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Abstract

Natural selection drives adaptive evolution and removes deleterious mutations;
these e↵ects are countervailing when a complex adaptation requires mutations
that are initially deleterious when they arise, but beneficial in combination.
While many models of this dynamic consider how genetic drift or other influ-
ences can aid valley crossing by weakening selection, we lack a general, analytical
treatment of when relaxed selection might speed this type of adaptation. Here
we use simulation and analysis to show that relaxed selection is generally fa-
vorable for valley-crossing when adaptive pathways require more than a single
deleterious step. We also demonstrate that spatial heterogeneity in selection
pressures could, by relaxing selection, allow populations to cross valleys much
more rapidly than expected. These results relate to several applications of evo-
lutionary theory to complex systems ranging from host-pathogen evolution to
search algorithms in computer science.
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Introduction

Ever since Sewall Wright introduced the fitness landscape in 1931, the metaphor
of mountains as genetic regions of high fitness separated by valleys of low fitness
has been the canonical framework for understanding how epistatic (i.e., non-
additive) interactions between genes impact evolutionary dynamics (1; 2; 3).
From the beginning this framework has been applied to the origins of com-
plex traits—those that seemingly require multiple, well-tuned parts to deliver
adaptive benefits. Using the fitness landscape metaphor, adaptations in which
several individually deleterious mutations improve fitness when combined are vi-
sualized by peaks separated by valleys. Quantifying the speed of valley-crossing
may shed light on the origins of complex adaptations throughout the history of
life (4), but has also been applied to contemporary problems like evolution in
somatic cancers (5; 6). These same questions are also essential for predicting
evolution in several applications that rely on the assumption that valley-crossing
will be di�cult: the use of multiple simultaneous treatments against bacterial
infections (7; 8) and chronic viral infections like HIV (9), and the use of multiple
resistance genes against plant pathogens (10).

Though valley crossing can in principle occur via the sequential fixation
of each deleterious mutation, this pathway is a virtual impossibility in large
populations when intermediates steps are significantly deleterious (11). Wright’s
shifting balance theory avoided this problem by focusing on small populations
which were hypothesized to occasionally shift to a di↵erent peak with the aid of
genetic drift (3). The relevance of this model for evolution has been vigorously
debated (see (12)), but more recent theory has shown that large populations can
readily cross valleys and do so without substantial drops in mean fitness. Rather
than sequential fixation, a lineage carrying a deleterious mutation can acquire
subsequent mutations before the deleterious intermediates become very common
(11; 5). This process may be slow, on average, but not gradual: distributions of
crossing times are approximately exponential (13), reflecting the waiting time
for a series of events that is rare but proceeds quickly once initiated.

Selection plays a unique, dual role in crossing adaptive valleys, manifest-
ing as both the constraining and the driving forces. Consequently, it is not
at all obvious whether more intense selection would speed or slow the process,
and several models suggest that crossing is faster when selection is weakened
or opposed. In Wright’s models, genetic drift played this countervailing role.
Other candidate mechanisms that enable valley crossing by lessening the influ-
ence of natural selection include random phenotypic variation (14; 15), spatial
(16; 17) or temporal (18; 19) heterogeneity in the strength of selection, high
genetic variation for fitness (20; 21), non-Mendelian transmission biases (22),
low density (23), and subdivided populations with local competition (24) or
cooperative social interactions (25; 26). But despite these many examples and
detailed mathematical analyses of some aspects of valley crossing, we still lack
clear criteria for when lessened or relaxed selection speeds the arrival of complex
adaptations.

Here we use analytical methods and simulations to show that relaxed selec-
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tion can speed valley-crossing when multiple deleterious steps separate peaks.
We then examine the e↵ects of one generic cause of relaxed selection in nature—
spatial heterogeneity, in which populations spread across multiple environments
experience relaxed selection on environment-specific traits. We model this
scenario and show that populations faced with multiple, independent valley-
crossing problems can surmount all of them in parallel, much more readily than
would be extrapolated from the behavior of a specialist population in a single
environment.

Model & Results

I. Valley crossing and relaxed selection

We define adaptive valleys following the terminology of (27). As shown in Figure
1, k mutations are required to realize a fitness benefit s relative to the wild-type.
Each mutation individually lowers fitness by � outside of the context of the k -
mutant genotype (Figure 1). For simplicity, we follow (27) in modeling additive
e↵ects, such that the fitness Wi for 0 < i < k is 1��i, not (1��)i. This choice is
an excellent approximation for the multiplicative case if � and k are both small.

We model asexual reproduction in haploids. Each o↵spring carries a Poisson-
distributed number of mutations with mean µ, and the total mutations carried
by a genotype is capped at k. For simplicity, back-mutation is not allowed, and
the forward mutation rate does not depend on the number of mutations carried
by the parent.

Waiting times for valley-crossing have been analyzed systematically across
a number of papers (e.g., (28; 27)). However, almost all such results focus on
two-step crossings (k = 2) in the case where � is substantial relative to the
strength of drift, or instead consider more than two steps but with e↵ectively
neutral intermediates (29; 30; 31). A few studies formally consider cases where
k > 2 for deleterious intermediates, but have not analyzed the consequences of
relaxed selection for crossing time (27; 32; 33). In the supplemental material,
we analyze waiting times for arbitrary k for both the Moran and Wright-Fisher
models. Below we sketch our main results and compare the resulting predictions
to simulations.

First, as a point of comparison we examine the e↵ects of relaxed selection
on k = 2 valleys. For a Moran process, we can approximate the waiting time
until a genotype with k mutations arises as the product of the number of first-
step mutations per generation, Nµ, the expected lineage size created by each
such mutation, ��1, and the mutation rate from one to two mutations, µ. This
calculation assumes that deleterious steps are truly deleterious (� � N�1) and
mutations relatively rare (µ ⌧ 1), ensuring that the first-step mutation remains
rare. Once the second mutant arises, its chance to fix is well-approximated
as s

1+s for large N . Relaxed selection, achieved by multiplying both � and s
by the same constant, is therefore expected to have little e↵ect on the arrival
time of the k-mutant for k = 2 as this constant will largely cancel out of the
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expected waiting time when s ⌧ 1 + s. Further, the expected waiting time
until the k-mutant has achieved a substantial frequency will only increase with
weaker selection. In short, we do not expect relaxed selection to have a large or
consistent e↵ect on mean crossing times when k = 2.

For larger valleys (k > 2), these dynamics are qualitatively di↵erent. Figure
2 depicts landscapes of the probability of crossing valleys of for k = 2, 3, and
4. For k = 2, weakening selection (movement along the diagonal lines toward
the lower-left corner) has little e↵ect on this probability, as the contour lines
are nearly parallel to this vector of movement. But for higher k, there are large
regions of parameter space in which weakening selection substantially raises the
probability of crossing valleys.

We analyzed these dynamics in both the Moran and Wright-Fisher models,
deriving approximations for the arrival time of the first mutant that will be
ancestral to a successful k-mutant lineage (see Supplemental Materials §1.2).
Under the assumption that the lineages seeded by deleterious intermediates
are expected to remain small (

p
µ ⌧ �) and that the k-mutant is strongly

favored, we can generate accurate, simple formula for the rate at which valleys

are crossed. When � �
q
µ s

1+s , we derive a particularly intuitive expression

for the k = 3 waiting time in the Moran model (see Supplemental Materials,
Equations S.14–16):

t1 ⇡ 2�2(1 + s)

Nµ3s
. (1)

This expression can be decomposed into the flux of first-step mutations per
generation (Nµ), the number of second-step mutations they give rise to (µ� ),
the number of k-mutants arising from each of those ( µ

2� ), and the fixation prob-
ability of each of those k-mutants ( s

1+s ). Together, this expression illustrates
why relaxed selection speeds valley-crossing for larger valleys: because there are
multiple deleterious steps, adaption is accelerated if � is reduced, even is s is
reduced by the same amount. In general, we find a dependency of order �k�1, in-
dicating that the benefits of relaxed selection increase with k (see Supplemental
Materials §1.2.2).

