are fitted with their optimal parameters,
the initial particles are initialized by randomly taking the
parameters of one training trajectory fit. Additionally, to avoid
a decrease in the diversity of the particles along the PF cycles,
initial particles are randomly reintroduced at each resampling
stage. The percentage of particle reintroduced instead of being
resampled is arbitrarily fixed at 10%. For fitting g(x, k) with
MLP surrogate models, a classical neural network training
is achieved to minimize the mean square error. For the DE
surrogate model a least-square minimization if performed with
the Levenberg-Marquardt algorithm.

B. Particle likelihoods variance

To determine the likelihood variance σ2
η used for the particle

weight estimation performed in Eq. (4), it is first needed to
characterize the noise η defined in Eq. (7). This noise is
estimated by the difference between known HI trajectories
(i.e., the training set) and their respective fits g(x,k) with
optimal parameters x̂. Fortunately these best fit parameters
for each training trajectories are already computed for the
initialization of particles so this does not require any additional
computational burden. The estimated mean µ̂η and variance σ̂2

η

of η are therefore estimated over all time steps of the training
trajectories. It was found by the authors that the mean was
close to zero for both the MLP and DE surrogate models,
which justifies the hypothesis of zero mean gaussian noise
η. In the particle filter, the value used for σ2

η should not be
lower than σ̂2

η . Otherwise, a low weight would be assigned
even to the particles that best fit the HI trajectory, resulting in
minimal distinction between the weights of good and poor
particles. Therefore, in this study, different values for the
parameter σ2

η were explored, based on the true noise variance
σ̂2
η obtained for a given function f (i.e., MLP or double ex-

ponential). Specifically, the values [σ̂2
η, 2σ̂

2
η, 5σ̂

2
η, 10σ̂

2
η, 20σ̂

2
η]

were tested. For both MLP and DE, σ̂2
η was estimated to be

approximately 0.015. And the best results of PF were achieved
with σ̂2

η = 0.075 for both models.

C. Jittering variance

The selection of the jittering variance σ2
ω is of paramount

importance in PF when employing the particle jittering strat-
egy defined in Eq. (6). A common choice is first to adapt this
jittering variance at each step, and not to use a fixed value. [29]
proposed an exponentially decreasing jittering variance across
time steps, equal for each parameter. The idea is to initially
let the particles explore a wide possibility of parameters, and
then decrease the jittering to focus the exploration on the
found trajectories. In our case the beginning of the HI are
often constant around zeros (see Fig. 2) so exploring at the
beginning is not a very effective strategy. [30] proposed to
update each parameter x

(i)
k of f , based on the values range

observed in the current particle set, the number of particles
and the number of parameters. [24] refined this strategy with
a variance depending also on the parameter value range of the
current particles, but also depending on the effective sample

size of the particle filter at the same time step. This last
approach in jittering is the one used in this work. At each
time step k the jittering variance for each component xk[d] of
any particle xi

k is defined as:

(σ2
ω)

k[d] = J · ÎQRxk[d]
· ESS

− 1
3

k (12)

where ÎQRxk[d]
is the normalized inter-quartile range of

values of the parameter xd at time k over all the particles, and
ESSk is the effective sample size (ESS) at time k defined as:

ESS =
1

np∑
i=1

(ŵk
i )

2

(13)

where np denotes for the number of particles. The ESS
evaluate the degeneracy of particles. If all particles tend to
have similar weights then ESS will tend to np, if all particles
but a few have weights close to zero, then ESS will tend
to this few number of particles with high weights. With this
jittering dynamic, a low ESS triggers an increase in jittering
variance and thus a greater exploration of the particles, while a
high ESS decreases this exploration. In [24] the authors found
a value of J = 1.68 based on a general hypothesis; however it
is unlikely that this value is optimal for all use cases, therefore
J is here set as an hyperparameter for optimizing the jittering
dynamic. In this work multiple values have been tried and the
best performances were obtained with J = 1.5.

D. Additional a priori on particles

The weighting of the particles given their likelihood in
Eq. (4) ensures the consistency between particles and mea-
surements until the observation time t. To further improve the
quality of the prediction, additional a priori can be enforced
on the trajectories via filtering the particles. This consists in
assigning a zero weight to the particles whose trajectories do
not comply to some predefined rules. In this work we filtered
out the particles based on:
Monotonicity

HIs are by definition monotonous. However, the noise
in the observations can depict some non-monotonicity;
this can results in a non-monotonous prediction, that is
incorrect per se.

Threshold reaching
Particles are propagated in the future for a fixed horizon,
defined as 110% of the longest HI trajectories on the
training set. If a particle does not encounter the threshold
before the horizon, it is filtered out.

Max derivative
The parameterized function family of g (sum of two
exponential or MLP with exponential activation function)
encompass functions with sudden exponential increases
that do not fit well with the HI trajectories. To filter these
cases out, an a priori is set such that a particle can not
have a derivative higher than the highest derivative found
in the training set.



The a priori filtering is analogous to a prior distribution
constructed from the training set. It serves to filter out particles
that exhibit substantial deviations or are improbable based on
this prior distribution.

E. RUL Prediction and confidence intervals

The set of np particles represent a plausible representation
of the HI trajectories. At each time step k and for each particle
i it is possible to define a end of life (EOLi

k) as the future time
step at which the trajectory reaches a failure threshold. The
threshold is set in this work as the median of the highest values
for each training HI trajectory. Consequently, it is possible to
define the RUL of each particle as:

RULi
k = EOLi

k − k (14)

representing the number of time steps to reach the EOL from
the current time k. The R̂ULk is then computed as the median
of all RULi

k. The choice of the median with respect to the
mean is motivated by the exponential evolution of the HI,
which calls for a robust predictive statistics, i.e. the median.
Finally, a confidence interval (CI) of this RUL prediction is
built by taking the 5% and 95% quantiles of the RUL found
by all the particles.

