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Abstract—In this paper, we propose a way to automate proofs
of cryptographic protocols in the computational setting. We focus
on non-deducibility – a weak notion of secrecy – and we aim to
use type systems. Techniques based on typing were mainly used
in symbolic models, and we show how they can be adapted to
the CCSA framework to obtain computational guarantees.

We consider for now a fixed set of primitives, namely symmet-
ric and asymmetric encryption, as well as pairing (i.e. concate-
nation). Our approach has the usual benefit of type systems:
it is modular, allows the security analysis for an unbounded
number of sessions, and could be extended to other primitives (e.g.
hashing) without excessive difficulties. We successfully applied
our framework on several protocols from the literature and the
ISO/IEC 11770 standard.

I. INTRODUCTION

Ensuring the absence of flaws in cryptographic protocols has
become in the last few decades a major concern in the domain
of security. Indeed, even small design errors in a protocol can
lead to attacks with dramatic consequences.

Over the years, formal methods have proved to be an effective
tool to ground the security of protocols on rigorous foundations,
in order to obtain strong guarantees. Historically, two broad
families of approaches have been explored: the symbolic and
computational models. They differ in the level of abstraction
they consider when modelling an attacker.

The symbolic approach, initiated by Dolev and Yao [18],
represents the protocol by transition systems such as process
algebras or multiset rewriting systems. The attacker is given
control over the network, and the ability to manipulate messages
in a set number of ways – decrypting a ciphertext if the key
is known, etc. Notably, cryptographic primitives are assumed
perfect: e.g. a ciphertext encrypted with a key that is secret leaks
absolutely no information on the plaintext. This rather high
level of abstraction allows for powerful automation procedures,
which has lead to the development of efficient automated
verification tools, e.g. PROVERIF [9], [11], TAMARIN [6], [26].

Computational models, on the other hand, forgo the ease of
automation and reasoning, aiming instead for a greater level of
precision. They model protocol participants and attackers as
probabilistic polynomial time Turing Machines (PPTM), and
only restrict the attacker by assuming he is unable to break
specific assumptions on the cryptographic primitives involved.
These assumptions are expressed as cryptographic games, e.g.
IND-CPA, IND-CCA, INT-CTXT, etc. The computational model
is closer to cryptographers’ view on primitives, and offers strong
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guarantees, but is more difficult to automatically reason about:
existing tools, notably CRYPTOVERIF [10], EASYCRYPT [5],
are either limited in scope or non-automatic.

Recently, a new approach was proposed, called the Compu-
tationally Complete Symbolic Attacker (CCSA) [4]. In a way,
it can be seen as a hybrid between the two families. It provides
a symbolic framework, in which protocols and messages are
represented by abstract terms. Security properties and axioms
are written in a first-order logic, similarly to symbolic models,
with the promise of allowing for relatively painless reasoning
and automation. This symbolic representation is then related
to a computational model, by interpreting the logic in a first-
order model where abstract symbols are interpreted by PPTMs.
This way, one can reason at the symbolic level and obtain
computational guarantees. The CCSA framework has been
implemented in a tool, SQUIRREL [2], [3], which is a proof
assistant for this logic. It provides users with tactics that help
cryptographic reasoning, but has for now a limited automation.

An important limitation of SQUIRREL has to do with non-
deducibility properties. The tool’s logic and tactics are well
adapted to prove authentication, and equivalence properties,
where one aims to show that two systems are indistinguishable
to an attacker. This can express strong flavours of secrecy, e.g.
stating that an attacker cannot distinguish the scenarios where
protocol participants use the actual secret value or a random
value. SQUIRREL is less convenient when considering weaker
notions of secrecy, that are expressed as non-deducibility
properties, typically stating that the attacker cannot obtain
the exact value of a secret. Such properties are of course
rather weak in themselves, but they can often be required
as intermediate steps in more complex proofs. For instance,
consider a protocol where two participants exchange some
secret material x, and later feed it to a Key Derivation Function
kdf to produce a key k = kdf(x). As part of a security proof
for that protocol, one may need to show that the same key k
could not have been derived earlier. Assuming that kdf is a
Pseudo-Random Function, this can be proved if we can show
that the same value x cannot have been previously deduced by
the attacker. Note that the message x need not be strongly secret
– it may for instance include public parts, such as transcripts
from earlier messages. In contrast with indistinguishability
proofs, proofs of non-deducibility tend to be rather tedious to
write in SQUIRREL. In practice, one often has to prove strong
secrecy instead, and obtain non-deducibility from it, which is
inconvenient, and not always possible.

In this paper, we aim at designing techniques that improve
SQUIRREL on the front of non-deducibility proofs, while



also improving the tool’s automation. We propose a typing-
based approach allowing to establish non-deducibility in the
computational model by typechecking. By setting our work
in the CCSA framework, we are able to implement it in the
SQUIRREL prover.

Type systems are a common tool from the field of program-
ming languages. They are used to construct sound (but often
incomplete) procedures to statically ensure that a program is in
some sense well-behaved, i.e. cannot raise certain runtime errors
when executed. In the context of protocol analysis, type systems
have been used notably in symbolic models, to establish trace
properties such as non-deducibility and authentication (e.g. [1],
[19]). Basically, the idea is to define types that express security
guarantees on the messages to which they are associated –
typically, a message’s type could carry a level of secrecy and
integrity. We show how to adapt such techniques from the
symbolic to the CCSA model, to produce a computationally
sound type system for non-deducibility. Note that showing the
computational soundness of our approach requires reduction
of cryptographic games expressing the assumptions on the
primitives. The flexibility of a type system enables us to fine-
tune the conditions of each typing rule individually, which
helps in writing these reductions.

Related work. One somewhat related line of work, started
by Laud in [23], focuses on secure information flow in a
computational model, and studies non-interference properties.
He uses that notion to study the security of programs using
symmetric encryption. That work later led to a type system
based on the same ideas [24]. While some ideas may be similar
to our work on the surface, as noted e.g. in [27], the goal
is rather different. Indeed, secure information flow aims at
verifying programs, from the point of view of a single agent,
to ensure they do not leak secrets, rather than verifying the
protocol, meaning that communication on an attacker-controlled
network is not modelled. The scope is also more limited: only
programs that do not decrypt their data can be checked.

Another line of work focuses on the F? language. F? is
a functional language with a very rich type system, notably
supporting refinement types. Type checking then comes down
to proving that the properties expressed by the types are
satisfied. F? has been used to verify security protocols, in the
computational model [12], [16], [17] as well as the symbolic
one [8]. These approaches basically use F?’s types to write
logical formulas encoding cryptographic games, or complex
symbolic trace properties, and they use F? as a proof assistant
to show those properties. In contrast, in our work, we aim for
much simpler types, and a type system that is proved sound
once and for all, so that in the end no proof effort is required
from the user.

As mentioned earlier, typing techniques have been applied to
protocol analysis in the symbolic model for some time, starting
with the work of Abadi [1], based on ideas from information
flow. A more recent example of a symbolic type system can
be found in [19], which handles secrecy and authentication
properties. In [15], the authors introduce a type system for

symbolic equivalence. Here, we aim at obtaining computational
guarantees, but we restrict our study to deducibility properties.

Finally, recently, another computational typing-based ap-
proach was proposed [20]. Like ours, it applies to reachability
properties (not indistinguishability), and a limited set of
primitives. The authors provide detailed proofs for symmetric
encryption and hash functions, and only briefly mentioned how
to deal with signature and asymmetric encryption. This work
is more general than ours – we do not consider authentication
properties, signatures and hash functions, and for technical
reasons cannot handle key usability, i.e. exchanging a key,
and then proving that a message encrypted with it remains
secret. Gancher et al.’s work [20] does not suffer from these
limitations. On the other hand, we provide detailed proofs
for the primitives we considered (symmetric and asymmetric
encryptions) and point out a shortcoming in their result
regarding asymmetric encryption (see Section VII-C for a
discussion regarding this point). Moreover, our approach has
the advantage of being set in the CCSA model, and is integrated
into SQUIRREL, while [20] is by essence a stand-alone tool.
This integration in a more powerful proof assistant is crucial
in our eyes. It offers the promise of interactions between
SQUIRREL and our type system, i.e. automatically proving
non-deducibility properties with our technique, and then using
them as part of larger SQUIRREL proofs, that may e.g. involve
indistinguishability and require user input. A more in-depth
discussion of certain differences between this work and ours
can be found in Section VII-C.

Contributions. In summary, we identify the following four
contributions from this paper.

First, we propose a type system that can typecheck protocols
expressed in the CCSA framework, in order to establish non-
deducibility in the computational model. That system focuses
on a symmetric encryption primitive. We prove the soundness
of our type system, i.e. we show that by interacting with a
well-typed protocol, no (active) attacker can obtain the value
of a message whose type specifies it should be secret. This
result holds even when considering unbounded numbers of
sessions, and for protocols featuring persistent states.

Second, we illustrate the flexibility of our approach by
extending it to handle asymmetric encryption – with minimal
changes, only adding a few typing rules. We extend the
soundness proof accordingly, which requires only local changes
to account for the additional rules.

Third, we implement a type-checking procedure in the
SQUIRREL tool, which, although not complete, can already
type interesting examples.

Finally, we apply our approach to several examples, to show
it is general enough to handle realistic case studies. We use
it to show the non-deducibility of keys or exchanged secrets
in several classic protocols from the literature, e.g. Needham-
Schroeder, and Denning-Sacco, as well as protocols from the
ISO/IEC 11770 standard for key management [21], [22].



II. OVERVIEW

In this section, we give an overview of our framework and
tool, using as a running example the Wide Mouthed Frog
(WMF) protocol [13]. Our implementation and all our case
studies (including this running example) can be found in the
supplementary material of this publication.

Example 1. The WMF protocol, presented here without
timestamps, is a key distribution protocol using randomised
symmetric encryption and relying on a trusted server S.

I → S : a, {b,K}rakas
S → R : {a,K}rskbs

The agents a and b aim at authenticating each other, and
establishing a session key K through the server S. The key kas
(resp. kbs) is a long term key shared between a (resp. b) and
the server.

channel c.
senc enc,dec.

abstract a:index→ message.

name Ks:index→ message.
name Ra:index*index*index→ message.
name Rs:index*index*index→ message.
name K:index*index*index→ message.

process Init(i:index,j:index,k:index)=
out(c,〈 a(i),

enc(〈 a(j),K(i,j,k)〉,Ra(i,j,k), Ks(i))〉).

process Server(i:index,j:index,k:index)=
in(c, x);
if fst(x) = a(i)

&& dec(snd(x), Ks(i)) <> fail
&& fst(dec(snd(x), Ks(i))) = a(j) then
let Key = snd(dec(snd(x), Ks(i))) in
out(c, enc(〈 fst(x), Key〉, Rs(i,j,k), Ks(j))).

process Resp(i:index,j:index,k:index)= ...

system ( !i !j !k (
Init(i,j,k)|Server(i,j,k)|Resp(i,j,k))).

Listing 1: WMF protocol in SQUIRREL

Listing 1 shows an excerpt from the formal description of the
WMF protocol written in the input language of the SQUIRREL
prover, which is close to the applied pi-calculus. We consider
here a scenario involving only honest agents. The constant
a(i) is used to model the ith agent, and the long-term key
shared between a(i) and the server is denoted by Ks(i). The
process Init represents the behaviour of the initiator of the
protocol when played by agent a(i) with agent a(j). This
process can be executed an arbitrary number of times, and thus
relies on an extra index k, which identifies the session. We also
consider names Ra, and Rs to model the randomness used to
produce ciphertexts. Those names are used only once and are
thus parametrised by i, j, and k. WMF is a 3-party protocol,
and is thus composed of three processes running in parallel.

For instance, the server process Server(i,j,k) represents
the role of the server whose purpose is to receive a message
from agent a(i) and sends (after performing some tests) the
corresponding answer to a(j).

Internally, protocols in SQUIRREL are represented by action
systems. In practice, the translation into action systems is
performed automatically by the SQUIRREL tool from the
applied pi-calculus specification. In the remainder of the paper,
we state and prove our typing results considering protocols
modelled directly as action systems. The formalism will be
introduced in more detail in Section III. For now, we describe
informally how the WMF protocol is translated into an action
system. Roughly, we consider a set of actions representing
the different steps of the protocol. For instance, I(i, j, k) is
the action performed by the kth session of agent a(i) playing
the role of the initiator with agent a(j); whereas S(i, j,
k) represents the action of the server session k playing with
agents a(i) and a(j) when the test succeeds on the message
received as input. Actually there is also an action S′(i, j, k)
representing the action of the server when the test fails, and
similarly we can model the role of the responder.

Using the user syntax, we now express two secrecy properties
on the WMF protocol. We first consider the secrecy of the
session key as seen by the initiator.

goal secrecy_S : forall (tau:timestamp),
forall (i,j,k:index),

happens(tau) ⇒ att(frame@tau) <> K(i,j,k).

Listing 2: Secrecy goal (Initiator) in SQUIRREL

Here, frame is a macro which stands for the sequence
of messages that have been emitted on the network so far.
The predicate happens is used to ensure that the timepoint
tau indeed happens in the trace under consideration, and
att represents any computation that an attacker can perform.
Roughly, our secrecy goal expresses that, for any trace in which
the timepoint tau happens, the attacker is not able to compute
K(i,j,k) for any i, j, k. This means that the keys K(i,j,k)
are not deducible by the attacker, and expresses the secrecy of
the session keys from the point of view of the server.

We may also express the secrecy of the session keys from
the point of view of the initiator.

goal secrecy_I :
forall (tau:timestamp), forall (i,j,k:index),
happens(tau) && S(i,j,k)≤tau ⇒
att(frame@tau) <>
if cond@S(i,j,k) then Key@S(i,j,k) else Kfresh.

Listing 3: Secrecy goal (Initiator) in SQUIRREL

Here, cond is a macro which stands for the executability
condition of action I(i, j, k), where the initiator recognises
the input as a valid input message w.r.t. some pair of agents
a(i) and a(j). Key is also a macro that actually can be
seen as syntactic sugar, and simply replaced by its value, here
snd(dec(snd(input@S(i,j,k)), Ks(i))).

In SQUIRREL, these two secrecy goals can be proved using
a succession of tactics. Actually, as explained in introduction,



SQUIRREL is not well-suited to establish secrecy expressed
as non-deducibility. A file showing how to prove these goals
on a very simple scenario (only two agents and one session)
with the current version of the SQUIRREL tool is available in
the supplementary material of this publication, and contains
∼170 lines, of which ∼80 lines are proofs. The purpose of our
typing result is to render this sort of proof shorter and more
automatic, making things easier for the user.

The user has to declare the types of the names used in the
protocol. Considering our running example, it means that the
preamble will be slightly modified to insert typing information.

name Ks:index→ message, SK[Cst a * High].
name Ra:index*index*index→ message, Rand.
name Rs:index*index*index→ message, Rand.
name K:index*index*index→ message, High.

Listing 4: WMF protocol in SQUIRREL

The name K is given type High, which corresponds to terms
for which we want to preserve the secrecy. The names Ra and
Rs will be used as randomness when performing encryptions
and are thus tagged Rand. Typically, relying on our type system,
we will ensure that each random is used at most once, which
is needed to apply some cryptographic assumptions (e.g. IND-
CPA). Lastly, we have to give a type to the name Ks that is used
as a key. Here, we give it type SK[Cst∞a ×High]. Roughly,
this expresses the fact that such a key is supposed to encrypt
messages of type Cst∞a ×High (pairs of an agent name and
something not deducible by the attacker), and our type system
will ensure that this is indeed the case. Once the types are
provided, almost everything is done automatically. In fact, the
proof scripts to establish these two secrecy goals are now very
simple, and use very few tactics:

Proof. intro *. typing Meq. Qed.
Proof. intro *. expand cond. typing Meq. Qed.

Listing 5: WMF SQUIRREL proof script

The intro tactic allows us to introduce some hypotheses,
whereas expand is used here to inline the content of the
macro cond. More importantly, the proof scripts use the tactic
typing whose design and soundness are the main purpose
of this work. This is formally stated in Section IV, and more
precisely Theorem 1. The use of this Theorem requires us to
establish that the protocol under study is well-typed w.r.t. the
types announced in the preamble. We have implemented a type
checking procedure, which uses some heuristics, and is run
automatically by the tool (see Section VI-A for more details).

III. BACKGROUND – THE CCSA LOGIC

Our work is set in the framework of the CCSA logic,
introduced in [4], and generalised in [2], [3]. The CCSA
logic consists of two layers, called base logic and meta-
logic. Roughly speaking, the base logic expresses properties
of messages, and the meta-logic expands it with a protocol
model, allowing to reason about arbitrary executions.

A. Base logic

The base logic is a first-order logic, which deals with terms
representing probabilistic polynomial time Turing Machines
(PPTMs). We will use the notion of negligible probability: a
function f : N → [0; 1] is negligible if it is asymptotically
smaller than the inverse of any polynomial. We then write
f(η) ∈ negl(η). Conversely, a function f is overwhelming,
denoted by f(η) ∈ ow(η), when 1− f is negligible.

1) Syntax: We assume disjoint sets NB, XB, CB of symbols.
They are used respectively for names, i.e. random values
generated by protocol agents, variables, and constants. The
sets NB and CB are assumed finite. We consider a function
signature, i.e. a finite set of function symbols FB. We assume
that FB contains (among others) the following set F0 of
symbols (with their arity) representing a few usual operations:
• pairing and projections 〈·, ·〉/2, fst/1, snd/1,
• equality · = ·/2,
• conditional branching if · then · else · /3,
• symmetric encryption and decryption senc/3, sdec/2,
• zeros/1 constructs a string of 0s of a given length.

We assume constants true, false, empty, fail in CB. We further
assume CB is partitioned into CB,0 ∪

⋃
c∈C CB,∞c , where C

is a finite set of identifiers. This partition will be convenient
when later on, in the meta-logic, we will consider replicated
constants, designated by the same symbol. They are used e.g.
to represent agent names. Note that the if · then · else · /3
function symbol allows us to define other boolean connectives,
e.g. if u then v else false for u ∧ v.

These symbols will later on be interpreted as deterministic
computations. In order to model randomised encryption, the
encryption function senc must therefore take a random value as
argument. Rather than using a name from NB to represent that
value, we assume an additional finite set RB of symbols for
such encryption randomness. As we will see later on, tracking
randomness usage will be crucial in order for our cryptographic
reasoning to be sound, and using a distinct set of symbols will
help make such conditions more legible.