When s is relatively large compared to µ, we expect that the vast majority of
the waiting time for a successful k-mutant will be spent waiting for the first-step
ancestor described by Eq. 1. Therefore, we can take t1 as a good approximation
of tk, the arrival time of the k-mutant (see Supplementary Materials §4). Figure
3 plots simulated observations of these arrival times, along with time, tinv, at
which the k-mutant has reached a frequency of 0.1. Relaxing selection, modeled
as multiplying both s and � by the fraction indicated on the x-axis, substan-
tially lowers the waiting time. For the Moran model, eq. 1 accurately captures

this trend as long as � �
q
µ s

1+s , visualized as the transition from a solid to a

dotted line. When selection is very weak, t1 and tinv separate noticeably, miti-
gating any further e↵ect of decreasing selection on valley-crossing times. In the
Supplemental Materials, we derive similar formula for the Wright-Fisher model
(see Supplementary Materials §4). Moreover, we show that relaxed selection is
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generally expected to speed the arrival of the k-mutant as long as k > 2 (see
Supplemental Materials §1.3).

II. Valley crossing and spatial heterogeneity

Relaxed selection can arise when a population is spread over multiple envi-
ronments, and a trait, or the genes underlying it, are not under selection in
some of those environments. To explore how this form of relaxed selection
could impact valley crossing, we simulated populations distributed among m
environments. In each environment, we assumed that fitness was determined
by a set of loci expressed uniquely in that one environment. Alleles expressed
within each environment were subject to a valley-crossing scenario, exactly as
described above. For example, with m = 5 and k = 3 a population would be
spread across five environments at any one time and faced with five genetically
distinct valley-crossing problems, represented by a genome of fifteen total loci.
Each valley-crossing dynamic would then be allowed to evolve via separate mu-
tations, with the fitness of an individual being determined by these mutations
and their environment.

Within this basic scenario of spatial heterogeneity, competition and selection
can operate in several di↵erent ways. An individual organism may experience
only one environment within their lifespan (coarse-grained heterogeneity) or
may visit many environments (fine-grained heterogeneity). In the former case
we uniformly assigned each individual at birth to one of the m environments,
eventually filling each environment with N/m organisms. In the latter, we as-
signed a fitness to each individual by averaging its fitness across all m habitats.
Separately, selection can occur by global competition (also called hard selection)
or can be localized to each environment (soft selection). To simulate the for-
mer, we chose N individuals for the next generation in proportion to assigned
fitnesses; to simulate soft selection, we first standardized fitnesses within each
environment by dividing them by the mean in that environment. We therefore
model four di↵erent combinations of these decisions, which represent extremes
on spectra bridging coarse- and fine-grained heterogeneity and global and local
selection.

Figure 4 illustrates that populations can cross valleys much more readily
when spread across multiple environments. While local competition is asso-
ciated with slightly more facile valley-crossing, the main e↵ect of spatial het-
erogeneity is largely independent of the details of selection. Note that these
probabilities are averaged across each environment, such that the number of
valleys crossed is the product of pinv and the number of environments. For ex-
ample, a population spread across ten environments typically crosses more than
four valleys; in the same span of time, a population experiencing only a single
environment would have about a 10% chance to cross that single valley.
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Discussion

Empirical fitness landscapes motivate the need for quantitative predictions of
how populations with specific characteristics, and in particular environments,
can navigate their ways to higher fitness (34; 35; 2). Strictly uphill paths are
often evident in cases of evolution under strong, focused sources of selection
(36; 37). In other cases, valleys may be present but can be skirted by evolution
along ridges (1): mutations comprising the complex adaptation can be acquired
in sequences of substitutions, or in particular environments, in which each step
is individually beneficial, following paths that are lengthy but still entirely uphill
(e.g., (38; 39)). More generally, though, fitness landscapes may have properties
that make evolutionary optimization a hard problem in computational terms
(40). In practical applications of valley-crossing theory like the acquisition of
multi-drug resistance in HIV (19), we must study the causes of evolutionary
events that are rare precisely because we have sought to design treatments that
are hard for evolution to undermine. The example of resistance to treatment
cocktails in HIV illustrates that understanding valley crossing is particularly
important in applied contexts in which we have constructed situations that
frustrate simple adaptation. In this study, we look at two general approaches
to slowing adaptation—adaptive valleys and relaxed selection caused by spatial
heterogeneity. Surprisingly, these two obstacles to adaptive evolution interact
antagonistically, partially canceling each other’s constraining e↵ect when certain
conditions are met. When adaptive valleys are wider than the minimum size of
k = 2, and organisms experience orthogonal valley-crossing problems in distinct
environments, then for a broad range of parameters environmental heterogeneity
speeds up valley crossing.

Virus evolution, in particular, has a long history of applications of theoret-
ical population genetics to adaptation on rugged fitness landscapes like those
modeled in this study. This is partly because viruses embody the properties
(e.g.,large population sizes and high mutation rates) that facilitate rapid adap-
tation to diverse environments(41). More recently, the origin of the SARS-
CoV-2 variants has drawn attention to the relevance of rapid evolution across
epistatic landscapes(42). For example, the SARS-CoV-2 Omicron (B.1.1.529)
variant contains several mutations that are likely to be deleterious individually
but beneficial in combination (43). If, as is hypothesized, Omicron originated
in chronic infection in an immunocompromised host, this environment likely
facilitated the fixation of mutations (corresponding to immune escape and/or
increased transmission) that were otherwise too deleterious individually to per-
mit valley crossing in immunocompetent individuals (44; 45); indeed, relaxed
selection is explicitly hypothesized as an important driver of Omicron’s emer-
gence (46).

Similar ideas apply to the use of vaccines, which may owe some of their ther-
apeutic longevity to the varied antibodies they induced across the host popula-
tion, creating a spatially heterogeneous set of selective pressures for pathogens
(47). Experimental evidence in prokaryotes demonstrates the importance of a
diversity of immune responses (48) and models have analyzed the benefits of

6

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted July 9, 2024. ; https://doi.org/10.1101/2024.07.09.602773doi: bioRxiv preprint 

https://doi.org/10.1101/2024.07.09.602773
http://creativecommons.org/licenses/by-nc-nd/4.0/


distributing varied vaccines for fighting infections (49). Yet, our results sug-
gest that presenting pathogens with a varied set of evolutionary challenges may
not be as e↵ective a constraint on escape as one might hope. In SARS-CoV-
2, di↵erent components of viral fitness show strong epistasis among mutations
that might facilitate escape (50; 46; 51). Moreover, host antibodies targeting
one virus epitope have limited e↵ects on binding to other epitopes, suggesting a
heterogeneous selective environment for virus mutants (51). Our results suggest
that while epistasis, and the resulting fitness valleys, may constrain viral evo-
lution, the fact that diverse virus epitopes are targeted by distinct antibodies
across hosts may weaken, rather than strengthen, this constraint.

