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Abstract

In this paper, the efficiency of a multiscale strategy based on a domain decomposition method (DDM) for model-order
reduction of time-dependent frictional contact problems is presented. The proposed strategy relies on the LArge Time
INcrement (LATIN) nonlinear solver combined with model reduction based on the Proper Generalized Decomposition
(PGD). The LATIN presents a robust treatment of contact conditions, sharing similarities with augmented Lagrangian
approaches, and naturally leads to a mixed DDM. In addition, the global space-time formulation of the method allows
PGD-based model reduction to be used during computations, creating and enriching on-the-fly reduced bases per
substructure to better track sliding fronts and propagative phenomena. The introduction of a multiscale strategy in the
LATIN framework is consistent with the physics of contact problems, in which phenomena with different wavelengths
interact: local solutions at contact interfaces presents high gradient effects with a short wavelength compared to the
characteristic length of the structure. By taking advantage of this, the coarse scale problem of the strategy enables
to capture efficiently the behavior of the problem at the structural level, focusing then on capturing the local contact
variations at the contact interfaces. The most important features of the approach are shown comprehensively on
a simple one-dimensional frictional contact problem. Then, its robustness and effectiveness are tested on a two-
dimensional multibody frictional contact problem with more complex loadings. Guidelines are also given for choosing
the parameters of the strategy, in particular those driving the construction of the reduced basis.

Keywords: frictional contact, model-order reduction, domain decomposition, multiscale strategy, LATIN method,
PGD.

1. Introduction

The use of high-fidelity numerical solvers in an industrial setting remains limited to this day because of their
considerable computational cost, in particular for highly nonlinear finite element analyses of large-scale structures
with a large amount of degrees of freedom as well as a large number of time steps. Among them, the simulation of
architectured materials with multiple frictional contact interactions subjected to large displacements is probably one
of the most challenging problems in structural mechanics [1, 2].

Frictional contact problems are characterized by strong nonlinearities and non-smooth behaviors at the contact
interfaces, with several large contact zones which can lead to numerical issues. The classical treatment of frictional
contact conditions with usual finite element methods resorts to techniques originating from constrained optimization
methods. Among others, one can cite Lagrange multipliers, penalization, or augmented Lagrangian methods. For a
wider overview on the topic, one can refer to [3, 4]. However, all these methods may require prohibitive computa-
tional costs, especially in an industrial context with time-dependent loadings and parametric studies. Acceleration or
parallelization methods are therefore a necessity to address this issue. Acceleration strategies are commonly based on
multigrid methods [5, 6, 7], and enable to accelerate the convergence of the problem by cheaply computing correc-
tions on a coarse discretization. Domain decomposition methods (DDM) with or without overlapping subdomains,
the latter being the most used nowadays, have also been developed for the parallelization of large-scale problems.
Among them, one can cite primal methods, where the unknowns are the interface displacements, dual methods, which
instead privilege interface forces, and mixed methods, where both interface displacements and forces are considered
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as unknowns. For an overview on non-overlapping primal and dual methods, one can refer to [8]. The Finite Element
Tearing and Interconnecting (FETI) dual method [9, 10, 11] is the most widespread approach, where compatibility
between neighboring subdomains is ensured by Lagrange multipliers, corresponding to interface forces. Numerical
scalability of the method is obtained with the introduction of rigid body modes as a “coarse scale problem” [12]. The
coarse scale problem provides a multiscale aspect to DDM methods: a coarse information is spread on the whole struc-
ture allowing non-neighboring subdomains to interact, and thus to speed-up the convergence. Numerically scalable
FETI-based DDM techniques for frictional contact problems have been presented in [13] with active set method, and
in [14, 15] for an augmented Lagrangian approach. Other approaches refer to FETI-DP [16, 17] or T-FETI methods
[18]. Mixed DDM strategies also include those based on the LArge Time INcrement (LATIN) nonlinear solver [19].
The mixed nature of the method enables one to deal with different interfaces characterized by different constitutive
behaviors with a single resolution method. When the LATIN-based mixed DDM is not equipped with a coarse scale
problem, we refer to it as a monoscale DDM [19, 20, 21]. A multiscale version of the LATIN-based mixed DDM,
in which a coarse scale problem is introduced, was firstly described in [22] for heterogeneous structures, and for
quasistatic contact problems in [23].

Another, and possibly complementary, way to decrease computational cost consists in adopting reduced-order
models (ROM) techniques by seeking the solution of the given problem in a reduced-order basis (ROB), whose
dimension is much smaller than the size of the original high-dimensional model [24, 25]. ROM methods can be
distinguished by the way in which the ROB is constructed. A first family of techniques, named a posteriori methods,
involves a training phase, called offline phase, where the full-order problem is solved for some particular time instants
or parameter values, generating the so-called snapshots. Snapshots are then used to create a ROB on which to project
the full-order equations and obtain a reduced-order model. The most classical way to obtain a ROB from a given set of
snapshots is the Proper Orthogonal Decomposition (POD) [26]. The strong point of the method relies in the fact that
the number of relevant POD modes is generally much lower than the scale of the full-order problem. Nevertheless,
the quality of the ROM is strongly affected by the representativeness of the ROB, especially for highly nonlinear
problems. Another approach to obtain a ROB is represented by the Reduced Basis (RB) method, which improves the
procedure for the selection of the appropriate snapshots by an efficient error indicator allowing a certified error quality
[24, 27]. A second family of ROM techniques consists in seeking the solution of the targeted problem in the span of
a consistent ROB progressively built by a dedicated algorithm during the solving stage. This represents the a priori
model reduction methods, where no offline training phase is required. To this family belongs the Proper Generalized
Decomposition (PGD) [25, 28].

For contact problems, most of pertinent model reduction techniques rest on a posteriori methods, mainly for
frictionless parametric problems with a small number of contact interfaces. They cover POD projection-based methods
for displacements and contact forces [29], adopting a non-negative matrix factorization for the construction of a
positive ROB for the contact forces, and coupled with a greedy algorithm and a robust error indicator with respect
to parameter variations. RB methods have also been applied to parametric frictionless contact problems [30], in a
generic nonlinear setting where large displacements are assumed. The non-negativity of the contact forces is achieved
through a cone-projected greedy algorithm, and the nonlinear constraints are tackled with the Empirical Interpolation
Method hyperreduction technique [31]. Enrichment techniques with POD modes for parametric problems have been
succesfully used for the simulation of fretting fatigue in [32]. The bottleneck of the a posteriori methods relies in
the computation of snapshots [33, 34]. For large-scale problems, this training step can be very costly. Moreover, for
problems involving a huge variety of loading conditions and nonlinear phenomena, especially due to frictional contact
interactions, a predetermined ROB may not be able to easily and efficiently capture non-regular and propagating
multiscale phenomena that occur at contact interfaces: sliding, sticking and separation zones being difficult to follow.
For this reason, an a priori approach based on the PGD coupled with the LATIN nonlinear solver [19] may represent
a more efficient way to tackle frictional contact problems through a reduced-order model that allows the ROB to be
enriched during computations to account for the evolution of frictional contact conditions.

Nevertheless, for specific problems where high accuracy of contact quantities is required, reduced models alone
may not guarantee sufficient accuracy while ensuring at the same time a significant decrease in computational cost.
As highlighted in [35, 36, 37], frictional contact problems present a multiscale content, with global modes on the
structural level and localized modes bringing corrections at the contact interface level. This suggests the idea that
proposing a model reduction method with a multiscale approach may be truly beneficial for problems of this type.
To the authors’ knowledge, one of the few approaches to achieve such a combination is the multiscale LATIN-based
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mixed DDM. Indeed, the LATIN method makes it possible to handle frictional contact problems, apply PGD-based
model reduction and introduce multiscale aspects in a robust, flexible and efficient framework. However, mention
should also be made of [36], where the authors make use of the LATIN method at the microscale and a multigrid
scheme on a macroscale with precomputed global SVD modes.

Applied to different contexts (viscoelasticity, homogenization...) in [38, 39, 40, 41, 42], the multiscale LATIN-
based mixed DDM with PGD makes it possible to take into account also frictional contact interactions. However, in
these previous works, rather short frictional cracks had a more or less limiting effect on the global scale, surrounded
by other material nonlinearities. Moreover, it was highlighted, in the case of the application of the strategy without
PGD to the delamination of composite structures [43, 44] or fatigue crack propagation [45], the difficulty of taking
into account the potential long-wave effects of a debonding cohesive interface or a long crack propagation in the
multiscale LATIN-based DDM, without a suitable coarse scale problem.

In fact, the strategy with PGD has never been investigated in the case of frictional contact problems with large and
multiple contact interfaces, where the contact conditions have an important effect at the global scale. In this paper we
want to investigate how and to what extent a multiscale approach, in particular one based on domain decomposition,
may be helpful in efficiently solving frictional contact problems with a model reduction approach, and what are the
benefits of combining a multiscale strategy with PGD. We follow the findings presented in [35] in the context of
the monoscale LATIN-PGD strategy without DDM for frictional contact problems, where the authors suggest the
adoption of a multiscale approach, and propose a low-cost downsizing algorithm to control the quality and size of the
PGD basis. Here, the goal is to illustrate why the LATIN method combined with PGD and a multiscale mixed DDM
approach is robust to tackle model reduction for frictional contact problems, where multiple and large frictional contact
interfaces are present. This will first be illustrated on a one-dimensional frictional contact problem where the contact
interface is large and a large sliding front is present. Some strengths and points of improvement of the LATIN-based
multiscale mixed DDM method for the model-order reduction of frictional contact problems will be comprehensively
presented. Subsequently, a more complex 2D example with more contact interfaces and more complex loads will be
proposed to test the potentialities of the approach. For highly irregular problems such as frictional contact problems,
controlling the quality and size of progressively built PGD basis along the LATIN iterations is crucial for the efficiency
of the method. Here, we also go on to investigate the necessity and the benefits of the downsizing algorithm proposed
in [35] when adapted to the multiscale and DDM contexts.

The paper is organized as follows. First of all, in Section 2, prior to going into the details of the strategy, a simple
but representative one-dimensional frictional problem is presented to highlight the challenges related to such kind of
problems, which will later serve as basis for an explanation of the features of the proposed method. Thereafter, the
LATIN method, in its monoscale DDM version, is introduced in Section 3 and is then applied to the test problem.
The strengths of the method are highlighted, as well as some specific points related to frictional contact problems that
require further improvements. The introduction of PGD in the LATIN scheme is detailed in Section 4, and applied to
the test problem, with focus on properly controlling the PGD basis size and quality along the iterations. The multiscale
strategy is detailed in Section 5, as well as the introduction of PGD in the multiscale case. It is then applied to the
simple one-dimensional test problem as well as to a more complex two-dimensional multibody frictional contact
problem in Section 6. Conclusions and perspectives are finally given in Section 7.

2. Preliminary results on a simple 1D problem

Before going into the details of the multiscale LATIN-based DDM strategy for model-order reduction, in this
section is investigated the reducibility of the displacements and frictional forces of a one-dimensional benchmark
problem. The problem consists of a clamped elastic bar subjected to a time-dependent traction loading Fd(t) on the
free boundary. The bar is in contact with a frictional interface along its entire length by means of a transverse force
distribution p(t) acting on it (Figure 1a). In practice, it is assumed that the bar is always in contact with the frictional
surface due to the force distribution p considered to be constant.

