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Abstract
The southern coastal belt of West Africa (SCWA) with its high population density and many major cities, combined to the low
elevation and poor urban planning, is very vulnerable to floods resulting from extreme rainfall events. The aim of this paper is to
analyze the characteristics of extreme rainfall in the SCWA during the 1981–2015 period, in terms of frequency, intensity,
seasonality, and trends. Therefore, daily rainfall of 31 stations located in the southern part of Côte d’Ivoire, Ghana, Togo, and
Benin and rainfall estimation products combining in situ observations and satellites rainfall estimation data have been used. For
each station and pixel, the local 95th percentile (P95) computed on all rain days of at least 1 mm was used to define extreme
rainfall events. Rainfall on the coastal belt is heavier than further inland, with P95 values reaching 82 and 52 mm/day for coastal
and continental stations, respectively. Extreme rainfall along the coast occurs predominantly between May and July. Interannual
variations of different indicators of extreme rainfall show a broad agreement between rain gauge data and rainfall estimates from
CHIRPS (Climate Hazards Group InfraRed Precipitation with Station) data. In the southern part of Côte d’Ivoire and
Togo/Benin, increase of number of extreme rainfall event (NP95) and stability number of days with rainfall less than P95
(NL95) are recorded, which induces an increase of total rainfall. But, in the southern part of Ghana, there is a stable total rainfall
due to an increase in NP95 compensated by a decrease in NL95.

Keywords Extreme rainfall . Trend .West Africa . Coastal belt

1 Introduction

Extreme rainfall events in the southern coastal part of West
Africa (SCWA) constitute a major hazard. The low elevation
combined to poor urban planning and high population densi-
ties participate to flood damages. As much as 30.1% of the
total population of the coastal states of Côte d’Ivoire, Ghana,
Togo, and Benin is concentrated in a 40-km-wide corridor

bordering the Atlantic Ocean (GPW data, CIESIN 2015).
All the major cities in the region are recurrently hit by
flooding. The flood that hit Accra in June 2015 affected
around 53,000 people in the city and caused an estimated
US$100 million in damages (Erman et al. 2018). During the
night of June 30 to July 1, 2014, between 5 am and 6 am,
85 mm of rain was recorded at the Abidjan station. On June 2,
3, 4, and 5, 2015, 210 mm and 257 mm of rain were recorded
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respectively at the Cotonou and Abidjan stations. And on
June 10, 2016, 184 mm of rain was recorded at the Accra
station. These few examples suggest that extreme precipita-
tion on the coast facing the Gulf of Guinea is very frequent at
the peak of the main rains in June. In the rural zone, flooding
caused by extreme rainfall disrupts agricultural activities and
is liable to the destruction of crops. Combined with the risk
related to sea-level rise, a future increase in extreme rainfall
events would have serious implications in coastal West
Africa. According to the Fifth IPCC report, extreme precipi-
tation and drought episodes will very likely become more
extreme and more frequent, which could have harmful effects
on natural and human systems (IPCC 2013).

Hence, a better understanding of extreme rainfall space-
time variability and trend in the SCWA is an important
challenge. Observed trends of extreme rainfall tend to vary
seasonally and regionally (Groisman et al. 2005). While at
global scale many regions have shown an increase in ex-
treme precipitation over the last half century, parts of central
Africa showed a decrease (Aguilar et al. 2009). Furthermore,
initial studies on southern and western Africa found no con-
sistent spatial patterns of trends in heavy precipitation events
(New et al. 2006).

In West Africa, Chaney et al. (2014), analyzing rainfall
trends between 1979 and 2004, mostly found increases in
total rainfall recorded on days with heavy rains, but
significant only in part of the Sahel as a result of recovery
from droughts of the 1970s and 1980s. Using an integrated
regional approach, Panthou et al. (2014) indicated that the
Sahelian rainfall regime is characterized by a lasting deficit
of the numbers of rainy days, while at the same time, the
extreme rainfall has increased from 1970 to 2010.
Comparable results were obtained by Mouhamed et al.
(2013). Sanogo et al. (2015) pointed out an increase in both
the frequency and intensity of extreme rainfall (exceeding the
95% percentile) in the Sahel in the 1980–2010 period, but
over the Guinea Coast, only the intensity of extreme rainfall
showed a significant increase. Barry et al. (2018) analyzed
West Africa climate extremes over the same period. They
noticed a significant increase of the frequency and intensity
of extreme rainfall at regional scale, but in the Guinean region,
changes are non-homogenous. While variations in the fre-
quency and intensity of extreme rainfall in the Sahel or over
West Africa as a whole have been documented, only few
studies have analyzed extreme precipitation along the south-
ern coastal part of West Africa. Some studies have considered
rainfall trends in Côte d’Ivoire (Goula et al. 2012; Soro et al.
2016; Ta et al. 2016), in Ghana (Neumann et al. 2007;
Manzanas et al. 2014), or Benin (Yabi and Afouda 2012;
Panthou et al. 2014; Ague and Afouda 2015), but not specif-
ically in their coastal part. Goula et al. (2012), Ague and
Afouda (2015), and Soro et al. (2016) fitted different extreme
value distributions such as GEV, Gumbel, Lognormal,

Pearson type III, and Log-Pearson type III to rainfall
extremes and modelled annual maximum daily rainfall by a
PARETO distribution. Goula et al. (2012) found in the 1942–
2002 period a small number of stations (29% of total station of
Côte d’Ivoire) recording a significative decrease in the num-
ber of days receiving more than 50 mm. Manzanas et al.
(2014) found in the 1986–2010 period an increase (but not
statistically significant) of extreme rainfall events in southern
of Ghana.