Complimenting our results, recent work modeling pathogen populations (23)
has noted that a type of relaxed selection can arise from low contact rates be-
tween infected individuals, allowing deleterious mutants to persist without being
immediately out-competed by coinfecting wild-type strains, consequently facil-
itating valley crossing. Future reconciliations between evolutionary theory and
the dynamics of infectious diseases could more clearly identify epidemiological
scenarios that promote or prevent the emergence of variants by identifying the
population genetic conditions where valley crossing and immune escape (via
adaptation on rugged fitness landscapes) is more likely.

While our findings are relevant to real world problems in infectious diseases,
the implications are broader. Valley-crossing in evolution is formally very similar
to the problem of trapping at local minima in energy landscapes or premature
convergence in evolutionary computing. In part, this can be understood as a
dilemma of exploration vs exploitation: the greater the strength or stringency of
natural selection, the more the evolutionary process is slanted toward exploiting
already-discovered high-fitness genotypes, rather than exploring the potential
o↵spring of genotypes with lower fitnesses in the present. In the context of
directed evolution of macromolecules, researchers have connected the benefits
of relaxed selection to the magnitude of epistasis (52), mirroring the epistasis
central to the valley-crossing examples studied here.

The field of evolutionary computation in computer science has long examined
analogous problems, where the search for optimal solutions in high-dimensional
rugged parameter spaces led researchers to algorithmic implementations of Dar-
winian evolution. The problems being solved often require multi-objective se-
lection, in which several sub-problems are simultaneously optimized and so-
phisticated algorithms are used to ensure progress is made along all fronts.
Recently, these multi-objective algorithms have been tested for their e�cacy
in directed evolution experiments using microbial populations and show great
promise (53; 54). The balance of adaptation being spread across multiple objec-
tives, allowing each to a↵ord some genetics drift on the other fronts, is a feature
of these multiobjective approaches that we argue is contributing to their success.
Other concepts rooted in computer science but with interdisciplinary applica-
tions include deception (55). Deceptive landscapes contain features that lead
search processes away from global optima, as was recently shown to be the case
for some antibiotic-resistance landscapes (56). These examples point to the
largely unexplored potential for cross-disciplinary progress on best to navigate
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rugged landscapes.
Other surprising e↵ects have been investigated using these more computa-

tional and engineering approaches, some of which can be attributable to the
mechanism we investigate here. For example, Dolson and Ofria observed that
evolutionary hostspots–regions of the physical world that produced a dispro-
portionately large amount of novel variation–often occurred in regions of high
resource overlap (57). As in our models, such diversity of adaptive opportunities
could increase the e↵ects of drift, and thus allow populations to cross more or
larger fitness valleys. Recent computational work by Bohm et al. shows how
transient relaxed selection, which is driven by the lagging increase in mean fit-
ness of an adapting population, leads to temporary increases in exploration of
the fitness landscape (21). Pushing the limit of relaxed selection further, nov-
elty search is a new selection algorithm that has gained substantial popularity
and success, where rather than rewarding any single (or multiple) objective,
individuals are selected based on the uniqueness of their phenotype (58). It is
counter-intuitive that jettisoning the evaluation of success actually improves the
search for optimal solutions, but our results perhaps o↵er a simple explanation:
relaxed selection allows valley crossing that would otherwise inhibit evolutionary
exploration.

Understanding the dynamics of valley-crossing in adaptive landscapes has
become a pragmatic, multi-disciplinary problem. Classically, fitness landscapes
have helped depict evolution as a set of genotypes competing in a single envi-
ronment. Our results here help to emphasize the importance of considering en-
vironmental variation: when populations are spread across environments, each
with its own fitness landscape, our expectations for important dynamics like
valley crossing are substantially di↵erent. While we have focused here on a
simplified picture, without pleiotropy, of how environment-specific landscapes
interact. Future work could continue to explore how interrelated landscapes
across environments, in which mutations can have pleiotropic e↵ect, shape the
diversity of trajectories and likelihood of progress toward higher fitness peaks.
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Methods

Individual-based simulations were used to track evolution of distinct geno-
types in populations of fixed size, with reproduction occurring with overlapping
(Moran) or discrete (Wright-Fisher) generations. In both types of simulations,
we tracked the lineages of all genotypes such that we could unambiguously es-
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tablish the origination time of each mutation in a successful lineage. Matching
the assumptions of the analytical model, we assumed that the chance of a mu-
tational change from i to i+1 mutations was independent of i. However, unlike
the assumptions of the analysis we allowed for the possibility of multiple muta-
tions in a single reproductive event. Selection a↵ected fecundity in both model.
Simulations were coded in R and C.

Data sharing plan

All code and simulation data will be made available on Data Dryad prior to
publication.
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Figure 1: Illustration of the basic fitness landscape for the k = 3 case.
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Figure 2: Probability of the k-mutant to arise and invade (reach a frequency of
at least 0.01) within 5000 generations for three values of k. The Wright-Fisher
model was simulated with N = 500, 000 and µ = 0.00005 across more than
three orders of magnitude for both � and s. B. Diagonal lines show proportional
change in both � and s; movement along these lines from the top-right to the
bottom-left corresponds to weakening selection. A minimum of two hundred
replicate simulations were performed for each point in a 21 x 21 grid of conditions
for each value of k.
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Figure 3: Mean waiting times of valley-crossing for k = 3 in the Moran (top) and
Wright-Fisher (bottom) models. Filled points show the means of t1 from repli-
cate simulations; open diamonds show the corresponding mean of tinv. (Top)
Solid lines indicate predictions from Eq. 1; the line is dotted when the ratio of

� to
q

µ s
1+s is below five, indicating that we expect the approximation to begin

to fail. Dashed lines are calculated iteratively from Supplemental Materials Eq.
S.5. (Bottom) Solid lines indicate predictions from the approximations given
by Eq. S.40; dashed lines show the more complete expression given by iterating
Eq. S.34. Confidence intervals, determined by bootstrapping, are visible where
they exceed the size of plotting symbols.
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Figure 4: Probability of the k = 3 mutant to arise and invade (reach a frequency
of at least 0.01) within 5000 generations, averaged over each environment the
population experiences (x-axis). Each population is spread across m environ-
ments, with three loci per environment to create an independent k = 3 valley for
each environment. The Wright-Fisher model was simulated with N = 504000
and µ = 0.00005 (the population size was chosen so that it was divisible by each
tested value of m). The dashed line shows the expected probability for a single
environment, as determined by simulation. At least three hundred replicates
are averaged for each treatment.
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In what follows, we obtain estimates for the valley crossing time for a Moran model [13],
allowing for a valley of arbitrary width (i.e., an arbitrary number of mutations, k, in which each
is deleterious but the combination of all k is beneficial. We will focus on a model with fecundity
selection (i.e., each epistatically negative mutation acquired reduces the individual’s birth rate),
but proceeding identically, one can obtain a similar result for a model with mortality selection
(i.e., when epistatically negative mutations increase an individual’s death rate).

After first specifying our model (§1), we present an approximation by a birth-and-death process
with immigration [10] in §1.1. We then adapt a heuristic argument presented in [17] for the waiting
time for m mutations in a neutral Moran model to our case (§1.2). While we content ourselves with
an informal approach, these arguments can be rigorously justified using coupling arguments similar
to those in [17, 6]. By considering various regimes, we are able further simplify our expressions
(§1.2.1,1.2.2). Similar results appear in [19], obtained via a di↵erent and arguably more complicated
argument. Using the analytical expression thus obtained, we show that relaxing selection reduces
the expected valley-crossing time (§1.3).