Concerning the traction loading acting on the bar, two different load cases are considered (represented in Fig-
ure 1b). Both of them start with a preloading stage where the value of 1000 N is reached. The load case 1 consists
in fully unloading the bar after the preloading, while the load case 2 consists in performing some small-amplitude
oscillations around this preloaded state. The first load case should put us in a more critical condition, since one has to
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Figure 1: 1D benchmark problem.

deal with a larger propagation of sliding front which is more challenging to represent with ROM techniques. The pa-
rameters adopted for the problem are shown in Table 1. The problem, after a finite element discretization in spaceand
time, has been solved with the LATIN method (of which the details will be given in the next section). A converged
solution (high number of iterations) was taken as a reference solution and analyzed in the following. Obviously, any
more conventional nonlinear solver can be used for this purpose.

Parameters of the 1D problem
Young modulus, E 210 GPa
bar cross section, S 3.14 mm2

bar length, L 1 m
number of DOFs, Nx 50
number of time steps, Nt 100
time interval, [0,T ] [0, 1 s]
friction coefficient, f 0.3
transverse force, p 5000 N/m

Table 1: Used parameters for the benchmark problem of Figure 1.

In Figure 2 and 3 are shown, respectively, some time snapshots of the reference solution of the problem for the
displacements and frictional contact forces distributions for the load case 1. In dark gray is highlighted the areas where
sliding occurs, while in the white areas there is sticking conditions. The sliding front propagates as the traction force
increases, from t = 0 s to t = 0.5 s during the preloading stage. A portion of the bar, the one closer to the clamped end
(x/L = 0), remains always in sticking conditions. During the unloading part, another sliding front propagates from the
free end of the bar, until the traction force becomes zero. At the end, because of the presence of friction, the bar does
not get back to its original undeformed position but remains in a sticking deformed state. In the sticking zone, near
the clamped end, the frictional forces are zero, whereas in the sliding zone, during loading, they are equal in absolute
value to the Coulomb friction threshold f p = 1500 N.

After obtaining the reference solution for displacements and frictional forces, an a posteriori Singular Value De-
composition (SVD) [46] analysis can be performed to exemplify the reducibility of the space-time solution. A few
SVD space modes for frictional forces are given in Figure 4. First modes depict a generally global scale of the solu-
tion. One can see that the space modes clearly separate the sticking zone (in white) from the ones where sliding occurs
(light gray for sticking-sliding transition and dark gray for mainly sliding). Subsequent space modes still emphasize
this distinction as also bring localized corrections to the sliding zones.

In Figure 5 is shown the SVD relative approximation error ∥A − Ap∥F/∥A∥F between the original field and a
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Figure 2: Displacement snapshots at time t = 0 s, t = 0.5 s and t = 1 s.

Figure 3: Frictional forces snapshots at time t = 0 s, t = 0.5 s and t = 1 s.

Figure 4: SVD space modes 1, 3 and 7 of the frictional contact forces. The corresponding singular values are 6.27 · 104, 1.55 · 104, and 5.77 · 103.

truncated SVD of order p for displacements and frictional forces for the two considered load cases in Figure 1b. The
snapshot matrix ANx×Nt , which represents respectively the displacements or the frictional forces, collects the quantities
of interest along the Nx spatial positions and Nt time steps, with Ap which represents the SVD approximation of A
with p modes, and ∥ • ∥F stands for the Frobenius norm. In both cases, displacements present a better reducibility
compared to frictional contact forces. Frictional contact forces, due to their highly non-smooth nature, present a very
low reducibility, in agreement with similar results in [35, 37]. For the first load case (Figure 5a), the reducibility
for frictional forces is quite critical. Being a propagation problem with a large sliding front, frictional forces need a
large basis to reach a good accuracy (below 10−4). For the second load case the reducibility of the problem strongly
improves, especially for frictional forces, as in fact the small-amplitude oscillations cause small variations in contact
conditions, with a smaller size of the gray areas.
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(a) SVD of load case 1.
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(b) SVD of load case 2.

Figure 5: SVD of the contact quantites of the 1D problem in Figure 1 for the two different load cases.

Propagation problems are known for their low reducibility, and capturing their behavior with a ROB is challenging,
even for ROBs enriched on-the-fly as in PGD [28, 47]. For particular applications where one deals with loads such
like the second load case, or problems where the contact interface is small relatively to the overall structure of the
problem, and/or a few contact interfaces are present, this can help to start with a good potential reducibility. However,
in more complex and general cases like architectured materials [1], the peculiarities pertaining to contact problems
can be taken into account to improve the efficiency of a model reduction approach. As seen in the above example,
when wide contact interfaces are present, different areas subjected to different sticking and sliding conditions can be
encountered. This suggests the separation of these different areas a priori and the application of the model reduction
strategy separately, ideally in each part, through a DDM approach. Therefore, the different potential reducibility of
the different areas is exploited and the computational time can further be improved thanks to the parallelization given
by the DDM. Another aspect to consider is the presence of multiscale aspects in the solution of contact problems. As
highlighted in [35], global modes on a structural level and localized modes on the contact interfaces are present and
the introduction of multiscale aspects may effectively improve the handling of similar problems.

In the following, we will put ourselves in the case of the first load case, considered as more critical since it is less
reducible due to important sliding front propagation, and we will analyze how the proposed approach behaves in the
case of a problem with low reducibility.

3. LATIN-based monoscale DDM for frictional contact problems

Incremental methods for solving a nonlinear problem (e.g., Newton-Raphson, quasi-Newton, modified Newton
methods) consist in making converge the problem at a given time step t j, knowing the converged solution from the
previous time step t j−1, up to the final time T . On the contrary, in non-incremental methods, all time steps are swept
at each iteration and each non-incremental iteration ends on a space-time approximation of the solution. The LATIN
method, introduced in [19], is a general strategy for dealing with nonlinear evolution problems and belongs to the
family of non-incremental solvers.

The main idea of the LATIN is to separate the difficulties of a given problem. For many classes of problems
this consists in avoiding the simultaneity of the global character of the problem and its local nonlinear behavior,
which leads to a partitioning of the underlying equations into two manifolds: one pertaining to the local and possibly
nonlinear equations, while the other one is related to the linear and possibly global equations. The search for the
solution is based on a two search alternating direction algorithm, which shares similarities with ADMM (Alternating
Direction Methods of Multipliers) methods [48, 49, 50]. At each iteration, a solution on the whole space and time
domain of the problem is alternately built in each of the two manifolds. When applied to contact problems, the LATIN
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method separates the internal equations belonging to the substructures from the contact conditions that occur at the
contact interfaces. For this reason, it naturally leads to a mixed DDM where interface variables are constituted by the
interface displacements (primal unknowns) and contact forces (dual unknowns). In addition, the two-search direction
alternate algorithm of the LATIN shares similar features with augmented Lagrangian formulations combined with
Uzawa-like algorithms [51, 52], which makes it a strongly robust strategy for dealing with contact problems, ensuring
an exact satisfaction of contact conditions at convergence.

3.1. The reference problem: partitioning into substructures and interfaces

We consider, assuming small perturbations and isothermal quasi-static state, the equilibrium of a linear elastic
structure occupying the space domain Ω on the time interval [0,T ] being studied. The structure being subjected to
body forces f

d
and imposed loads Fd on a part ∂2Ω of the boundary, as in Figure 6. On the complementary part ∂1Ω,

displacements Ud are prescribed. Internal or external frictional contact interfaces are present and designated with Γc.

Ω
𝑓𝑑

𝐹𝑑

𝑈𝑑 Г𝑐

∂2Ω

∂1Ω

Figure 6: Reference structure problem being considered.

The basic idea of a mixed DDM strategy consists in describing the structure as an assembly of simple compo-
nents: substructures and interfaces [19] (Figure 7a), where each substructure has its own variables and equations.
A substructure ΩE , with E ∈ E (E being the set of substructures), is subjected to the action of its environment VE

(i.e., the set of neighboring substructures of ΩE) defined by a force field FE and a displacement field WE acting on its
boundary ∂ΩE . The displacement and the Cauchy stress fields within a substructure ΩE are denoted with uE and σE ,
and they belong respectively to spacesU[0,T ]

E and S[0,T ]
E defined on ΩE . An interface ΓEE′ between two substructures

ΩE and ΩE′ transfers both the displacement and the force fields WE ,WE′ and FE , FE′ restricted to ΓEE′ (Figure 7b),
which belong respectively to spaces W[0,T ]

EE′ and F [0,T ]
EE′ defined on ΓEE′ . The previous spaces, extended to the set

of neighboring interfaces of ΩE , result in spaces W[0,T ]
E and F [0,T ]

E . We denote with E[0,T ]
E = U

[0,T ]
E × W

[0,T ]
E and

F[0,T ]
E = S

[0,T ]
E ×F

[0,T ]
E , as well as S[0,T ]

E = E[0,T ]
E ×F[0,T ]

E . A space □[0,T ] with superscript [0,T ] designates the space of
functions defined on [0,T ] which take values in □. Therefore, one can define the admissibility of a solution within a
substructure.

Ω 𝐸

Ω 𝐸´

Г𝐸𝐸´

Г𝐸´´´,2

Г𝐸´´,1

Ω 𝐸´´´

Ω 𝐸´´

Ω

(a) Substructures and interfaces.

Ω 𝐸

Ω 𝐸´

Г𝐸𝐸´

𝐹𝐸

𝐹𝐸´

𝑊𝐸´
𝑊𝐸

(b) Interface variables.

Figure 7: Decomposition of a structure.
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Definition 1 (E-admissibility). For a substructure ΩE , sE = (uE ,WE ,σE , FE) ∈ S[0,T ]
E is said to be E-admissible, that

is sE ∈ S[0,T ]
E,ad , if it verifies:

– the kinematic admissibility: (uE ,WE) ∈ E[0,T ]
E,ad

∣∣∣ ∃ uE ∈ U
[0,T ]
E such that uE |∂ΩE = WE ,

– the static admissibility: (σE , FE) ∈ F[0,T ]
E,ad

∣∣∣ ∀(u∗,W∗) ∈ E[0,T ]
E,ad ,∫

ΩE×[0,T ]
σE : ε(u∗)dΩdt =

∫
ΩE×[0,T ]

f
d
· u∗dΩdt +

∫
∂ΩE×[0,T ]

FE ·W
∗dS dt,

– the constitutive relation: σE = K : ε(uE), with K being the Hookean tensor and ε(uE) the small strain tensor.

S[0,T ]
E,ad,0 is the associated vector space for f

d
= 0 (E-admissibility to zero).

An interface ΓEE′ between two substructures ΩE and ΩE′ is driven by a constitutive law between the force fields
(FE , FE′ ) and the displacement fields (WE ,WE′ ) on ΓEE′ . The constitutive behavior at the different interfaces depends
on the type of interface behavior which is to be modeled, and is expressed as a constitutive law which can be formally
written as:

bEE′ (FE ,WE , FE′ ,WE′ ) = 0, ∀(x, t) ∈ ΓEE′ × [0,T ]. (1)

The interface constitutive operator bEE′ describes in an abstract form the behavior of the interface. For example, for
a perfect interface, bEE′ = 0 corresponds to the continuity of the displacements across the interface, WE −WE′ = 0,
and the equilibrium of the interface forces FE + FE′ = 0. Boundary conditions in displacements and forces are also
taken into account through a specific interface behavior (interfaces ΓE′′,1 and ΓE′′′,2 in Figure 7a). Then, the reference
substructured problem can be reformulated as:

Problem 2. Find sexact = {sE}E∈E, with sE = (uE ,WE ,σE , FE) ∈ S[0,T ]
E , verifying:

– the E-admissibility of sE , ∀E ∈ E: sE ∈ S[0,T ]
E,ad (Definition 1),

– the constitutive behavior of the interfaces (1) .

Note that two types of formulations for the primal unknowns can be found in the literature: the formulation in
velocity and the formulation in displacement. The velocity formulation is usually adopted in the context of material
nonlinearities, where constitutive relations are expressed in a rate formulation (see [41, 53]), while the displacement
formulation is usually more adopted in the context of linear elastic behaviour of the substructures [32, 35, 54], as in
the case discussed herein.