The detection of extreme rainfall trends depends on the
availability of rainfall data at adequate spatial and temporal
scales. InWest Africa, conventional rain gauges have been the
main source of rainfall data (Panthou et al. 2014). However,
getting a consistent rainfall record from weather observing
stations unevenly distributed is a main challenge in develop-
ing countries such as Benin, Togo, Ghana, and Côte d’Ivoire.
Moreover, documenting the space-time patterns of rainfall
variability, particularly its extremes, over a region with strong
spatial gradients such as the SCWA, may require the use of
gridded, high-resolution datasets (Chaney et al. 2014).

Satellite rainfall estimates (SRE)mayprovide informationwith
high spatiotemporal resolution over widespread regions where
conventional rainfall data are scarce or absent (Su et al. 2008; Li
et al. 2010). In the recent years, many intercomparison studies of
SRE products have been carried out, especially over Africa.

Toté et al. (2015) compared three gridded satellite rainfall
products to independent gauge data in Mozambique during
the 2001–2012 period. Their study indicates that during the
cyclone season, Climate Hazard Group InfraRed Precipitation
with Stations (CHIRPS) shows the best results. Seven opera-
tional high-resolution satellite-based rainfall products have
been compared to independent gauge data in Burkina Faso
over the 2001–2014 period (Dembélé and Zwart 2016).
They conclude that Precipitation Estimation from Remotely
Sensed Information using Artificial Neural Networks
(PERSIANN) and CHIRPS are adequate for flood monitor-
ing. Trejo et al. (2016) made comparison between CHIRPS
and gauge data in Venezuela for the 1981–2007 period in
considering different rainfall categories, seasonality, and spa-
tial context. The results show that CHIRPS achieved better
performances during the rainy season (April–September).
Also, the product shows best overall performance over flat
and open regions, where precipitation is influenced by the
Intertropical Convergence Zone activity and local convective
systems. Bayissa et al. (2017) evaluated five satellite rainfall
products in comparison with ground observation data in the
Upper Blue Nile Basin in Ethiopia for the 1998–2015 period.
It appears that CHIRPS rainfall shows good accordance with
gauge data. However, only a small number of SRE intercom-
parison studies considered statistics of extreme rainfall (e.g.
Herold et al. (2017) for tropical land areas; Katsanos et al.
(2016) and Zittis et al. (2017) for Cyprus; Bai et al. (2018)
for China).



In this paper, we assess the accuracy of three RSE products
to detect extreme rainfall by comparing them with gauge rain-
fall over the years 1981–2001. We then analyze the space-
time patterns of extreme rainfall variability along the southern
coastal belt of West Africa, and finally examine the trend in
the frequency and intensity of extreme rainfall using both rain
gauge and selected SRE in the 1981–2015 period.

We hypothesize that the SCWA singularizes from the rest
of Guinean West Africa in terms of extreme rainfall hazards.
The following questions will therefore be considered: (i) How
much do the frequency and seasonality of extreme rainfall
events in the coastal region demarcate from those of inland
regions? (ii) What is the contribution of the extreme events to
seasonal and annual precipitation amounts in the SCWA? (iii)
Are there any significant trends in the occurrence of extreme
events and their contribution to annual rainfall along the coast
since the 1980s, and how do they compare to the trends found
in the rest of West Africa?

To answer these questions, the paper is organized as fol-
lows: Section 2 presents the data used in the study; the methods
and indices calculation are described in “Section 3”;
“Section 4” presents the results; finally, the discussion and
conclusion are presented in “Section 5”.

2 Data

Two kinds of daily rainfall data have been used: rain gauge
observations and gridded estimations from satellite remote
sensing.

Concerning rain gauge observations, daily rainfall has been
collected for 38 stations located in the meridional part of Côte
d’Ivoire, Ghana, Togo, and Benin (Fig. 1 and Table 1). This
includes both coastal stations and inland stations up to a dis-
tance of about 200 km from the coast (i.e. reaching about 7° N
for Côte d’Ivoire and 8° N for Benin).

The reason of this choice is that while the focus is on the
coast belt (where there is a high concentration of people, and
where we hypothesize a higher intensity of rainfall), it is de-
sirable to show how much this coastal belt differentiates from
inland areas in terms of frequency of extreme rainfall events,
interannual variability, and trends. The region retained is char-
acterized by a Guinean rainfall regime (two rainy seasons, see
below), while the region beyond these latitudes (7 to 8° N)
experiences Sudanian and Sahelian rainfall regimes character-
ized by only one rainy season.

The observed daily rainfall data from 1981 to 2015 for these
38 stations were obtained from the Société d’Exploitation et de
Developpement Aéroportuaire, Aéronautique et Météorologie
(Côte d’Ivoire), Ghana Meteorological Agency, Direction
Générale de la Météorologie Nationale (Togo), and the
Agence Nationale de la Météorologie (METEO-Bénin). They
were combined with additional data from GHCN (Global

Historical Climate Network, Menne et al. (2012)). Records dat-
ing back to 1951 or 1961 are available for several stations, but
we focus in the recent period 1981–2015 because it was shown
to display a consistent trend over parts of West Africa in previ-
ous studies (Manzanas et al. 2014; Barry et al. 2018) and be-
cause SRE also enable to document this period.

A pre-processing has been done to set apart years and sta-
tions which contained too much missing data to infer interan-
nual statistics on extreme rainfall. An upper threshold was
fixed at 36 missing days per year (10% of the yearly data).
If 1 year recorded 36 days (or more) of missing data, this year
was disqualified and all the data for this year were set to
missing. The number of non-missing years for each station
is then assessed. Thirty-one stations which got less than 20%
of missing years are finally retained for the comparison study
with the satellite rainfall estimations.