We then illustrate the generality of our approach by applying it to the Wright-Fisher model
(§2), obtaining what we believe to be the first estimates for that model. Interestingly, because we
are working in a regime when the di↵usion approximation is not appropriate (see e.g., [14] for a
comparison of the exact Wright-Fisher model, its di↵usion approximation, and an approximating
branching process), we find that, unlike many quantities of population genetic interest, the expected
time to cross a fitness valley is not identical in the two models, even after one accounts for the
factor of two di↵erence in the e↵ective population sizes for the Moran and Wright-Fisher models
[7, §3.7].

Finally, we provide evidence for the two key assumptions underlying our approach, that mutant
individuals remain rare until the valley is crossed (§3), and that the time to valley crossing is
dominated by the wait until the arrival of the first mutant individual that will be the ancestor of
the adapted k-mutant that will go on to fix (§4).

We start from a general formulation, making simplifications as needed to obtain tractable
analytical results. Equation (S.16) specializes to Equation [1] in the Main Text when one takes
k = 3 and i = 1.

1 Moran Model

We assume that population grows and changes according to a Moran model in a finite population of
size N [13]. The individuals are grouped into types i = 0, . . . , k, the type indicating the number of
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loci at which the individual carries a mutation, and we let Xi(t) denote the number of individuals
of type i at time t.

Selection can be modelled in the Moran framework in a number of asymptotically-equivalent
ways; here we assume fecundity selection. Individuals of type i are assumed give birth at rate bi.
When a birth occurs, the o↵spring then displaces an individual chosen uniformly at random from
the population (which, as formulated below, may include their parent). By assumption, individuals
carrying 0 < i < k mutations are less fit than the wild-type, b0 > b1 > · · · > bk�1, whereas an
individual carrying k mutations enjoys a positive epistatic e↵ect, and is more fit bk > b0.

If, in addition, we assume that the o↵spring of an individual with i mutations has j mutations
with probability µi,j ⌧ 1 (µj,j = 0), then type i individuals are replaced by type j individuals at
total rate

bjXj
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1.1 Birth-and-Death Process Approximation

By rescaling time, we can always take b0 = 1, bi = 1 � �i for 0 < �1 < · · · < �k�1, and bk = 1 + s
for s > 0. Moreover, suppose the number of i individuals is negligible compared to N whereas
X0 ⇠ N . This is assured by deleterious selection for individuals 0 < i < k mutations (see §3).
In general, this is not the case for individuals with k mutations. However, we will only need the
approximation up until the appearance of the first individual with k mutations that is destined to
go on to fixation; up until this individual appears, Xk ⌧ N (see §3.3).

Under these assumptions, for 0 < i (S.1) becomes
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where i 6=k and i=k are indicator functions (i.e., i 6=k is 1 if i 6= k and 0 if i = k, the opposite for

i=k). For 0 < i < k, (S.2) becomes
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and, similarly, for i = k, (S.2) is approximately (1 + s)Xk +Nµ0,k.
Thus, if Nµ0,i ⌧ 1, we may approximate Xi by a simple birth-and-death process [10] with

per-capita birth rate 1� �i if i < 0 < k, and 1 + s if i = k, and per capita death rate 1. If, on the
other hand, µ0,i is of order O(1), then we need to use a birth-and-death process with immigration
[10] with the same birth and death rates and immigration rate Nµ0,i.

1.2 Valley Crossing Rate

We adapt the heuristic presented in [17] to estimate the expected waiting time to cross a fitness
valley. We do so by computing the probability that a given type 1 individual (i.e., one carrying
the mutant allele at the first locus) is ancestral to a successful adapted individual. Here we define
success by stipulating that the lineage of that individual must be destined to fix; a successful
adapted individual has crossed the fitness valley. We will refer to this type 1 individual as ancestral
or as the ancestor. Below, we will argue that the time from the birth of the ancestor to the
birth of the selected mutant destined to fix is negligible with respect the wait for the ancestor to
appear. Thus, expected valley-crossing time, defined as the wait until the k-mutant appears, is
approximately equal to the waiting time to the birth of this ancestor.

We henceforth assume that the probability of multiple mutations is negligible, so that an o↵-
spring born to an individual carrying i mutations carries i+ 1 mutations with probability µi and i
mutations with probability 1�µi, and no other mutations are possible (i.e., µi,j = µi if j = i+1, and
Nµi,j ⌧ 1 otherwise). We thus approximate the number of type 1 individuals by a birth-and-death
process with immigration, and all other types i > 0 by birth-and-death processes.

As we observed above, prior to the selective sweep that follows the arrival of the mutant des-
tined to fix, the population is almost entirely composed of wild type individuals, and using our
approximations above, type 1 individuals are being produced at constant rate

Nµ0

i.e., they are being produced at the times of a Poisson process with this rate, and the times between
arrivals are exponentially distributed with rate Nµ0. Below, we will compute the probability, p1,
that a given mutant is the ancestor. Then, using the thinning property of the Poisson process, an
ancestor is produced at rateNµ0p1, the waiting time until the it appears is exponentially distributed
with rate Nµ0p1, and the mean time to the arrival of the ancestor is 1

Nµ0p1
.

1.2.1 Ancestral Recursion

We compute p1 via recursion. As we saw above, we can approximate the Moran process by a
birth-and-death process with type-dependent per-capita birth and death rates bi and di:

bi = 1� �i and di = 1.

Let pi be the probability that an individual carrying mutant alleles at i loci is ancestral to
the successful individual, and consider the first event that happens to that individual during their
lifetime (either a birth or death). The first event is a birth with probability

bi
bi + di
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and a death with probability
di

bi + di
.

Clearly, if the first event is a death, the individual cannot be ancestral to a selected individual. If
the first event is a birth, then the focal individual is ancestral if either it or its o↵spring is ancestral.
Because our simple Markov model has no aging (i.e., in the event that the first event is a birth, the
probabilities that the next event is a birth or a death are identical to those for the first event, etc.)
the parent still has probability pi of being ancestral after the first birth. On the other hand, there
are two scenarios in which the o↵spring is ancestral: either it was born without mutation – with
probability 1� µi – and it has i mutations like its parent, and thus probability pi of be ancestral,
or, a mutation occurred – with probability µi, and the o↵spring carries i + 1 mutant alleles, and
thus has probability pi+1 of being ancestral. Combining these, the o↵spring has probability

p0i = (1� µi)pi + µipi+1, (S.3)

of being ancestral. Thus, the probability that at least one of the parent or the o↵spring is ancestral
is

1� (1� pi)(1� p0i) = pi + p0i � pip
0

i.

Combining all of the above, we see that

pi =
bi

bi + di

�
pi + p0i � pip

0

i

�
(S.4a)

=
bi

bi + di

⇥
(2� µi(1� pi+1)) pi � (1� µi)p

2
i + µipi+1

⇤
. (S.4b)

Rearranging, we have

bi(1� µi)p
2
i + (di � bi + biµi(1� pi+1)) pi � biµipi+1 = 0,

which may be solved via the quadratic equation to express pi as a function of pi+1:

pi =

q
(di � bi + biµi(1� pi+1))

2 + 4b2iµi(1� µi)pi+1 � (di � bi + biµi(1� pi+1))

2bi(1� µi)
.