3.2. A LATIN-based iterative solver

Let us denote with A[0,T ]
d the manifold of linear elastic solutions s satisfying the E-admissibility, and refer with

Γ[0,T ] to the manifold of solutions ŝ satisfying the constitutive behavior at the interfaces bEE′ = 0. The LATIN method
for solving Problem 2 consists in iterating successively between manifolds A[0,T ]

d , a phase which is called linear
stage, and Γ[0,T ], named local stage, by following two alternating search direction equations E+ and E− introduced to
iterate in a fixed-point manner between the two manifolds and to close the problem. Starting from an initial admissible
solution s0, at convergence the exact solution sexact is reached at the intersection between the two manifolds:

s0 ∈ A[0,T ]
d =⇒ · · · =⇒ sn ∈ A[0,T ]

d

local stage
=======⇒

E+
ŝn+1/2 ∈ Γ

[0,T ] linear stage
========⇒

E−
sn+1 ∈ A[0,T ]

d =⇒ · · · =⇒ sexact ∈ A[0,T ]
d ∩ Γ[0,T ]

3.2.1. The local stage
The local stage at the current iteration n + 1 consists in finding ŝn+1/2 ∈ Γ

[0,T ], given sn ∈ A[0,T ]
d from the previous

iteration, by following the search direction E+. For each interface ΓEE′ the following conditions must be verified, with
the subscripts n and n + 1/2 omitted to simplify the notations:
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Problem 3 (local stage). Find ŝ = {ŝE}E∈E ∈ Γ
[0,T ] verifying, ∀x ∈ ΓEE′ and ∀t ∈ [0,T ],

– the interface constitutive behavior: bEE′ (ŴE , ŴE′ , F̂E , F̂E′ ) = 0

– the search direction E+:

F̂E − FE − k+(ŴE −WE) = 0
F̂E′ − FE′ − k+(ŴE′ −WE′ ) = 0

In the previous equations, k+ is called search direction operator (or simply search direction), usually taken as
k+ = k+I, with I the identity tensor. The search direction parameter k+ is homogeneous to a stiffness and analogous
to the augmentation parameter in an augmented Lagrangian formulation. A reference close-to-optimal value for k+,
in the case of perfect interfaces, is given by k+ = E/L, with E being the Young modulus of the substructure and
L a characteristic length of the interface. The value of k+ does not affect the result at convergence, although it has
a significant impact on the convergence rate of the problem. The different interface behaviors and their explicit
resolution on the local stage of the LATIN method are reported in Appendix A.

3.2.2. The linear stage
Given the solution ŝn+1/2 ∈ Γ

[0,T ] from the local stage, the linear stage at the current iteration n + 1 consists in
finding sn+1 ∈ A[0,T ]

d following a search direction E−:

Problem 4 (linear stage). Find s = {sE}E∈E ∈ A[0,T ]
d verifying, ∀x ∈ ΩE and ∀t ∈ [0,T ],

– the E-admissibility of sE : sE ∈ SE,ad

– the search direction E− : FE − F̂E + k−(WE − ŴE) = 0

where it is classicaly assumed that k− = k+ = k. Taking into account E-admissibility and the search direction, the
following linear problem has to be solved at the linear stage for each substructure ΩE in the whole space-time domain:

Problem 5. Find (uE ,WE) ∈ E[0,T ]
E,ad such that, ∀(u∗,W∗) ∈ E[0,T ]

E,ad ,∫
ΩE×[0,T ]

ε(uE) : K : ε(u∗)dΩdt +
∫
∂ΩE×[0,T ]

kWE ·W
∗dS dt =∫

ΩE×[0,T ]
f

d|ΩE
· u∗dΩdt +

∫
∂ΩE×[0,T ]

(F̂E + kŴE) ·W∗dS dt,

with FE = F̂E + k(ŴE −WE).

The solution of the linear stage problem associated with substructure ΩE depends solely on the known quantities
f

d|ΩE
and ŝE on its boundary ∂ΩE . If K and k are symmetric positive definite, the Problem 5 has a unique solution [19].

The linear stage problems defined on the different substructures ΩE are independent and are therefore parallelizable.

3.2.3. Initialization and control of the convergence
The iterative LATIN algorithm is initialized with an admissible solution s0 ∈ A[0,T ]

d . A classical choice is the
solution obtained assuming ŝ = 0, that is, for each substructure:

Problem 6 (initialization). Find (u0,E ,W0,E) ∈ E[0,T ]
E,ad such that, ∀(u∗,W∗) ∈ E[0,T ]

E,ad ,∫
ΩE×[0,T ]

ε(u0,E) : K : ε(u∗)dΩdt +
∫
∂ΩE×[0,T ]

kW0,E ·W
∗dS dt =

∫
ΩE×[0,T ]

f
d|ΩE
· u∗dΩdt,

with F0,E = −kW0,E .
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The monoscale strategy converges in presence of boundary condition interfaces, perfect interfaces and frictionless
contact interfaces [19]. For contact interfaces with friction, there is no convergence proof of the algorithm but con-
vergence is in practice obtained. To ensure the practical convergence of the method on a wider class of behaviors and
interface types, a relaxation step is introduced after the linear stage, which is classical for fixed-point like algorithms:

sn+1 ← µsn+1 + (1 − µ)sn, (2)

where µ ∈ [0, 1] is the relaxation parameter, generally taken to be 0.8 [19].
In order to check the convergence of the LATIN algorithm, one can build LATIN convergence indicators based on

the distance between two consecutive solutions belonging to each of the two manifolds. The classical convergence
indicator adopted, introduced in [19], is the LATIN indicator:

η =

√ ∑
E ∥sE − ŝE∥

2

1
2
∑

E(∥sE∥
2 + ∥ŝE∥

2)
, with ∥sE∥

2 =

∫
∂ΩE×[0,T ]

(kW2
E + k−1F2

E)dS dt. (3)

The LATIN indicator characterizes the global distance (i.e., in space and time) between the solution of the linear stage
and the one belonging to the local stage for both displacements and interface forces, and is evaluated accounting for
the whole set of interfaces. When the solution converges to sexact, the two consecutive iterates merge and the indicator
tends to zero.

If the exact solution sexact of the problem is available, one can compare the evolution of the LATIN indicator η
with reference solutions errors in terms of interface displacements or interface forces, defined as follows:

ηW =

√√∑
E ∥WE −WE,exact∥

2
2∑

E ∥WE,exact∥
2
2

and ηF =

√√∑
E ∥FE − FE,exact∥

2
2∑

E ∥FE,exact∥
2
2

, with ∥□∥22 =
∫
∂ΩE×[0,T ]

□2dS dt. (4)

The LATIN indicator (Eq. (3)) gives an evaluation of the convergence of the problem in a global manner in space and
time for all the possible domains and interfaces. It is clear that such a global convergence indicator does not guarantee
that the solution has locally converged in space and time. For this reason, one could be also interested in looking for
the error at a specific time value t by means of a LATIN time indicator ηt:

ηt =

√√ ∑
E ∥sE(t) − ŝE(t)∥2

∂ΩE

1
2
∑

E(∥sE(t)∥2
∂ΩE
+ ∥ŝE(t)∥2

∂ΩE
)
, with ∥sE(t)∥2∂ΩE

=

∫
∂ΩE

(kW2
E(t) + k−1FE(t)2)dS . (5)

A more severe convergence indicator has been proposed in [55], where a sup-norm over all the interfaces and all
the space-time domain is considered. However, the previous error indicators are dependent on the search direction k,
and therefore, if k varies, for a given value of the error the solution may be significantly different. This point is crucial
for contact problems where an accurate computation of local contact quantities is required, and it will be investigated
in a future work.

3.3. Application on the 1D test problem

In this section, the monoscale LATIN method presented previously will be applied to the one-dimensional test
problem described in Section 2, to highlight strengths of the method and critical points. The benchmark test of
Figure 1a will be adopted, with the loadcase 1 of Figure 1b and the parameters of Table 1. Continuous linear shape
functions are used for substructure displacement field and piecewise constant shape functions for interface quantities
[23]. We start with the case where only one substructure ΩE = Ω, coincident with the space domain, is considered. A
reference search direction parameter k = k0 = ES/L is chosen.

To emphasize the peculiarity of the LATIN to solve the nonlinear problem in a non-incremental manner, the
solution obtained for the frictional contact forces, in space and time, along different iterations of the LATIN is shown
in Figure 8. Already from the first iteration, the algorithm produces a global space-time view of the problem, which
is subsequently refined locally along the iterations. Figure 9a shows the evolution of the LATIN indicator η (3) along
the iterations, compared with the reference errors ηW and ηF (4). Displacements and interface forces have roughly
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Figure 8: Space-time distribution of frictional forces along some LATIN iterations and reference solution.

the same convergence rate, although, for a fixed number of iterations, the interface forces are less accurate than the
displacements, and more critical to make converge. The LATIN indicator, which blends displacements and forces
through the search direction k, presents approximately the same rate of convergence as ηW and ηF , and an accuracy
for a fixed number of iterations that lies in between the two. In Figure 9b is shown the LATIN time indicator ηt (5)
along the time interval at different iterations. As expected, the error on the different time steps is not uniform.
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(a) LATIN indicator η and error indicators ηW and ηF .
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(b) LATIN time indicator ηt .

Figure 9: LATIN convergence and error indicators.

As mentioned previously, the value of the parameter k that one makes use of in the LATIN algorithm affects
the convergence rate of the problem, but not the result at convergence, which renders the method strongly robust
for whatever complex loading and any number of frictional contact interfaces. The results in Figure 10a show how
different values of k affect the convergence rate of the algorithm. The optimal search direction parameter k for
frictional contact problems, which guarantees the best convergence rate, is not known a priori since it depends on
the particular problem. It is crucial also to evaluate the influence of the search direction parameter k on the quality
of a converged solution. In Figure 10b is shown a snapshot of the frictional forces distribution at time t = 0.5 s of
the problem solved with three different values of the search direction parameter, k = k0 = ES/L, k = 0.1 k0 and
k = 10 k0, until reaching a LATIN convergence indicator threshold of η = 10−3. A good convergence indicator should
provide solutions of comparable quality whatever the value of the search direction adopted, for a fixed value of the
convergence threshold. In this case one can notice that for a given convergence threshold η, the solutions provided
for different values of the search directions are quite different. In particular, the error concerns mostly the accurate
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identification of the sticking-sliding transition zones. The issue of proposing a convergence indicator independent
from k will be addressed in a later article.
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(a) Influence of the search direction parameter k on the convergence rate of the
LATIN method.
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(b) Influence of the search direction parameter k on the solution quality for a given
value of η = 10−3.

Figure 10: Influence of the search direction parameter k.

A monostructure case of the problem was considered in previous results. The LATIN, however, naturally leads
to a monoscale domain decomposition method. Let us consider how the solution of the original problem behaves by
partitioning it into substructures, as in Figure 11. To each substructure is assigned the same spatial discretization of
Table 1. For this numerical scalability study, the ratio h/H is kept constant and equal to 1/50, where h is the element
size and H the substructure size. Each substructure is linked to the neigbouring ones through perfect interfaces.

contact 
interface

perfect 
interface

force BCs displacement BCs

𝐹𝑑

𝑝

𝑥

1 2 3 4 5

Figure 11: Substructured 1D test problem into 5 substructures, with respective numbering.