Messages are modelled by terms constructed over NB, XB,
CB, RB, FB, and a special unary symbol att, which will
represent arbitrary computations by the attacker.

2) Semantics: Base logic terms and formulas are interpreted
in a class of first-order models called computational models.
A computational model M interprets terms into the domain
of PPTMs that have read-only access to a pair ρ = (ρh, ρa)
of (infinite) random tapes, and run in polynomial time w.r.t.
a security parameter η (provided to them in unary). Random
tapes ρh and ρa represent the random values drawn respectively
by protocol agents and the attacker, and the security parameter η
represents the length of encryption keys used. Each function and
constant symbol f is interpreted as a deterministic, independent
of ρ, PPTM JfKM, that receives as inputs 1η and its arguments.

We write JtKMσ the interpretation of term t in model M with
substitution σ, where σ is a mapping from the variables in t
to PPTMs in the domain of M. It is defined inductively as
expected: variables in XB are interpreted by σ, names and



random values in NB, RB are interpreted as machines reading
a random string of length η in ρh (in such a way that different
names are associated with disjoint areas of the tape). When t
is a ground term, we may omit σ and simply write JtKM.

We restrict the models M we consider by requiring that
all function symbols in FB, as well as constants in CB, are
interpreted as PPTMs that do not access the random tape ρ.
We further require that:
• the function symbols for conditional branching, equality,

zero, and the default constants are interpreted as expected;
• pairing and projections are interpreted in such a way that

for any σ, t1, t2, η, ρ:

Jfst(〈t1, t2〉)KMσ (1η, ρ) = Jt1K
M
σ (1η, ρ),

and similarly for snd;
• senc and sdec satisfy the IND-CPA and INT-CTXT as-

sumptions (recalled in Appendix A-A), and represent a
correct encryption scheme, i.e. for any m, k, r, η, ρ,

Jsdec(senc(m, k, r), k))KMσ (1η, ρ) = JmKMσ (1η, ρ).

• two distinct constant symbols c, c′ ∈ CB are always inter-
preted by distinct values: for all η, JcKM(1η) 6= Jc′KM(1η).

The att symbol may be interpreted as any PPTM that only
accesses the ρa tape. Note that with these restrictions, for any
term t, the length of the bitstring JtKMσ (1η, ρ) is bounded (for
all ρ) by a polynomial in η.

Then, satisfiability is expressed as overwhelming truth. Given
a base logic term φ, we say that φ is satisfied in M, σ if:

Pρ
[
JφKMσ (1η, ρ) = JtrueKMσ (1η))

]
∈ ow(η).

B. Meta-logic

In order to study properties of protocols, [2] introduces
the meta-logic level. Basically, a protocol execution model is
introduced in the form of an action system. Meta-logic terms
can contain macros that refer to messages produced in any
action along the execution, e.g. output@τ refers to the message
output at time τ . Using these macros, meta-logic formulas can
then express generic properties on protocol executions.

In order to allow reasoning on many sessions of protocols,
the meta-logic introduces a notion of indices. Constants, names,
and encryption randomness may take as arguments indices, that
identify the protocol session they belong to. For sake of clarity,
we make the choice to present a version of the meta-logic that
does not feature states. As already stated in introduction, our
typing result has actually been established for stateful protocols,
and the interested reader will find the full presentation of the
meta-logic, as well as the typing result and its proof in this
more general setting in Appendix.

1) Syntax: The syntax of the meta-logic consists of terms of
three sorts, namely index, timestamp and message. Formally, we
assume infinite sets I, X, T of index, message, and timestamp
variables. We assume two symbols init, pred, used to represent
the initial timestamp and a predecessor operation on timestamps.
We also assume finite sets N, R, C of indexed names, random
values, and constants: each of these symbols has an index arity.

We denote by C0 (resp. C∞) the subset of C of index arity 0
(resp. non-zero). We assume a finite set of function symbols F

of index arity 0, but each symbol has a message arity k ≥ 0.
In our formal development, to distinguish index arguments
from message arguments, we write them between brackets, e.g.
n[i1, . . . , ik] vs f(m1, . . . ,ml). We consider the set

M0 = {output, input, frame, exec, cond}

containing five macro symbols (of index arity 0), and finally,
we assume a finite set A of action symbols, given with their
index arity, used to denote protocol steps.

A macro is identified by its name m0 and will be evaluated at
a particular timestamp τ : informally, m0@τ refers to the value
of m0 at point τ in the execution. The macros input@τ and
output@τ denote the messages input and output at timepoint τ
in the execution trace; and frame@τ is roughly the sequence
of all messages output by any agent during the execution up
to timestamp τ . The frame is crucial for expressing security
properties, as it represents the full list of messages seen by the
attacker. Lastly, cond@τ represents the condition for executing
the output at timepoint τ , whereas exec@τ can be seen as the
executability condition to reach timepoint τ , i.e. the conjunction
of all the conditions occurring before τ .

The only terms of sort index are index variables. Terms of
sort timestamp and message are built as follows:

T ::= τ | A[~i ] | init | pred(T )

t ::= x | m0@T | n[~i ] | f(~t )

where τ ∈ T, A ∈ A, x ∈ X, m0 ∈ M0, n ∈ N∪ R ∪ C,
f ∈ F, ~i a vector of indices, and ~t a vector of messages. We
sometimes call meta-terms the meta-logic terms.

An action A is defined as:

A[~i ].(φA[~i ], oA[~i ])

where ~i is a vector of distinct indices in I, understood in
this notation as bound variables, φA[~i ], and oA[~i ] are messages
called the condition and output.

A protocol P = (Act,≺) is composed of:
• a finite set Act of actions (one for each symbol in A);
• and a partial order ≺ on terms of the form A[~i ]. ≺ must

be invariant by alpha-renaming indices.
We require that Act contains a particular action init, with no
indices, that is smaller than all others for ≺. Its condition is
φinit = true, its output oinit = empty.

In addition, we require that in action A[~i ], all timestamps
refer to earlier actions:
• either A′[~j ] such that A′[~j ] ≺ A[~i ];
• or pred(A[~i ]) when A 6= init;
• or A[~i ] itself as a parameter to input.

Moreover, we require that all randoms r ∈ R appearing in
A[~i ] are applied to exactly ~i , i.e. r[~i ].

Example 2. The protocol introduced in Example 1 can be
modelled in our formalism as PWMF = (Act, ∅) where Act
contains five actions, namely S[i, j, k], I[i, j, k], and R[i, j, k],



as well as the special init action, and an extra action modelling
the else branch of the server role. We detail below the action
modelling the server when the condition is satisfied. Intuitively
S[i, j, k] is the action performed by the server when receiving
a message from agent a[i] to communicate with agent a[j]. The
index k allows us to model that this action can be executed
many times:

φS[i,j,k] = fst(input@S[i, j, k]) = a[i]
∧ ¬(tSsdec = fail) ∧ fst(tSsdec) = a[j]

oS[i,j,k] = senc(〈a[i], snd(tSsdec)〉, ks[j], rs[i, j, k])

where tSsdec =̂ sdec(snd(input@S[i, j, k]), ks[i]).
We write ¬b as a shortcut for if b then false else true, and

similarly for b1 ∧ b2.

2) Semantics: The semantics of the meta-logic is defined by
translating meta-logic terms into base-logic terms, and rely on
the notion of trace model. Given a protocol P , a trace model T
of P is composed of
• a finite index domain DI ⊆ N;
• a timestamp domain DT containing undef, and elements

of the form A[~k ] where A ∈ A and ~k ∈ DI ;
• a total ordering <T on DT r{undef}, compatible with ≺

in the sense that, for any σ : I→ DI ,
A[~i ] ≺ A′[~j ] implies A[σ(~i )] <T A′[σ(~j )];

• σI : I→ DI , σT : T→ DT are mappings interpreting
index and timestamp variables.

For a trace model T, we define a predecessor function predT
as expected in accordance with <T , and we set predT (init)
to undef. Let T{τ 7→ T} denote the trace model T where σT
is updated to map τ to T , and similarly for an update of σI .

Example 3. Consider the protocol PWMF introduced in
Example 2. A possible trace model T associated to this protocol
is the tuple (DI ,DT , <T , σI , σT ) where:
• DI = {1, 2, 3, 4, 5};
• DT = {undef, init,S[1, 2, 1],S[1, 2, 3],R[1, 2, 4]};
• <T is a total ordering such that:
init <T S[1, 2, 1] <T S[1, 2, 3] <T R[1, 2, 4]

• σI and σT are mappings that interpret index and times-
tamp variables to DI and DT respectively. For illustration
purposes, let σI(i) = σI(k) = 1, and σI(j) = 2.

In this case, we have predT (S[1, 2, 3]) = S[1, 2, 1].

Given a protocol P and a trace model T, we now define
the translation from meta-logic terms to base-logic terms. We
take an instance of the base logic such that FB = F, NB =
{n~k | n ∈ N,~k ∈ DI}, and similarly for randoms RB. We
take CB = C0∪

⋃
c∈C∞{c~k |~k ∈ DI}, and we choose XB =

X∪XM0 , where XM0 = {xm0@T |m0 ∈M0, T ∈ DT } is a set
of variables that will be used as stand-ins for macros.

The translation of terms of sort timestamp is as expected,
using σT , σI and predT :

τT = σT (τ), A[~i ]
T

= A[σI(~i )], pred(T )
T

= predT (T
T
).

For terms t of sort message, we proceed in two steps. First,
we define t

T to be t where each macro m0@T is replaced
with the variable xm0@T that will be instantiated later with the
body of the macro, and each meta-logic construct (i.e. function
symbols, and names) is translated using its counterpart in the
base logic. As a second step, we define how macro variables
are instantiated. Actually, we simultaneously define θTP , and
(·)TP allowing us to respectively interpret macros, and more
generally translate any meta-term into a base-logic term (once
the trace model T is fixed).

Formally, for any meta-term t and trace model T, (t)TP is
t
T
θTP , and for any m0 ∈M0, T ∈ DT :

• when T = undef, θTP(xm0@T ) is false if m ∈
{cond, exec} and empty otherwise;

• when T = A[~k ] for an action

A[~i ].(φA[~i ], oA[~i ]),

denoting T′ = T{~i 7→ ~k }, we let

−θTP(xoutput@T ) = (if φA[~i ]then oA[~i ] else empty)T
′

P
−θTP(xcond@T ) = (φA[~i ])

T′

P

If A is init, we let θTP(xinput@T ) = θTP(xframe@T ) =
empty, and θTP(xexec@T ) = true. Otherwise:

−θTP(xinput@T ) = (att(frame@pred(A[~i ])))T
′

P
−θTP(xframe@T ) = (〈exec@A[~i ],

〈if exec@A[~i ]then output@A[~i ]

else empty, frame@pred(A[~i ])〉〉)T′

P
−θTP(xexec@T ) = (cond@T ∧ exec@pred(A[~i ]))T

′

P .

As we can see, the output macro is replaced with the meta-
term (under its conditional) as specified by the protocol, and
then interpreted. The cond is handled similarly, and produces a
base logic formula corresponding to the condition of the action.
The macro exec is translated as the conjunction of all the past
conditions. The translation of frame gathers all the information
available to the attacker at some execution point (i.e. all the
outputs emitted so far, but also the executability condition
at each step). Finally, as the attacker controls the network,
the input macro is interpreted using the attacker symbol att:
it can be any computation that the attacker could perform
on frame@τ , i.e. the messages seen so far. Compared to [3],
this translation is very similar, except that the expansion of
the output macro explicitly involves the condition φA[~i ]. This
makes no difference when considering the frame macro, as
that condition was already present there, but ensures we only
consider the output of an action when that action can effectively
be performed, which may provide useful information when
typechecking.

Example 4. Going back to our running example, we have
pred(S[i, j, k])

T
= predT (S[1, 2, 1]) = init. Now, considering

the meta-term oS[i,j,k], we have:

oS[i,j,k]
T = senc(〈a(1), snd(tsdec

T
)〉, ks(2), rs(1,2,1))



where tSsdec
T

=̂ sdec(snd(xinput@S[1,2,1]), ks(1)). Then, we have
(oS[i,j,k])

T
P = oS[i,j,k]

Tθ where θ(xinput@S[1,2,1]) = att(empty).

Given a trace model T of a protocol P , and a term T of sort
timestamp, we say that T happens in T if T

T 6= undef. Finally,
we introduce a notion of secrecy expressed as non-deducibility
from messages outputted at any point in time.

Definition 1. Let P be a protocol and t a ground meta-logic
term. Let τ be an arbitrary fresh timestamp variable.

We say that t is secret in P if for any trace model T of P
in which τ as well as all timestamps occurring in t happen,
and for any computational model M:

(att(frame@τ) 6= t)TP is satisfied in M.

In SQUIRREL, a predicate happens(τ) is provided in the
logic, allowing us to rewrite this secrecy notion as a formula.

IV. MAIN RESULT

In this section, we present our main contribution: a type
system to prove secrecy in the CCSA model. For the sake
of clarity, we present this result for the notion of protocols
introduced in Section III, i.e. protocols that do not feature states.
Actually, we have proved this result in a more general setting
– it applies to stateful protocols as well, with some minor
changes. These changes are formally presented in Appendix B.
The reader does not need to understand how stateful protocols
are modelled in our framework to understand our typing result
and the proof sketch presented in Section V. However, the
formal proofs detailed in Appendices C, D, and E are written
in the general setting, and thus consider protocols that may
involve states.

A. Types and environment

The grammar for message types is as follows:

T:=Bool | Cst0
c | Cst∞c′ | Msg | Low | High | T + T | T× T

where c ∈ C0 and c′ ∈ C∞.
Type Bool is for boolean values. We make a distinction

between constants of index arity 0 and non-zero: type Cst0
c ’s

single inhabitant is the constant c, while type Cst∞c is given to
all instances of c[~i ]. We write Cst?c to represent either Cst0

c or
Cst∞c , in contexts where the distinction is unimportant. Type
Msg is the least precise type. Type Low is given to public
messages, whereas High is used for secret ones. Our system
also allows for more complex types, namely sum and product
types, constructed over base types. Type T1 + T2 designates
a message that can be of type either T1 or T2 depending on
the execution, and type T1 × T2 is for pairs of messages of
types T1 and T2.

In addition, we define special key types, that are given to
symmetric keys. They are of the form SK[T], where T is a
message type denoting the type of plaintexts. Note that key
types are not themselves message types.

The type connectors + and × are not commutative or asso-
ciative. Later on, for simplicity, we will write T1 + · · ·+ Tn
for T1 + (T2 + (· · ·+ Tn) . . . ), and similarly for ×.

We define a subtyping relation T ≤ T′ over message types,
which as usual allows a value of type T to be given type T′.
Formally, ≤ is the least preorder such that:
• High×Msg, Msg ×High ≤ High;
• Bool, Cst?c , Low × Low ≤ Low for any c;
• Cst0

false, Cst0
true ≤ Bool;

• T ≤ Msg for all T;
• T1, T2 ≤ T1 + T2;
• T1 × T2 ≤ T′1 × T′2 when T1 ≤ T′1 and T2 ≤ T′2.
When typechecking terms, we store the types of keys,

variables, and macro symbols in a typing environment.

Definition 2. A typing environment (Γ;R) is composed of
• a finite set of bindings Γ giving a message or key type T

to some elements of X∪N;
• a finite set R ⊆ R of random symbols that can be used

for encryptions.
We say that Γ, and by extension (Γ;R), is well-formed if

(i) Γ does not contain multiple bindings for the same symbol;
(ii) for n ∈N, Γ(n) is either High, Low or a key type;

(iii) for x ∈ X, Γ(x) is a message type.

We write R tR′ to denote the disjoint union of R and R′,
i.e. R ∪R′ with the assertion that R and R′ are disjoint.

Example 5. Consider the typing environment (Γ0;R0) where
R0 = {ra, rs}, and Γ0 = {k, kfresh : High, ks : SK[Msg]}.
The environment (Γ0;R0) is well-formed: names k, kfresh are
bound to High, and ks is bound to the key type SK[Msg]. This
environment does not contain variables.

B. Type system

Our type system produces typing judgements, i.e. expressions
of the form Γ;R ` t : T where (Γ;R) is a well-formed typing
environment, t a meta-term, and T a message type.

The type system is composed of typing rules, which can be
used to derive typing judgements. The typing rules are sorted
into three categories.

1) Figure 3 displays the rules for typing meta-terms that are
actually macros. These rules are mostly straightforward,
as the type of such a term is entirely determined by the
macro symbol.

2) Figures 1 and 2, display the rules for typing meta-terms
that do not contain any macro. We split them into two
parts to help structure the soundness proof in the next
section. Indeed, we first establish the soundness of the
type system composed only of the rules in Figure 1, and
then add the rules in Figure 2.