In particular, given an initial condition pk, we can iterate this to obtain p1.
Specializing to the case bi = 1� �i and di = 1 gives us a slightly simpler expression,

pi =

q
(�i + (1� �i)µi(1� pi+1))

2 + 4µi(1� �i)2(1� µi)pi+1 � (�i + (1� �i)µi(1� pi+1))

2(1� �i)(1� µi)
. (S.5)

pk: Now, by assumption, individuals carrying k mutations are again adapted: they have birth
rate bk = 1+ s and death rate dk = 1. Then, using Moran’s expression for the fixation probability
[13], the probability that an individual with k mutations is ancestral to the whole population is

pk =
1� dk

bk

1�
⇣
dk
bk

⌘n =
1� 1

1+s

1�
⇣

1
1+s

⌘n ⇠
s

1 + s
. (S.6)
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pk�1: Substituting (S.6) into (S.5) yields

pk�1 =

r⇣
�k�1 +

(1��k�1)µk�1

1+s

⌘2
+ 4µk�1(1�µk�1)s

1+s �

⇣
�k�1 +

(1��i)µk�1

1+s

⌘

2(1� �i)(1� µk�1)
. (S.7)

giving us a starting point for the recursion.
Unfortunately, the iteration quickly becomes unwieldy. If, however, we assume in addition that

µi ⌧ �i ⌧ 1, then discarding all terms except those of highest order, (S.5) and (S.7) simplify to

pi ⇠

q
�2i + 4µipi+1 � �i

2
,

and

pk�1 ⇠

q
�2k�1 + 4µk�1

s
1+s � �k�1

2
.

If, moreover,
q

µk�1
s

1+s ⌧ �k�1, we have, using the binomial series
p
1 + x = 1 + 1

2x+O(x2),
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#
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On the other hand, if
q

µk�1
s

1+s � �k�1, then

pk�1 ⇠

r
µk�1

s

1 + s
.

N.B., when
q
µk�1

s
1+s ⇠ �k�1, these last simplifications are not possible.

pk�2: Now, consider pk�2:

pk�2 ⇠

8
><
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1
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hq
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µk�1

�k�1

s
1+s � �k�2

i
if
q
µk�1

s
1+s ⌧ �k�1, and

1
2

r
�2k�2 + 4µk�2

q
µk�1

s
1+s � �k�2

�
if
q

µk�1
s

1+s � �k�1.

If we assume that all the �i have the same order of magnitude:

�i ⇠ �j , (S.8)

then
q
µk�1

s
1+s ⌧ �k�1 implies that

q
µk�1

s
1+s ⌧ �k�2 and

µk�2
µk�1

�k�1

s

1 + s
⌧ µk�2�k�1 ⇠ µk�2�k�2 ⌧ �2k�2,

so the first case reduces, as above, to

pk�2 ⇠
µk�2

�k�2

µk�1

�k�1

s

1 + s
if

r
µk�1

s

1 + s
⌧ �k�1.
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If, on the other hand, �k�1 ⌧

q
µk�1

s
1+s , we need to consider two possibilities, either

4

r
µk�1µ2

k�2

s

1 + s
⌧ �k�2 (S.9)

(N.B., since, by assumption (S.8), �k�2 ⇠ �k�1, we also have �k�2 ⌧

q
µk�1

s
1+s) or,

�k�2 ⌧
4

r
µk�1µ2

k�2

s

1 + s
. (S.10)

If we assume (S.9), then

pk�2 ⇠
µk�2

�k�2

r
µk�1

s

1 + s

whereas assuming (S.10), we have

pk�2 ⇠
4

r
µ2
k�2µk�1

s

1 + s
.

pk�l, l = 1, . . . ,k� 1: Proceeding similarly, we find that if for some i, i = 1, . . . , l + 1

2i

vuut
iY

j=1

µ2j�1

k�j

s

1 + s
⌧ �k�l ⌧

2i�1

vuut
i�1Y

j=1

µ2j�1

k�j

s

1 + s
, (S.11)

(N.B., , by our assumption (S.8), if this asymptotic inequality holds for any �m, m = 1, . . . , k � 1,
then it holds for all of them) then

pk�l ⇠

lY

j=i

µk�j

�k�j

2i�1

vuut
i�1Y

j=1

µ2j�1

k�j

s

1 + s
, (S.12)

where we take
Ql

j=i
µk�j

�k�j
= 1 if i > l, and 1

p
x = x. In particular, the waiting time until the arrival

of the first adapted individual has mean

t1 ⇡
1

Nµ0p1
=

0

@N

Qk
j=i µk�j

Qk�1
j=i �k�j

2i�1

vuut
i�1Y

j=1

µ2j�1

k�j

s

1 + s

1

A
�1

. (S.13)

1.2.2 Additive and Multiplicative Selection

Simplifying to additive (�i = �i) or multiplicative selection (1 + �i = (1 + �)i, so �i ⇠ �i, since, by
assumption �i ⌧ 1), and assuming that all mutation rates are equal (µi ⌘ µ), we see that if

µ1�2�i
2i

r
s

1 + s
⌧ � ⌧ µ1�2�i+1

2i�1

r
s

1 + s
, (S.14)

then, taking 0! = 1 and, as previously, 1
p
x = x,

pk�l ⇠
(k � l � 1)!

(k � i)!

µl�i+2�2�i+1

�l�i+1
2i�1

r
s

s+ 1
, (S.15)
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and

t1 ⇠
1

Nµ0p1
=

 
N

1

(k � i)!

µk�i+2�2�i+1

�k�i
2i�1

r
s

1 + s

!�1

. (S.16)

Equation [1]in the Main Text is obtained by taking k = 3 and i = 1.

1.3 Relaxing Selection Can Accelerate Adaptation

Now, suppose that all forms of selection are relaxed by a factor of x 2 (0, 1), i.e., we replace �i by
�ix and s by sx above. This gives a probability of being ancestral that depends on x:

p1(x) =
k�1Y

j=i

µk�j

�k�j

2i�1

vuut
i�1Y

j=1

µ2j�1

k�j s x
i�k+21�i

(1 + sx)�21�i
, (S.17)

To see the e↵ect on adaptation time, note that increasing p1 has the consequence of decreasing the
mean adaptation time t1, (S.13). Now,

@p1
@x

=
k�1Y

j=i

µk�j

�k�j

2i�1

vuut
i�1Y

j=1

µ2j�1

k�j s
@

@x
xi�k+21�i

(1 + sx)�21�i

=

k�1Y

j=i

µk�j

�k�j

2i�1

vuut
i�1Y

j=1

µ2j�1

k�j s

⇥

⇣
(i� k + 21�i)xi�k�1+21�i

(1 + sx)�2i�1
� 21�ixi�k+21�i

(1 + sx)�1�21�i
⌘

=
k�1Y

j=i

µk�j

�k�j

2i�1

vuut
i�1Y

j=1

µ2j�1

k�j sx
i�k+21�i

(1 + sx)�21�i

✓
i� k + 21�i

x
� 2i�1 1

1 + sx

◆

= p1(x)

✓
i� k + 21�i

x
� 21�i 1

1 + sx

◆

which is negative (so increasing with decreasing x) provided

k � i+ 21�i x

1 + sx
� 21�i,

Now, for 0 < x < 1,

0 < 21�i x

1 + sx
< 21�i,

so the inequality holds provided k � i+1. Note that k � i, whereas when i = k, the �i are in their
smallest possible range (cf. (S.11)) and

p1 =
2k�1

vuut
k�1Y

j=1

µ2j�1

k�j

s

1 + s

is independent of the �i, so relaxing selection only decreases the probability that an adapted indi-
vidual eventually fixes.
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2 Wright-Fisher Model

The above reasoning translates readily to the Wright-Fisher model. The latter is characterized by
discrete, non-overlapping generations, where the pedigree of the next generation is determined by
a fitness-weighted sampling of the previous generation and mutations that occur independently in
each o↵spring. Where previously (§1.1) we approximated the numbers of individuals of rare types
via a birth-and-death process, here, we use a Galton-Watson branching process [18] with a Poisson
distributed o↵spring number. The latter allows us to once again write a recurrence equation for the
probability, p1 that a given individual is ancestral to an adapted individual that carries k mutations
and is destined to fix.