A brief description of the two gridded satellite rainfall es-
timations (SRE) that are compared to gauge data in this study
is given below: (1) the Climate Hazards Group InfraRed
Precipitation with Stations (CHIRPS) dataset; (2) the
Precipitation Estimation from Remotely Sensed Information
using Artificial Neural Networks for Climate Data Record
(PERSIANN-CDR) dataset.

CHIRPS is produced by the Climate Hazards Group under
the umbrella of USGS and of Earth Resources Observation and
Science (EROS) centre. The CHIRPS processing and validation
includes four steps (Funk et al. 2015): (1) create a historical
precipitation climatology (CHPclim) from station normals and
satellite means (observation satellites and Tropical Rainfall
Measuring Mission (TRMM)); (2) create a daily anomaly pre-
cipitation estimates from cold cloud duration as a fraction of
long-term mean cold cloud duration (Precipitation%); (3) multi-
ply Precipitation% by CHPclim to obtain CHIRP; (4) blend in
gauge observations (GHCN (Global Historical Climatology
Network), GSOD (Global Surface Summary of the Day), and
GTS (Global Telecommunication System)) with CHIRP to
make CHIRPS. CHIRPS is gridded at 0.05° × 0.05° (about
6 km of resolution). The data start from 1981 and are updated
until now. For this study, daily rainfall data are extracted in the
1981–2015 period.

PERSIANN-CDR is developed by the Center for
Hydrometeorology and Remote Sensing (CHRS) at the
University of California, Irvine (UCI) (Novella and Thiaw
2010). The PERSIANN algorithm uses an artificial neural
networkmodel to estimate precipitation using infrared satellite
data (Zambrano-Bigiarini et al. 2017). The PERSIANN-CDR
was developed by applying the PERSIANN algorithm to
Gridded Satellite Infrared Data (GridSat-B1) and then bias-
correcting estimations using 2.5° monthly Global
Precipitation Climatology Project (GPCP v2.2) precipitation
data (Ashouri et al. 2015). PERSIANN-CDR provides near-
global (60° S–60° N) daily precipitation data at 0.25° spatial
resolution since 1983.



3 Methodology

3.1 Definition of extreme rainfall statistics

An extreme rainfall day could be defined in function of a fixed
threshold (in millimetres) or based on the distribution of daily
data at each station. The first method is not adapted to this
work, first because it cannot take into account the rainfall
variability between the different areas and second because a
single threshold cannot be used for observations and SRE
since we expect possible systematic biases in the satellite es-
timations. Here, following the recommendations of the Expert
Team on Climate Change Detection and Indices (ETCCDI)
(Zhang et al. 2011) we defined an extreme rainy event as a day
where rainfall recorded is higher than or equal to the local 95th
percentile (P95) of all rainy day. A rainy day is considered a
day which recorded a rainfall of at least 1 mm (WMO 2009).

P95 values have been computed for each rainfall station and
each pixel from the selected SRE, based on all available data at
daily scale. From this, four other parameters have been derived:

– NP95: The number of days with rainfall greater than or
equal to P95;

– PP95: The percentage rainfall amount on extreme rainfall
days (rainfall ≥ P95) compared to the total annual rainfall;

– NL95: The number of days with rainfall less than P95
(NL95);

– PL95: The percentage of total rainfall on days receiving
less than P95 (rainfall < P95) compared to the total annual
rainfall.

A validation of the SRE data will be carried out by
comparing the P95 values in the SRE and at the stations.
As there are many missing data during 2001–2015 for sev-
eral stations, long-term rainfall trends will be analyzed
based on the selected SRE data, which cover the 35-year
period 1981–2015. Prior to that, a second validation of the
selected SRE will be assessed by comparing the interannual
variations of total rainfall, NP95, and PP95 in SRE with
observed data over a shorter common period (1981–2000).
The comparison is based on the spatial patterns and time
series obtained from principal component analyses of annu-
al values of these indicators, for rain gauge stations and
selected SRE grid points corresponding to each station.
Only the stations having less than 20% missing years are
retained at this stage (Table 1).

Fig. 1 The location of the study area. Circles denote the location of the weather stations used



In order to analyze the space-time patterns, as the
datasets still contain some missing years, we used prob-
abilistic principal component analysis (PPCA) which en-
ables to work on incomplete time series (Tipping and
Bishop 1999; Lopes et al. 2016). The PPCA is based
on a latent variable model, which is established on
available data only. The PPCA first reconstructs missing
data, and the quality of reconstruction is tested using a

Monte Carlo approach. A set of 10% missing entries are
randomly created by year-station blocks separately for
NP95 and PP95. The PPCA is next used to estimate
these data from the eigenvector computed on the avail-
able entries only. The skill of the reconstructions is
computed as the correlation between reconstructed and
observed indices related to the 95th percentile of NP95
and PP95 (Moron et al. 2016).

Table 1 Geographical of
location, available period,
missing data for each station.
Asterisks indicate coastline
stations. Stations selected for the
rainfall trends study are written in
italics