IV. EXPERIMENTAL RESULTS

A public turbofan engine dataset [31] was used to assess
the performance of proposed method. It results from simulated
runs of the commercial modular aero-propulsion system sim-
ulation (C-MAPSS) developed at NASA Army Research Lab-
oratory. For each engine simulated, a multivariate times series
of 21 monitored signals and 3 operating condition signals are
available, for a total of 24 dimensions. The sampling frequency
is one value per flight simulation. The monitored signals all
represent a specific physical measure on the turbofan engine,
e.g. temperature or pressure at critical spot of the engine, core
or fan rotation speed. In this work a subset of 100 engines
are used. Each of them is simulated under the same operating
conditions, but can experience one of two failure modes, i.e.
high-pressure compressor degradation or fan degradation.
Among the 100 engines, the 80 first engines are used as the
training set and 20 last ones as the testing set. HI trajectories
are here obtained from the siamese neural network proposed
in [10] which is optimized on the training set. Once trained
this HI model is used to produce HI trajectories for each of
the engines in the training and testing set. The obtained HI
trajectories of the testing set are drawn in Fig. 2. The proposed
PF method for online RUL prediction is performed on each
instance of the testing set. The training HI trajectories are used
for initializing the particles.
To assess the performance of the on-line RUL prediction two

indicators are computed. The first indicator is the cumulative
relative error (CRE) defined as:

CRE =
∑
k∈K

|L̂k − L∗
k|

L∗
k

(15)

Fig. 2: HI trajectories of the testing set

where k a particular time step, K a set of time step where
the RUL prediction performance is assessed, L̂k the predicted
RUL and L∗

k the true RUL. This indicator relates to the point
prediction performance, and needs to be minimized.
A second indicator is developed to assess the performance
of the CI prediction. It is referred as CI coverage (CIC) and
defined as follow:

CIC =
∑
k∈K

1
L∗

k∈ĈIk

L∗
k

W
ĈIk

(16)

where 1
L∗

k∈ĈIk
is the indicator function that takes one if

the true RUL lies in the predicted RUL CI, and W
ĈIk

is
the CI width. The objective of this indicator, which is to be
maximised, is to first reward RUL CIs that include the true
RUL, but also to reward more the CIs containing the true
RUL that are narrower, with this reward modulated by the
true RUL. A wide CI when the true RUL is low is more
penalized than when it is high.

To get a better insight on the performance of the two tested
strategies, their results are analyzed over the entire life of the
engines and in the last quarter of their life where the RUL
prediction is more critical. The results of the online RUL
prediction are shown in Fig. 3 for the five first testing engines.
The overall performance indicators, summed up over the entire
testing set, are summarized in Table I.

While the CRE indicates that the model with the double
exponential has a better prediction accuracy over the entire
life, it also reveals a better prediction accuracy of MLP
model during the last 25% of an engine life. For predictive
maintenance it can be argued that a point prediction is only
relevant towards the end of a component life for planning
maintenance operation, and therefore the MLP model would
be more satisfactory on that matter. Moreover, the confidence
interval of the MLP model is better calibrated than the one
of DE model as shown by the CIC indicator both on the
full life and last 25% life of an engine. These results can
also be observed in Fig. 3: while the CI of the DE model
always encompasses the true ground truth during the first
half of life, it rarely does towards the end. By comparison
the MLP model almost always encompasses the ground truth
RUL towards the end of life while in the beginning of life for



Full lifetime Last 25% of lifetime

Fig. 3: On-line RUL prediction results for entire lifetime and last 25% of lifetime for turbofans 81-85

turbofans 82 and 83 it misses it. Finally when both models
CI encompass the ground truth, the one issued from the MLP
model is always narrower which indicates a better precision.
Therefore the results observed in Fig. 3 are consistent with
the indicators of Table I and indicate that MLP model is an
appealing alternative to the double exponential one, most often
used in the literature.

V. CONCLUSIONS

In this study an improved MLP based PF model for RUL
prognostic is proposed. This specifically aims at improving
the MLP architecture of the surrogate model compared to
the one proposed in the literature, and also using existing
robust particle exploration techniques that were never used

in the context of HI prediction. The model performance is
assessed and compared with the same PF model when using
a sum of two exponential (DE) instead of the MLP, which
is a common choice for surrogate models in the literature. It
was found that the proposed model is at least as good as and
mostly outperforms the DE surrogate strategy in the context
of jet engine degradation. This confirms previous findings on
the suitability of shallow and thin neural networks to act as
surrogate models in PF, especially when the observation equa-
tion is unknown. It specifically demonstrates the flexibility of
MLP to fit in different application cases, i.e. turbofans, Li-
Ion batteries and crack growth where degradation trajectories
are of different nature. During this work it was found that
the initialization of particles, their jittering and reintroduction



Model Relative error (full) Relative error (75-100%) CI coverage (full) CI coverage (75-100%)
MLP 1120 325 3956 1133

Double exp. 866 335 3054 388

TABLE I: Performance indicators over the entire testing set

dynamics were of significant importance. Unfortunately their
precise influence could not be discussed here for conciseness,
however a thorough study on these parameters influence would
be of particular interest. The same stands for studying the
performance of MLP-based PF on other and more complex
application cases such as rolling bearing. These results encour-
age further research on the topic of PF based RUL prognosis.
More particularly investigating the possibility of using other
machine learning general models instead of MLP, e.g. support
vector machines (SVM).
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