2.1 Poisson-Galton-Watson Approximation

We again assume a population of fixed size N . In this discrete-generation formulation we can
implement fecundity selection by assuming that an individual carrying i < k mutations is “chosen”
to be the parent of an individual in the next generation with weight wi  1 (N.B., carrying fewer
than k mutations is deleterious). Thus, if the jth individual (we assign an arbitrary ordering to the
population) carries ij mutations and has Xj o↵spring in the next generation, the joint distribution
of the Xj is multinomial:

P {(X1, . . . , XN ) = (x1, . . . , xN )} =
N !

x1! · · ·xN !

 
wiiPN
`=1wi`

!x1

· · ·

 
wiNPN
`=1wi`

!xN

. (S.18)

Using the grouping property of the multinomial distribution, Xj is binomially distributed:

P {Xj = xj} =
N !

xj !(N � xj)!

 
wijPN
`=1wi`

!xj
 
1�

wijPN
`=1wi`

!N�xj

. (S.19)

Now, letting w̄ denote the population mean fitness,

w̄ =
1

N

NX

`=1

wi` , (S.20)

we have

P {Xj = xj} =
N !

xj !(N � xj)!

⇣ wij

Nw̄

⌘xj
⇣
1�

wij

Nw̄

⌘N�xj

(S.21)

=
N(N � 1) · · · (N � xj + 1)

Nxj

1

xj !

⇣wij

w̄

⌘xj
⇣
1�

wij

Nw̄

⌘N�xj

. (S.22)

Taking the large population limit, we get

lim
N!1

P {Xj = xj} =
1

xj !

⇣wij

w̄

⌘xj

e�
wij
w̄ , (S.23)

i.e., the jth individual has a Poisson-distributed number of o↵spring with rate equal to their relative
fitness,

wij

w̄ . A similar calculation shows that for any arbitrarily chosen k individuals (k fixed and
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not growing with N), their o↵spring numbers will be approximately independent Poisson random
variables with rates equal to the relative fitness of the individuals.

While this gives us a characterization of an individual’s reproductive output, unless the popu-
lation is completely neutral, an individual’s relative fitness will depend on the state of the whole
population. If, however, as before, we restrict our attention to the situation where the number of
individuals carrying one or more mutations is negligible compared to N , then

w̄ =
1

N

NX

`=1

wi` ⇠ w0 (S.24)

as N ! 1 and thus, to first approximation, the jth individual produces o↵spring with Poisson rate
wij

w0
that is independent of the composition of the population. Thus, if N � 1, we may approximate

a small subpopulation of the Wright-Fisher process by a Galton-Watson branching process with
Poisson distributed o↵spring.

Without loss of generality, we can take w0 = 1, provided we scale the wi appropriately, taking
wi = 1� �i for 0 < i < k and wk = 1+ s. As previously, we can model additive selection by taking
�i = �i and multiplicative selection by taking

wi = (1� �)i = 1� �i+O(�2) (S.25)

for 0 < i < k, for some � ⌧ 1.

2.2 Galton-Watson Recurrence

As before, we wish to compute pi, the probability that an individual carrying imutations is ancestral
to a mutation destined to fix. We will again do this recursively. We first compute the recurrence
relation for an arbitrary Galton-Watson process. Then, in the next section, we will specialize to
the Poisson-Galton-Watson process derived above.

No individual survives more than one generation, so an individual is ancestral to an individual
destined to sweep if and only if one of its o↵spring is ancestral to the selected individual. As before,
an o↵spring may or may not acquire an additional mutation, and we assume that the probability of
multiple mutations is negligible (µi,j = µi if j = i+ 1, and is zero otherwise). Thus, as previously
p0i = (1� µi)pi + µipi+1 (S.3) is the probability that some given o↵spring of an individual carrying
i mutations is ancestral.

To obtain the probability that at least one o↵spring is ancestral, we use the probability gener-
ating function for the o↵spring distribution: if X is the (random) number of o↵spring, then

f(z) =
1X

x=0

P {X = x} zx. (S.26)

(for a Poisson distribution with rate �, we have f(z) = e�(z�1)). Conditional upon X = x the
probability that no o↵spring is ancestral is (1� p0i)

x, whence the unconditional probability that no
o↵spring is ancestral is

1X

x=0

P {X = x} (1� p0i)
x = f(1� p0i), (S.27)

so that the probability that at least one is ancestral is 1� f(1� p0i), yielding the recurrence

pi = 1� f(1� p0i). (S.28)
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2.3 Solution in the Poisson Case

We now focus on the case of a Poisson-distributed number of o↵spring, corresponding to our
approximation to the Wright-Fisher model (§2.1). In this case, (S.28) becomes

pi = 1� e�wip0i , (S.29)

where p0i is given by (S.3), and as above, we adopt the convention that w0 = 1, so that each
individual’s relative fitness is simply wi.

This can be solved exactly using the Lambert W -function [2]. W (z) is the multi-function
satisfying the relation W (z)eW (z) = z. Two branches of the W -function are real valued, W0(z)
and W�1(z), which map [�e�1,1) to [�1,1) and [�e�1, 0) to (�1,�1], respectively. The two
branches meet at the point (�e�1, 1)). These real-valued branches satisfy a one-sided inverse
identity:

W0(ze
z) = z if z � �1,

W�1(ze
z) = z if z  �1.

(S.30)

Moreover,

Wi(�Ae�A+z) = Wi(�Ae�A) +
Wi(�Ae�A)

1 +Wi(�Ae�A)
z +

1

2

Wi(�Ae�A)
�
1 +Wi(�Ae�A)

�3 z
2 +O(z3) . (S.31)

see [16, Equation (2.40)]. If A  1, using (S.30), this reduces to

Wi(�Ae�A+z) = �A+
A

1�A
z +

1

2

A

(1�A)3
z2 +O(z3). (S.32)

To use the W -function to solve the recurrence, we rearrange (S.29) as:

1� pi = e�wip0i = e�wi((1�µi)pi+µipi+1) (S.33a)

(pi � 1)ewi(1�µi)pi = �e�wiµipi+1 (S.33b)

(pi � 1)ewi(1�µi)(pi�1) = �e�wi(1�µi+µipi+1) (S.33c)

wi(1� µi)(pi � 1)ewi(1�µi)(pi�1) = �wi(1� µi)e
�wi(1�µi+µipi+1) (S.33d)

Now, 0 < wi  1, 0  pi  1, and 0 < µi,i+l ⌧ 1, whence wi(1� µi)(pi � 1) � �1. Applying W0 to
both sides of (S.33d), using (S.30) and (S.31) we conclude that

wi(1� µi)(pi � 1) = W0

⇣
�wi(1� µi)e

�wi(1�µi+µipi+1)
⌘
,

so

pi = 1 +
1

wi(1� µi)
W0

⇣
�wi(1� µi)e

�wi(1�µi)�µiwipi+1

⌘
(S.34)

which we can iterate and simplify as above.
Using (S.32), we can approximate (S.34) as

pi =
µiwipi+1

1� wi(1� µi)
+

1

2

(µiwipi+1)2�
1� wi(1� µi)

�3 +O(µ3
i ) (S.35)

since �wi(1� µi) � �1.
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2.3.1 Initial condition pk

To compute the initial value pk, we note that a selectively favoured individual fails to establish
itself if and only if all of its o↵spring fail to establish. Let p denote the probability of successful
establishment and let q = 1�p. Letting f(z) be the probability generating function for the o↵spring
distribution, as above (S.26), we must have q = f(q). In the Poisson case, this gives us q = ewk(1�q).
As before, we can solve this using the Lambert W -function. After rearranging, this is

�qwke
�qwk = �wke

�wk .