Countries Stations Latitude Longitude Percent missing days
for 1981–2015 period

Percent missing days
for 1981–2001 period

Côte d’Ivoire Abidjan* 5.3133 − 4.0372 11.4 9.5

Côte d’Ivoire Aboisso* 5.4747 − 3.2097 45.7 9.5

Côte d’Ivoire Adiaké* 5.2858 − 3.3042 28.6 4.8

Côte d’Ivoire Adzopé 6.1069 − 3.8600 45.7 9.5

Côte d’Ivoire Alépé 5.4967 − 3.6631 51.4 19.0

Côte d’Ivoire Dabou* 5.3256 − 4.3719 - 28.6

Côte d’Ivoire Daloa 6.8828 − 6.4536 - 19.0

Côte d’Ivoire Dimbokro 6.6503 − 4.6997 25.7 4.8

Côte d’Ivoire Divo 5.8331 − 5.3675 - 4.8

Côte d’Ivoire Gagnoa 6.0186 − 5.9514 25.7 4.8

Côte d’Ivoire Grand-Lahou* 5.1353 − 5.0350 - 19.0

Côte d’Ivoire San-Pedro* 4.7333 − 66.583 60 66.7

Côte d’Ivoire Sassandra* 4.9500 − 6.0917 22.9 4.8

Côte d’Ivoire Tabou* 4.4314 − 7.3606 22.9 4.8

Ghana Accra* 5.5497 − 0.2006 – 0.0

Ghana Ada* 5.7836 0.6331 – 0.0

Ghana Akuse 6.0992 − 0.1275 – 0.0

Ghana Axim* 4.8664 − 2.2408 – 0.0

Ghana Ho 6.6108 0.4781 – 9.5

Ghana Kete-Krachi 7.8017 − 0.0514 – 9.5

Ghana Koforidua 6.0789 − 0.2714 – 0.0

Ghana Kumasi 6.7133 − 1.5917 – 0.0

Ghana Saltpond* 5.2000 − 1.0667 – 0.0

Ghana Sefwi-Bekwai 6.1947 − 2.3228 – 0.0

Ghana Tema* 6.5872 − 0.0003 – 0.0

Togo Aného* 6.2294 1.5961 46.8 14.3

Togo Anié 7.7508 1.1981 0.0 0.0

Togo Lomé* 6.1322 1.2225 94.3 95.2

Togo Notse 6.9461 1.1689 42.9 42.9

Togo Taligbo 6.5872 1.5019 2.9 0.0

Benin Ketou 7.3500 2.6000 5.7 0.0

Benin Bohicon 7.1667 2.0667 0.0 0.0

Benin Pobè 6.9667 2.6833 11.4 9.5

Benin Dogbo 6.7500 1.7833 28.6 23.8

Benin Allada 6.6500 2.1333 65.7 47.6

Benin Porto-Novo* 6.4833 2.6167 5.7 0.0

Benin Cotonou* 6.3500 2.3833 0.0 0.0

Benin Grand-Popo* 6.2833 1.8167 17.1 4.8



3.2 Evaluation of satellite rainfall estimations

In this work, the evaluation of the SRE has been carried out
over the period 1981 to 2015 for CHIRPS and 1983 to 2015
for PERSIANN, using measured rainfall data from 31 inde-
pendent weather stations. Evaluation with independent data
set is essential to determine how well the SRE reproduces
extreme rainfall at daily scale.

Firstly, we extracted the daily rainfall data from SRE grid
points corresponding to each rain gauge. Secondly, bias and
root mean square error (RMSE) were used to compare the
satellite estimates of rainfall to the rain gauge data, as in
Adler and Negri (1988), Toté et al. (2015), Dembélé and
Zwart (2016), Trejo et al. (2016), and Bayissa et al. (2017).
Bias and RMSE are respectively calculated according to the
following formulas:

BIAS ¼ ∑
n

i¼1
Si−Gið Þ, RMSE ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
n∑

n
i¼1 Si−Gið Þ

q

2. Si and

Gi designate satellite rainfall estimate and gauge rainfall mea-
surements, respectively. The bias reflects how well the mean
of satellite rainfall corresponds with the mean of the observed
rainfall. A bias value close to zero indicates that the cumula-
tive SRE is closer to the cumulative observed rainfall. The
RMSE is used to measure the average magnitude of the esti-
mated errors between the satellite rainfall and the observed
rainfall. A lower RMSE value means that SRE and observa-
tions are close to each other.

3.3 Trend analysis

Testsfordetectionofsignificant trendsinclimatetimeseriescanbe
classified as parametric and nonparametric methods. Parametric
trend test require data to be independent and normally distributed,
while nonparametric trend tests require only that the data to be
independent (Gocic and Trajkovic 2013). Here, Mann-Kendall’s
statistic (Mann 1945; Kendall 1975) and Sen’s slope estimator
(Sen1968)wereusedrespectivelytotest thestatisticalsignificance
of the trends and to estimate the magnitude of the trends in the
rainfall variables. Odoulami and Akinsanola (2017) also applied
the twomethods on gridded datasets forWest Africa.

4 Results

4.1 Comparison between satellite rainfall estimations
and rain gauge data

In this study, two satellite rainfall products were investigated
to identify the best product to use for spatial patterns and
trends of extreme rainfall over the study area in the 1981–
2015 period. Area-averaged (over 31 stations) P95 values
for satellite rainfall estimations and rain gauge data over the
period 1981–2015 are presented in Table 2.

PERSIANN and CHIRPS underestimated P95 amounts as
compared to observed rainfall (bias < 0). However,
PERSIANN-CDR bias (− 30.3 mm/day) is much larger than
that obtained fromCHIRPS (− 17.5 mm/day) and its RMSE is
65% higher than that of CHIRPS. It should be noted that for
the P99, P90, and P50, the best scores are also obtained with
CHIRPS (not shown). The overall median rainfall (P50) in
CHIRPS (8.79 mm/day) is actually very close to the observa-
tion (8.62 mm/day). Thus, CHIRPS was selected in this study
for further application.