Most of the rules in Figure 1 are rather intuitive. Rule NAME

allows to type names as indicated in the typing environment.
Rule SUB-TYPING allows to sub-type terms as expected, whereas
rules CST-0 and CST-∞ give the corresponding constant type to
constants. Rules FUN-LOW and FUN-MSG deal with the case where
an arbitrary function symbol is applied to public terms or terms
with the generic Msg type. Other rules apply to some specific
function symbols. Rule PAIR gives a pair type as expected. Rule



Γ(n) = T
NAME

Γ;R ` n[~i] : T

Γ;R ` t : Msg
ZEROS

Γ;R ` zeros(t) : Low

Γ;R1 ` t1 : T1 Γ;R2 ` t2 : T2
PAIR

Γ;R1 tR2 ` 〈t1, t2〉 : T1 × T2

c ∈ C0
CST-0

Γ, R ` c : Cst0
c

c ∈ C∞
CST-∞

Γ, R ` c[~i] : Cst∞c

Γ;R ` t : T T ≤ T′
SUB-TYPING

Γ;R ` t : T′

Γ;Ri ` ti : Low for i = 1, . . . , n
FUN-LOW

Γ;R1 t . . . tRn ` f(t1, ..., tn) : Low

Γ;Ri ` ti : Msg for i = 1, . . . , n
FUN-MSG

Γ;R1 t . . . tRn ` f(t1, ..., tn) : Msg

Γ;R ` t : T Γ(k) = SK[T]
SENC

Γ;R t {r} ` senc(t, k[~j], r[~i]) : Low

Γ;R1 ` t1 : Msg Γ;R2 ` t2 : Msg
EQ

Γ;R1 tR2 ` t1 = t2 : Bool

Γ;R1 ` t1 : High Γ;R2 ` t2 : Low
EQ-FALSE

Γ;R1 tR2 ` t1 = t2 : Cst0
false

Γ;R1 ` t1 : Cst0
c Γ;R2 ` t2 : Cst0

c EQ-TRUE-CST

Γ;R1 tR2 ` t1 = t2 : Cst0
true

Γ;Ri ` ti : Cst?ci with i = 1, 2 and c1 6= c2
EQ-FALSE-CST

Γ;R1 tR2 ` t1 = t2 : Cst0
false

Γ;R0 ` t : Bool Γ;Ri ` ti : T with i = 1, 2
IF

Γ;R0 tR1 tR2 ` if t then t1 else t2 : T

Fig. 1: Typing rules for macro-free meta-terms - Part I

Γ(x) = T
VAR

Γ;R ` x : T

Γ;R ` t : Msg Γ(k) = SK[T]
SDEC

Γ;R ` sdec(t, k[~j]) : T + Cst0
fail

Γ;R ` t : T1 × T2
FST

Γ;R ` fst(t) : T1

Γ;R ` t : T1 × T2
SND

Γ;R ` snd(t) : T2

Γ, x : T′;R1 ` t : T Γ;R2 ` t′ : T′
ASSIGN

Γ;R1 tR2 ` t[x 7→ t′] : T

Γ, x : T1;R1 ` t : T Γ, x : T2;R2 ` t : T
BREAK-SUM

Γ, x : T1 + T2;R1 tR2 ` t : T

Γ;R0 ` t0 : Cst0
true Γ;R1 ` t1 : T1

IF-TRUE
Γ;R0 tR1 ` if t then t1 else t2 : T1

Γ;R0 ` t0 : Cst0
false Γ;R2 ` t2 : T2

IF-FALSE
Γ;R0 tR2 ` if t0 then t1 else t2 : T2

Fig. 2: Typing rules for macro-free meta-terms - Part II

Γ;R ` input@T : Low Γ;R ` frame@T : Low

Γ;R ` output@T : Low

Γ;R ` cond@T : Bool Γ;R ` exec@T : Bool

Fig. 3: Typing rules for macros: IN, FRAME, OUT, COND, EXEC.

ZEROS deems public the string of zeros of the same length as
any message. Rule SENC is a specific rule to handle the senc
function symbol, which allows to type the resulting ciphertext
Low even if the plaintext is not public. That rule enforces
that i) the plaintext has the type prescribed by the key’s type,
and ii) the randomness of the encryption is only used once
(it is removed from the typing environment). To enforce this
last point, we also need to split the set of randoms in the
environment when a rule creates several branches in the typing
derivation, so that a given random is used only in one branch
(see e.g. rule PAIR). Several rules type equality tests, i.e. t1 = t2.
Rule EQ is the most generic, and simply gives type Bool to an
equality test. Rules EQ-FALSE-. . . and EQ-TRUE-. . . are more precise.
When the types of t1 and t2 indicate that they represent two
different constant symbols, or that one is secret and the other
public, we statically know that the condition evaluates to false.
Note that we cannot conclude when t1 and t2 are indexed
constants with the same symbol: they may be different or not,
depending on the value of the indices. Lastly, rule IF allows to
type a conditional when both branches have the same type.

This first set of rules produces rather simple typing deriva-
tions. The rules in Figure 2 allow more complex reasoning.
They typically rely on information gained by the first set of
rules, such as the type of equality tests or of ciphertexts, to
eliminate conditional branches or apply destructors. They also
allow reasoning on variables.

Rule VAR gives to a variable the type indicated in the
environment. Rule ASSIGN stores a term in a new variable, and
adds it to Γ. If term t contains a variable x, we let t[x 7→ t′]
denote the term obtained by substituting each occurrence x
with t′ in t. That substituted term may be typed by first typing t′

with some type T , and then typing t in an environment where
x is given type T . This is helpful to structure a typing proof, as
well as to isolate a variable on which we will later perform a
case disjunction using rule BREAK-SUM. Rules FST and SND allow
to destruct a product type. Rule SDEC allows to infer the type
of the decryption of any message of type Msg, relying on the
type of the decryption key. Lastly, rules IF-TRUE and IF-FALSE

allow to type a conditional in the specific case where we know
that the test will be true (resp. false).

Example 6. Continuing Example 5, consider the meta-term t =̂
if φS[i,j,k] then oS[i,j,k] else empty representing the message
output by the server’s action. We have:



Π1 Π2

Γ′0, x : Msg ×High + Cst0
fail; {rs} ` if φ0

S then o0
S else empty : Low

. . .
SDEC

Γ′0; ∅ ` tSsdec : Msg ×High + Cst0
fail

ASSIGN

Γ′0; {rs} ` if φS[i,j,k] then oS[i,j,k] else empty : Low

where φ0
S and o0

S are respectively φS[i,j,k] and oS[i,j,k] in which tSsdec has been replaced with x.

Fig. 4: Typing derivation for Example 6.

Πcond

Γ0; ∅ ` φS[i,j,k] : Bool

Πthen

Γ0; {rs} ` oS[i,j,k] : Low

Πelse

Γ0; ∅ ` empty : Low

Γ0; {rs} ` if φS[i,j,k] then oS[i,j,k] else empty : Low

This typing derivation ends with an instance of rule IF. The
proof Πthen ends with an application of rule SENC, whereas Πelse

is a simple application of rules CST-0 and SUB-TYPING. Recall
that the operator ∧ is encoded using if · then · else ·, and
thus φS[i,j,k] can be typed using rules IF and EQ.

To illustrate another aspect of the type system, consider now
a different typing environment

Γ′0 = {k, kfresh : High, ks : SK[Msg ×High]}.

The meta-term t can also be given type Low in (Γ′0;R0).
However, the previous typing derivation above no longer works.
Indeed, ks now has a more restrictive type, and typechecking the
message oS[i,j,k] needs some more careful work. Recall from Ex-
ample 2 that, noting tSsdec =̂ sdec(snd(input@S[i, j, k]), ks[i]),
we have oS[i,j,k] = senc(〈a[i], snd(tSsdec)〉, ks[j], rs[i, j, k]).

To obtain Γ′0; {rs} ` oS[i,j,k] : Low, we must show
that 〈a[i], snd(tSsdec)〉 has type Msg ×High, and thus that
snd(tSsdec) has type High. Rule SDEC gives tSsdec type T0 =
Msg ×High + Cst0

fail, and we thus perform a case disjunction,
using rules ASSIGN and BREAK-SUM (on the top-left), as displayed
in Figure 4. The typing derivation Π2 deals with the case of
type Cst0

fail: in that case, rule EQ-FALSE ensures that the condition
is false, and thus the resulting meta-term has type Low by
rule IF-FALSE. The typing derivation Π1 handles the case of type
Msg ×High. As that is exactly the type required for key ks in
Γ′0, we easily conclude by rule SENC.

C. Secrecy by typing

Our main result states that a well-typed protocol preserves
secrecy of any term that can be typed High. More precisely,
for any trace model T, the translation in T of a meta-term tH
typed High cannot be deduced by the attacker from the
translation of meta-terms typed Low (except with negligible
probability). Before formally stating this result, we introduce
the notions of well-typed protocol and non-deducibility.

Definition 3. Let (Γ;R) be a well-formed typing environment
that does not contain variables, and P a protocol. We say
that P is well-typed in (Γ;R) when for each action

A[~i ].(φA[~i ], oA[~i ])

composing the protocol:
• Γ; ∅ ` φA[~i ] : Bool; and
• Γ;RA ` if φA[~i ] then oA[~i ] else empty : Low;

for some sets {RA}A∈A, that form a partition of R.

Example 7. The protocol PWMF described in Example 1
is well-typed w.r.t. the environment (Γ′0;R0). For instance,
considering the action S[i, j, k], we have seen in Example 6
that Γ0; ∅ ` φS[i,j,k] : Bool, and actually the same derivation
can be done with Γ′0 instead of Γ0.

Regarding the meta-term if φS[i,j,k,] then oS[i,j,k] else empty,
we have established in Example 6 that:

Γ′0; {rs} ` if φS[i,j,k] then oS[i,j,k] else empty : Low.

A similar reasoning lets us conclude for all the other actions.

Definition 4. Given two ground base-logic terms t and t′, t′ is
not deducible from t, denoted t I t′, if for any computational
model M and PPTM A,

Pρ
[
A(1η, ρa, JtK

M
(1η, ρ)) = Jt′KM(1η, ρ)

]
∈ negl(η).

Armed with these notions, we can now state the following
soundness theorem.

Theorem 1. Let (ΓP ;RP) be a well-formed typing environ-
ment, P a protocol well-typed in (ΓP ;RP), tL and tH be two
meta-terms such that ΓP ; ∅ ` tL : Low and ΓP ; ∅ ` tH : High.
Let T be a trace model. Then (tL)TP I (tH)TP .

Note that tL and tH are terms from the meta-logic. Therefore,
the theorem above allows us to express that a name n typed
High using our type system cannot be deduced from frame@τ
(typed Low by our type system), and thus to express that n
is not deducible from the knowledge obtained by the attacker
along an execution of the protocol. In other words, as a direct
consequence of Theorem 1, we have the following corollary.

Corollary 1. Let (ΓP ;RP) be a well-formed environment, P
a protocol well-typed in (ΓP ;RP), and tH a ground meta-term
such that ΓP ; ∅ ` tH : High. Then tH is secret in P .

Example 8. We can rely on Corollary 1 to analyse key secrecy
for protocol PWMF. As usual, we may want to consider the
secrecy of the key K from the point of view of the initiator (resp.
the server, or the responder). This can be done by applying
the previous Corollary to one of the following secret terms,
depending on the point of view we want to consider. We give
below the terms tH when considering the view point of the
initiator and the server.
• Initiator: k[i, j, k];
• Server: if φS[i,j,k] then snd(tSsdec) else kfresh where
φS[i,j,k] and tSsdec are given in Example 2;



Π1

Γ′0, x : T0; ∅ ` t0 : High

Π2

Γ′0, x : Cst0
fail; ∅ ` t0 : High

BREAK-SUM

Γ′0, x : T0 + Cst0
fail; ∅ ` t0 : High

Γ′0; ∅ ` input@S[i, j, k] : Low
SUB-TYPING

Γ′0; ∅ ` input@S[i, j, k] : Msg
FUN-MSG

Γ′0; ∅ ` snd(input@S[i, j, k]) : Low Γ′0(ks) = SK[T0]
SDEC

Γ′0; ∅ ` tSsdec : T0 + Cst0
fail

ASSIGN

Γ′0, ∅ ` if φS[i,j,k] then snd(tSsdec) else kfresh : High

where T0 = Msg ×High, and t0 =̂ if φ0
S then snd(x) else kfresh with φ0

S the term φS[i,j,k] in which occurrences of tSsdec are
replaced by x.
The typing derivation for Π2 is as follows where Γfail = Γ′0, x : Cst0

fail, and Π1 can be derived in a similar way.

Π3
EQ-FALSE-CST

Γfail; ∅ ` φ0
S : Cst0

false

Γfail(kfresh) = High
NAME

Γfail; ∅ ` kfresh : High
IF-FALSE

Γ′0, x : Cst0
fail; ∅ ` t0 : High

Fig. 5: Typing tree for secrecy in WMF (Server view point)

Although these terms may seem rather complex, they are fairly
intuitive to write in the CCSA logic, and are in fact what
one would naturally write in SQUIRREL when modelling the
protocol. The purpose of kfresh is to have a dummy term to use
when decryption fails, for which secrecy trivially holds.

In each case, we can show that Γ′0; ∅ ` tH : High. Therefore,
by Corollary 1, tH is secret in PWMF, i.e. for any trace
model T and computational model M, no PPTM attacker
A can compute with non-negligible probability the value of
tH from the messages he has seen during the execution of P
(that is, frame@τ , for an arbitrary τ ).

Considering the view point of the initiator, i.e. tH = k[i, j, k],
it is easy to see that Γ′0; ∅ ` tH : High using the rule NAME.
The derivation corresponding to the view point of the server is
more complex, and is detailed in Figure 5. This derivation is
another illustration of the use of the rules ASSIGN and BREAK-SUM.
Note that the derivation Π3 is actually performed using rules
EQ-TRUE and IF-TRUE, as the conditional φ0

S is of the form if x =
fail then false else . . . (once boolean connectors are inlined)
and x : Cst0

fail in the current typing environment Γfail.

V. PROOF OF SOUNDNESS OF THE TYPE SYSTEM

We prove the soundness of our type system, i.e. Theorem 1,
in three main steps, in line with the way we introduced the
typing rules in Section IV. These steps are summarised below,
and the fully detailed proofs can be found in Appendix. Though
we explain the proof in a simplified setting here (without
states), the actual proofs are done considering the full meta-
logic featuring states. All the definitions and theorems stated
in this section are actually valid in both settings.

1) We first establish the soundness of a fragment which we
call the restricted type system, composed of the rules
given in Figure 1, specialised for base-logic terms, i.e.
terms without macros or indices. Notably, the restricted
system does not contain rules for decryption or destructors,
making it easier to write cryptographic reductions.

2) We then leverage this soundness result, still considering
base terms, to additionally deal with typing rules given
in Figure 2. This involves rewriting base-logic terms to

remove destructors, so that they can be handled by the
restricted system, while preserving their semantics.

3) Lastly, we lift the soundness result from the base logic to
the full meta-logic type system given in Figure 3, which
mainly consists in considering macros, as well as meta-
terms with indices.

A. Soundness of the restricted type system

The restricted type system, whose associated type judgement
is denoted by `r, consists of the typing rules from Figure 1,
with two major differences. First, only base-logic terms are
considered, i.e. all indices are removed from the rules. Second,
instead of a typing environment, the restricted type system uses
a mapping environment, denoted (Γ;R). Rather than a set of
random symbols, R is a mapping that indicates explicitly how
each random symbol must be used: if R(r) = (m, k), then the
type system only accepts the use of r inside an encryption of
the form senc(m, k, r). Carrying this additional information
makes cryptographic proofs easier, by ensuring consistent use
of encryption randomness. It also alleviates the need to split the
random sets to ensure their unique use. Note that the mapping
environment R is only an intermediate step of the proof, but
does not need to be user-provided in the end.

The soundness theorem for the restricted system, informally,
states that if a term is given type T, then it is also semantically
of type T, in the sense that its computational interpretation
(in any model) satisfies semantic conditions expressing the
intended meaning of type T. These conditions, given below, use
the following notion of semantic equivalence: for a ground base
term t and a finite set of such terms S, we write t ∼∈ S if for all
model M, Pρ

[
∃t′ ∈ S. JtKM(1η, ρ) = Jt′KM(1η, ρ)

]
∈ ow(η).

We write t ≈ t′ when t ∼∈ {t′}.

Definition 5. Given a well-formed (Γ;R), a ground base-
logic term t, and a message type T, we say that t is in the
interpretation of T w.r.t. (Γ;R), denoted by Γ;R |= t : T,
when there exists t′ ≈ t such that Γ;R `r t′ : T, and:
• if T = Cst0

c : t ≈ c;
• if T = Cst∞c : t ∼∈ CB,∞c ;



• if T = Bool: t ∼∈ {true, false};
• if T = Msg or T = Low: no further condition;
• if T = High: for all tL, if Γ;R |= tL : Low then tL I t;
• if T=T1×T2: Γ;R|= fst(t) :T1, and Γ;R|=snd(t) :T2;
• if T = T1+T2: either Γ;R |= t : T1, or Γ;R |= t : T2,

or there exist b, t1, t2 such that t′ = if b then t1 else t2,
Γ;R |= b : Bool, and Γ;R |= ti : Ti for i = 1, 2.

This notion effectively defines for each type T its interpre-
tation: a set of terms that are not only syntactically of type T
(up to ≈), but also semantically behave as expected of type T,
in any model M. The interpretations of Cst?c , Bool, pair types,
and Msg are rather unsurprising. For instance, Bool’s contains
all terms that always evaluate to either JtrueKM or JfalseKM.
The interpretation of sum type T1 + T2 is more subtle: it
contains those of T1 and T2, as well as terms equivalent to a
conditional, with one branch in T1’s interpretation and the other
in T2’s. The crucial point is the interpretation of types Low
and High. We do not impose semantic conditions for Low:
any term of type Low is in its interpretation. In particular,
we do not require that term to be effectively deducible by
an attacker. The interpretation of type High, however, only
contains messages that cannot be deduced from any Low term.
With this definition, it is clear that all terms in the interpretation
of High are actual secrets: they cannot be computed using
publicly available information.

We establish that the restricted type system is sound: a term
is of type T only if it is semantically in T’s interpretation.

Theorem 2. Let (Γ;R) be a well-formed mapping environment,
t a ground base-logic term, and T a message type.
If Γ;R `r t : T, then Γ;R |= t : T.

The central point is to show why an attacker, knowing
a public term tL, of type Low, cannot find the value of
a secret nonce n, of type High. We first establish that the
restricted system guarantees that n can only appear in tL in
certain contexts: in equality tests, under the zeros symbol, or
in ciphertexts encrypted with secret keys.

We then construct a term t′L, by replacing each ciphertext
built with a secret key senc(m, k, r) occurring in tL with
senc(zeros(m), k, r): the encryption of a string of |m| zeros.

We show that, if n was deducible from tL, then it would
also be from t′L, by reducing the IND-CPA assumption on
the encryption scheme. An important point of that reduction
is to show that the interpretation of tL can be simulated by
the adversary against IND-CPA. We do so by constructing an
evaluator, i.e. a PPTM that can compute the interpretation of
any term that is typable in the restricted system, while having
access to the oracles provided by the IND-CPA game, and all
names except secret keys and encryption randomness. Note that
this is only possible thanks to the restricted system forbidding
decryption operations.

We then conclude by showing that n is in fact not deducible
from t′L. Indeed, it only appears in that term under the zeros
symbols or in equality tests, that both only leak a number of
bits of information insufficient to obtain all η bits of n.

B. Soundness of the base-level type system

The base-level type system is composed of all the rules
in Figures 1 and 2, adapted to base-logic terms by removing
all indices. The associated type judgement is `b. Unlike the
restricted system, it uses typing environments (Γ;R) where R
is a set of random symbols, rather than mapping environments.

We establish the following soundness theorem for the base-
level system.

Theorem 3. Let (Γ;R) be a well-formed typing environment,
t a ground term of the base logic, and T a message type. Then
Γ;R `b t : T implies Γ;R |= t : T for some R.