This always has the trivial solution q = 1, since �qwk = �wk  �1, but also a non-trivial solution
with �qwk =� �1 (cf. (S.30)):

q = �
1

wk
W0(�wke

�wk). (S.36)

(recall wk = 1 + s for s > 0).
Assuming s ⌧ 1, we can find an elementary approximation to the Lambert W -function: let

E(z) = zez, so W (z) is E�1(z). Then, the nth derivative of E(z) is

E
(n)(z) = (n+ z)ez,

so, the second order Taylor polynomial for E(z) at z = �1 is

E2(z) = �e�1 +
1

2
e�1(z + 1)2.

We can invert E2(z) using the quadratic formula: setting y = E2(z) and expanding, we see that

z2 + 2z � (1 + 2ey) = 0,

whence
E
�1
2 (y) = �1±

p
2(1 + ey)

and
E
�1
2 (zez) = �1±

p
2(1 + zez+1), (S.37)

the two roots corresponding to the two real branches of the Lambert W function: + gives the i = 0
branch, which takes value in [�1,1), whereas � gives the i = �1 branch, which takes values in
(�1, 1].

Applying this approximation using z = �wk = �(1 + s), we find

q = �
1

wk
W0(�wke

�wk) ⇡
�1 +

p
2(1� (1 + s)e�s)

1 + s
. (S.38)

Expanding the numerator using the binomial series, we find q = 1� 2s
1+s +O(s2), whence

pk = p =
2s

1 + s
+O(s2). (S.39)

N.B., this approximation to the fixation probability of an allele with selective advantage s was first
obtained in [8], without reference to the exact solution via the Lambert W -function. The factor
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of two di↵erence between the Wright-Fisher (S.39) and Moran models (S.6) is a consequence of a
similar factor of two in the e↵ective population sizes [7, §3.7].

Iterating (S.35) starting from pk = 2s
1+s and assuming as previously, that µi ⌧ �i ⌧ 1, we get

that to lowest order,

pk�l = pk

lY

j=1

µk�jwk�j

1� wk�j(1� µk�j)

=
2s

1 + s

lY

j=1

µk�j(1� �k�j)

�k�j + µk�j(1� �k�j)

⇠
2s

1 + s

lY

j=1

µk�j

�k�j
,

(S.40)

which corresponds to the case when i = 1 in the Moran model (S.11), (S.12). Interestingly, unlike
the Moran model, there are no other regimes that need to be considered. As previously, the waiting
time to the first ancestor is t1 ⇠

1
Nµ0,1p1

, and our argument in §1.3 shows that relaxing selection

decreases the mean time to adaptation in the Wright-Fisher model as well.

3 Justifying the Assumption that Mutants are Rare

Our arguments have been based upon the assumption that mutant individuals are rare, and that
their numbers are negligible as compared to the number of wild-type individuals. We argued that
this was a consequence of negative selection. Here, we briefly discuss some results on the maximum
population size of birth-and-death and branching processes that show that provide evidence for that
claim and quantify the strength of selection necessary. A rigorous proof would require additional
coupling arguments to formalize the comparison between the Moran and Wright-Fisher models and
the corresponding approximations; we omit these in the interest of brevity.

3.1 Moran case

We will consider the total progeny of a given 1-mutant. To simplify our presentation, in what follows
we will measure time from the birth of that individual. We let X(t) denote the total progeny of
our focal individual alive at time t (so X(0) = 1) and let

M = sup
t�0

X(t) (S.41)

be the maximum number of progeny alive at any given time. Here, we present an estimate of the
cumulative distribution function (c.d.f.) of M , P{M � m}.

We start with a simple observation: if T = inf {t : X(t) 2 {0,m}} then M � m if and only if
X(T ) = m. If X(t) is a birth-and-death process with birth and death rates b and d respectively,
then this probability is well known (see e.g., [13], [9, §3.7], or [5, Theorem 6.1]):

P{X(T ) = m|X(0) = k} =
ak � 1

am � 1
. (S.42)

where a = d
b .
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We cannot directly apply this to our process, where individuals have di↵erent birth rates,
bi = 1 � �i, according to the number of mutations that they carry. We can, however, use it to
obtain an upper bound: all individuals have birth rate no greater than b1 = 1� �1 and death rate
one, and thus will be fewer in number than the birth-and-death process, X(t), with those rates and
X(0) = 1. For this X(t), a = 1

1��1
, so

am = em ln a = e�m ln(1��1) = em(�1+O(�21)),

and we see that the probability that M � m,

P{M � m} =
a� 1

am � 1
, (S.43)

is exponentially small provided m �
1
�1
. Thus, to prevent the number of descendants from ever

reaching size O(N), we need that �1 �
1
N . Note that

E[M ] =
1X

m=1

P{M � m} =
1X

m=1

a� 1

am � 1
=

1X

m=1

1

am�1 + · · ·+ a+ 1



1X

m=1

1

am�1
=

a

a� 1
=

1

�1
, (S.44)

with approximate equality when a � 1 (�1 ⌧ 1). In particular, for very small �1 and large
µ0—leading to a number of overlapping lineages—the rare mutant approximation can fail.

3.2 Wright-Fisher case

The argument for the Wright-Fisher case is almost identical to §3.1. We will bound the total
number of mutant progeny of a single individual by a Poisson-Galton-Watson branching process
X(t) where all individuals have fitness w1 = 1� �1, and X(0) = 1.

Define M and T as previously (where now time is measured in generations). The result (S.42)
continues to hold for the Galton-Watson process (see [12, §3]) provided there exists a > 1 such that
f(a) = a, where f(z) is the p.g.f. for the o↵spring distribution (see (S.26) above) of an individual
with one mutation (hence m = f 0(1) < 1).

Just as we used the Lambert W function to compute the extinction probability q for the
beneficial mutation, we can use it to compute a for a Poisson(w1) o↵spring distribution. Recall
that for this distribution, the p.g.f. is f(z) = ew1(z�1), so a = f(a) if and only if

�w1ae
�w1a = �w1e

�w1 ,

which has two solutions, a = 1 and

a = �
1

w1
W�1

�
�w1e

�w1
�
. (S.45)

In particular, if w1 = 1� ✏ for some small ✏, then using (S.37) above, we have

a ⇡
�1�

p
2(1� (1� ✏)e�✏)

1� ✏
⇡ 1 + 2✏ (S.46)
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Now suppose ✏ = ✏N ! 0 as N ! 1. Then,

amN = emN ln a = emN ln(1+2✏N )
⇡ e2mN ✏N ,

so the probability that M � mN tends to 0 as N ! 1 if mN �
1
✏N

, and to 1 if mN ⌧
1
✏N

, and

to a non-zero constant if mN /
1
✏N

. In particular, the number of deleterious mutants could reach

O(N) if ✏N = O
�
1
N

�
, i.e., if selection is weak. This gives us the lower bound on the strength of

selection as discussed above.