4.2 Climatology of mean and extreme rainfall

Figure 2 shows the spatial distribution of mean annual rainfall
in the region based on CHIRPS data. Mean rainfall values
very close to CHIRPS are obtained at the available corre-
sponding stations (not shown), and the rainfall pattern is in
very good agreement with published mean annual rainfall
maps (e.g. L’Hôte and Mahé 1996). High rainfall is found in
the southwest of Côte d’Ivoire along its border with Liberia.
Further east in Côte d’Ivoire and southwestern Ghana, be-
tween 7 and 2° W, relatively high amounts (1400 to
1600 mm) are found along or close to the coast, and rainfall
decreases as one moves away from the coastline. However,
between the Cape of Three Points (2° W) and 2° E, the coastal
region is much drier (below 1000 mm), and by contrast to
Côte d’Ivoire, rainfall increases as one moves away from the
coastline. East of 2° E, the dry area extends inland in the
“diagonale de sécheresse” (dry corridor) depicted by several
authors (Boko 1988; Bokonon–Ganta 1987).

The spatial patterns of P95 are shown in Fig. 3a and b, for
the rain gauge data and for CHIRPS, respectively. It should be
emphasized that the spatial pattern obtained using other ex-
treme value threshold such as P90 and P99 is identical with
that of the P95 threshold. Observed P95 values singularize the
coastal region, where high values are found (50–85 mm/day),
whereas inland stations almost all show values below 50 mm/
day.Within the coastal belt, particularly high values are found
west of 2° W (Côte d’Ivoire and western Ghana). In CHIRPS,
we notice a systematic negative bias as depicted above. On
average, the P95 values are − 15 mm/day lower in CHIRPS
than at rain gauge stations. This bias can be explained by the

Table 2 Area-averaged values of P95 (mm/day) at the 31 stations
(OBS) and the nearest grid-point of three rainfall estimation products
(PERSIANN and CHIRPS), and corresponding skill scores (bias and
RMSE)

OBS PERSIANN-
CDR

CHIRPS 2.0

Mean 52.8 22.5 35.3

Bias − 30.3 − 17.5
RMSE 31.1 18.9



method used to obtain the daily rainfall estimates based on
daily values of the Coupled Forecast System version 2
(Funk et al. 2015).

However, there are similarities in the spatial patterns
displayed by the two datasets. As in the observation, high
P95 values are found on the coastline in CHIRPS, at least in
Côte d’Ivoire and western Ghana (about 45–64 mm/day) and
lower ones on the continent (about 25–40 mm/day). The dif-
ference between the coast and the interior is less pronounced
along the eastern part of the region, where the coastal belt is
drier. On the whole, these results suggest higher rainfall inten-
sities on the coast, with a secondary differentiation between
the western coast (higher intensities west of 2° W) and the
eastern coast.

Mean monthly rainfall and monthly values of P95 are plot-
ted in Fig. 4. Given the differences noted above between the
coastal belt and the inland areas in terms of rainfall intensity,

two plots are built, the first one for the spatial average of all
inland stations, the second one for the average of all coastal
stations (listed in Table 1).

In the interior of the continent, there is a very weak bimodal
regime (see Fig. 4), whereas at the coastal stations, there are
twowell-differentiated rainy seasons (themain one fromApril
to July and the smaller one from September to November).
Figure 4 also shows an interesting demarcation between coast-
al and inland stations in terms of rainfall intensity, as denoted
by P95. Inland stations (Fig. 4a) do not show much
intermonthly variation of P95 (around 40–50 mm/day
throughout the year). It is an indication that rainfall intensity
(when it rains) is stable throughout the year at continental
stations.

However, at the coastal stations (Fig. 4b), there is a large
seasonal variation of P95. The lowest and highest values are
recorded in August (38 mm/day) and June (82 mm/day),

Fig. 3 Ninety-fifth percentile of
daily rainfall over the period
1981–2015. a Rain gauges. b
CHIRPS. Units: mm/day

Fig. 2 Mean annual rainfall (mm)
during 1981–2015 from CHIRPS
data



respectively. More generally, the 3 months, May, June, and
July, show a much higher rainfall intensity in the coastline
area than inland. This high seasonal variability of extreme
rainfall along the coast partly corresponds to the bimodality
of the precipitation regimes, with the main rain season coin-
ciding with the period of highest rainfall intensity, whereas
inland, there is no relationship between the precipitation re-
gime and rainfall intensity. These observations confirm the
specificity of the southern coast of West Africa and show that
the most extreme precipitation recorded is mainly from May
to July, while in August, precipitation is low (due to air
cooling caused by coastal upwelling, inhibiting convection)
and less extreme. Note that the western and eastern parts of the
SCWA display quite similar seasonal patterns for both mean
rainfall and P95, except that the west coast is wetter than the
east coast (not show).

4.3 Space-time patterns of rainfall variability (1981–
2000)

The space-time patterns of annual rainfall totals are first inves-
tigated over the period 1981–2000, for both the rain gauge
data and the CHIRPS data, using PPCA. For CHIRPS, prin-
cipal components are computed from the grid points corre-
sponding to the stations only and not from the full dataset.
Table 3 presents the percentage of variances of the first

principal component (PC1) for total rainfall and NP95 for
the period 1981–2000 (and 1981–2015 for CHIRPS).

It has been decided to retain only PC1 because PC2 ex-
plains a much smaller percentage of variance and is of com-
paratively little interest. The results obtained with PP95 are
not shown, since the variance explained by PC1 on rain gauge
is low. This is likely due to the fact that, given the relatively
small number of stations, there is high spatial variation in the
exact rainfall amount recorded on extreme rain days.