Figure 12a shows, in the case of 10 substructures, the frictional forces distribution at time t = 0.5 s along some
iterations of the LATIN. The monoscale nature of the approach allows the exchange of information only between
neighboring substructures. In the first iteration, only the substructure directly subject to the external load sees the effect
of the loading. The influence of the external load is then slowly propagated to the remaining substructures iteration
after iteration, which causes a decrease of the convergence rate with the number of substructures (Figure 12b). This
domain decomposition strategy is clearly not numerically scalable. It will be shown subsequently in Section 5 how
the multiscale strategy allows to address this issue as well.
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(a) Frictional forces solution at time t = 0.5 s with 10 substructures with the
monoscale LATIN-DDM.
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Figure 12: Monoscale LATIN-DDM applied to the substructured 1D problem in Figure 11.

4. Solving linear stage problems with PGD

The linear stage of the LATIN algorithm, as described in Section 3, consists in solving independently, for each
substructure ΩE , a linear problem on the whole space-time domain. For this reason, it is suitable for model-order
reduction based on the separation of variables. In particular, a priori model reduction based on the PGD [28] can be
introduced in the linear stage of the LATIN method in order to speed up the computations [19, 39, 38].

First of all, starting from the initial linear elastic solution s0 given by Problem 6, let us write the solution sn+1
at the current iteration as a correction with respect to the previous iteration solution, that is sn+1 = sn + ∆s. Given
the linearity of the equations pertaining to the manifold A[0,T ]

d , the E-admissibility conditions and the search direction
equation can be equivalently written, for each substructure ΩE , in terms of corrections. Similarly, the search direction
equation E− at the current iteration n + 1 can be equivalently written as

∆FE + k∆WE − δE = 0, (6)

with the quantity δE = F̂E + kŴE − (FE,n + kWE,n) known at the current iteration, and which depends on the previous
local and linear stage. By taking into account kinematic and static admissibility to zero and the constitutive relation,
the equivalent problem in terms of corrections to be solved at the linear stage is the following linear problem:

Problem 7. Find (∆uE , ∆WE) ∈ E[0,T ]
E,ad such that, ∀(u∗,W∗) ∈ E[0,T ]

E,ad ,∫
ΩE×[0,T ]

ε(∆uE) : K : ε(u∗)dΩdt =
∫
∂ΩE×[0,T ]

∆FE ·W
∗dS dt,

with ∆FE + k∆WE − δE = 0.

A progressive construction of space-time functions for PGD is classicaly used [28], and consists in looking for a
separated representation solution of Problem 7 for the corrections of forces and displacements, that is

∆uE = z(x)λ(t) on ΩE × [0,T ], ∆WE = Z(x)λ(t) and ∆FE = G(x)ψ(t) on ∂ΩE × [0,T ], (7)

where λ, ψ ∈ J = L2
[0,T ] and time functions of ∆uE and ∆WE are taken equal for kinematic admissibility.The separated

representation for ∆FE has to verify the static admissibility and the constitutive relation. By injecting the separated
representations (7) in Problem 7, and by making use of trial functions u∗ = z∗λ + zλ∗ and W∗ = Z∗λ + Zλ∗ belonging
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to E[0,T ]
E,ad , one obtains the following two conditions to be satisfied in order for the separated representations (7) to be

admissible:
∀λ∗ ∈ J ,

∫
[0,T ]

λλ∗dt
∫
ΩE

ε(z) : K : ε(z)dΩ =
∫

[0,T ]
ψλ∗dt

∫
∂ΩE

G · ZdS , (8)

∀(z∗,Z∗) ∈ EE,ad,

∫
ΩE

ε(z) : K : ε(z∗)dΩ
∫

[0,T ]
λ2dt =

∫
∂ΩE

G · Z∗dS
∫

[0,T ]
λψdt. (9)

In Eq. (9), the space EE,ad is the space of kinematic admissibility for functions not depending on time, such as space
modes z, Z and G. Similarly, in the following, SE,ad,0 will indicate the E-admissibility to zero for space modes (see
Definition 1). From Eq. (8), the arbitrary of λ∗ enables one to say that, up to a multiplicative constant, ψ(t) =
λ(t), ∀t ∈ [0,T ]. On the other hand, from Eq. (9), the following admissibility condition between space modes of
forces and displacements holds:

∀(z∗,Z∗) ∈ EE,ad,

∫
ΩE

ε(z) : K : ε(z∗)dΩ =
∫
∂ΩE

G · Z∗dS . (10)

These two conditions (i.e., time modes being equal and space modes verifying condition (10)) have to be satisfied
by the space and time modes of the separated representation of the current linear stage to belong to the admissible
space A[0,T ]

d of the LATIN algorithm. However, with such an admissible separated representation, the search direction
equation (6), rewritten as (G + kZ)λ − δE = 0, cannot be strictly verified since δE is not in a separated format.

4.1. Finding a new pair of modes
The admissibility condition of Eq. (10) guarantees that the separated representation lies in the admissible space

A[0,T ]
d . However, the search direction can be verified only in a weak sense. Since the search direction is a parameter

of the strategy, it doesn’t need to be verified accurately, but sufficiently nevertheless, for the strategy to converge.

Problem 8 (enrichment stage). Find (z,Z,G) ∈ SE,ad,0 and λ ∈ J minimizing the error in search direction

(Z,G, λ) = arg min
(G,Z,λ)∈SE,ad,0×J

∥(G + kZ)λ − δE∥
2
2, (11)

and satisfying the admissibility condition of Eq. (10), with ∥□∥22 =
∫
∂ΩE×[0,T ]

□2dS dt.

In order to solve the above defined problem, an auxiliary mixed space mode, defined on the boundary ∂ΩE , is
introduced [35]:

L := G + kZ. (12)

Subsequently, the minimization problem of Eq. (11) is solved for L and λwith a fixed point iterative strategy, shown in
Algorithm 1, where we arbitrarily choose to normalize space modes. The first step consists in computing L knowing
λ from the previous iteration. Then, the second step consists in updating λ knowing L from the first step. After few
iterations (two or three are usually enough), L and λ are no more significantly updated and the process is stopped
[28]. Then, by making use of admissibility condition (10), one can retrieve the admissible z, Z and G space modes
from L. Therefore, δE is approximated as δE = F̂E + kŴE − (F0,E + kW0,E +

∑p+1
k=1 Lkλk), and solution fields, which

are admissible, can be written in a separated representation as uE = u0,E +
∑p+1

k=1 zkλk, WE = W0,E +
∑p+1

k=1 Zkλk and
FE = F0,E +

∑p+1
k=1 Gkλk, with p + 1 being the current PGD basis size after the enrichment stage.

The minimization problem (11), since the substructure is linear and search directions only concern interface quan-
tities, is defined in space on the substructure boundary. When generating new modes the most costly part concerns
the generation of space modes, due to the admissibility condition (10), which requires the resolution of a problem in
space of the size of the substructure. For this reason, prior to adding a new pair of modes in the enrichment stage, if
a given basis of p modes {Lk, λk}

p
k=1 is available, a preliminary updating of time modes can be performed by keeping

fixed the space modes, as shown in Problem 9. The updating stage consists in a cheap projection onto the current
PGD basis and, since space modes are fixed (i.e., they are already admissible), there is no need to verify admissibility
condition for the p space modes.

14



Algorithm 1: Enrichment stage: new pair of PGD modes
■ initialization: λ(t) = 1
for n = 1 to nmax do

– compute space mode: L =
∫

[0,T ] δEλ dt
/ ∫

[0,T ] λ
2 dt

– compute time mode: λ =
∫
∂ΩE

δE · L dS
/ ∫

∂ΩE
L2 dS

– normalize space mode: L← L/∥L∥
– amplify time mode: λ← λ∥L∥

Problem 9 (preliminary updating stage). Find ∆λk ∈ J , k = 1, . . . , p minimizing the error in search direction

{∆λk}
p
k=1 = arg min

∆λk∈J

∥
∑p

k=1 Lk∆λk − δE∥
2
2, (13)

and subsequently update time modes {λk}
p
k=1 ← {λk}

p
k=1 + {∆λk}

p
k=1.

The updating stage largely improves the quality of the PGD representation [28]. After the updating stage, if the
quality of the representation is not satisfactory, one proceeds to add a new pair (or more) of modes. This step is
crucial. In fact, for a better efficiency of the method, it is necessary to create the minimum amount of modes and to
avoid the creation of redundant and unnecessary ones, as shown in the next Section 4.2.

Remark 10. Since nonlinearities are confined only to interfaces, search directions have been introduced only for
interface quantities, resulting into a simple interface residual minimization for the generation of a new mode. For
more general nonlinear problems where nonlinearities can also occur within the substructures, search directions have
to be introduced for quantities defined on both interfaces and substructures, resulting into a more involved formulation.
For material nonlinearities, interested readers can refer to [41, 53, 56].

4.2. Controlling the size and quality of the PGD basis

A generally adopted enrichment criterion (e.g., in [35]) used to decide whether to add or not a new pair of modes
is the one based on the LATIN indicator stagnation. Given the LATIN indicator η at the previous iteration, and η̃ after
the updating stage (Problem 9), a new pair of modes is added if the following stagnation criterion is satisfied:

θ =
η − η̃

η
< θ0. (14)

However, this indicator is poorly suited for frictional contact problems. In fact, as shown in Figure 10a, the conver-
gence rate of the LATIN is mainly dependent on the search direction parameter k. Since in the presented formulation
admissibility is exactly verified and only the search direction is approximated (see Problem 8), after a certain point
adding new modes will not improve the convergence rate, which is driven by k, and new useless modes would be
consistently added. A more appropriate criterion is naturally based on the definition of the separated representation
itself, according to Problem 8. In fact, what one approximates is the quantity δE at every iteration (see Eq. (11)). For
this reason, it is natural to choose a criterion based on the accuracy of the approximated search direction [41]:

ξ =
∥δE − δ̃E∥2

∥δE∥2
> ξ0, (15)

where δ̃E = F̂E + kŴE − (F0,E + kW0,E +
∑p

k=1 Lk(λk + ∆λk) is the approximation of the search direction after the
updating stage, by keeping constant the space basis {Lk}

p
k=1. In both cases, a threshold of 0.1 is commonly adopted.

In the θ-criterion (14), this corresponds to a decrease of the LATIN indicator by a factor less than 10%, while, in the
ξ-criterion (15), it corresponds to an approximation of the search direction with a relative error more than 10%.

A reasonable enrichment criterion is crucial for the PGD basis not to grow uncontrollably in size, loosing effec-
tiveness of the method. For highly non-regular phenomena like frictional contact problems, it is challenging to create
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progressively a ROB of the smallest size possible to ensure a given accuracy, that is to be close to the SVD basis of
the final solution. The progressively found PGD modes may be highly redundant even when performing the updating
stage, and the basis size may increase with modes which add little to no contribution to the representation accuracy.
This problem can be palliated, for example, by systematically performing a Gram–Schmidt orthonormalization for
the space modes. However, even after orthonormalization of space modes, redundancy may still occur on time modes
[57]. An approach that can be adopted is to perform a full SVD computation of the solution after each enrichment
step, and to keep the most significant modes as basis for the next iteration. Less expensive methods could make use
of SVD updating techniques [58, 59] or randomized SVD [57]. In [35], in the context of frictional contact problems,
an iterative sorting and downsizing algorithm has been proposed to decrease the size of the PGD basis throughout the
LATIN iterations, while maintaining a given quality of the solution. At convergence, the algorithm is equivalent to an
SVD, however, since it is not required to compute exactly the SVD at each LATIN iteration, few iterations (1 or 2)
of the algorithm at each LATIN iteration are sufficient for the purpose. Applied in the case of the monoscale LATIN
method without domain decomposition, the downsizing algorithm is indeed effective in controlling the size and qual-
ity of the reduced basis. However, it will be shown throughout this paper (Section 6) that it may still be too costly
and that, with a proper choice of the enrichment criterion and taking into account the multiscale aspects of contact
problems through a multiscale approach based on DDM, it is possible to create PGD reduced bases of controlled size
and good quality without resorting to SVD-like techniques.