The main idea is to prove the existence of a term t′ ≈ t, with
(overwhelmingly) the same semantics as t, which is typable
in the restricted system. In other words, a term such that
Γ;R `r t′ : T for some mapping R. We can then apply
Theorem 2 to conclude that Γ;R |= t′ : T, and therefore
Γ;R |= t : T, as t and t′ have the same interpretation.

The difficulty, when building the term t′, is that t may
contain constructions that are only typable using the added
rules in Figure 2, that are not present in the restricting system.
In particular, t may contain decryption operations, that must
somehow be discarded to make t′ typable. To solve this issue,
we use the INT-CTXT assumption, which basically tells us
that the only terms that can be successfully decrypted with the
secret key k are those encrypted with k earlier. Formally,
if senc(p1, k, r1), . . . , senc(p`, k, r`) denote the encryptions
with k occurring as subterms of t, we show that:

sdec(t, k) ≈

 if t = senc(p1, k, r1) then p1 else
. . .
if t = senc(p`, k, r`) then p` else fail.

That (overwhelming) equality is proved by reduction of INT-
CTXT. Similarly to the previous Theorem, we construct PPTMs
that compute all terms involved, and use them to construct an
adversary that would win the INT-CTXT game if the equation
did not hold.

Replacing all forbidden subterms in similar ways, we
construct the term t′ and conclude the proof.

C. Soundness of the entire type system

Finally, it remains to lift the soundness of the base type
system to the entire meta-level type system. Roughly, we show
that for any protocol P , any trace model T, and any meta-
term t with type T in the entire system, the base-logic term
(t)TP has type T in the base-level type system. The soundness
result, Theorem 1, then follows.

That proof does not rely on cryptographic arguments.
Basically, (t)TP is defined as tTθTP , with t

T being t where
macros are replaced with dedicated variables, and θTP mapping
these to the macros’ bodies (recursively expanding macros
they contain – see Section A-B2). Accordingly, we typecheck
(t)TP by first using rule ASSIGN to introduce these variables, and
typecheck separately t

T (which no longer contains macros)
and each macro’s body (recursively replacing again the macros
it contains with variables). The trace model T provides an



order in which the macros can be replaced so as to ensure
disjointness of the sets of random symbols used in the typing
derivation at each step.

VI. CASE STUDIES

We first give some details about our implementation and the
heuristics we use for performing the type-checking. Then, we
review several protocols of the literature and of the ISO/IEC
11770 standard [21]. We discuss the corruption scenario and
the secrecy properties that are considered before summarising
our findings.

A. Implementation

We implement our approach within SQUIRREL through the
development of a new tactic called typing. The resulting
modified version of SQUIRREL is available in the supplementary
material of this publication. Our additions represent 1600 lines
of OCaml code.

When modeling a protocol in the SQUIRREL syntax, the user
has to provide some light typing annotations when declaring
names. It can be the annotation Rand, to indicate that the name
will be used as a random in an encryption, or a type such as
Low, High, SK[Cst∞a ×High]. When a protocol is declared
(using the keyword system in SQUIRREL), the implementation
will check automatically that the protocol under study is well-
typed w.r.t. the typing annotations provided by the user. If
so, the user is later on allowed to apply the typing tactic.
In a proof, typing Eq can be called on an hypothesis Eq

of the form tH = tL. It performs all the checks required to
give type High to tH and Low to tL. If it succeeds, thanks
to Theorem 1, we know that H is contradictory, and thus the
current goal holds and can be closed. Therefore, our procedure
boils down to finding a typing derivation corresponding to a
typing judgement. The choice of the typing rules to apply is
guided by the syntax of the term we have to type, and aims
at finding types that are as precise as possible. For instance,
in order to type f(t), even though both FUN-LOW and FUN-MSG

could be used, we will use FUN-LOW when possible, as it leads
to a more precise type.

The only rules whose applications are not completely guided
by the syntax are ASSIGN and BREAK-SUM. Regarding the rule
ASSIGN, when typing a term, we start by applying the rule ASSIGN

to each of its subterms – doing so when manually typing is
unpleasant, as it generates many intermediary variables, but it
is convenient when writing our procedure. The rule BREAK-SUM

must be used more sparingly. Indeed, recall that this rule
partitions the set of randoms in two. Hence, when it is applied,
we have to ensure that the same random will not be used on
both branches. In some cases, this could make it impossible to
type the branches. The strategy consisting of applying BREAK-SUM

as soon as possible is thus not always the right way to obtain
a typing derivation. Our heuristic consists of a first attempt
where we apply rule BREAK-SUM as soon as possible, and, if that
fails (i.e. randoms are not used in the right way), to make a
second attempt, where we forbid BREAK-SUM applications that
have led to the misuse of randoms. This is not a complete

typing procedure: it may sometimes fail although a derivation
exists. Nevertheless, our implementation is precise enough to
type all our case studies. Actually, the “first attempt” of the
heuristic above was already sufficient to analyse all symmetric
protocols reported in this section.

In practice, SQUIRREL’s syntax differs slightly from the
presentation in this paper – for simplicity, we omitted some
details that the implementation accounts for. For instance,
SQUIRREL users can declare several encryption functions, while
we assumed only one. This is not an issue, as our results still
hold with the same proofs, provided any given key is always
used with the same function. Hence, our implementation lets
users specify in a key’s type which encryption function it
should be used with. As another example, while we interpret
all function symbols as PPTMs, SQUIRREL allows for non-
polynomial symbols in its recent extensions – our typechecker
simply launchs a warning and assumes no such symbols are
used.

B. Scenario and corruption model

The scenario we have presented so far for WMF is rather
simple. It models an arbitrary number of agents a[i], but
assumes they are all honest. This is too simplistic, and may lead
to some attacks being missed. We therefore consider a more
realistic scenario, involving corrupted agents. For WMF, we
model an arbitrary number of honest agents a[i] each sharing
a key ks[i] with the server S, as well as an arbitrary number
of dishonest agents ad[j] each sharing a key kds [j] with S.
The system of actions modelling the scenario with corruption
includes 6 extra actions – in addition to the 5 actions detailed
in Example 2. We add an action to model an initiator willing to
engage in communication with a dishonest agent ad[j]. In that
case, the session key and random used are modelled as names
of type Low: kd[i, j, k], and rda [i, j, k]. Similarly, an extra action
models the responder talking to a dishonest agent. The other
four extra actions model the server. We have two actions for
modelling the two branches of the conditional when the server
is in communication with an initiator who is dishonest, and
similarly we consider the case where the responder is dishonest.
As usual in formal verification, roles that can be simulated by
the attacker need not be explicitly modelled.

With this scenario in mind, we can show that the resulting
protocol is well-typed w.r.t. the environment (ΓWMF;RWMF)
where RWMF = {ra, rs, rda , rdhs } and ΓWMF is as follows:

ks : SK[Cst∞a ×High + Cst∞ad × Low],
k, kfresh : High, kds , k

d, rhds : Low

The keys kds [i], k
d[i, j, k], as well as the randoms rhds [i, j, k]

are modelled using names having type Low. They are indeed
meant for use in sessions with corrupted agents, and are thus
safe to emit.

C. Secrecy properties

The security property under study is the secrecy (non-
deducibility) of the session key. As usual, this secrecy property
depends on which role’s point of view we consider. In our



case study, we consider secrecy from the point of view of each
role (initiator, server, responder). We first illustrate the three
secrecy properties on our running example:

• Initiator: tIH
def
= k[i, j, k];

• Server: tSH
def
= if φS then snd(tSsdec) else kfresh;

• Responder: tRH
def
= if φR then snd(tRsdec) else kfresh.

where φR = ¬(tRsdec = fail) ∧ fst(tRsdec) = a[i] with tRsdec =
sdec(input@R[i, j, k], ks[j]). The formula φS and the term tSsdec
are given in Examples 2.

Depending on which role’s point of view is considered, the
typing environment and the term tXH expressing secrecy may
differ. In the rest of the section, we consider the three secrecy
properties together, and we provide an environment in which
the protocol, as well as tXH for X ∈ {I,S,R}, can be typed.

D. Review of symmetric key protocols

We study 6 symmetric key protocols described in [14], as
well as some from the ISO standard 11770 pt. II [21]. They all
aim at exchanging a session key Kab. Most rely on a trusted
server S, and long-term keys that each agent shares with S.
These case studies have never been done in SQUIRREL before,
and as in the case of WMF, establishing secrecy (without the
typing tactic) will require dozens of lines of code.

For some of the protocols, as done e.g. in [15], we removed
the last step, which consists in confirming the exchanged key
by using it to encrypt a message. Our framework currently only
covers encryption with long-term (fixed) keys. These cases are
marked with ?. We also sometimes tweaked the protocols, to
include explicit tags. This consists in adding a constant in
some encrypted messages, to avoid confusion – and is good
practice in protocol design. Note that, for protocols of the
11770 standard, tags are already present, and key confirmation
steps are indicated as optional, which legitimises us not to take
them into account. The standard defines 13 protocols based on
symmetric encryption. These are divided into three categories
(point to point key establishment, mechanisms that use a key
distribution centre, and mechanisms that use a key translation
centre). Protocols within each category are similar, and we
thus chose to only analyse one per category.

Our findings are summarised in Table I. Even if the
analysis is performed automatically by our tool once the type
annotations are provided by the user, we detail below how
our typing system works on the Wide Mouthed Frog protocol,
and give some details in Appendix F regarding the others. As
explained in Section II, the proof scripts are rather short (a
few tactics are sufficient to conclude). We do not indicate any
timing information but the analysis is done in less than one
second.

E. Wide Mouthed Frog protocol

The well-formed environment (ΓWMF;RWMF) described in
Section VI-B lets us typecheck the protocol, as well as the
terms tXH , i.e. ΓWMF;RWMF ` tXH : High for X ∈ {I,S,R}.
Note that, to type ciphertexts using dishonest keys, we need

without tag with explicit tags
Wide Mouthed Frog 3 3
Denning Sacco 7 3
Otways-Rees 7 3
Needham-Schroeder? 7 3
Yahalom? 7 3
Yahalom-Paulson? 7 3
Mechanism 6 - 3
Mechanism 9 - 3
Mechanism 13 - 3

3 : Well-typed protocol ; 7 : Typing impossible ; - : Not defined
Mechanisms 6, 9, 13 are from the ISO-11770 standard.

TABLE I: Summary of our results

rule FUN-LOW, and thus we ensure that the plaintext has type Low.
For instance, for action Shd[i, j, k] modelling the server playing
with a[i] and ad[j], we must give type Low to the term:

if ¬(thdsdec = fail) ∧ (fst(thdsdec) = ad[j])
then senc(〈a[i], snd(thdsdec)〉, kds [j], rhds [i, j, k]) else empty

where thdsdec =̂ sdec(snd(input@Shd[i, j, k]), ks[i]). The plain-
text contains a[i], a constant that can be typed Low by
SUB-TYPING. It remains to show that snd(thdsdec) has type Low
as well. With SDEC (and FUN-MSG), we can give thdsdec the type:

(Cst∞a ×High + Cst∞ad × Low) + Cst0
fail.

The first and last options are discarded by exploiting the test
fst(thdsdec) = ad[j] (resp. ¬(thdsdec = fail)) of the server. As only
the second one remains, snd(thdsdec) can be typed Low.

Thanks to Theorem 1, we conclude that secrecy of the key
holds (from the points of view of the initiator, server, and
responder), in the sense that it cannot be computed by any
PPTM attacker, except with negligible probability.

VII. DEALING WITH ASYMMETRIC ENCRYPTION

In this section, we showcase the extensibility of our type
system by adding support for IND-CCA-21 asymmetric en-
cryption. We assume three new function symbols: aenc/3
and adec/2, interpreted respectively as the encryption and
decryption algorithms of an asymmetric scheme, and pk/1 that
produces the public encryption key associated to a private key.

A. Modification of the type system

We add a new type for asymmetric private keys: AK[T].
As in the symmetric case, it indicates the type of plaintexts
intended to be encrypted with the associated public key, which
gives information when decrypting. Public encryption keys, on
the other hand, are typed Low. We add three new typing rules:

Γ(k) = AK[T]
PK

Γ;R ` pk(k[~j]) : Low

Γ;R ` t : T Γ(k) = AK[T]
AENC

Γ;R t {r} ` aenc(t, pk(k[~j]), r[~i]) : Low

Γ;R ` t : Low Γ(k) = AK[T]
ADEC

Γ;R ` adec(t, k[~j]) : T + Low

1The IND-CCA-2 game is given in Appendix.



Note that these rules are added to the type system but do
not replace the earlier ones: all previous typing rules remain
present. Except for the possibility to publish the encryption key,
the main difference to the symmetric case is the decryption
rule. As the encryption key is public, the attacker can use it to
encrypt messages of his own. Decryption hence either returns
an honest message of type T, or a public message of type Low
(the decryption failure case is included in type Low).

In the restricted system, as before, we wish to forbid the
use of decryption, as it complicates cryptographic reductions.
More precisely, messages encrypted by the protocol are
used as challenges in IND-CCA-2 reductions, and so must
never be decrypted when doing the reduction. To do so, we
define a new function symbol adec?(c, k, 〈ti〉1≤i≤`), taking as
arguments a ciphertext, a private key, and a list of ciphertexts
(encoded as nested pairs). Its semantics is as follows. If
JcKM(1η, ρ) = JtiK

M
(1η, ρ) for some i, it returns JfailKM.

Otherwise, it decrypts c with k. This way, if we ensure that all
honest ciphertexts are in 〈ti〉1≤i≤`, then adec? only decrypts
attacker-produced ciphertexts, and returns a result of type Low.
We use adec? to remove uses of adec in the restricted system.

The soundness proof requires some modifications to handle
the additional rules. We give here a summary of the changes,
and details can be found in Appendix G.

Restricted type system. The soundness proof is similar
to the symmetric case. We replace the plaintexts m in the
term known by the attacker with zeros(m). When applied to
asymmetric encryption, this replacement is sound, as we can
otherwise construct an adversary that wins the IND-CCA-2
game. That adversary needs to compute the interpretation of
terms, and as in the symmetric case we show that there exists
an evaluator that can do so for well-typed terms – using in
particular the IND-CCA-2 decryption oracle to evaluate adec?.

Base type system. We show, by correctness of the encryption
scheme, the following transformation, which is then used to
remove the symbol adec, as we did for senc in Section V-B.

adec(t, k) ≈


if t = aenc(p1, pk(k), r1) then p1 else
. . .
if t = aenc(p`, pk(k), r`) then p` else
adec?(t, k, 〈ti〉1≤i≤n)

Meta-level type system. It remains to lift the soundness
of the base system to the meta-logic type system: that proof
remains the same as in the symmetric case.

B. Additional case studies

We apply our extended framework to two public-key proto-
cols: mechanism 6 of the ISO-11770 standard (part III) [22],
as well as the tagged version of the Needham-Schroeder-Lowe
protocol (NSL) [25], informally described below.

A→ B : {1, Na, A}pk(B)

B → A : {2, Na, Nb, B}pk(A)

A→ B : {3, Nb}pk(B)

It is meant to ensure mutual authentication of A and B,
through the secrecy of two nonces Na and Nb. We consider here

the case of Nb. To typecheck it, we give type AK[T0 + Low]
to the private key ska[i] of honest agent a[i], where T0 is

Cst0
1 ×High× Cst∞a

+ Cst0
2 ×Msg ×High× Cst∞a

+ Cst0
3 ×High.

The model of NSL is made of two actions per role, with
two cases for each: an agent executing the role can be talking
with an honest agent or a dishonest one. Hence, it contains
8 actions in total, plus init. To illustrate the use of our type
system, we detail below the typing of the initiator’s second
action, running a session with a dishonest responder. In that
case, the term output by a[i] responding to ad[j] in session k
is:

aenc(〈3, thd(tdadec)〉, pk(skbd[j]), rda [i, j, k])

where tdadec = adec(input@Id1[i, j, k], ska[i]), thd(·) is a short-
cut for fst(snd(snd(·))) (retrieving the third element of a tuple
encoded as nested pairs), and rda is a name with Γ(rda) = Low.
However, this output is performed under some conditions.
In particular, agent a[i] tests the tag (“2”), as well as that
snd(snd(snd(tdadec))) = ad[j]. When typing this output, we
have to consider the case where tdadec is of type T0, and the
case where tdadec is of type Low (relying on BREAK-SUM). The
latter case is easily handled using rule FUN-LOW. To deal with
the former one, we rely on the tag, and also on the test of
the agent name, to show that the condition is always false,
and thus the resulting output is the constant empty, of type
Low. This check of the responder’s identity is thus crucial
to the typechecking of the protocol. This is not surprising,
since the secrecy of nonce Nb famously does not hold on
the flawed Needham-Schroeder protocol, where that test is
missing [25] – as expected, we cannot typecheck it. In the end,
the secrecy of Nb (as seen by A and B) can be established
using type-checking.

A similar analysis is also performed on Mechanism 6 of [22].

Implementation. The implementation has been extended to
deal with asymmetric encryption, and the two case studies
above are available in the supplementary material of this
publication. This extension was mostly straightforward and
behaves as expected. The full heuristic (see Section VI-A)
regarding the way the rule BREAK-SUM is applied is relevant for
these case studies: applying the BREAK-SUM as soon as possible
will not allow us to typecheck e.g. the second action of the
responder (played by an honest agent with an honest agent)
for the NSL protocol.

C. Discussion

The extension to asymmetric encryption nicely demonstrates
the extensibility of our approach. Integrating the asymmetric
encryption primitive in our type system did not require us to
alter the main structure of the soundness proof, or to re-do
it. Of course, some work was needed for arguments specific
to asymmetric encryption (adding oracles to the evaluator,
reduction of IND-CCA-2, etc.), but these points do not interfere
with the parts of the soundness proof already written for



symmetric encryption. What made this possible is the fact that
the IND-CCA-2 assumption fits nicely in our decomposition
between restricted and base system. Indeed, as seen above,
that assumption allowed us to remove the decryption operation,
going from the base level to the restricted level, and then to
hide secrets inside encrypted messages, at the restricted level.
Although we do not formally prove or even state that claim,
we believe that, more generally, the same would be true for
other primitives: as long as their properties fit nicely into our
decomposition, it should be possible to integrate them. For
instance, we believe that the PRF assumption, postulating that
a hash function is indistinguishable from a pseudo-random
function, could be integrated in our framework.