Table 3 indicates a high spatial covariability of total rainfall
for the two rainfall datasets. However, this covariability is
smaller for rain gauge data (42.3% of variance explained by
PC1) than for CHIRPS (59% of variance over the same period
1981–2000). This could be expected since in gridded datasets
such as CHIRPS, there is a spatial smoothing of the data
which tends to increase the signal-to-noise ratio. The slight

Fig. 4 Mean monthly
precipitation and 95th percentile
for the 19 continental stations (a)
and for the 19 coastal stations (b),
1981–2015

Table 3 Percentage of variances of principal component 1 calculated on
total rainfall and NP95 for the 1981–2000 and 1981–2015 periods

Total rainfall NP95

Observation (1981–2000) 42.31% 24.51%

CHIRPS (1981–2000) 59.04% 44.85%

CHIRPS (1981–2015) 55.51% 43%



differences in rainfall covariability between the two datasets
are confirmed in Fig. 5b and d. Figure 5 d indicates that while
all CHIRPS grid points are strongly correlated (0.6 to 0.9)
with PC1, correlations are mostly lower in observations (Fig.
5b). Station coordinates generally exceed 0.6 over the eastern
coastal area, with slightly smaller values inland; most rainfall
stations over coastal Côte d’Ivoire are poorly described by
PC1. On the whole, however, it is found that PC1 has a fairly
uniform signal over much of the region (except in the west-
ernmost part for rain gauge data) in both datasets.

Figure 5 a and c show that there is a good agreement be-
tween the time series associated with PC1 for the observations
and CHIRPS, with major dry years found in 1983, 1986,
1992, 1998, and 2000 in the two datasets. This is confirmed
by the very high correlation coefficient between PC1 from
observations and CHIRPS (r = 0.88), which is significant at
the 95% threshold. It can be concluded that CHIRPS’s dom-
inant pattern of total rainfall covariability replicates the
observations.

The same analysis is carried out with NP95 (Fig. 6). For
observed data, all stations (except coastal Ivorian stations) are
positively correlated with PC1, with a majority of coefficients
in the range of 0.3 to 0.6 (Fig. 6b). A moderate NP95
covariability is found across Benin, Togo, Ghana, and conti-
nental Côte d’Ivoire. NP95 for the corresponding CHIRPS
grid points displays a stronger spatial coherence, as shown
by the fact that all correlations are between 0.5 and 0.9. This
difference between the two datasets is reflected in the variance
explained by PC1 (Table 3, 24.51% and 44.85% for
Observations and CHIRPS, respectively).

However, there is a highly positive correlation (r = 0.61,
significant at the 95% level) between the NP95 PC1 scores
from the observed and CHIRPS data. Similar variations are
observed for several years in the two standardized PC1 anom-
alies (Fig. 6a and c) during the 1981–2000 period. The years

1983, 1990, 1992, 1998, and 2000 stand out as having a small
number of extreme rainfall events in both datasets over most
of the region. On the whole, the PC1 obtained from CHIRPS
and observations depict quite a similar signal, covering much
of the region. CHIRPS is a good substitute to observations
during this period.

Considering the good accordance between rain gauge ob-
servation and CHIRPS during 1981–2000, CHIRPS is now
used for studying trends of parameters (total rainfall, NP95,
PP95, NL95, PL95) during the longer 1981–2015 period and
over the whole region.

4.4 Rainfall trends (1981–2015)

The trends of total rainfall, NP95, PP95, NL95, and PL95,
have been determined for each grid-point and mapped
(Fig. 7).

The map for total rainfall (Fig. 7a) points out two cases:
regions where total rainfall increases (southern and western
parts of Côte d’Ivoire and southern part of Benin and Togo)
and regions where total rainfall is generally stable with only a
few highly localized grid points in southern Ghana showing a
rainfall decrease. An analysis of the other rainfall variables
shows that these trends in total rainfall conceal several differ-
ent situations.

Several coastal and inland areas of Benin, Togo, Ghana,
and Ivory Coast recorded an increase/decrease in NP95/NL95,
respectively, in the 1981–2015 period (Fig. 7b and d). In Fig.
7c and e, it is noticed an increase/decrease of PP95/PL95,
respectively, in several coastal and inland areas (for PL95,
the downward trend is clear in southern Ghana).

In western and southern Côte d’Ivoire and Togo/Benin, the
upward trend in total rainfall is therefore mainly associated
with a larger number of extreme rainfall; hence, the contribu-
tion of extreme rainfall to annual rainfall increases. Southern

Fig. 5 PPCA of total rainfall for
1981–2000, for observed (top
panels) and CHIRPS grid points
corresponding to station
coordinates (bottom panels).
Standardized anomalies of the
first component (PC1): panels (a)
and (c). Correlation coefficients
between rainfall and PC1: panels
(b) and (d)



Ghana, despite an increase of NP95, recorded a strong signif-
icant decrease of NL95. These opposite trends result in a rel-
ative stability of total rainfall (Fig. 7a), although with an in-
creasing (decreasing) contribution of NP95 (NL95) to the an-
nual rainfall total (Fig. 7c and e, respectively).

Rainfall analysis in the 1981–2015 period with CHIRPS
revealed different regional trend patterns. To further explore
these trends, we calculate 3 regional indices (Southern and
Western Côte d’Ivoire (box 1), Southern Ghana (box 2), and
Southern Togo/Benin (box 3)) for both CHIRPS and rain
gauges. The regional indices are computed for each rainfall

variable (total rainfall, NP95, PP95, NL95, and PL95). The
comparison between CHIRPS and rain gauges is based on a
graphical analysis of interannual anomaly time series (Fig. 8),
the calculation of Pearson correlation coefficients (Table 4),
and trend assessment using the Mann-Kendall test and Sen’s
method (Table 5).