4.3. Application on the 1D test problem

Here, the LATIN-PGD strategy is applied to the resolution of the benchmark problem illustrated Figure 1a, with
the loadcase 1 of Figure 1b and the parameters of Table 1. The monostructure case ΩE = Ω without DDM is
considered. The goal is to study deeply the PGD only.

First, the LATIN-PGD algorithm with the θ enrichment criterion (14), with θ0 = 0.1, is considered. A first
strategy consists in adding a new pair of modes any time the enrichment criterion (14) is satisfied after the updating
stage (LATIN-PGD(θ)), without making use of sorting algorithms for the PGD basis. A second strategy consists
in performing also a Gram–Schmidt orthonormalization of the space modes any time a new pair of modes is added
(LATIN-PGD(θ)+GS), and a third one consists in performing an additional downsizing stage (see Appendix B) for
the PGD basis at each LATIN iteration (LATIN-PGD(θ)+D). In the LATIN-PGD(θ)+D strategy, a single iteration of
the downsizing algorithm presented in [35] is performed at each LATIN iteration, and a threshold ϵ = 10−4 is chosen
for the mode rejection. The different strategies investigated throughout the paper and their properties are reported in
Table 2. We consider to add at most one pair of modes after the updating stage. In fact, more pairs of modes can be
added at each LATIN iteration, however, adding more modes leads to increase the PGD basis with unnecessary modes
when far from convergence.

LATIN-PGD strategies
Strategy ROB enrichment

criterion
ROB sorting algorithm Comments

full LATIN - - no PGD
LATIN-PGD(θ) θ-criterion (14) - no ROB sorting algorithm
LATIN-PGD(θ)+GS θ-criterion (14) Gram–Schmidt only space modes are sorted
LATIN-PGD(θ)+D θ-criterion (14) downsizing (Appendix B) low-cost SVD algorithm [35]
LATIN-PGD(ξ) ξ-criterion (15) - no ROB sorting algorithm
LATIN-PGD(ξ)+D ξ-criterion (15) downsizing (Appendix B) low-cost SVD algorithm [35]

Table 2: Different LATIN-PGD strategies investigated throughout the paper.

Figure 13b shows the evolution of the PGD basis size along the LATIN iterations by making use of the three
different strategies described previously. Regarding the LATIN-PGD(θ), the basis size largerly exceeds the original
size of the problem (considering the problem size in space variable, a maximum of 50 modes is required for an exact
evaluation of the quantities, see Figure 5a). Given the particular behavior of the LATIN convergence indicator, with
a high rate in the first iterations (almost independent from the search direction parameter k) and a lower rate in the
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subsequent iterations (controlled by the value of k), the θ-criterion generates less modes in the first part and more
modes in the second one. However, since the convergence rate in this second part is driven by the search direction
parameter k, most of the generated modes will be useless.

The curve in Figure 13b of the LATIN-PGD(θ)+D confirms the previous hypothesis on the useless modes gener-
ated. In fact, the downsizing algorithm does not reduce the size of the basis in the first part of the LATIN iterations,
while, after a certain point (approximately after iteration 40, where the LATIN indicator curve changes slope), most of
the newly added modes are rejected. The final size of the downsized basis lays between 30 and 40 modes, which is the
size required for the contact quantites to be accurately represented (see Figure 5a). Finally, the LATIN-PGD(θ)+GS
shows to be uneffective to control the basis size, as it just limits the basis size not to exceed the size of the problem.

Figure 13a shows the behaviour of the LATIN indicator for the full LATIN (i.e., without PGD) and the different
LATIN-PGD(θ) strategies. The high slope initial convergence is oscillating and not well captured, while the second
part of the curve, where a new mode is generated almost systematically, is more uniform and tends to the full LATIN
curve. The convergence curves of the different LATIN-PGD(θ) strategies described are in practice coincident, since
the goal of ROB sorting methods is to control the size of the progressively built PGD basis without losing appreciable
accuracy.
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Figure 13: Convergence curves and PGD basis analysis for the LATIN-PGD(θ) strategies.

The behavior of the PGD basis along the iterations with the LATIN-PGD(θ)+D can be easily visualized by making
use of the Modal Assurance Criterion (MAC) diagrams between the PGD modes and the SVD modes [60]. Shortly,
given two sets of vectors of the same dimension {Xi}

p
i=1 and {Y j}

p
j=1, the MAC matrix M is defined as:

Mi j =
|XT

i Y j|
2

∥Xi∥
2∥Y j∥

2 ∈ [0, 1]. (16)

Mi j measures the correlation between mode Xi and mode Y j. Mi j = 1 means that the modes are collinear, that is
highly correlated, otherwise Mi j = 0 means that the modes are orthogonal, that is highly uncorrelated. At every
LATIN iteration n, a full SVD of the linear stage solution Fn + kWn for the mixed quantity is computed and compared
to downsized PGD modes {Lk} (12) by making use of the MAC criterion definition (16).

Figure 14 displays the MAC diagram for the auxiliary mixed modes. The downsizing algorithm provides along
the iterations a quasi-optimal basis correlated to the SVD (as shown in [35]). The resultant correlation for downsized
space modes {Zk} and {Gk}, not shown here, obtained from the admissibility condition of Eq. (10), is still good but not
as accurate as for {Lk}.

Nevertheless, the PGD strategy is based on the approximation of the search direction through space modes {Lk},
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from which the admissible space modes {Zk} and {Gk} are obtained through the solution of a problem in space at
the substructure level. Although applying downsizing to the {Lk} basis is cheap, after the process, to compute the
downsized space basis {Zk} and {Gk} of displacements and frictional forces, equation (10) must be solved again for
all the basis and this step may be expensive, as it will be shown on a more complicated 2D case in Section 6. It is
therefore clear that the most important thing is to choose a relevant enrichment criterion, and a proper strategy, which
enable to generate relevant modes and reduce the generation of redundant and useless ones.
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Figure 14: MAC diagrams for auxiliary space modes {Lk} along the iterations of the LATIN method.

Let us consider now the LATIN-PGD(ξ) strategy by making use of the ξ criterion (15), with ξ0 = 0.1, without
resorting to orthonormalization or downsizing. Figure 15a shows the LATIN-PGD(ξ) strategy convergence indicator
and basis size along the LATIN iterations. In this case, the evolution of the PGD basis along the iterations is different
from the LATIN-PGD(θ). More modes are created in the first iterations, where the LATIN convergence indicator rate
is higher and there is a large variation in the solution from one iteration to another. Afterwards, the contact quantities
converge locally slowly and for several LATIN iterations there is no need to enrich the ROB. The LATIN indicator
behaves accordingly. A perfect match in the first part of the convergence curve with respect to the full LATIN indicator,
and a very good match in the second part. Remarkably, the size of the PGD basis remains limited, and the final size
is in the range of the one obtained previously by means of the LATIN-PGD(θ)+D strategy, which corresponds to the
range in which the contact forces are accurately approximated (Figure 5a). The progressively built PGD basis, in this
case, is not correlated with the SVD, as it can be seen from Figure 15b for the auxiliary mixed modes {Lk}. However,
it can be noticed that the very first modes have a good correspondence with the first structural modes of the SVD,
while subsequent ones, more related to local corrections, are more dispersed and harder to capture optimally. This
is because, in the analyzed case, a monostructure case ΩE = Ω was considered and, as seen in Section 2, higher-
order modes carry localized corrections in different areas of the structure according to sticking/sliding conditions. As
suggested in [35], a multiscale strategy may be useful in this context, with the coarse/macroscale problem quickly
capturing the solution at the global scale, and the model-order reduction technique (here PGD) then being able to
capture microscopic/local variations in the solution more effectively. This will be illustrated in the next section, where
a multiscale strategy based on DDM is proposed within the framework of the LATIN method.

5. Introduction of a multiscale strategy

In this section, the main features of the multiscale strategy are recalled, for further details the interested reader can
refer to [23, 38]. The multiscale strategy is introduced in space at the interface level, where the interface unknowns
(interface displacements and forces) are additively split into □ = □M+□m (prior to any discretization), with □M being
the set of macroscopic quantities and □m the complementary set of microscopic ones. The macroscale is defined by
the characteristic length of the interfaces, which is a priori greater than the discretization on the microscale. Let us
consider an interface ΓEE′ , one may freely choose the spaces F [0,T ],M

EE′ and W[0,T ],M
EE′ in which the macroforces and

macrodisplacements are sought, provided that the work bilinear form in macroquantities is nondegenerate [38]. The
microquantities are given by Fm = F − FM and Wm = W −W M , and the macroquantities are defined such that they
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Figure 15: Convergence curve and PGD basis analysis for the LATIN-PGD(ξ) strategy.

fulfill the following uncoupling property:∫
ΓEE′×[0,T ]

F ·WdS dt =
∫
ΓEE′×[0,T ]

FM ·W MdS dt +
∫
ΓEE′×[0,T ]

Fm ·WmdS dt.

This partitioning, extended to the whole set of interfaces, leads to spacesW[0,T ],M ,W[0,T ],m,F [0,T ],M ,F [0,T ],m.
Usually one chooses for FM and W M affine functions in space variable over ΓEE′ , with the only constraint being

for the space of the macrodisplacements to include the rigid body modes over ∂ΩE , so that the multiscale approach is
numerically scalable [22, 61]. Finally, FM and W M can be written over ΓEE′ as □M =

∑nM
i=1(
∫
ΓEE′

□ · eM
i (x)dS )eM

i (x).
A classical choice of affine macrobasis functions {eM

i (x)}i=1,...4 is represented in Figure 16 for a 2D straight interface,
it contains the rigid body motions of the interface (two translations and rotation) and the linear elongation of the
interface [22, 61]. These quantities are mean values with regard to space and enable to represent in particular interface
rigid body modes and resultants and moments at the interfaces.

𝑒1
𝑀(𝑥) 𝑒2

𝑀(𝑥)

𝑒3
𝑀(𝑥) 𝑒4

𝑀(𝑥)

Figure 16: Affine macrobasis {eM
i (x)}i=1,...,4 (nM = 4) for an interface ΓEE′ .