The asymmetric encryption primitive highlights the im-
portance of a design choice we made for public terms. In
our system, the attacker cannot deduce the interpretation of
a secret term (type High) from that of a public one (type
Low), as specified in Definition 5. However, we do not require
that he is indeed able to compute the value of public terms.
Another approach, adopted by OWL [20], is to characterise
public terms as those effectively computable by an attacker.
This is of importance in the case of asymmetric encryption:
does decrypting an adversarially computed (Low) message
produce a plaintext already computable by the adversary?
That property would be needed to type it Low (as rule ADEC

does) with the alternative approach. However, it is not implied
by IND-CCA-2 alone – another axiom is needed, known as
Plaintext Awareness [7], which is not satisfied by all IND-CCA-
2 cryptosystems. Although this assumption does not explicitly
appear in [20], the authors confirmed that they indeed need it,
while our approach does not.

It may seem surprising that we only analyse two proto-
cols using asymmetric encryption. The reason is that many
public-key protocols (e.g. other mechanisms in [22]) also use
signatures, which is not yet supported by our type system.

Moreover, our system cannot currently establish the secrecy
of Na from the point of view of B in NSL. Indeed, the first
message B receives could be forged by the attacker, so the
second component of the decrypted message, i.e. Na as seen
by B, could be public – until B confirms it with A in later
messages, which our type system cannot see. Although not
entirely satisfactory, this limitation of our work is acceptable,
considering our main goal is to help SQUIRREL users to
prove secrecy properties. Agreement properties are already
handled rather well by SQUIRREL, and in the case of NSL,
the agreement property stating that A and B agree on the
value of Na at the end, would be sufficient to establish secrecy
of Na as seen by B, from the the secrecy of Na as seen by A
(property that can be established using our type system).

VIII. CONCLUSION

We have proposed a type system to establish non-deducibility
of secrets, in the CCSA framework, supporting symmetric and
asymmetric encryption primitives. We have proved our type

system to be computationally sound, and we have applied it
to a selection of case studies.

As discussed previously, our type system has some limita-
tions regarding its scope which we plan to address in the future.
A first aspect is the support of additional primitives, notably
hash functions and signatures. Similarly to the extension to
asymmetric encryption, this should only require rather local
changes, as our approach is extensible. A second direction is
to handle a larger class of properties. An interesting approach
would be to take inspiration from symbolic type systems, by
tagging types with events to express authentication guarantees
– the actions from the CCSA logic could play that role. We
also plan to study how to strengthen our type system to show
forward secrecy, where a value must remain secret even if
keys are corrupted later on. Dealing with key usability, where
keys are exchanged and then used to encrypt secrets, would
likely require finer-grained levels of secrecy: non-deducibility
is indeed not sufficient for a key to be usable – a stronger
notion of secrecy is required.

Finally, we envision being able to leverage properties or
invariants proved in SQUIRREL to help the typechecking, e.g.
regarding the order in which some actions are performed. This
allows us to prune some branches of the typing tree, which
would be helpful when considering e.g. forward secrecy.
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APPENDIX A
BACKGROUND

We present here the elements of the background that we only
introduce informally in Section III. In particular, we present
the cryptographic games expressing the standard assumptions
we make on the cryptographic primitives under study (see
Section A-A), as well as the full syntax and semantics regarding
the meta-logic. Indeed, for sake of clarity, we do not introduce
macros allowing one to model states in Section III and we only
provide an informal description of the meta-logic semantics.
The interested reader will find its full formal description in
Section A-B.

A. Cryptographic games
This appendix presents the cryptographic games expressing

standard assumptions we make on the security of encryption
primitives.

a) IND-CPA:

Gindcpa,β
A (1η, ρ)

k←$ {0, 1}η

β′ ← AOe,OLR(1η, ρ′)

return β′

Oe(m)

r←$ {0, 1}η

return JsencKM(1η,m, k, r)

OLR(m0,m1)

r←$ {0, 1}η

return JsencKM(1η,mβ , k, r)
A is allowed to call Oe any number of times, and OLR only
once. ρ′ is the tape ρ, except the parts used by the encryption

oracles and the key generation. The advantage of A is

AdvindcpaA (η) =∣∣∣Pρ [Gindcpa,0
A (1η, ρ) = 1

]
− Pρ

[
Gindcpa,1
A (1η, ρ) = 1

]∣∣∣ .
b) INT-CTXT:

Gintctxt
A (1η, ρ)

k←$ {0, 1}η

Lc ← [ ]

c← AOe,Od(1η, ρ′)

if c /∈ Lc

∧ JsdecKM(1η,m, k) 6= JfailKM

then return 1

else return 0.

Oe(m)

r←$ {0, 1}η

c← JsencKM(1η,m, k, r)
Lc ← append(c, Lc)

return c

Od(c)

return JsdecKM(1η, c, k)
A is allowed to call Oe and Od any number of times. ρ′ is

the tape ρ, except the parts used by the encryption oracle and
the key generation. The advantage of A is

AdvintctxtA (η) = Pρ
[
Gintctxt
A (1η, ρ) = 1

]
.

c) IND-CCA-2:

Gindcca,β
A (1η, ρ)

sk←$ {0, 1}η

pk ← pk(sk)

ch← ⊥
β′ ← AOd,OLR(pk, 1η, ρ′)

return β′

Od(c)

if ch = ⊥ ∨ c 6= ch then

return JadecKM(1η, c, sk)
else

return ⊥

OLR(m0,m1)

r←$ {0, 1}η

ch← JaencKM(1η,mβ , sk, r)

return c

A can call OLR only once and Od any number of times. Note
that Od answers any query before OLR has been called, and
only queries other than the challenge ciphertext afterwards. ρ′

is the tape ρ, except for the parts used by the left-right oracle
and the key generation. The advantage of A is

AdvindccaA (η) =∣∣∣Pρ [Gindcca,0
A (1η, ρ) = 1

]
− Pρ

[
Gindcca,1
A (1η, ρ) = 1

]∣∣∣ .
B. Meta-logic

In order to study properties of protocols, [2] introduces
the meta-logic level. Basically, a protocol execution model is
introduced in the form of an action system. Meta-logic terms
can contain macros that refer to messages produced in any
action along the execution, e.g. output@τ refers to the message
output at time τ . Using these macros, meta-logic formulas can
then express generic properties on protocol executions.

In order to allow reasoning on many sessions of protocols,
the meta-logic introduces a notion of indices. Constants, names,
and encryption randomness may take as arguments indices,
that identify the protocol session they belong to.

1) Syntax: The syntax of the meta-logic consists of terms of
three sorts, namely index, timestamp and message. Formally, we
assume infinite sets I, X, T of index, message, and timestamp
variables. We assume two symbols init, pred, used to represent
the initial timestamp and a predecessor operation on timestamps.
We also assume finite sets N, R, C of indexed names, random
values, and constants: each of these symbols has an index arity.
We denote by C0 (resp. C∞) the subset of C of index arity 0
(resp. non-zero). We assume a finite set of function symbols F

of index arity 0, but each symbol has a message arity k ≥ 0. To
distinguish index arguments from message arguments, we write
them between brackets, e.g. n[i1, . . . , ik] vs f(m1, . . . ,ml).

We assume a finite set of macro symbols M given with
an index arity. This set is composed of five built-in symbols
output, input, frame, exec, cond, each with index arity 0; and
of a set S of state symbols of arbitrary arity. Finally we assume
a finite set A of action symbols, given with their arity, used
to denote protocol steps.

The only terms of sort index are index variables. Terms of
sort timestamp and message are built as follows:

T ::= τ | A[~i ] | init | pred(T )

t ::= x | m[~i ]@T | n[~i ] | f(~t ) |~i =ι
~j

where τ ∈ T, A ∈ A, x ∈ X, m ∈M, n ∈N∪R∪ C, f ∈ F,
~i and ~j are vectors of indices, and ~t a vector of messages.
We sometimes call meta-terms the meta-logic terms.

An action A is defined as:

A[~i ].(φA[~i ], oA[~i ], {s[~j ]← uA[~i ],s[~j ] | s ∈ S,~j ∈ I})



where ~i is a vector of distinct indices in I, understood in this
notation as bound variables, φA[~i ], oA[~i ] are messages called
the condition and output, and for any symbol s ∈ S, for any
distinct indices ~j disjoint from ~i (also used as bound variables
in this notation), uA[~i ],s[~j ] is a message describing the update
of state s[~j ] at action A[~i ].

A protocol P = (Act,≺) is composed of:
• a finite set Act of actions (one for each symbol in A);
• and a partial order ≺ on terms of the form A[~i ]. ≺ must

be invariant by alpha-renaming indices.
We require that Act contains a particular action init, with no
indices, that is smaller than all others for ≺. Its condition is
φinit = true, its output oinit = empty, and its update U0 =
{s[~j ] ← uinit,s[~j ] | s ∈ S} provides an initial value for each
state. uinit,s[~j ] must be a macro-free term of sort message, with
free variables in ~j .

In addition, we require that in action A[~i ], all timestamps
refer to earlier actions:
• either A′[~j ] such that A′[~j ] ≺ A[~i ];
• or pred(A[~i ]) when A 6= init;
• or A[~i ] itself as a parameter to input;
• or A[~i ] itself as a parameter to a state macro s ∈ S when

the occurrence is in oA[~i ].

We demand that in action A[~i ], all updates s[~j ]← uA[~i ],s[~j ]

are of the form
uA[~i ],s[~j ] = if ~j =ι

~i ′ then u else s[~j ]@pred(A[~i ]),

where ~i ′ is a subset of ~i . Finally, we require that all randoms
r ∈ R appearing in A[~i ] are applied to exactly ~i , i.e. r[~i ].

2) Semantics: The semantics of the meta-logic is defined
by translating meta-logic terms into base-logic terms. Given a
protocol P , a trace model T of P is composed of
• a finite index domain DI ⊆ N;
• a timestamp domain DT containing undef, and elements

of the form A[~k ] where A ∈ A and ~k ∈ DI ;
• a total ordering <T on DT r {undef}, compatible with
≺ in the sense that: A[~i ] ≺ A′[~j ] implies A[σ(~i )] <T
A′[σ(~j )] for any σ : I→ DI ;

• σI : I→ DI , σT : T→ DT are mappings interpreting
index and timestamp variables.

For a trace model T, we define a predecessor function predT
as expected in accordance with <T , and we set predT (init)
to undef. Let T{τ 7→ T} denote the trace model T where σT
is updated to map τ to T , and similarly for an update of σI .

Given a protocol P and a trace model T, we now define
the translation from meta-logic terms to base-logic terms. We
take an instance of the base logic such that FB = F, NB =
{n~k | n ∈ N,~k ∈ DI}, and similarly for randoms RB. We
take CB = C0∪

⋃
c∈C∞{c~k |~k ∈ DI}, and we choose XB =

X∪XM, where XM = {xm[~k ]@T |m ∈M,~k ∈ DI , T ∈ DT }
is a set of variables that will be used as stand-ins for macros.

The translation of terms of sort timestamp is as expected,
using σT , σI and predT :

τT = σT (τ), A[~i ]
T

= A[σI(~i )], pred(T )
T

= predT (T
T
).

For terms t of sort message, we proceed in two steps. First,
we define t

T to be t where each macro is replaced with a
variable that will be instantiated later with the body of the
macro. Formally:

• f(~t )
T

= f(~t
T
) for variables and function symbols;

• names, constants and randoms are translated by the

appropriate base-level symbol: n[~i ]
T

= nσI(~i );
• index equalities are interpreted as booleans depending on

the value of the indices: i =ι j
T

= true if σI(i) = σI(j),
and false otherwise;

• m[~i ]@T
T

= x
m[σI(~i )]@T

T for macros.
As a second step, we define how macro variables are

instantiated. We simultaneously define θTP , and (·)TP , as follows.
For any meta-term t and trace model T, (t)TP is tTθTP , and for
any m ∈M,~l ∈ DI , T ∈ DT :
• when T = undef, θTP(xm[~l ]@T ) is false if m ∈
{cond, exec} and empty otherwise;

• when T = A[~k ] for an action

A[~i ].(φA[~i ], oA[~i ], {s[~j ]← uA[~i ],s[~j ] | s ∈ S,~j ∈ I}),

denoting T′ = T{~i 7→ ~k }, we let

−θTP(xoutput@T ) = (if φA[~i ]then oA[~i ] else empty)T
′

P
−θTP(xcond@T ) = (φA[~i ])

T′

P

−θTP(xm[~l ]@T ) = (uA[~i ],m[~j ])
T{~i 7→~k ,~j 7→~l }
P if m ∈ S.

If A is init, we let θTP(xinput@T ) = θTP(xframe@T ) =
empty, and θTP(xexec@T ) = true. Otherwise:

−θTP(xinput@T ) = (att(frame@pred(A[~i ])))T
′

P
−θTP(xframe@T ) = (〈exec@A[~i ],

〈if exec@A[~i ]then output@A[~i ]

else empty, frame@pred(A[~i ])〉〉)T′

P
−θTP(xexec@T ) = (cond@T ∧ exec@pred(A[~i ]))T

′

P .

Compared to [3], this translation is very similar, except
that the expansion of the output macro explicitly involves the
condition φA[~i ]. This makes no difference when considering
the frame macro, as that condition was already present there,
but ensures we only consider the output of an action when
that action can effectively be performed, which may provide
useful information when typechecking.

APPENDIX B
MAIN RESULT (WITH STATES)

In this section, we present our main result for stateful
protocols. The addition of state macros in the meta-logic
allowing one to model stateful protocols implies only very
few changes, which are formally stated below.

First, we have to consider typing environment allowing one
to give a type to states, and also consider two extra typing
rules in order to type state macro, and also equality between



indices useful to express how to update a state. These rules,
namely .., are given below.

We extend Definition 2 to allow state macros from S in Γ.

Definition 6 (typing environment). A typing environment
(Γ;R) is composed of
• a finite set of bindings Γ giving a message or key type T

to some elements of X∪N∪ S;
• a finite set R ⊆ R of random symbols that can be used

for encryptions.
We say that Γ, and by extension (Γ;R), is well-formed if

(i) Γ does not contain multiple bindings for the same symbol;
(ii) for n ∈N, Γ(n) is either High, Low or a key type;

(iii) for x ∈ X∪ S, Γ(x) is a message type.

We introduce two typing rules to type state macros and to
handle indices equalities used in their semantics. These rules
concerns macros and indices, so we add them to Figure 3:

Γ(s) = T

Γ;R ` s[~i]@T : T

Γ;R `~i =ι
~j : Bool

We also have to adapt Definition 3 to take into account
states, and to ensure that terms stored in states are well-typed.

Definition 7 (well-typed protocols). Let (Γ;R) be a well-
formed typing environment that does not contain variables,
and P a protocol. We say that P is well-typed in (Γ;R) when
for each action

A[~i ].(φA[~i ], oA[~i ], {s[~j ]← uA[~i ]s[~j ] | s ∈ S})
composing the protocol:
• Γ; ∅ ` φA[~i ] : Bool;
• Γ;RA ` if φA[~i ] then oA[~i ] else empty : Low;
• for each s ∈ S, Γ;Rs

A ` uA[~i ]s[~j ] : Γ(s).
for some sets {RA}A∈A, {Rs

A}A∈A,s∈S that form a partition
of R. We impose that Rs

init = ∅ for any s ∈ S.

Once, this has been modified, the main result, Theorem 1,
stated in Section IV, remains the same. Of course, the proof
of this result is a little bit more involved when considering
protocols featuring states. Proofs of this result are detailed in
Appendices C-E.

APPENDIX C
RESTRICTED SYSTEM FOR MESSAGES (BASE LOGIC)

In this section, we establish a first soundness result, for a
subset of the type system, with the aim of typing terms from
the base logic.

A. Restricted type sytem

In the context of type-checking base-logic terms, we will
consider environments that store not only the encryption
randoms that may be used, but also which terms they may
encrypt.

Definition 8. A mapping environment, denoted (Γ;R), is
composed of
• a finite set of bindings Γ giving a message or key type T

to some elements of XB ∪NB;
• a finite-domain mapping R, associating to some random

symbol r ∈ RB a pair (m, k) of ground base-logic terms.
The mapping environment (Γ;R) is well-formed if Γ is,

and R does not contain multiple bindings for the same symbol.

The type system we consider in this section, called the
restricted type system, is composed of the rules given in
Figure 6. These are basically the rules from Figure 1, modified
to use a mapping typing environment, and to remove all indices
used by meta-terms.

A typing judgement w.r.t. this restricted system is an
expression of the form Γ;R `r t : T where (Γ;R) is a
well-formed mapping environment, t is a ground base-logic
term, and T is a message type.

Basically, all specific rules that handle destructors (e.g. FST,
SDEC, IF-FALSE) are absent from the restricted type system –
though the generic rules for functions can still be applied to
them. This way, typechecking a term in the restricted type
system requires typechecking all its subterms. This is formally
stated in Lemma 4. The destructor rules, that allow to avoid
type-checking some subterms, are handled separately in the
next section.

We say that (Γ;R) is well-typed if it is well-formed, and
for all r, denoting R(r) = (m, k), we have Γ(k) = SK[T] for
some T such that Γ;R `r m : T.

B. Properties of the restricted system

We start with a few simple lemmas that express guarantees
given by the restricted type system.

Lemma 1. There does not exist a message type T such that
T ≤ High, and T ≤ Low.

Proof. Let T be a message type. We have that T is of the form
T1 × . . .× Tn where each Ti is not a product. In case T ≤
High, we have that Ti0 = High for some i0. In case T ≤ Low,
we have that Ti ∈ {Low,Bool} ∪ {Cst?c | c ∈ C0 ∪ C∞} for
each i ∈ {1, . . . , n}. Therefore, we conclude that these two
cases are incompatible, and therefore a message type T can
not be such that T ≤ High and T ≤ Low.

Lemma 2. Let t be a ground term and (Γ;R) a well-formed
mapping environment such that Γ;R `r t : T for some type T.
• For any variable x, Γr{x};R `r t : T, where Γr{x} is

the environment obtained from Γ by removing the binding
for x (if there was one).

• For any random symbol r that does not appear in t,
Γ;Rr {r} `r t : T, where Rr {r} is defined similarly.