In western and southern Côte d’Ivoire (“box 1”, black poly-
gon in Fig. 7a), Fig. 8 a to e show a reasonable agreement
between the observation (rain gauge (RG)) and CHIRPS, as
confirmed in Table 4. The Pearson correlation coefficient
(0.49) between CHIRPS and RG exceeds 95% significance

Fig. 7 Trends of total rainfall (a),
NP95 (b), PP95 (c), NL95 (d),
and PL95 (e) in the 1981–2015
period with CHIRPS datasets.
Pixels shown are significant at
90% according to the test of Man-
Kendall. Trend magnitudes are
obtained using Sen’s method. The
black polygon, red polygon, and
blue rectangle delimit geographi-
cal areas where consistent and
significant trends are recorded for
some of the variables and whose
time series are plotted in Figs. 8

Fig. 6 PPCA of stations and
CHIRPS for NP95 for 1981–
2000. a Standardized anomalies
of the first component (CP1) and
b correlation coefficients between
CP1 and stations. c and d The
same for CHIRPS grid-point cor-
responding to station coordinates



for all indices except for NL95. All indices in the two datasets
show large interannual variations (Fig. 8). Table 5 reveals that
RG trends of total rainfall, NP95, NL95, and PL95 are all

positive but not significant. In CHIRPS, there is a significantly
(at 5% significance level) positive trend for total rainfall, but
for NP95, PP95, and NL95, the trend is positive but not sig-
nificant. The direction of trends is therefore similar between
the two datasets for all indices except PP95 and PL95, which
could be due to the fact that some years are missing in the RG
time series. However, trends are weak in this region.

Figure 8 f to j show the indices extracted for southern
Ghana (“box 2”, red polygon in Fig. 7a). The agreement be-
tween RG and CHIRPS time series is fair for this region dur-
ing the common period 1981–2001. All Pearson correlation
coefficients are significant (5% significance level, Table 4)
and the maximum is recorded for total rainfall (R = 0.73). In
the 1981–2001 period, the sign of Sen’s coefficient’s for
NP95, PP95, NL95, and PL95 is the same for both datasets.
This makes us confident in the use of the southern Ghana
rainfall indices derived from CHIRPS in the 1981–2015 peri-
od. The regional index confirms the absence of a clear trend in
total rainfall. However, there are positive and negative trends

Table 4 Pearson correlation coefficient between rain gauges and
CHIRPS pixels for each box for total rainfall, NP95, PP95, NL95, and
PL95. Box 1, box 2, and box 3 are regional indices averaging all rain
gauges and CHIRPS pixels located in western and southern parts of Côte
d’Ivoire, Southern Ghana, and Southern Togo/Benin, respectively, as
shown in Fig. 7. Values in italics are statistically significant at the 5%
significance level

Box 1 Box 2 Box 3

Total rainfall 0.49 0.73 0.88

NP95 0.44 0.49 0.68

PP95 0.36 0.34 0.34

NL95 0.07 0.44 0.52

PL95 0.36 0.34 0.34

Fig. 8 Time series of standardized anomalies for total rainfall (a, f, k),
NP95 (b, g, l), PP95 (c, h, m), NL95 (d, i, n), and PL95 (e, j, o) in the
period 1981–2015 using CHIRPS (solid red line) and rain gauge (dashed
blue line) for southern and western parts of Côte d’Ivoire (corresponding
to box 1) (left column), for southern Ghana (corresponding to box 2)

(middle column) and for southern Togo/Benin (corresponding to box 3)
(right column). Thin black lines: smoothed variations using loess regres-
sion for CHIRPS (solid) and rain gauge (dashed) datasets. Thin dashed
blue line: number of stations by year



(significant at the 5% level) in PP95 and PL95, respectively,
which demonstrate that extreme rainfall events gradually con-
tribute to a higher share of the total rainfall amount in southern
Ghana, although some years like 2013 demarcate from this
pattern (Fig. 7c and e). On both the 1981–2001 and 1981–
2015 periods, there are also decadal variations for all indices
in southern Ghana.

In southern Togo/Benin (“box 3”, blue rectangle in Fig.
7a), the accordance between the time series associated for
the observations and CHIRPS in western Togo/Benin is gen-
erally good (see Fig. 8 k to o and Table 4) for each index (r =
0.88 for total rainfall). In the period 1981–2015, all indices
show large interannual as well as decadal variations (Fig. 8).
For all indices (excepted PL95), the decadal variation has two
positive phases (1985–1990 and 2003–2013) and two nega-
tive phases in the early 1990s and early 2000s. These decadal
variations tend to lower the statistical significance of linear
trends. In CHIRPS datasets, there are significantly (at 5%
level) positive trends for total rainfall, NP95, and PP95 and
a negative trend for NL95 and PL95 (Table 5). Although the
5% significance is not reached, the signs of Sen’s coefficient
for rain gauge data are the same as for CHIRPS for total
rainfall, NP95, PP95, and PL95. For NL95, the opposite signs
noticed in Table 5 are explained by the very large number of
non-extreme rainfall events in CHIRPS in 1981 (Fig. 8n),
which affected the trend of NL95. These results confirm the
observations made from Fig. 7 that the rainfall increase in
southern Togo/Benin is mostly due to more and stronger ex-
treme rainfall events.

However, a closer comparison of the time series reveals
that the relationship between total rainfall and rainfall intensity
is not straightforward. The two wet years 1999 and 2010 in
southern Togo/Benin (Fig. 8k) are induced by a large number
of non-extreme and extreme rainfall events, respectively (Fig.
8l and n). As a result, the contribution of non-extreme rainfall
to total rainfall is very high in 1999 while extreme rainfall
mostly contributes to the high total rainfall in 2010 (Fig. 8m
and o). It therefore merges that there are two classes of wet
years, those associated with several extreme rainfall events

and those caused by a large number of low-intensity rainfall
events. Similarly, two categories of dry years are found: (i)
those like 1983, 2000, and 2013, associated with a deficit of
extreme rainfall events (Fig. 8l) combined to low contribution
of extreme rainfall in the total rainfall (Fig. 8m); (ii) those like
1992 and 1998 which recorded a normal number of extreme
rainfall events (Fig. 8l), but a small number of non-extreme
rainfall events (Fig. 8n). These case studies, together with
diverse trends of the rainfall variables, show that the interpre-
tation of trends in total rainfall is not trivial.