The key feature of the multiscale strategy is that the equilibrium conditions at the interfaces are required to be
verified a priori in a macrosense [22, 38]. The macroforces must be balanced at the interfaces, including the interfaces
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with boundary conditions. The corresponding space is designated by F [0,T ],M
ad , and represents the admissibility of FM:

F
[0,T ],M

ad :=
{
FM ∈ F [0,T ],M | ∀E ∈ E, ∀E′ ∈ VE , FM

E + FM
E′ = 0

}
. (17)

5.1. The multiscale strategy within the LATIN framework

With reference to the substructured Problem 2, the partial verification of the transmission conditions a priori at
the interfaces (17) leads now to the following partitioning in the LATIN framework:

– the E-admissibility of sE ,∀E ∈ E : sE ∈ S[0,T ]
E,ad (Definition 1)

A[0,T ]
d :

– the admissibility of FM : FM ∈ F
[0,T ],M

ad (17)

Γ[0,T ]: – the constitutive behavior of the interfaces (1)

The local stage remains unchanged from the one described in Problem 3. One has to solve a local problem in space
and time for the whole set of interfaces based on known quantities coming from the linear stage. Conversely, in the
linear stage, now the a priori balance of the macroforces (17) must be enforced. The admissibility of FM ∈ F

[0,T ],M
ad is

enforced on the search direction equation E− by means of a Lagrange multiplier W̃ M
= {W̃ M

E }E∈E [38]:

∀F∗ ∈ F [0,T ],
∑
E∈E

∫
∂ΩE×[0,T ]

{k−1(FE − F̂E) + (WE − ŴE)} · F∗EdS dt =
∑
E∈E

∫
∂ΩE×[0,T ]

W̃ M
E · F

∗
EdS dt, (18)

∀W̃ M∗
∈ W

[0,T ],M
ad,0 ,

∑
E∈E

∫
∂ΩE×[0,T ]

W̃ M∗
E · FEdS dt =

∑
E∈E

∫
∂ΩE∩∂2Ω×[0,T ]

W̃ M∗
E · FddS dt. (19)

The Lagrange multiplier W̃ M belongs to the spaceW[0,T ],M
ad,0 of macrodisplacements which are continuous at the inter-

faces and equal to zero on ∂1Ω. Eq. (18) represents the search direction in a weak sense with enforced admissibility
of macroforces, and Eq. (19) expresses the admissibility of macroforces in a weak sense. The admissibility of the
macroforces ensures the propagation of global information throughout the whole set of substructures across the inter-
faces. The strategy is numerically scalable provided that the macroforces can represent the resultants and moments at
the interfaces, which is ensured with an affine macrobasis (Figure 16). The linear stage can now be reformulated as
follows:

Problem 11 (modified linear stage). Find s = {sE}E∈E ∈ A[0,T ]
d verifying, ∀x ∈ ΩE and ∀t ∈ [0,T ],

– the E-admissibility of sE : sE ∈ SE,ad
– the modified search direction (18)
– the admissibility of macroforces (19)

Taking into account the E-admissibility and the modified search direction, the following linear problem, called
microproblem, has now to be solved for each substructure:

Problem 12 (microproblem on a substructure). Find (uE ,WE) ∈ E[0,T ]
E,ad such that, ∀(u∗,W∗) ∈ E[0,T ]

E,ad ,∫
ΩE×[0,T ]

ε(uE) : K : ε(u∗)dΩdt +
∫
∂ΩE×[0,T ]

kWE ·W
∗dS dt =∫

ΩE×[0,T ]
f

d|ΩE
· u∗dΩdt +

∫
∂ΩE×[0,T ]

(F̂E + kŴE + kW̃ M
E ) ·W∗dS dt,

with FE = F̂E + k(ŴE −WE + W̃ M
E ).
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The solution of Problem 12, associated with substructure ΩE , depends only on the known quantities f
d|ΩE

, ŝE and

the unknown Lagrange multiplier W̃ M
E over ∂ΩE . Since the problem is linear, the following proposition holds:

Proposition 13. If K and k are symmetric and positive definite, then Problem 12, defined over ΩE and its boundary
∂ΩE , has a unique solution such that

FM
E = LF

E(W̃ M
E ) + F̂M

E,d, (20)

where W̃ M
E ∈ W

[0,T ],M
E and F̂M

E,d depends on f
d|ΩE

and ŝE .

LF
E is a linear operator fromW[0,T ],M

E onto F [0,T ],M
E . It can be interpreted as a homogenized behavior operator over

substructure ΩE which ensures the coupling between the microscale and the macroscale. LF
E is in practice evaluated

by solving a set of microproblems for a set of loading cases W̃ M
E , with f

d|ΩE
and ŝE set to zero. If k is constant (and

since K is the constant Hookean operator for linear elasticity), LF
E can be precomputed offline once and for all before

starting the iterative process. Since W̃ M
E depends on only a few interface kinematic parameters, the calculation of LF

E
is obtained at relatively low cost [38, 56].

5.1.1. The macroproblem over Ω

The Lagrange multiplier W̃ M
= {W̃ M

E }E∈E is found by solving a macroproblem (or coarse scale problem) over all
the set of interfaces. The weak form of the static admissibility of macroforces (19) and the relation (20) lead to the
following displacement formulation of the macroproblem in terms of the Lagrange multiplier W̃ M:

Problem 14 (macroproblem). Find W̃ M
= {W̃ M

E }E∈E ∈ W
[0,T ],M
ad,0 which verifies, ∀W̃ M∗

∈ W
[0,T ],M
ad,0 ,

∑
E∈E

∫
∂ΩE×[0,T ]

W̃ M∗
E · (L

F
E(W̃ M

E ) + F̂M
E,d)dS dt =

∑
E∈E

∫
∂ΩE∪∂2Ω×[0,T ]

W̃ M∗
E · FddS dt. (21)

The problem has a unique solution if mes(∂1Ω) , 0 [56].

The Lagrange multiplier W̃ M given by the macroproblem is equal to zero at convergence of the LATIN algorithm,
when the balance of interface forces is verified. In practice, it tends to zero quickly in the first iterations, where
the macroquantities are rapidly converged. The macroproblem has a size in space of

∑
i=1...nΓ n(i)

M , with nΓ being the
total number of interfaces and n(i)

M being the number of macroscopic kinematic unknowns (translations, rotations,
extensions) for the interface i. Such kinematics belong to specific classes of continua with affine microstructure [62].

Remark 15. The macroscale has been introduced only in the space variable, while no macroscale was considered in
time variable. Defining macroquantities for both space and time variables is addressed in [38]. When the strategy is
multiscale only in space, the macroproblem must be solved at each time interval of the fine time partition. When the
macroproblem becomes very large, this step can become prohibitive in the case of evolution problems with a lot of
time steps. Introducing a macroscale in time may then be necessary [38], and possibly model-order reduction to solve
the macroproblem [63].

5.1.2. The final algorithm
The final algorithm of the LATIN-based multiscale DDM is shown in Algorithm 2. It is an extension of the

strategy presented in Section 3 for the monoscale case. After the local stage (Problem 3), local stage quantities ŝ are
used as boundary loadings to solve a problem at the substructure scale. This is called microproblem 1, coincident with
the linear stage problem to be solved in the monoscale case (Problem 5). In the multiscale approach, after solving
microproblem 1 for each substructure, the macrocomponent FM of the interface forces are extracted and used to solve
the macroproblem (Problem 14) and to find the Lagrange multiplier W̃ M

E of each interface, which is used as boundary
loading to solve the microproblem 2. Thus, the linear stage solution is the sum of the solutions of microproblem 1 and
microproblem 2.
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Algorithm 2: Multiscale LATIN-DDM
■ preliminary computations
for each substructure ΩE do

– compute the homogenized operator LF
E

– initialize admissible solution s0,E (Problem 6)
■ LATIN iterations
for n = 1 to nmax do

■ local stage: find ŝn+1/2 ∈ Γ
[0,T ]

for each interface ΓEE′ do
– solve interface Problem 3 to find ŝE = (ŴE , F̂E) (see Appendix A)

– set ŝn+1/2 = {ŝE}E∈E
■ linear stage: find sn+1 ∈ A[0,T ]

d
■ microproblem 1
for each substructure ΩE do

– find (ûE,d, ŴE,d) ∈ E[0,T ]
E,ad such that, ∀(u∗,W∗) ∈ E[0,T ]

E,ad ,∫
ΩE×[0,T ]

ε(ûE,d) : K : ε(u∗)dΩdt +
∫
∂ΩE×[0,T ]

kŴE,d ·W
∗dS dt =∫

ΩE×[0,T ]
f

d|ΩE
· u∗dΩdt +

∫
∂ΩE×[0,T ]

(F̂E + kŴE) ·W∗dS dt

– find F̂E,d through the search direction E−: F̂E,d − F̂E + k(ŴE,d − ŴE) = 0
– compute macroforces F̂M

E,d

– set sn+1 = {ŝE,d}E∈E
if multiscale then
■ macroproblem:
– find W̃ M

= {W̃ M
E }E∈E ∈ W

[0,T ],M
ad,0 such that, ∀W̃ M∗

∈ W
[0,T ],M
ad,0 ,∑

E∈E

∫
∂ΩE×[0,T ]

W̃ M∗
E · (L

F
E(W̃ M

E ) + F̂M
E,d)dS dt =

∑
E∈E

∫
∂ΩE∪∂2Ω×[0,T ]

W̃ M∗
E · F

M
d dS dt

■ microproblem 2
for each substructure ΩE do

– find (ũE , W̃E) ∈ E[0,T ]
E,ad such that, ∀(u∗,W∗) ∈ E[0,T ]

E,ad ,∫
ΩE×[0,T ]

ε(ũE) : K : ε(u∗)dΩdt +
∫
∂ΩE×[0,T ]

kW̃E · W∗dS dt =
∫
∂ΩE×[0,T ]

kW̃ M
E · W∗dS dt

– find F̃E through the search direction E−: F̃E + k(W̃E − W̃ M
E ) = 0

– set s̃n+1 = {s̃E}E∈E
– update sn+1 ← sn+1 + s̃n+1

– apply relaxation: sn+1 ← µsn+1 + (1 − µ)sn

– compute error indicator η (3)

5.2. Resolution of microproblems with PGD

The introduction of PGD in the multiscale approach to solve the two microproblems is entirely analogous to what
was presented in Section 4 for the monoscale case. Starting from an admissible initial solution s0 (Problem 6),
the current iteration solution can be expressed as a correction with respect to the previous one: sn+1 = sn + ∆s.
Therefore, each microproblem of the multiscale strategy can be expressed in terms of corrections as in Problem 7, with
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δE,1 = F̂E + kŴE − (FE,n + kWE,n) for microproblem 1 and δE,2 = kW̃ M
E for microproblem 2. The two microproblems

share the same PGD basis and the procedure is analogous as the one described in Section 4, with the only difference
that now it is applied to two microproblems. In microproblem 1, an updating of the time modes is operated with the
given space modes fixed with Problem 9 and, if the ξ enrichment criterion (15) is not satisfied, a new pair of modes is
added with Algorithm 1. Once the first microproblem is solved for each substructure, the macroforces are extracted
and the Lagrange multipliers W̃ M

= {W̃ M
E }E∈E are found through the resolution of the macroproblem (Problem 14).

Then, one proceeds to solve microproblem 2 by updating the current time modes and eventually adding a new pair of
modes if the enrichment criterion is not satisfied.

At the start of the multiscale strategy, convergence is mainly driven by the macroquantities, which converge rapidly
in the first iterations. Therefore, it is reasonable to require the macroquantities to be sufficiently well approximated
in the early stages of the iterative process, in order to take full advantage of the multiscale strategy. We recall that
each microproblem 2 has as a loading the Lagrange multiplier W̃ M

E on the boundary ∂ΩE , and that W̃ M
E belongs to

a finite-dimensional space of small size. Therefore, a small finite number of modes is sufficient to precisely solve
microproblem 2 over all the iterations. For this reason, it is reasonable to require a bit more strict enrichment criterion
threshold ξ0,2 for microproblem 2 (e.g., ξ0,2 = 0.01), and a bit coarser enrichment criterion threshold for microproblem
1 (e.g., ξ0,1 = 0.1). Consequently, at the beginning of the iterations, the algorithm tends to generate systematically
more modes arising from microproblem 2, so that macroquantities converge quickly and accurately. Thereafter, once
a sufficient basis has been formed for the macroquantities, in the following iterations most of the generated modes
will be generated from microproblem 1, which converges more slowly and brings more localized corrections.

5.3. Application to the test problem

The multiscale strategy is applied here to the 1D test problem with load case 1 of Figure 1. Substructured cases are
considered, as in Figure 11, with each substructure assigned the same spatial discretization of Table 1. In Figure 17
is shown, for different number of substructures, the behavior of the LATIN indicator η in the monoscale version and in
the multiscale one, without resorting to PGD. The multiscale approach allows for a considerable convergence gain in
the first iterations, where macroquantities are rapidly converged. Subsequently, contact quantities are converged to the
local microlevel. In this second stage, the monoscale and multiscale approach exhibit roughly the same convergence
rate since both of them are making converge the quantities at the microlevel, and the convergence rate at the microlevel
is mainly driven by the search direction k. To highlight the effect of the multiscale strategy on the solution of the
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Figure 17: Monoscale and multiscale LATIN convergence indicator for different number of substructures.

problem, in Figure 18 is shown, in the case of 10 substructures, the solution for the frictional forces after 10 iterations
of the LATIN method for the monoscale approach and the multiscale one, compared to the reference solution at time
t = 0.5 s (Figure 18a) and t = 1 s (Figure 18b). Already after few iterations, the multiscale approach succeeds
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in capturing the global behavior of the problem. Subsequently, further iterations are needed to make converge the
microquantities, especially at the sticking-sliding discontinuity zones which need accurate local refinements. The
monoscale approach, on the other hand, turns out to be far from the reference solution, with the loading boundary
condition still not fully propagated along all the substructures.
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(a) Frictional forces distribution at time t = 0.5 s.
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(b) Frictional forces distribution at time t = 1 s.