3.3 Conditioning on Not Fixing is Equivalent to Assuming Negative Selection

The above arguments bound the number of i-mutants, i < k, for which the mutations are deleteri-
ous. We must also, however, bound the number of k-mutants that do not go on to fixation, which,
due to epistasis, have selective advantage s. These lines will eventually go on to extinction, but we
must ensure they remain small.

This, fortunately, follows almost immediately from our previous work. Conditioned upon ex-
tinction, a birth-and-death process with birth rate b and death rate d, b > d, is equal in law (i.e.,
has the same probability distribution) as a birth-and-death process with birth rate d and death
rate b (see [15, Lemma B.2]). Applying this to lineages of k-mutants conditioned on extinction, we
have b = 1 + s, d = 1, and we can take a = b

d = 1 + s > 1 in (S.43) to estimate the maximum
number of k-mutants.

Similarly, conditioned upon extinction, a Galton-Watson process with p.g.f f(z) for the o↵spring
distribution and extinction probability q < 1 (recall f(q) = q) is equivalent to a Galton-Watson
process with o↵spring p.g.f. g(z) = 1

qf(qz) (see e.g., [1, Theorem I.8.1]). Thus, g(a) = a for

a = 1
q > 1. Applying this to the k mutants, we have q = 2s

1+s < 1 so taking a = 1+s
2s > 1 in (S.43)

gives us a bound on their maximum number.

4 Bounding the Adaptation Time

We now turn our attention to estimating the expected waiting time from the birth of the ultimate
ancestor carrying 1 mutation to the birth of the adapted individual. There is a direct line of descent
between the 1-ancestor and the adapted individual. In what follows, we will refer to individuals on
this line as ancestral, and those carrying i mutations as i-ancestors. Thus an i ancestor gives
birth at rate i, and its o↵spring carries i+ 1 mutations with probability µi.

Imagine following the genealogical tree between the ultimate ancestor and adapted individual:
we follow the branch corresponding to each ancestral individual until they give birth to their
successor in the line of descent, after which we follow the successor’s branch. Over it’s lifespan, an
i-ancestor gives births at the times of a Poisson process with rate bi, but most of these will not be
ancestral: the probability that a given o↵spring is ancestral is p0i (S.3). By the thinning property
of the Poisson process (see e.g., [3, §3.1]), the i-ancestor gives birth to would-be ancestors (only
the first will be truly ancestral) as a Poisson process with rate bip0i i.e., the waiting time birth of
next ancestor is exponentially distributed with rate bip0i. Again, the probability that one of these
ancestors is an i+ 1-ancestor is µi, further thinning the process, so that the waiting time from the
first i-ancestor to the first i+ 1 ancestor is exponentially distributed with rate bip0iµi.

The total adaptation time is the sum of these exponential waiting times, but we must condition
upon the fact that the adapted individual appears before the line of descent goes extinct. This
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is a di�cult, and possibly intractable problem. Here, we will content ourselves with a coarse
approximation: we will simplify the processes by underestimating the number of mutants, which
we do by considering a birth-and-death process X(t) with death rate 1 and birth rate b = bk�1 =
1��k�1 and X(0) = 1 (compare §3.1), and we will assume that all mutation rates are equal µi ⌘ µ.
We then have p0i ⌘ p0.

The uncondtioned waiting time to the adapted individual, say Ta, is then a sum of k expo-
nentially distributed random variables with rate � = bp0µ, i.e., an Erlang or Gamma distributed
random variable with probability density function (p.d.f)1

�k

(k � 1)!
tk�1e��t. (S.47)

The total line of descent, on the other hand, has lifespan L with cumulative distribution function
(c.d.f.) [11, §3]

P0(`) = P{L  `} =
e(b�1)`

� 1

be(b�1)` � 1
. (S.48)

N.B., b < 1, so P0(1) = 1.
Now, suppose L = `. The density of Ta conditional upon Ta  ` is

�ktk�1e��t
[0,`)(t)

�(k,�`)
. (S.49)

where [0,`)(t) is the indicator function of the interval [0, L)2 and �(a, z) is the incomplete gamma
function [4, §8.2.1]:

�(a, z) =

Z z

0
ta�1e�t dt, (S.50)

the latter arising as

P{Ta  `} =
�k

(k � 1)!

Z `

0
tk�1e��t dt

=
1

(k � 1)!

Z �`

0
tk�1e��t dt =

1

(k � 1)!
�(k,�`).

Integrating (S.49) against P 0
0(`), (S.48), gives us the p.d.f. of Ta conditional on the random lifespan

L (as opposed to the fixed value L = `):
Z

1

t

�ktk�1e��t

�(k,�`)
P 0

0(`) d`. (S.51)

We can use this to estimate the expected adaptation time, E[Ta]:

E[Ta] =

Z
1

0
t

Z
1

t

�ktk�1e��t

�(k,�`)
P 0

0(`) d` dt

=

Z
1

0

Z `

0

�ktke��t

�(k,�`)
dt P 0

0(`) d`

=
1

�

Z
1

0

�(k + 1,�`)

�(k,�`)
P 0

0(`) d`.

1Informally, a random variable X has p.d.f. f(x) if P{X 2 [x, x+ dx)} = f(x) dx.
2

[0,`)(t) = 1 if t 2 [0, `), and is zero otherwise.
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This latter integral does not appear to be analytically tractable, but we can obtain a suitable
bound by noting that for integer values of k, [4, §8.4.7],

�(k + 1, z) = k!

0

@1� e�z
kX

j=0

zj

j!

1

A . (S.52)

In particular,

lim
z!1

�(k + 1, z)

�(k, z)
=

�(k + 1)

�(k)
= k, (S.53)

and �(k+1,z)
�(k,z)  k for all z, whereas for z  k + 1,

�(k + 1, z)

�(k, z)


k

k + 1
z. (S.54)

Thus,

E[Ta] 
1

�

"Z k+1
�

0

�k

k + 1
`P 0

0(`) d`+

Z
1

k+1
�

kP 0

0(`) d`

#

=
k

k + 1

"
k + 1

�
P0
�
k+1
�

�
�

Z k+1
�

0
P0(`) d`

#
+

k

�

⇥
P0(1)� P0

�
k+1
�

�⇤

=
k

�
�

k

k + 1

Z k+1
�

0
P0(`) d`

=
k

�
�

k

k + 1

Z k+1
�

0

e(b�1)`
� 1

be(b�1)` � 1
d`

=
k

�
�

k

(k + 1)(1� b)

Z 1

e
�(k+1)(1�b)

�

1� u

u(1� bu)
du

=
k

�
�

k

(k + 1)(1� b)

Z 1

e
�(k+1)(1�b)

�

1

u
+

1� b

1� bu
du

=
k

b(k + 1)

h
� ln(1� b) + ln

⇣
1� be

�(k+1)(1�b)
�

⌘i
.

Recalling that b = 1� �k�1 and � = bp0µ ⌧ 1, the latter is approximately

k

(1� �k�1)(k + 1)
ln(��1

k�1)�
k

k + 1
e

�(k+1)�k�1
(1��k�1)p

0µ (S.55)

where the latter term is negligible compared to the first.
Finally, it is a standard result (see e.g., [5, Theorem 6.3]) that the fixation time for an allele

with selection coe�cient s in a population size n is approximately 2
s lnn.
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