Proof. We prove both properties by induction on the type
derivation of Γ;R `r t : T. If that proof is reduced to a single
application of rule NAME, CST-0, or CST-∞, both claims clearly
hold. In all other cases, the last rule of the derivation has
premises judgements of the form Γ;R `r t′ : T′, where t′ is



Γ(n) = T
NAME

Γ;R `r n : T

Γ;R `r t : T T ≤ T′
SUB-TYPING

Γ;R `r t : T′

Γ;R `r t1 : T Γ;R `r t2 : T′
PAIR

Γ;R `r 〈t1, t2〉 : T× T′

c ∈ C0
CST-0

Γ;R `r c : Cst0
c

c ∈ C
B,∞
c′ c′ ∈ CB \ C0

CST-∞
Γ;R `r c : Cst∞c′

Γ;R `r t : Msg
ZEROS

Γ;R `r zeros(t) : Low

Γ;R `r ti : Low for i = 1, . . . , n
FUN-LOW

Γ;R `r f(t1, ..., tn) : Low

Γ;R `r ti : Msg for i = 1, . . . , n
FUN-MSG

Γ;R `r f(t1, ..., tn) : Msg

Γ;R `r t : T Γ(k) = SK[T] R(r) = (t, k)
SENC

Γ;R `r senc(t, k, r) : Low

Γ;R `r t1 : Msg Γ;R `r t2 : Msg
EQ

Γ;R `r t1 = t2 : Bool

Γ;R `r t1 : High Γ;R `r t2 : Low
EQ-FALSE

Γ;R `r t1 = t2 : Cst0
false

Γ;R `r t1 : Cst0
c Γ;R `r t2 : Cst0

c EQ-TRUE-CST

Γ;R `r t1 = t2 : Cst0
true

Γ;R `r ti : Cst?ci with i = 1, 2 and c1 6= c2
EQ-FALSE-CST

Γ;R `r t1 = t2 : Cst0
false

Γ;R `r t : Bool Γ;R `r ti : T with i = 1, 2
IF

Γ;R `r if t then t1 else t2 : T

Fig. 6: Typing rules for the restricted system

a subterm of t. Since t is ground, t′ is ground as well, and
if r does not appear in t, then it does not in t′ either. We then
conclude by applying the induction hypothesis to t′.

Lemma 3. Let t be a ground term and (Γ;R) a well-formed
mapping environment such that Γ;R `r t : T for some type T.
Consider Γ′ ⊇ Γ andR′ ⊇ R such that (Γ′;R′) is well-formed.
Then Γ′;R′ `r t : T.

Proof. This lemma is easily proved by induction on the
derivation of Γ;R `r t : T. Indeed, in all possible typing
rules, extending (in a well-formed way) the environments does
not render any of the premises false, and we conclude by
applying the induction hypothesis to all premises that are
typing judgements.

Lemma 4. Let t be a ground term and (Γ;R) a well-formed
environment, and Π be a typing derivation of Γ;R `r t : T
for some type T. Each subterm in t is either:
• a name k assigned to a key type in Γ,
• a random r ∈ dom(R), or

• a term t′ for which there exists Π′ a subtree of Π
witnessing Γ;R `r t′ : T′ for some message type T′.

Proof. Induction on the typing tree. Axioms only apply to
atomic terms. Sub-typing does not modify the term. All other
rules have in requirement the typing of each direct subterm.

Lemma 6 is useful to prove that the restricted type system
guarantees secrecy of terms of type High. It states that when
a term typed High appears inside a public term (i.e. of type
Low), then it is occurs in a context that will preserve its secrecy.
This context can be an encryption with a valid key, a zeros that
hides everything but its length, or an equality that leak at most
a bit of information. The following lemma is an intermediate
step useful to prove Lemma 6.

Lemma 5. Let (Γ;R) be a well-formed mapping environment,
and t a ground term such that Γ;R `r t : T and Γ;R `r t : T′.
It is not possible that both T ≤ High and T′ ≤ Low.

Proof. Let Π (resp. Π′) be the typing derivation for judgement
Γ;R `r t : T (resp. Γ;R `r t : T′). We show by induction on
size(Π) + size(Π′), where size denotes the number of nodes
in the derivation, that having both T ≤ High and T′ ≤ Low
leads to a contradiction. We distinguish several cases.

• Π ends with the rule SUB-TYPING. There exists T′′ such that
T′′ ≤ T ≤ High and Γ;R `r t : T′′, with a proof tree Π′′

such that size(Π′′) ≤ size(Π). Applying our induction
hypothesis on Π′′ and Π′ leads to a contradiction.

• Π′ ends with the rule SUB-TYPING. There exists T′′ such that
T′′ ≤ T′ ≤ Low and Γ;R `r t : T′′ with a proof tree Π′′

such that size(Π′′) ≤ size(Π′). Applying our induction
hypothesis on Π′′ and Π leads to a contradiction.

• Π ends with the rule NAME. We have already eliminated
the case where Π′ ends with the rule SUB-TYPING. Thus,
Π′ necessarily ends with the rule NAME too, and therefore
T = T′. We conclude by Lemma 1.

• Π ends with the rule IF. In such a case, as Π′ does not end
with rule SUB-TYPING, Π′ ends with the rule IF or FUN-LOW.
The case FUN-MSG is not possible, as Msg 6≤ Low. In both
cases, we have t = if b then t1 else t2, and we conclude
relying on the induction hypothesis on e.g. i = 1.

• Π ends with the ule PAIR. In such a case, as Π′ does not
end with rule SUB-TYPING, Π′ ends with the rule PAIR or
FUN-LOW. The case FUN-MSG is not possible as Msg 6≤ Low.
In both cases, we have t = 〈t1, t2〉, and Γ;R `r ti : Ti
for i = 1, 2. Moreover, we have T = T1 × T2 ≤ High,
and thus Ti ≤ High for some i0 ∈ {1, 2}. We conclude
by applying the induction hypothesis to the left subtrees
if i0 = 1, or the right subtrees if i0 = 2.

The other cases (i.e. Π ending with CST-0, CST-∞, ZEROS, FUN-

MSG, SENC, EQ, EQ-FALSE, EQ-TRUE-CST, EQ-FALSE-CST) are not possible,
as they cannot lead to a type T such that T ≤ High.

Lemma 6. Let (Γ;R) be a well-formed mapping environment,
and tL be a ground term such that Γ;R `r tL : Low. If
tL = C[tH ], for a tH such that Γ;R `r tH : High and a



context C (i.e. a term with a single hole), then C has one of
the following forms:
• C = C1[senc(C2, k, r)], for some contexts C1, C2, with
R(r) = (C2[tH ], k), and Γ(k) = SK[T] for some T;

• C = C1[zeros(C2)] for some C1, C2;
• C = C1[C2 = t] for some contexts C1, C2 and term t;
• C = C1[t = C2] for some C1, C2, t.

Proof. We show in fact a slightly stronger version of this
lemma: the same property holds as soon as Γ;R `r tL : T
for some T ≤ Low. We prove this generalised property by
induction on the type derivation Π of that judgement.

By Lemma 5, we know that tL itself cannot be given type
High. Thus, only strict subterms tH of tL, i.e. non-trivial
contexts C, need to be considered. We distinguish several
cases for the last rule in Π.
• Rules NAME, CST-0, CST-∞. We have that tL is a name or

constant, and does not have any strict subterm.
• Rules SENC, ZEROS, EQ, EQ-FALSE, EQ-TRUE-CST, EQ-FALSE-CST.

Any strict subterm of tL is contained in a context satisfying
the claim. For instance, in the case of rule ZEROS, tL =
zeros(t′L), and any non-trivial context C around a strict
subterm is of the form C = zeros(C ′).

• Rule SUB-TYPING. We have that Γ;R `r tL : T′ for some
T′ ≤ T ≤ Low, with a proof shorter than Π. We conclude
immediately by applying the induction hypothesis.

• Rule FUN-LOW, and IF are similar. We only present FUN-

LOW. In that case, tL = f(t1L, . . . , t
n
L), and the strict

subterm tH is located in one of the tiL, i.e. C =
f(t1L, . . . , t

i−1
L , C ′, ti+1

L , tnL) for some C ′, such that tiL =
C ′[tH ]. One of the rule’s premises provides a proof
(shorter than Π) that Γ;R `r tiL : Low. By the induction
hypothesis, we obtain that C ′ has an adequate form, and
therefore C as well.

• Rule PAIR: then tL = 〈t1L, t2L〉, and T = T1 × T2 for some
t1L, t2L, T1, T2, and additionally Γ;R `r tiL : Ti for i =
1, 2, with proofs shorter than Π. Assume w.l.o.g. that tH
occurs in t1L (the other case is similar), i.e. C = 〈C ′, t2L〉
for some C ′ such that C ′[tH ] = t1L. Since T1 × T2 ≤
Low, we have T1 ≤ Low. By applying the induction
hypothesis to t1L, we get that C ′ has the correct form, and
thus so does C.

Note that Π can not end with FUN-MSG as Msg 6≤ Low.

Finally, the following lemma establishes how typing handles
logical connectors.

Lemma 7. Let (Γ;R) be a well-formed mapping environment.
If Γ;R `r bi : Bool for i ∈ {1, 2}, then we have that:

Γ;R `r t : Bool when t ∈ {¬b1, b1 ∧ b2, b1 ∨ b2}.

Proof. Application of rules IF, CST-0 (for true and false), and
SUB-TYPING (with Cst0

false, Cst0
true ≤ Bool).

C. Evaluator
Definition 9. Let (Γ;R) be a well-formed mapping environ-
ment, M a computational model, and t a ground base-logic

term. The evaluator of t in M,Γ,R, denoted EOM,Γ,R(t), is
a PPTM with access to η, the adversarial random tape ρa,
and two oracles Oname,Oenc. For better legibility, we consider
them as a single oracle O = {Oname,Oenc}, when there is
no ambiguity as to which oracle is called. The oracle O has
access to the entire random tape ρ = (ρh, ρa). It is defined
inductively as follows:
• for any name n ∈ NB, EOM,Γ,R(n)(1η, ρa) calls
Oname(“n”) and returns its answer;

• for any random r ∈ RB, EOM,Γ,R(r)(1η, ρa) fails;
• if k is a name such that Γ(k) = SK[T] for some

T, EOM,Γ,R(senc(m, k, r))(1η, ρa), first computes p =

EOM,Γ,R(m)(1η, ρa), and then calls Oenc(p, “k”, “r”) and
returns its answer.

• else for any function f ∈ FB ∪ {att} of arity `, and
all terms t1, . . . , t`, EOM,Γ,R(f(t1, . . . , t`))(1

η, ρa) first
computes the arguments EOM,Γ,R(ti)(1

η, ρa) for all i, and
then calls JfKM on the resulting values.

• If any of the recursive calls to EOM,Γ,R or the oracle calls
to O fail, EOM,Γ,R(t)(1η, ρa) fails as well.

Note that we write “r” to denote that the symbol r (assuming
an encoding of symbols as bitstrings) is submitted to the oracle,
and not the bitstring JrKM(1η, ρ) interpreting its value.

The oracle O = {Oname,Oenc} is defined as follows:
• for any name n, Oname(“n”) returns JnKM(1η, ρ) if n is

bound to a message type in Γ, and fails otherwise;
• for any random r, key k, and bitstring m,
Oenc(m, “k”, “r”) checks whether R(r) = (m′, k)
for some m′ such that m = Jm′KM(1η, ρ). If so, it
returns JsencKM(m, JkKM(1η, ρ), JrKM(1η, ρ)), and it
fails otherwise.

It can easily be seen by induction on t that for any well-
formed (Γ;R), any M and any t, EOM,Γ,R(t)(1η, ρa) either fails
or returns JtKM(1η, ρ). The evaluator succeeds if it never needs
to make forbidden calls to O, i.e. if t uses keys and randoms
in the way prescribed by (Γ;R).

Definition 10. Let (Γ;R) be a well-formed mapping envi-
ronment, and t a ground base-logic term. We say that t
is evaluable in (Γ;R) if for any computational model M,
Pρ
[
EOM,Γ,R(t)(1η, ρa) = JtKM(1η, ρ)

]
∈ ow(η).

Lemma 8. Let (Γ;R) be a well-formed mapping environment,
t a ground base-logic term such that Γ;R `r t : T for some
message type T. We have that t is evaluable in (Γ;R).

Proof. We prove this lemma by induction on the derivation of
the judgement Γ;R `r t : T, and examine each possible last
rule in it. Most cases are easily proved. The interesting cases
are rules NAME and SENC.

In the NAME case, t = n is a name, and Γ(n) = T is a
message type. For any η, ρ, the evaluator EOM,Γ,R(n)(1η, ρa)

thus calls its oracle Oname, which answers with JnKM(1η, ρ),
and the claim holds.



In the SENC case, we have t = senc(m, k, r), T = Low,
Γ;R `r m : T′, Γ(k) = SK[T′], and R(r) = (m, k).
To run EOM,Γ,R(senc(m, k, r))(1η, ρa), the evaluator first ex-
ecutes EOM,Γ,R(m)(1η, ρa). By the induction hypothesis, with
overwhelming probability, this succeeds and returns p =
JmKM(1η, ρ). The evaluator then calls O(p, “k”, “r”). The
oracle’s check succeeds, and Oenc correctly computes the
encryption of m.

D. Type interpretation

In order to state and prove our soundness result regarding
the restricted typing system, we first have to define what it
means for a term to be in the interpretation of a type T. We
start with some preliminary definitions, and notations:
• t

∼
∈ S, where S is a finite set of ground base-logic terms,

when for any computational model M,

Pρ
[
∃t′ ∈ S. JtKM(1η, ρ) = Jt′KM(1η, ρ)

]
∈ ow(η).

• t ≈ t′ when t ∼∈ {t′};
Note that it follows immediately from these definitions

that ≈ is an equivalence relation, and that for any function
symbol f ∈ FB, if t1 ≈ t′1, . . . , tn ≈ t′n, then f(t1, . . . , tn) ≈
f(t′1, . . . , t

′
n) (recall that functions are interpreted as determin-

istic PPTMs). Moreover, for any ground t1, t2, t′1, t
′
2 such that

t1 ≈ t′1 and t2 ≈ t′2, if t1 I t2 then t′1 I t′2.

Definition 5. Given a well-formed (Γ;R), a ground base-
logic term t, and a message type T, we say that t is in the
interpretation of T w.r.t. (Γ;R), denoted by Γ;R |= t : T,
when there exists t′ ≈ t such that Γ;R `r t′ : T, and:
• if T = Cst0

c : t ≈ c;
• if T = Cst∞c : t ∼∈ CB,∞c ;
• if T = Bool: t ∼∈ {true, false};
• if T = Msg or T = Low: no further condition;
• if T = High: for all tL, if Γ;R |= tL : Low then tL I t;
• if T=T1×T2: Γ;R|= fst(t) :T1, and Γ;R|=snd(t) :T2;
• if T = T1+T2: either Γ;R |= t : T1, or Γ;R |= t : T2,

or there exist b, t1, t2 such that t′ = if b then t1 else t2,
Γ;R |= b : Bool, and Γ;R |= ti : Ti for i = 1, 2.

The following lemma allows us to choose another term with
the same semantics (up to negligible probability) as a term t.

Lemma 9. Let (Γ;R) be a well-formed mapping environment,
and t, t′ be two ground base-logic terms such that t ≈ t′. If
Γ;R |= t : T, then Γ;R |= t′ : T.

Proof. If Γ;R |= t : T, there exists t′′ such that t ≈ t′′, that
satisfies the conditions listed in Definition 5. As ≈ is transitive,
we also have t′ ≈ t′′, and thus Γ;R |= t′ : T.

Lemma 10. Let (Γ;R) be a well-formed mapping environment,
t a ground base-logic term, and T, T′ message types such that
T ≤ T′. If Γ;R |= t : T, then Γ;R |= t : T′.

Proof. We prove this lemma by induction on the subtyping
proof tree deriving T ≤ T′. Let us first note that by definition
of |=, there exists t′ such that t ≈ t′ and Γ;R `r t′ : T.

Thus, by subtyping, Γ;R `r t′ : T′, which takes care of the
first condition required for Γ;R |= t : T′. We now show
the additional conditions, that depend on T′. To do so, we
distinguish several cases, depending on the last subtyping rule
applied to get T ≤ T′.
• Case of the rules for which T′ ∈ {Low,Msg}: then no

further condition is required, and the claim holds.
• Case of the rules for which T′ = Bool, and thus T ∈
{Cst0

false,Cst0
true}. Then, since Γ;R |= t : T, t ≈ false

(or true), and the condition is satisfied.
• Case of the sum rule: T′ = T1 + T2, and T = Ti for

some i ∈ {1, 2}. Then Γ;R |= t : Ti, which shows the
condition required for Γ;R |= t : T1 + T2.

• Case of the pair rule: T = T1 × T2 and T′ = T′1 × T′2,
with Ti ≤ T′i for i = 1, 2. Since Γ;R |= t : T, by
Definition 5, we know that Γ;R |= fst(t) : T1 and also
Γ;R |= snd(t) : T2. Thus by the induction hypothesis,
Γ;R |= fst(t) : T′1 and Γ;R |= snd(t) : T′2, which shows
the condition for Γ;R |= t : T′1 × T′2 is satisfied.

• Case of the rules where T′ = High and T =
High×Msg or T = Msg ×High. These two cases
are similar, we only detail the first one. Let tL be a
ground term such that Γ;R |= tL : Low. Showing
that tL I t will prove the claim. By contradiction,
assume there exists (for some model M) a PPTM
A such that Pρ

[
A(JtLKM(1η, ρ), 1η, ρa) = JtKM(η, ρ)

]
is non-negligible (in η). By composing A with the
machine interpreting fst in M, we obtain a machine
A′ that computes fst(t) from tL with good proba-
bility: Pρ

[
A′(JtLKM(1η, ρ), 1η, ρa) = Jfst(t)KM(η, ρ)

]
is

non-negligible.
On the other hand, by assumption we have that:

Γ;R |= t : High×Msg.
Hence, by Definition 5, Γ;R |= fst(t) : High. This implies
that tL I fst(t), which is contradicted by the existence
of the machine A′.

Only the reflexivity and transitivity cases remains. The re-
flexivity case trivially holds. In the transitivity case, there
exists T′′ such that T ≤ T′′ and T′′ ≤ T′. Then, by applying
the induction hypothesis twice, we get first Γ;R |= t : T′′, and
then Γ;R |= t : T′, which concludes the proof.

Lemma 11. Let (Γ;R) be a well-formed mapping environment,
t a ground base-logic term, and T a message type.

If Γ;R |= t : T + T, then Γ;R |= t : T.