Figure 18: Frictional forces distribution after 10 iterations of the full LATIN (without PGD) for the monoscale and the multiscale approach.

The effect of introducing PGD in the multiscale approach is shown in Figure 19. By making use of DDM, one
is able to create local reduced bases per substructure and enrich the basis in the areas with more complex contact
conditions, as exemplified in Figure 4. In Figure 19a, in the case of 5 substructures, is shown the evolution of the
PGD basis size for different substructures. An enrichment threshold ξ0,1 = 0.1 for microproblem 1, and ξ0,2 = 0.01
for microproblem 2 was adopted. Different substructures require a different number of modes. For substructure 1,
constantly under sticking conditions, the macrobasis is sufficient to capture the solution. Subsequent substructures, on
the other hand, require more modes based on the complexity of the sticking-sliding conditions. What is important to
remark is that the PGD basis remains in fact limited in size and, in addition, the MAC diagram in Figure 19b shows
that the first structural modes are roughly well captured by the macroproblem.

6. A 2D numerical application

6.1. Problem setting and analysis of the solution

In this section, the multiscale strategy is applied to the two-dimensional quasistatic frictional contact problem
depicted in Figure 20a. The problem consists of a group of three clamped beams subjected to a constant external
pressure p and to time-dependent oscillating traction and shear (which causes bending) loads in correspondence of
the free side. Each beam is decomposed internally into 6 substructures, and they are in contact with each other through
frictional contact interfaces. The external pressure is constant and equal to 100 MPa, while the external loads evolution
in time is represented in Figure 20b. The parameters of the problem are reported in Table 3. Plain strain assumptions
are considered, and 8-node quadrilateral elements (QUA8) are adopted for the discretization of the substructures. For
the discretization of interface quantities, on the other hand, piecewise constant elements are adopted while satisfying
the LBB condition [23], with compatible spatial discretizations. A reference search direction parameter k = E/LΓ
was chosen for each interface, with LΓ being the length of the interface. The test case can be seen as representative of
structures with multiple contact interfaces subjected to oscillating traction and bending loads, such as wire ropes for
offshore applications [2, 37]. These kind of structures require an accurate computation of local contact quantities for
fretting fatigue life prediction [64].
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Figure 19: Convergence curve and PGD basis analysis for the multiscale LATIN-PGD(ξ) strategy.
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Figure 20: Two-dimensional problem.

The reference solution is here obtained with the full multiscale LATIN method, for a convergence indicator value
of η = 1.5 · 10−5. In Figure 22 is shown the trend of the tangential frictional forces and their macroscopic part at time
instant A (t = 0.5 s) along the contact interface Γc highlighted in Figure 20a, which goes along the entire length of
the structure. As it can be seen, the affine macroscopic part roughly captures the trend of forces on each interface. In
Figure 23 is shown the relative sliding along Γc, at time instants A (t = 0.5 s) and B (t = 1.5 s). In A, where minimum
bending occurs, almost the entire structure results in a sticking state. The sliding is confined near the clamped bound-
ary, between substructures 1 and 7. In B, corresponding to maximum bending, on the other hand, the whole contact
interface turns out to be in a sliding state. In this case, the sliding propagates through the substructures. Sliding fronts
propagating through all the substructures can affect the relevance of the coarse scale Problem 14. The evolution of
the LATIN indicator in Figure 21, shows that there is in fact an initial gain in convergence, where boundary condi-
tions and macroquantities are propagated throughout the whole structure. However, thereafter the convergence rate
turns out to be comparable to the monoscale one. Since the macroproblem is based on the balance of macroforces,
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Parameters of the 2D problem
Young modulus, E 130 000 MPa
Poisson ratio, ν 0.2
structure size Lx, Ly 180 mm, 90 mm
number of elements per substructure 20 × 20 QUA8
number of DOFs per substructure, Nx 2562
number of time steps, Nt 1000
time interval, [0,T ] [0, 10 s]
friction coefficient, f 0.3
pressure load, p 100 MPa

Table 3: Parameters for the two-dimensional problem.
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in a problem where a large sliding/discontinuity front propagates through the substructures, the macroproblem after
a certain point brings few contribution on the solution of the contact problem locally, and iterating more is necessary
[43, 44].

The convergence state of the contact quantities coming from the linear and local stage (normal and tangential
forces and displacements) along the iterations of the multiscale full LATIN, at the contact interface Γc,1−7 between
substructures 1 and 7, is shown in Figure 24 for the time instant A of the loading. After 100 iterations, and a LATIN
indicator value of η = 4 · 10−4, the structure results are far from convergence. Regarding contact forces, the quantities
coming from the local stage appear to have already identified the sticking and sliding zones. This means that the
contact status, thanks to the multiscale approach, has converged quickly. As it can be seen in the next iterations,
500 (η = 8 · 10−5) and 1000 (η = 1.5 · 10−5), the forces from the local stage identify roughly the same sticking-
sliding transition zones. However, the tangential forces of the linear stage turn out to converge very slowly toward
this threshold of sticking-sliding. In contrast, the normal forces result to converge more rapidly. This fact may be due
to the choice of search direction parameter k. Tangential contact and normal contact should require different stiffness
[55]. In the case of normal contact, under closed gap conditions, the stiffness can be considered as the one of perfect
interfaces. In the case of tangential contact, on the other hand, more prone to slippage, the contact stiffness should be
lowered. As a result, convergence can be very slow in specific areas where sliding occurs. Optimizing and updating
the search direction for this class of problems requires further study and will be covered in a later article.
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Figure 23: Relative sliding along the contact interface Γc at time instants A and B.

6.2. Introduction of PGD

6.2.1. Influence of the choice of the PGD enrichment criterion
The introduction of PGD is performed at the substructure level, with the enrichment criterion of Eq. (15) which

takes into account the approximation on the search direction. Figure 25a shows the evolution of the LATIN indicator
in the multiscale full LATIN case and in the case of the LATIN-PGD(ξ) strategy with different enrichment thresholds.
A very strict enrichment threshold of ξ0,1 = ξ0,2 = 10−4 for both microproblems leads the LATIN-PGD(ξ) convergence
curve to coincide with the full LATIN curve, since at each iteration the search direction is approximated with very
good accuracy. A very coarse enrichment threshold, such as ξ0,1 = ξ0,2 = 0.5 on both microproblems, on the other
hand, leads the solution to stagnate and risk diverging. The initial part of the curve is not properly approximated,
which leads to affect the convergence in the rest of the iterations. By making use of a different enrichment threshold
for the two microproblems, as explained in Section 5.2, that is, a bit more strict for microproblem 2 (ξ0,2 = 0.01),
and a bit coarser for microproblem 1 (ξ0,1 = 0.1), leads to a good approximation of the problem. In fact, it is not
important to correctly approximate the search direction at each iteration, as it is useless when the algorithm is still far
from convergence. The important thing is to approximate the problem sufficiently to stay close to the convergence
given by the full LATIN (which, in fact, is the best that can be done with a given search direction k), while trying to
generate as few modes as possible.

In Figure 25b is shown the evolution of the PGD basis size along the LATIN iterations in two different substruc-
tures for two choices of the enrichment threshold, that is ξ0,1 = ξ0,2 = 10−4 and ξ0,1 = 0.1, ξ0,2 = 0.01. The considered
substructures are substructure 7 and substrcture 12. The former is located in the clamped zone, and features edge
effects that make the contact conditions more difficult to capture. It is therefore expected that a higher number of
modes will be required compared to substructure 12.

Both choices systematically generate two pairs of modes, one from each microproblem, in the first iterations,
where the slope of the LATIN curve is higher. Thereafter, in the case with ξ0,1 = ξ0,2 = 10−4, only one pair of modes,
coming from microproblem 1, is generated systematically at each iteration for both substructures. As exemplified
in Section 5.2, we observe that the PGD basis needs to be enriched more frequently for microproblem 1 than for
microproblem 2 after few first iterations, so does the choice of ξ0,1 = 0.1 and ξ0,2 = 0.01, thus reducing the size of the
final basis

The accuracy of the contact quantities for the two enrichment threshold choices described above are shown in Fig-
ure 26 for the contact forces along interface Γc,1−7 at time instant A. When the search direction is well approximated,
as in the case of ξ0,1 = ξ0,2 = 10−4, the solution coincides in practice with the full LATIN solution at each iteration,
and a large number of modes is required. In the other case, the approximation becomes better as one approaches the
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(b) Normal and tangential displacements at iteration 100.
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(c) Normal and tangential forces at iteration 500.
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(d) Normal and tangential displacements at iteration 500.
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(e) Normal and tangential forces at iteration 1000.
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(f) Normal and tangential displacements at iteration 1000.

Figure 24: Convergence state of normal (in red) and tangential (in black) forces and displacements at time instant A for interface Γc,1−7 through
the LATIN iterations.

converged solution where the two strategies are indistinguishable. Nevertheless, the difference in the size of the PGD
basis built by the two strategies per substructure, as it can be seen from Figure 25b, is of a factor of 4.

6.2.2. Analysis of the computational cost
It is also crucial to quantify the gain in computational time that adopting PGD brings to the LATIN algorithm,

based on the choices of the enrichment criterion threshold and possible algorithms to control the size and quality
of the progressively built PGD basis. The average computational time (over 100 iterations) of the linear stage of the
LATIN-PGD(ξ) and LATIN-PGD(ξ)+D strategies (see Table 2), with the two choices of enrichment criteria described
previously, is shown in Figure 27. Concerning the LATIN-PGD(ξ), undoubtedly a criterion that creates fewer PGD
modes is less expensive, and saves up to 40% of the time in this case. Compared with the full LATIN, the LATIN-
PGD(ξ) allows a gain of a factor larger than 10.
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Figure 25: Convergence curves and PGD basis size for the multiscale LATIN-PGD(ξ) strategy.
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(a) Linear stage normal and tangential forces at iteration 100.
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(b) Linear stage normal and tangential forces at iteration 500.

Figure 26: Linear stage normal and tangential forces at time instant A for interface Γc,1−7 for the LATIN-PGD(ξ) strategy at two different number
of iterations.

In the LATIN-PGD(ξ)+D strategy with ξ0,1 = ξ0,2 = 10−4, which leads to the generation of a large number
of modes (see Figure 25b), the downsizing stage turns out to be very expensive, with the cost associated with the
satisfaction of the admissibility condition (10) for the separated representation of interface quantities each time the
downsizing stage is applied. Its overall computational cost becomes therefore comparable with the cost of the full
LATIN, leading to a very low gain in computational time. Instead, when in the LATIN-PGD(ξ)+D a more appropriate
threshold is chosen (ξ0,1 = 0.1 and ξ0,2 = 0.01), performing downsizing becomes less costly, as less modes are gener-
ated, yet still the cost is non-negligible. Note that in this cost comparison, all the different strategies produce almost
the same LATIN convergence curve, and we can reasonably think that the accuracy of the solution is consequently
similar.