5 Discussion and conclusion

The present study investigated the patterns and trends (1981–
2015) of extreme rainfall over the southern coastal belt of
West Africa. To achieve this work, rain gauge data have been
supplemented by satellite rainfall estimates. An evaluation
was carried out of three daily rainfall estimation products
(TRMM, PERSIANN, and CHIRPS) with respect to their
performance at reproducing the 95th percentile of daily rain-
fall amounts, which is retained to depict the extreme events.
TRMM shows the best performance, followed by CHIRPS.
Because of its longer period of record (1981–2015) and higher
spatial resolution, the CHIRPS dataset was selected as an al-
ternative dataset to rain gauges.

It emerges that rainfall on the littoral zone of southernWest
Africa is more extreme than inland. Previous studies noticed
higher values of daily rainfall in the southern part of Côte
d’Ivoire (Goula et al. 2007; Soro et al. 2016) and Benin
(Ague and Afouda 2015). The contribution of the current
study is to show that despite its low annual rainfall, the coastal
belt of Ghana and Togo also exhibits quite heavy rainfall
events, in continuity with those of Côte d’Ivoire and Benin.
The present study showed that the higher rainfall intensities of
coastal southernWest Africa are mainly recorded fromMay to
July.

Variation in extreme rainfall during the 1981–2015 period
on the Southern coastal belt of West Africa were examined by

Table 5 Trend statistics (1981–2015) for each rainfall index (total
rainfall, NP95, PP95, NL95, and PL95) for rain gauge (RG) and
CHIRPS in western and southern Côte d’Ivoire (box 1), Southern
Ghana (box 2), and Southern Togo/Benin (box 3). Values are Sen’s

slope coefficients. Significant trend values at the 5% significance level
are in italics. CHIRPS_G designates CHIRPS trend in the 1981–2001 to
match Ghana rain gauge data availability

Box 1 Box 2 Box 3

RG CHIRPS RG (1981–2001) CHIRPS_G (1981–2001) CHIRPS RG CHIRPS

Total rainfall 0.02 0.03 0.01 − 0.01 − 0.01 0.02 0.03

NP95 0.01 0.02 0.05 0.03 0.01 0.02 0.05

PP95 − 0.01 0.03 0.06 0.04 0.03 0.01 0.05

NL95 0.02 0.01 − 0.02 − 0.08 − 0.03 0.02 − 0.01
PL95 0.01 − 0.03 − 0.06 − 0.04 − 0.03 − 0.01 − 0.05



mapping linear trends for different rainfall indicators using
CHIRPS data. The findings were confirmed by computing
regional indices from rain gauges over selected sub-regions.
Two cases were detected:

– In the southern and western parts of Côte d’Ivoire and the
southern part of Togo/Benin, there is an increase in total
rainfall mainly explained by an increasing number of ex-
treme rainfall whereas the number of days with rainfall
less than P95 does not change. The percentage rainfall
amount on extreme rainfall days compared to the total
rainfall therefore increases, while there is a decrease of
the percentage of total rainfall on days receiving less than
P95 compared to the total annual rainfall. These trends are
best shown in Togo/Benin CHIRPS data;

– In the southern part of Ghana, CHIRPS shows a stable
total rainfall due to an increase in the number of extreme
rainfall days compensated by a decrease in the number of
days with rainfall less than P95. As a result, the percent-
age rainfall accounted for by extreme rainfall events in-
creases while the percentage rainfall accounted for by
lower intensity precipitation decreases. A similar pattern
(an increase of the number of extreme rainfall while the
total rainfall amount remains stable) has been described in
Manzanas et al. (2014) over southern Ghana during the
1984–2010 period.

Furthermore, the present study shows that trends are
homogenously significant and they are masked by a strong
interannual and decadal variability of all indices in the
1981–2015 period (mostly over the eastern part of the region)
without any clear differentiation between the coastal and in-
land areas.

These results are broadly consistent with earlier results ob-
tained for the Guinean climatic region of West Africa (Goula
et al. 2012; Odoulami and Akinsanola 2017) where trends
were found to be weaker and spatially less consistent than
those found in Sahel (Chaney et al. 2014; Panthou et al.
2014; Sanogo et al. 2015; Barry et al. 2018). The present study
suggests that the large interannual variability of the number of
extreme rainfall and their contribution on total rainfall in the
1981–2015 period weakens the long-term trend. Furthermore,
some decadal variations tend to overshadow long-term trends,
and the local evolution of extreme rainfall also sometimes
differs significantly from the regional trends. Finally, despite
the higher average intensity of daily rainfall in the littoral belt,
this area differs little from the interior regions in terms of
trends.

It can be hypothesized that the increase in the frequency of
extreme rainfall observed in part of the region (although mod-
erate) is linked to the intensification of the hydrological cycle
which was shown to result from global climate warming
(IPCC 2013). This trend, added to the higher intensity of

rainfall in the coastal region, makes flood hazards a major
threat along the coast. This should be considered in a context
of increased vulnerability because of deficient urban planning
policies in this region.

Further investigations are needed to elucidate the origin of
this particularity of the coastal belt marked by extreme rainfall
especially in the May–July season. While Leduc-Leballeur
et al. (2013) pointed to the role of sea surface temperature
gradients on a low atmospheric local circulation (LALC) in
the occurrence of seasonal extreme rainfall in the SCWA, a
better appraisal of the atmospheric disturbances associated
with these extreme rainfall events and their interaction with
sea breezes would be crucial.
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