Proof. We prove this lemma by induction on type T. By
Definition 5, since Γ;R |= t : T + T, two cases are possible.
In the first case, Γ;R |= t : T, and the claim trivially holds.
Now, we consider the second case, i.e. there exist b′, t′1, and t′2
such that:
• t ≈ if b′ then t′1 else t′2,
• Γ;R `r if b′ then t′1 else t′2 : T + T,
• Γ;R |= b′ : Bool, and Γ;R |= t′i : T for i = 1, 2.

From that last point, we get that there exist b, t1, t2 such that
b ≈ b′, ti ≈ t′i, Γ;R `r b : Bool, and Γ;R `r ti : T for



i = 1, 2. Thus, t ≈ if b then t1 else t2, and by applying rule IF,
we get Γ;R `r if b then t1 else t2 : T. Note, in addition, that
by Lemma 9, we have Γ;R |= b : Bool, and Γ;R |= ti : T
for i = 1, 2.

To finish the proof that Γ;R |= t : T, we must show
additional conditions, depending on T. We therefore distinguish
several possible cases.
• If T ∈ {Low,Msg}: in that case we have nothing more

to prove.
• If T = Cst0

c (resp. T = Cst∞c ) for some c ∈ CB,0 (resp.
c ∈ C), then, since Γ;R |= t′i : T for i = 1, 2, we have
by definition t′i ≈ c (resp. t′i

∼
∈ CB,∞c ) for i = 1, 2, and

therefore t ≈ if b′ then t′1 else t′2 ≈ c (resp. t ∼∈ CB,∞c ).
• If T = High: Then we have Γ;R |= t′i : High for i = 1, 2.

We must show that Γ;R |= t : High. Consider a term tL
such that Γ;R |= tL : Low. Showing that tL I t will
prove the claim. Let M be a model and A be an attacker.
For an arbitrary η, we define:

– mA
def
= A(JtLKM(1η, ρ), 1η, ρa);

– trueη
def
= JtrueKM(1η), and falseη

def
= JfalseKM(1η);

– mx
def
= JxKM(η, ρ) for x = t, t1, t2, b.

We have to prove that Pρ [mA = mt] ∈ negl(η). We will
decompose this event according to the value of mb:

Pρ [mA = mt]
= Pρ [mA = mt ∧ mb = trueη]

+ Pρ [mA = mt ∧ mb = falseη]
+ Pρ [mA = mt ∧ mb /∈ {trueη, falseη}]

= Pρ [mA = mt1 ∧ mb = trueη]
+ Pρ [mA = mt2 ∧ mb = falseη]
+ Pρ [mA = mt ∧ mb /∈ {trueη, falseη}]

≤ Pρ [mA = mt1 ] + Pρ [mA = mt2 ]
+ Pρ [mb /∈ {trueη, falseη}]

By definition of Γ;R |= b : Bool, b ∼∈ {true, false}, and so,
Pρ [mb /∈ {trueη, falseη] ∈ negl(η). Likewise, Γ;R |= ti :
High implies tL I ti and thus Pρ [mA = mti ] ∈ negl(η).
We conclude that Pρ [mA = mt] ∈ negl(η), and so tL I t.

• If T = T1 × T2, then we have Γ;R |= t′i : T1 × T2

for i = 1, 2. Thus, by definition, for i = 1, 2, we have
Γ;R |= fst(t′i) : T1 and Γ;R |= snd(t′i) : T2. Therefore,
by definition of |=, we have that:
– Γ;R |= if b′ then fst(t′1) else fst(t′2) : T1 + T1, and
– Γ;R |= if b′ then snd(t′1) else snd(t′2) : T2 + T2.
Above, we take terms overwhelmingly equal to fst(t′i) and
snd(t′i) to ensure syntactic typing in the restricted system.
This is not an issue as we know that Γ;R |= fst(t′i) : T1

and Γ;R |= snd(t′i) : T2. Then, by the induction
hypothesis, we deduce that:
– Γ;R |= if b′ then fst(t′1) else fst(t′2) : T1, and
– Γ;R |= if b′ then snd(t′1) else snd(t′2) : T2.
Moreover, since t ≈ if b′ then t′1 else t′2, we have that
fst(t) ≈ if b′ then fst(t′1) else fst(t′2) (and similarly for
snd). Using Lemma 9, this means that Γ;R |= fst(t) : T1,
and similarly for snd. Therefore, Γ;R |= t : T1 × T2.

• If T = T1 + T2: that case is the most involved. We
know that Γ;R |= t′i : T1 + T2 for i = 1, 2. Therefore,
for each i = 1, 2, two situations are possible. Either (i)
there exists ji ∈ {1, 2} such that Γ;R |= t′i : Tji ; or (ii)
there exist bi, t1i , t

2
i such that t′i ≈ if bi then t

1
i else t2i ,

Γ;R |= bi : Bool, Γ;R |= t1i : T1, and Γ;R |= t2i : T2.

Consider first the case where t′1 and t′2 are both in situation
(i) with j1 = j2, i.e. Γ;R |= t′i : T1 for i = 1, 2 (the
case T2 is similar). Thus, by definition of |=, we have
Γ;R |= if b′ then t′1 else t′2 : T1 + T1, provided there
exists a term overwhelmingly equal to that term which
typechecks in the restricted system. That condition holds,
as there are such equivalent typable terms for t′1, t′2, and b′

to which we can apply rules SUB-TYPING and IF. Thus, using
Lemma 9, we have that Γ;R |= t : T1 + T1. By the
induction hypothesis, we get that Γ;R |= t : T1, and the
condition for Γ;R |= t : T1 + T2 is satisfied.

In each other case, we prove Γ;R |= t : T1 + T2 by
finding terms t′′1 , t′′2 , b′′ such that Γ;R |= b′′ : Bool,
Γ;R |= t′′i : Ti for i = 1, 2, and t ≈ if b′′ then t′′1 else t′′2 .
Indeed, if we have such terms, we can obtain by definition
of |= terms b′′′, t′′′1 , t′′′2 that satisfy the same conditions and
also typecheck in the restricted system. We can then use
rules IF and SUB-TYPING to show that if b′′′ then t′′′1 else t′′′2
typechecks with type T1 + T2, which together with the
other properties proves the claim. The choice of t′′1 , t′′2 ,
b′′ depends on which situation applies to t1, t2.
– Case (i) for both, with Γ;R |= t′1 : T1 and Γ;R |= t′2 :

T2: we simply take t′′1 = t′1, t′′2 = t′2, and b′′ = b′.
– Case (i) for both, with Γ;R |= t′1 : T2 and Γ;R |=
t′2 : T1: we take t′′1 = t′2, t′′2 = t′1, and b′′ = ¬b′. We
know that Γ;R `r b : Bool, and thus by Lemma 7, we
have Γ;R `r ¬b : Bool. This allows us to deduce that
Γ;R |= b′′ : Bool as b′′ ≈ ¬b, and the other conditions
clearly hold.

– Case (ii) for both: We take t′′1 = if b then t11 else t12,
t′′2 = if b then t21 else t22, and b′′ = (b∧ b1)∨ (¬b∧ b2).
By checking each possible boolean value of b, b1 and
b2, we find that t ≈ if b′′ then t′′1 else t′′2 . Relying on
Lemma 7 to ensure the existence of an equivalent term
that typechecks in the restricted system, we deduce
that Γ;R |= b′′ : Bool. In addition, following the same
reasoning as in the “both (i) with j1 = j2” case earlier,
we can show that Γ;R |= t′′i : Ti + Ti for i = 1, 2.
Using the induction hypothesis, we thus have Γ;R |=
t′′i : Ti, which concludes this case.

– Case (i) for one and (ii) for the other one. All possible
sub-cases are similar, we only detail the case where
t′1 is in situation (ii), and Γ;R |= t′2 : T1. We take
t′′1 = if b then t11 else t2, t′′2 = t21, and b′′ = (b∧b1)∨¬b.
We then conclude similarly to the previous case. By
checking each possible value of b and b1, we can see
that t ≈ if b′′ then t′′1 else t′′2 . By Lemma 7, we have
Γ;R |= b′′ : Bool. We already know that Γ;R |= t21 :
T2. As before, we can show that Γ;R |= t′′1 : T1 + T1.



By induction hypothesis, we thus have Γ;R |= t′′1 : T1,
which concludes the proof.

E. Some lemmas to deal with cryptography

Definition 11. Let t and c be two ground base-logic terms
with c of form senc(m, k, r). We let δc(t) denote the term
obtained as follows:
• δc(t) = t when t ∈NB ∪ CB ∪RB;
• δc(senc(m, k, r)) = senc(zeros(m), k, r); and
• δc(f(t1, .., tn)) = f(δc(t1), ..., δc(tn)) otherwise.

Definition 12. Let (Γ;R) be a well-typed mapping envi-
ronment, and c a term of form senc(m, k, r) such that
R(r) = (m, k).
• δc(Γ) denotes the mapping equal to Γ except for names

mapped to types of form SK[T] that are mapped to
SK[Msg].

• δc(R) denotes the mapping with the same domain as R
and such that:
– δc(R)(r) = (zeros(m), k); and otherwise
– δc(R)(r′) = (δc(t

′), k′) when R(r′) = (t′, k′).

Note that in δc(Γ), we replace types of the form SK[T] with
SK[Msg], even for keys not used in c. These keys are used to
encrypt messages of type T in (Γ;R). Since T ≤ Msg, we
can use them to encrypt the same messages in (δc(Γ); δc(R)).

Lemma 12. Let (Γ;R) be a well-typed mapping environment,
t a base-logic term, and T a type such that Γ;R `r t : T. Let
c be a ground base-logic term of the form senc(m, k, r) and
such that R(r) = (m, k). Then:
• (δc(Γ); δc(R)) is a well-typed mapping environment;
• δc(Γ); δc(R) `r δc(t) : T.

Proof. We prove this lemma by induction on the typing
derivation of Γ;R `r t : T. All cases are straightforward,
except those that may apply to senc(m, k, r), i.e. rules SENC,
FUN-LOW, and FUN-MSG. These last two cases are excluded as
r ∈ dom(R) ⊆ RB cannot be given a message type.

In the case of rule SENC, we have t = senc(m, k, r), T =
Low, Γ(k) = SK[T′], R(r) = (m, k), and Γ;R `r m : T′. By
induction hypothesis, we obtain δc(Γ); δc(R) `r δc(m) : T′.
Note that δc(m) = m as c is not a subterm of m. Hence
δc(Γ); δc(R) `r zeros(m) : Msg by rules SUB-TYPING and ZEROS.
We then conclude with an application of SENC.

Lemma 13. Consider two ground (base logic) terms t, t′, a
well-typed mapping environment (Γ;R) such that Γ;R `r t :
Msg and Γ;R `r t′ : Msg. Consider a term c = senc(m, k, r),
such that R(r) = (m, k). Then:

δc(t) I δc(t
′) implies t I t′.

Proof. Consider a computational model M and a PPTM A
that, given access to the adversarial tape ρa and
to t, tries to compute t′. We have to show that
Pρ
[
A(1η, ρa, JtK

M
(1η, ρ)) = Jt′KM(1η, ρ)

]
is negligible in η.

The structure of the proof is as follows. We first establish
a useful relation between the evaluators from Definition 9

for (Γ;R) and (δc(Γ); δc(R)). We show how t and δc(t) can
be computed by the same evaluator. Finally, we construct an
adversary B against IND-CPA, that uses these evaluators to
simulate A on either t (on the left) or δc(t) (on the right), and
checks if it manages to compute t′ (resp. δc(t′)). By assumption,
it likely fails on the right, and by the IND-CPA property, B
must give with good probability the same answer on both
sides, showing that A (on the left) has a low probability of
computing t′ from t.

Let us call respectively O0 and O2 the oracles given to the
evaluators EO0

M,Γ,R, EO2

M,δc(Γ),δc(R) when evaluating in (Γ;R)

and (δc(Γ); δc(R)). It is clear from Definition 9 that EM,Γ,R
itself does not directly depend on R or Γ, but rather on the
domain of Γ and on which names are given key types – which
are the same for Γ and δc(Γ). The difference between evaluating
a term in (Γ;R) and (δc(Γ); δc(R)) thus only lies in the oracle:
we have that: EO2

M,δc(Γ),δc(R) = EO2

M,Γ,R. The two oracles O0

and O2 only differ in that O0 accepts to encrypt using r only
the interpretation of m with the key k, while O2 only accepts
to encrypt the interpretation of zeros(m) with key k.

Let us finally consider an additional oracle O1, which is
similar to O0, except that it answers query O1(m0, “k0”, “r”)
by ensuring that k0 = k and m0 = JmKM(1η, ρ), and if so
returns the encryption of JzerosKM(m0) with r, k. All other
queries are answered like O0. When evaluating a term t0, the
evaluator EO1

M,Γ,R(t0) explores the term, and when reaching
an encryption calls O1. O1 computes the corresponding
ciphertext, except if the encryption was c, in which case it
encrypts zeros(m): that is exactly the behaviour of the “normal”
evaluator EO2

M,Γ,R when called on δc(t0). Therefore, for any t0,
EO1

M,Γ,R(t0) = EO2

M,Γ,R(δc(t0)) = EO2

M,δc(Γ),δc(R)(δc(t0)).

We know by assumption that t, t′ are typable in (Γ;R).
Thus, by Lemma 8, they are both evaluable by EO0

M,Γ,R, i.e.

Pρ
[
EO0

M,Γ,R(t)(1η, ρa) = JtKM(1η, ρa)
]
∈ ow(η),

and similarly for t′. Besides, by Lemma 12, δc(t) and δc(t′)
are both typable in (δc(Γ); δc(R)). Then, also by Lemma 8,
δc(t) and δc(t′) are evaluable by EO2

M,δc(Γ),δc(R), i.e. by EO1

M,Γ,R
(using the property above):

Pρ
[
EO1

M,Γ,R(t)(1η, ρa) = Jδc(t)K
M

(1η, ρa)
]
∈ ow(η),

and similarly for t′.

We construct a (PPTM) adversary B(1η, ρ′) against the IND-
CPA game (see Appendix), where ρ′ is w.l.o.g. seen as (ρ′h, ρa),
ρ′h being the part of the random tape ρh not associated with the
symbol k or any encryption randomness symbol r′ associated
with k through R. The machine B will internally simulate
the execution of the evaluator EOβM,Γ,R (depending on β) to
compute the interpretations of some terms. That machine uses
an oracle Oβ , which B simulates as follows:
• when called on a name “n”: fail if n is a key symbol in Γ,

otherwise return the corresponding part of the random
tape ρ′h.



• when called on m0, “k0”, “r0” for a k0 6= k: check
that k0 is associated to r0 in R, and fail if not. If so, read
the parts of ρ′h corresponding to r0, k0, and use these
values to encrypt m0.

• when called on m0, “k”, “r0”, for a r0 6= r: check that k
is associated to r0 in R, and fail if not. If so, call the
encryption oracle from the IND-CPA game to encrypt m0

and return the result. Record that result, to return it again
if the same query is made later. This record persists across
different runs of EOβM,Γ,R.

• when called on m0, “k”, “r”: call the left-right encryption
oracle from the IND-CPA game on (m0, JzerosK

M
(m0)),

and return the result. Again, record it so it can be
reproduced later if needed.

When O0 (on the left) and O1 (on the right) succeed, they
are accurately simulated, allowing B to simulate EOβM,Γ,R. Note
that this may not be the case when O0 fails: when simulating
the O0(m0, “k”, “r0”) call, B does not check that m0 is the
correct message, and may thus succeed while O0 does not.
Later on we only need the simulation to be correct in the case
O0 succeeds, so this is not an issue.

The machine B then proceeds as follows: it computes
mβ = EOβM,Γ,R(t)(1η, ρ) and m′β = EOβM,Γ,R(t′)(1η, ρ), and then
simulates A on mβ (using its own ρa to simulate A’s). The
machine B obtains A(1η, ρa,mβ). If that value is equal to m′β ,
B returns 0, otherwise (or if any of the evaluators fail at some
point) it returns 1.

Consider first B’s execution on the left side. Take any ρ such
that EO0

M,Γ,R(t)(1η, ρa) successfully computes JtKM(1η, ρ), and
similarly for t′, and at the same time A(1η, ρa, JtK

M
(1η, ρ)) =

Jt′KM(1η, ρ). For such a ρ, B simulates EO0

M,Γ,R, and then A,
and thus B obtains in the end Jt′KM(1η, ρ). The machine B
thus returns 0. Therefore, we have that:

Pρ
[
Gindcpa,0
B (1η, ρ) = 0

]
≥ Pρ

[
EO0

M,Γ,R(t)(1η, ρa) = JtKM(1η, ρ)

∧ EO0

M,Γ,R(t′)(1η, ρa) = Jt′KM(1η, ρ)

∧ A(1η, ρa, JtK
M

(1η, ρ)) = Jt′KM(1η, ρ)
]
.

Since both evaluators have an overwhelming probability of
success, we can deduce that

Pρ
[
Gindcpa,0
B (1η, ρ) = 0

]
≥

Pρ
[
A(1η, ρa, JtK

M
(1η, ρ)) = Jt′KM(1η, ρ)

]
− negl(η).

Following a similar reasoning on the right, we obtain that

Pρ
[
Gindcpa,1
B (1η, ρ) = 1

]
≥

Pρ
[
A(1η, ρa, Jδc(t)K

M
(1η, ρ)) 6= Jδc(t′)K

M
(1η, ρ)

]
− negl(η).

By assumption, δc(t) I δc(t
′), and thus that last probability is

overwhelming. Thus, Pρ
[
Gindcpa,1
B (1η, ρ) = 0

]
∈ negl(η).

If Pρ
[
A(1η, ρa, JtK

M
(1η, ρ)) = Jt′KM(1η, ρ)

]
was

non-negligible, then by the inequality above,

Pρ
[
Gindcpa,0
B (1η, ρ) = 0

]
would be as well. Therefore,

we have that∣∣∣Pρ [Gindcpa,1
B (1η, ρ) = 0

]
− Pρ

[
Gindcpa,0
B (1η, ρ) = 0

]∣∣∣
is non-negligible which means that B has a non-negligible
advantage in the IND-CPA game. Thus A has a negligible
probability to compute t′ from t, which concludes the proof.

Definition 13. Let t be a ground base-logic term, and k a
name. Let δk(t) denote the term obtained from t as follows:
• δk(t) = t when t ∈NB ∪ CB ∪RB;
• δk(senc(m, k, r)) = senc(zeros(δk(m)), k, r) if r ∈ RB;

and
• δk(f(t1, . . . , tn)) = f(δk(t1), . . . , δk(tn)) otherwise.