The influence of a downsizing stage on the size of the PGD reduced basis is shown in Figure 27b, where the
evolution of the size of the total basis for substructures 7 to 12 of the central beam of Figure 20a is plotted. In
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Figure 27: LATIN-PGD(ξ)+D strategy computational cost and basis size.

the LATIN-PGD(ξ) strategy with ξ0,1 = ξ0,2 = 10−4, the size of the progressively built reduced basis is remarkably
large. In this case, downsizing significantly reduces the size by sorting and taking out unnecessary modes, however,
at a non-negligible computational cost. In the case of LATIN-PGD(ξ) with ξ0,1 = 0.1 and ξ0,2 = 0.01, instead, the
redundancy of the progressively found modes is minimal, and the effect and the need of of the downsizing stage can
be said to be negligible on the final size of the basis.

7. Conclusions and perspectives

A multiscale strategy to model-order reduction for frictional contact problems was discussed in this paper. The
multiscale strategy is based on a mixed DDM equipped with a coarse scale problem solved with the LATIN method.
PGD-based model reduction is naturally introduced in the LATIN through the separation of variables at the linear
stage. The analysis of a simple one-dimensional frictional contact problem brought to light some aspects of this type
of problems:

– space modes bring localized corrections on the different sticking-sliding areas, indicating the potential benefit
of their a priori separation through a DDM approach to be more accurate locally,

– a large propagation in sliding front drastically decreases reducibility, as also affects the relevance of the coarse
scale problem on the convergence speed-up.

In the analyzed 2D problem it was shown how, for a given accuracy, in order to achieve the best efficiency in terms of
computational cost reduction it is required to create as few PGD modes as possible. Therefore, the choice of the PGD
basis enrichment criterion is crucial. By exploiting the fact that the coarse scale problem brings advantages especially
in the first iterations of the LATIN, it is suggested to:

– systematically enrich in the first iterations the ROB due to macroquantities (microproblem 2), so as to form a
relevant basis for the macroquantities for the rest of the iterations,

– select a more precautionary enrichment criterion threshold for the microquantites (microproblem 1), whose
convergence is much slower especially in problems with large sliding fronts across multiple substructures, so
as to not add unnecessarily modes when far from convergence.
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The sorting and downsizing algoritm proposed in [35] has been adapted and extended here in the multiscale and DDM
version of the LATIN. The algorithm controls the PGD basis size and creates a close-to-optimal basis throughout
the computations. However, its computational cost, due to the need to guarantee admissibility between the modes
of displacements and forces each time it is applied, is not negligible, especially when using an inappropriate ROB
enrichment criterion which leads to add many modes. It was shown that, by making use of the previous suggestions,
the need for downsizing can be avoided thanks to the multiscale aspects and the DDM, since the two microproblems
already reflect corrections from different scales. In such a way, an important gain in computational time with respect
to the full LATIN solver is achieved, and a ROB of controlled size and good quality is progressively created. Modes
due to the macroproblem capture the low frequency modes of each subdomain, while those from the microquantities
capture progressively modes that carry more local and refined corrections.

In the analyzed 2D problem, the large contact interfaces subjected to sliding along the whole set of substructures
affect the solution at the global level over the whole structure, and the coarse scale problem, after an initial convergence
gain, reduces its effect and at the microlevel still many iterations are needed. A future perspective to deal with this
issue is to resort to contact status-based search direction update techniques, in order to speed up convergence at the
microlevel. However, this requires making use, for example, of an a hyperreduction format dedicated to the LATIN-
PGD [65].

Appendix A. Local stage for different interface behaviors

■ Displacement boundary conditions
For a displacement Ud imposed on ΓE,1 = ∂ΩE ∩ ∂1Ω, taking into account the search direction, the following

conditions have to be imposed: ŴE = Ud

F̂E = FE + k(ŴE −WE)
(A.1)

■ Force boundary conditions
For an imposed force Fd on ΓE,2 = ∂ΩE ∩ ∂2Ω, taking into account the search direction, the following conditions

have to be imposed: F̂E = Fd

ŴE = WE + k−1(F̂E − FE)
(A.2)

■ Perfect interfaces
For a perfect interface ΓEE′ , displacement continuity ŴE = ŴE′ and force equilibrium F̂E + F̂E′ = 0 have to be

verified. By taking into account the search directions, the following explicit expressions are obtained:
ŴE =

1
2
(
WE +WE′ − k−1(FE + FE′ )

)
F̂E = FE + k(ŴE −WE)
ŴE′ = ŴE

F̂E′ = −F̂E

(A.3)

■ Frictional contact interfaces
For frictional contact interfaces, here small displacements are assumed, which greatly simplifies contact pairing

as well as the integration of the frictional contact conditions. At a contact interface ΓEE′ between substructure ΩE

and ΩE′ , Signorini non penetration conditions for the normal contact and Coulomb’s law for the tangential frictional
behavior [3, 4] have to be satisfied at the current time step t j, as well as the interface force equilibrium. For the normal
contact, the following conditions have to be verified:

n · Ŵ
( j)
EE′ + g ≥ 0 ⇒ non penetration condition

n · F̂
( j)
E ≤ 0 ⇒ compressive contact force

(n · Ŵ
( j)
EE′ + g)(n · F̂

( j)
E ) = 0 ⇒ complementarity condition

(A.4)
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with g being the initial normal gap and n the outward normal from E to E′. For the tangential contact, a formulation
in displacement increment is considered [32, 35]:if ∥Π F̂

( j)
E ∥ < f |n · F̂

( j)
E | ⇒ sticking : Π∆Ŵ

( j)
EE′ = 0

if ∥Π F̂
( j)
E ∥ = f |n · F̂

( j)
E | ⇒ sliding : Π∆Ŵ

( j)
EE′ = ρΠ F̂

( j)
E , with ρ > 0

(A.5)

In the previous equations, Ŵ
( j)
EE′ = Ŵ

( j)
E′ − Ŵ

( j)
E is the displacement jump at the interface, ∆Ŵ

( j)
EE′ = Ŵ

( j)
EE′ − Ŵ

( j−1)
EE′ is the

increment of displacement jump between time step t j and t j−1, and f is the friction coefficient of the interface. Π is
the projector on the tangential plane of the interface. The contact conditions are detected by means of proper contact
indicators for the normal and tangential status. They are defined on unknown quantities of the local stage, and, by
making use of the search directions, they can be equivalently written in terms of known quantities of the previous
linear stage. Normal contact indicator CN , and tangential sliding indicator GT at the current time step are defined as
follows: C( j)

N := k
2 Ŵ

( j)
EE′ · n +

k
2 g − 1

2 (F̂
( j)
E′ − F̂

( j)
E ) · n = k

2 (W ( j)
EE′ ) · n +

k
2 g − 1

2 (F( j)
E′ − F( j)

E ) · n

G( j)
T := k

2Π∆Ŵ
( j)
EE′ −

1
2Π(F̂

( j)
E′ − F̂

( j)
E ) = k

2Π(W ( j)
EE′ − Ŵ

( j−1)
EE′ ) − 1

2Π(F( j)
E′ − F( j)

E )
(A.6)

It should be noted that the evaluation of the tangential contact indicator at time t j requires to know the solution of the
local stage at time t j−1. For this reason, the local stage has to be solved incrementally along the time steps. Once the
contact indicator has been evaluated, contact forces are updated accordingly, as shown in Table A.4.

Normal contact
■ open contact: C( j)

N > 0 ■ closed contact: C( j)
N ⩽ 0

F̂
( j)
E = F̂

( j)
E′ = 0 F̂

( j)
E · n = −F̂

( j)
E′ · n = C( j)

N

Tangential contact: if C( j)
N ⩽ 0

■ sticking: ∥G( j)
T ∥ < f |n · F̂

( j)
E | ■ sliding: ∥G( j)

T ∥ ⩾ f |n · F̂
( j)
E |

Π F̂
( j)
E = −Π F̂

( j)
E′ = G( j)

T Π F̂
( j)
E = −Π F̂

( j)
E′ = − fC( j)

N G( j)
T /∥G( j)

T ∥

Table A.4: Resolution of the local stage for a frictional contact interface.

Subsequently, interface displacements are found explicitly with the search direction equations: Ŵ
( j)
E = W ( j)

E +k−1(F̂
( j)
E −

F( j)
E ) and Ŵ

( j)
E′ = W ( j)

E′ + k−1(F̂
( j)
E′ − F( j)

E′ ). The verification of contact conditions in the local stage of the LATIN is
therefore completely explicit and does not require to solve a local nonlinear problem. It can be shown that contact
forces and displacements satisfy contact conditions of Eq. (A.4) and Eq. (A.5), as well as the equilibrium of forces.

Appendix B. Downsizing stage

Here, the downsizing stage of the LATIN-PGD+D strategies is reported. The downsizing stage is performed on
each substructure ΩE and the downsizing algorithm [35] operates on the current basis {Lk, λk}

p
k=1 of auxiliary mixed

modes and time modes. Here ⟨□,□⟩[0,T ] indicates
∫

[0,T ] □ ·□dt and ⟨□,□⟩∂ΩE stands for
∫
∂ΩE

□ ·□dS . The associated
norms are respectively ∥□∥[0,T ] and ∥□∥∂ΩE .
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Algorithm 3: Downsizing stage

for each substructure ΩE do
■ input:
– current basis of size p: {Lk, λk}

p
k=1

– relative amplitude cut-off: ϵ
■ output:
– downsized basis of size q ⩽ p: {Lm, λm}

q
m=1

■ downsizing algorithm [35]:
for n = 1 to nmax do

– sort modes such that ∥λ1∥[0,T ] ⩾ · · · ⩾ ∥λp∥[0,T ]
for i = p down to 2 do

for j = 1 to i − 1 do
– project time mode: α = ⟨λ j, λi⟩[0,T ]/⟨λ j, λ j⟩[0,T ]
– update corresponding space mode: L j ← L j + αLi
– substract projected component: λi ← λi − αλ j

– project space mode: β = ⟨L j, Li⟩∂ΩE/⟨L j, L j⟩∂ΩE

– update corresponding time mode: λ j ← λ j + βλ j

– substract projected component: Li ← Li − βL j
– normalize L j ← L j/∥L j∥∂ΩE and update λ j ← λ j∥L j∥∂ΩE

– normalize Li ← Li/∥Li∥∂ΩE and update λi ← λi∥Li∥∂ΩE

for i = p down to 1 do
if ∥λi∥[0,T ] < ϵ∥λ1∥[0,T ] then

– eliminate Li and λi

– decrease basis size: p← p − 1

– set q = p

References

[1] Y. Estrin, Y. Beygelzimer, R. Kulagin, Design of architectured materials based on mechanically driven structural and compositional patterning,
Advanced Engineering Materials 21 (9) (2019) 1900487.

[2] F. Bussolati, P.-A. Guidault, M. L. E. Guiton, O. Allix, P. Wriggers, Robust contact and friction model for the fatigue estimate of a wire rope
in the mooring line of a floating offshore wind turbine, Lecture Notes in Application and Computational Mechanics 93 (2020) 249–270.

[3] P. Wriggers, T. A. Laursen, Computational Contact Mechanics, Vol. 2, Springer, 2006.
[4] V. Yastrebov, Computational contact mechanics: geometry, detection and numerical techniques, Ph.d. thesis, École Nationale Supérieure des
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[32] R. A. Cardoso, D. Néron, S. Pommier, J. A. Araújo, An enrichment-based approach for the simulation of fretting problems, Computational

Mechanics 62 (6) (2018) 1529–1542.
[33] I. Niakh, G. Drouet, V. Ehrlacher, A. Ern, Stable model reduction for linear variational inequalities with parameter-dependent constraints,

ESAIM: Mathematical Modelling and Numerical Analysis 57 (1) (2023) 167–189.
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