Definition 14. Let (Γ;R) be a well-typed mapping environment
and k a name such that Γ(k) = SK[T] for some T.
• δk(Γ) denotes the mapping equal to Γ except for names

mapped to types of form SK[T] that are mapped to
SK[Msg].

• δk(R) denotes the mapping with the same domain as R
defined by:
– δk(R)(r) = (zeros(δk(t)), k) when R(r) = (t, k); and

otherwise
– δk(R)(r) = (δk(t), k′) when R(r) = (t, k′).

Lemma 14. Let (Γ;R) be a well-typed mapping environment,
and t, t′ two ground base-logic terms such that Γ;R `r t : T
and Γ;R `r t′ : T′ for some T,T′. Consider a name k such
that Γ(k) = SK[T] for some T. Then:
• (δk(Γ); δk(R)) is a well-typed mapping environment;
• δk(Γ); δk(R) `r δk(t) : T.
• δk(t) I δk(t′) implies t I t′.

Proof. Let c1, . . . , c` be the sequence of all (pairwise distinct)
ciphertexts encrypted using k and a random symbol from
dom(R) in t, t′, and R. We note ci = senc(pi, k, ri). We
number these ciphertexts in such a way that when i < j, ci is
not a subterm of cj (i.e. of pj). For any subterm m occurring
in t, t′, and R, δk(m) is the term obtained from m by inserting
zeros before each plaintext at each position where one of the
ci is present. Starting from m, the same result is obtained by
doing so for each instance of c1, then of c2, c3 and so on, i.e.
applying successively δc1 , . . . , δc` . Indeed, at each step, when
applying δcj , all ciphertexts ci (i < j) that have already been
replaced do not appear as subterms of cj , and therefore do not
interfere with the replacement of cj .

Let δi = δci ◦ · · · ◦ δc1 with j ∈ {1, . . . , `}. By convention,
δ0 is the identity function. We now show by induction on i
that:

1) (δi(Γ); δi(R)) is well-typed;
2) δi(Γ); δi(R) `r δi(t) : T, and similarly for t′;
3) δi(Γ); δi(R) `r cj : Msg for any j ∈ {i+ 1, . . . , `};
4) δi(t) I δi(t

′) ⇒ t I t′.



Base case: i = 0. The two first properties hold by hypothesis,
whereas the last one trivially holds. It remains to establish that

Γ;R `r cj : Msg for any j ∈ {1, . . . , `}.

Note that each cj is a subterm in t, t′, or R. We know that
Γ;R `r t : T, Γ;R `r t′ : T′, and also that (Γ;R) is well-
typed. By Lemma 4, we know that Γ;R `r cj : Tj for some
message type Tj , and thus we have that Γ;R `r cj : Msg for
any j ∈ {1, . . . , `}.
Induction step. We assume that the properties hold for i, and we
establish that they also hold for i+ 1. By induction hypothesis,
we know that

δi(Γ); δi(R) `r ci+1 : Msg,

and thus, as c uses a random from dom(R), we know that
this typing derivation ends with an application of the rule SENC,
followed potentially by subtyping steps. Thus δi(R)(ri+1) =
(pi+1, k). We can thus apply Lemma 12 using ci+1, and we
deduce that the first two items hold, i.e.

1) (δi+1(Γ); δi+1(R)) is well-typed; and
2) δi+1(Γ); δi+1(R) `r δi+1(t) : T, and similarly for t′.

Regarding the third point, we use Lemma 12 again, and we
rely on the fact that δi+1(cj) = cj for any j ∈ {i+ 2, . . . , `}.
They, by applying Lemma 13 to points 1 and 2 of the induction
hypothesis, and using the fact that δi(Γ), δi(R) `r ci+1 : Msg
by induction hypothesis, we get that δci+1 ◦δi(t) I δci+1 ◦δi(t′)
implies δi(t) I δi(t

′). Therefore, using item 4 of the induction
hypothesis, we deduce that:

δi+1(t) I δi+1(t′) ⇒ t I t′.

As the ciphertexts c1, . . . , c` are numbered in such a way that
when i < j, ci is not a subterm of cj (i.e. of pj), composing
all δcj , we replace all ciphertexts with k, as δk does: i.e.
δk(m) = (δc` ◦ · · · ◦ δc1)(m) = δ`(m), and this allows us to
conclude.

Definition 15. Let (Γ;R) be a well-typed mapping environ-
ment. We number (ki)1≤i≤` the names that are assigned a
symmetric key type in Γ. We define δΓ = δk` ◦ ... ◦ δk1 , that
can be applied to terms and environments.

Note that for k 6= k′, δk and δk′ commute. Thus, Defini-
tion 15 above does not depend on the choice of a particular
order for keys.

Lemma 15. Consider two ground base-logic terms t, t′, a
well-typed environment (Γ;R) such that (Γ;R) `r t : T and
(Γ;R) `r t′ : T′. Then:
• (δΓ(Γ), δΓ(R)) is a well-typed environment;
• (δΓ(Γ), δΓ(R)) `r δΓ(t) : T;
• δΓ(t) I δΓ(t′) ⇒ t I t′.

Proof. Let k1, . . . , k` the names that are assigned a symmetric
key type in Γ. We prove this lemma by successively applying
Lemma 14 to each δki .

F. Soundness of the restricted type system

In this section, we state our main result regarding the
soundness of the restricted type system, i.e. that when a ground
base-logic term t has type T in the restricted type system, then
t is in the interpretation of T.

Theorem 2. Let (Γ;R) be a well-formed mapping environment,
t a ground base-logic term, and T a message type.
If Γ;R `r t : T, then Γ;R |= t : T.

Proof. Let (Γ;R) be a well-formed mapping environment, and
t, T such that Γ;R `r t : T. We must prove that Γ;R |= t : T,
i.e., according to Definition 5, that there exists t′ such that
Γ;R `r t′ : T and t′ ≈ t, plus an additional requirement
which depends on T. We prove that by induction on the typing
derivation Π for the judgement Γ;R `r t : T.

We choose t′ = t, so that Γ;R `r t : T, by hypothesis, and
t ≈ t. For the last requirement, we examine each possible case
regarding the last rule of Π.
• Rules ZEROS, FUN-LOW, FUN-MSG, SENC, as well as rule NAME

when T = Low. In such a case, there is nothing to prove
since interpretations of type Low and Msg do not have
an additional requirement.

• Rules CST-0 and CST-∞. In such a case, t is a constant c, and
therefore we have t ≈ c which is exactly the condition
we had to establish.

• Rule PAIR. In such a case, we have t = 〈t1, t2〉, T =
T1 × T2, and Γ;R `r ti : Ti for i = 1, 2 (from the rule’s
premises). Applying our induction hypothesis, we deduce
that Γ;R |= ti : Ti, with i = 1, 2. To conclude, it remains
to use Lemma 9 with fst(t) ≈ t1 and snd(t) ≈ t2.

• Rules EQ, EQ-TRUE-CST, EQ-FALSE-CST, and EQ-FALSE. In such a
case, we have t = (t1 = t2). In the case of rule EQ, T =
Bool, and we must show that (t1 = t2)

∼
∈ {true, false}.

The proof is immediate, as by assumption J=KM can only
produce JtrueKM or JfalseKM for any M.
In the case of rule EQ-TRUE-CST, T = Cst0

true and we must
show that (t1 = t2) ≈ true. Thanks to the induction
hypothesis, we have Γ;R |= ti : Cst0

c for i = 1, 2 and for
some c. This means that ti ≈ c, and thus t1 ≈ t2, which
implies that (t1 = t2) ≈ true.
In the case of rule EQ-FALSE-CST, with the same reasoning,
we get Γ;R |= ti : Cst?ci with c1 6= c2. The cases where
? is 0 and ∞ are similar. We only detail the case where
Γ;R |= t1 : Cst∞c1 and Γ;R |= t2 : Cst0

c2 . By definition,
this means t1

∼
∈ CB,∞c1 and t2 ≈ c2. Since set CB,∞c1

does not contain c2 (by construction), and since distinct
constants are interpreted as different values, t1 and t2
are interpreted as different values overwhelmingly, i.e.
(t1 = t2) ≈ false. Therefore Γ;R |= t1 = t2 : Cst0

false.
Finally, in the case of rule EQ-FALSE, we have Γ;R `r
t1 : High and Γ;R `r t2 : Low. Applying the induction
hypothesis, we obtain Γ;R |= t1 : High and Γ;R |=
t2 : Low. Therefore, by definition of the interpretation of
High, we know that t2 I t1, i.e. an attacker cannot use
t2 to produce a result equals to t1 with a non-negligible
probability of success, in any model. In particular, with



an attacker that simply returns its input, this means that
for any computational model M:

Pρ
[
Jt2K

M
(1η, ρ)) = Jt1K

M
(1η, ρ)

]
∈ negl(η).

Hence (t1 = t2) ≈ false, and Γ;R |= t1 = t2 : Cst0
false.

• Rule SUB-TYPING. In such a case we have Γ;R `r t : T′

for some T′ such that T′ ≤ T. Applying the induction
hypothesis, we deduce that Γ;R |= t : T′, and thanks to
Lemma 10, we conclude that Γ;R |= t : T.

• Rule IF. In such a case, we have:
– t = if t0 then t1 else t2,
– Γ;R `r t0 : Bool, and
– Γ;R `r ti : T for i = 1, 2.
By the induction hypothesis, we have Γ;R |= t0 : Bool,
and Γ;R |= ti : T for i = 1, 2.
In addition, we can show that Γ;R `r t : T + T, by
applying rule SUB-TYPING to Γ;R `r t : T. Therefore, by
definition, Γ;R |= t : T + T. Then, we conclude that
Γ;R |= t : T thanks to Lemma 11.

• Rule NAME when T = High. In such a case, t is some
name n such that Γ(n) = High, and we have to establish
that Γ;R |= n : High. Let tL be a ground term such that
Γ;R |= tL : Low. We have to establish that tL I n.
By definition of |=, we know that there exists t′L ≈ tL such
that Γ;R `r t′L : Low. In order to conclude, we would
like to use Lemma 15 on Γ;R `r t′L : Msg and Γ;R `r
n : High. Its hypotheses are satisfied, except potentially
the requirement that (Γ;R) is well-typed: we only know
it to be well-formed. Let R′ be the mapping such that
dom(R′) = dom(R) ∩ {r | r occurs in t′L}. Thanks to
Lemma 2, we know that Γ;R′ `r t′L : Low. Moreover,
for any r ∈ dom(R′), we know that senc(p, k, r) occurs
in t′L for some p and some k. Relying on Lemma 4,
we can deduce that Γ;R′ `r senc(p, k, r) : Msg, and
since r ∈ dom(R′), we deduce that this derivation ends
with an instance of the rule SENC (potentially followed
by subtyping steps), and thus R′(r) = (p, k). Therefore,
(Γ;R′) is well-typed.
Applying Lemma 15 to Γ;R′ `r t′L : Low and Γ;R′ `r
n : High, we obtain that δΓ(Γ); δΓ(R′) `r δΓ(t′L) : Low
and that it suffices to prove δΓ(t′L) I n to deduce that
t′L I n, and thus tL I n (since δΓ(n) = n and t′L ≈ tL).
Before doing so, we characterise the positions in δΓ(t′L)
where n can occur. By Lemma 6, each occurrence of n
in δΓ(t′L) is in a context of the form C1[senc(C2, k, r)]
with a key in δΓ(Γ) and r ∈ dom(R′), C1[zeros(C2)],
C1[C2 = t′], or C1[t′ = C2]. By construction, all
encryptions in δΓ(t′L) with a key in Γ and a random
symbol in dom(R′) are of the form senc(zeros(t′), k, r)
for some t′. Thus, the first case is absorbed by the second,
i.e. the context contains zeros or = above n. In other
words, if ti for 1 ≤ i ≤ ` are all the subterms of t of
the form zeros(t′) or t′ = t′′, each occurence of n in t
appears inside a term ti.
We can now prove that δΓ(t′L) I n. Fix a computational
model M, and a PPTM adversary A, with access to the ad-

versarial part ρa of the random tape, and JδΓ(t′L)KM(1η, ρ).
We must show that the probability (in ρ) that A computes
JnKM(1η, ρ) is negligible. We construct a PPTM adversary
B(1η, ρ′, ρb), with access to a tape ρ′ = (ρh \ {n}, ρa),
where ρh \{n} denotes the random tape ρh where the part
ρh(n) associated to n was removed, and ρb, an additional
source of randomness unused by A. The machine B
internally runs A, using the adversarial part of ρ′ to
simulate ρa for A. It returns the value produced by A.
To provide A with JδΓ(t′L)KM(1η, ρ), B needs to compute
this value. To do so, B goes through the term δΓ(t′L)
recursively.
– When encountering a name other than n, B obtains its

value from ρ′ (it fails when encountering n).
– When encountering f(t′1, . . . , t

′
k) for some function

symbol f other than zeros or =, B recursively computes
the interpretation of each t′i, and calls JfKM.

– To evaluate zeros(t′) or t′ = t′′ when t′ and t′′ do not
contain n, B proceeds as in the previous case.

– To evaluate t′ = t′′ otherwise: B draws a random bit
from ρb.

– Similarly, to evaluate zeros(t′) if n occurs in t′: since all
functions are interpreted as polynomial time algorithms,
there exists a polynomial p(η) that bounds the length of
Jt′KM(1η, ρ) for all subterms t′ of δΓ(t′L), all η and ρ.
B draws uniformly at random (from ρb) an integer l
between 0 and p(η), and return a string of l zeros.

By the observation on the positions of n in δΓ(t′L), B
never needs to evaluate n. Moreover, the number g of
guesses made by B is fixed and independent of η, ρ, ρb: it
only depends on the structure of term t′L. The probability
(in ρb) of success of each independent guess, for any η,
ρ, is at least p(η)−1 (assuming w.l.o.g. that p(η) ≥ 2, for
the case of booleans). Thus, if we let q(η) = p(η)g, for
any η, ρ, the probability in ρb of B correctly guessing
each time is at least q(η)−1.
Hence, for any η, ρ, if ∆η,ρ denotes JδΓ(t′L)KM(1η, ρ),
we have Pρb [B(1η, ρ′, ρb) = A(1η, ρa,∆η,ρ)] ≥ q(η)−1.
This bound is uniform in ρ, and therefore carries over
when taking the probability over ρ. More precisely, for
any η, the conditional probability on ρ of that equality,
restricted to the ρ for which A succeeds in computing n,
satisfies

Pρ,ρb [B(1η, ρ′, ρb) = A(1η, ρa,∆η,ρ) |
A(1η, ρa,∆η,ρ) = JnKM(1η, ρ)

]
≥ q(η)−1

and is therefore non-negligible. Moreover, since ρ(n)
is drawn independently from all parameters of B,
Pρ,ρb

[
B(1η, ρ′, ρb) = JnKM(1η, ρ)

]
is negligible.

On the other hand, for any η:

Pρ,ρb
[
B(1η, ρ′, ρb) = JnKM(1η, ρ)

]
≥

Pρ,ρb [B(1η, ρ′, ρb) = A(1η, ρa,∆η,ρ) |
A(1η, ρa,∆η,ρ) = JnKM(1η, ρ)

]
×

Pρ,ρb
[
A(1η, ρa,∆η,ρ) = JnKM(1η, ρ)

]
.



Therefore, Pρ,ρb
[
A(1η, ρa,∆η,ρ) = JnKM(1η, ρ)

]
is neg-

ligible, which concludes the proof.

APPENDIX D
TYPE SYSTEM FOR MESSAGES (BASE-LEVEL)

The typing system we consider in this section is composed
of rules in Figure 1 and Figure 2, except that it manipulates
terms of the base logic, and thus non-indexed symbols. In rules
NAME, SDEC, SENC, CST-∞, the indices are removed: n, k, r and c
are non-indexed symbols (from the base logic).

Definition 16. The base logic type system is composed of the
rules given in Figure 1 and Figure 2 where ` is replaced with
`b, and that manipulates base logic terms (i.e. non indexed
symbols).

A typing judgement w.r.t. this typing system is an expression
of the form Γ;R `b t : T where (Γ;R) is a well-formed typing
environment, t is a base logic term (that may contain variables),
and T is a message type.

We aim at establishing the following result, i.e. the soundness
of the type system introduced in this section.

Theorem 3. Let (Γ;R) be a well-formed typing environment,
t a ground term of the base logic, and T a message type. Then
Γ;R `b t : T implies Γ;R |= t : T for some R.

A. Preliminaries

A substitution θ is a mapping from variables to ground
base logic terms. We write dom(θ) its domain, and tθ the
application of θ on a term t. We say that θ is grounding for t
when vars(t) ⊆ dom(θ), i.e. tθ is ground.

Definition 17. Let (Γ;R) be a well-formed environment, and θ
be a substitution. We say that θ is well-typed w.r.t. (Γ;R),
denoted by Γ;R `r θ, if dom(θ) ⊆ vars(Γ), and

Γ;R `r θ(x) : Γ(x) for any x ∈ dom(θ).

B. Dealing with cryptography

Lemma 16. Let (Γ;R) be a well-formed mapping envi-
ronment, T be a message type, Γ(k) = SK[T], and t
be a ground term such that Γ;R `r t : Msg. Let
senc(p1, k, r1), . . . , senc(p`, k, r`) be the sequence of encryp-
tions with key k and random symbols from dom(R) occurring
in t, and

δ(t, k) =

 if t = senc(p1, k, r1) then p1 else
. . .
if t = senc(p`, k, r`) then p` else fail

We have that sdec(t, k) ≈ δ(t, k).

Proof. Consider a computational model M, and fix some η,
and some ρ.

If there exists i ∈ {1, . . . , `} such that JtKM(η, ρ) =
Jsenc(pi, k, ri)K

M
(η, ρ), then consider a smallest such i:

by correctness of the encryption scheme, we have that
Jsdec(t, k)KM(η, ρ) = JpiK

M
(η, ρ) for that i. Thus,

Jsdec(t, k)KM(η, ρ) = Jδ(t, k)KM(η, ρ).
On the other hand, if for all i ∈ {1, . . . , `},

we have that JtKM(η, ρ) 6= Jsenc(pi, k, ri)K
M

(η, ρ), and
Jsdec(t, k)KM(η, ρ) = JfailKM(η, ρ), then we also have
Jsdec(t, k)KM(η, ρ) = Jδ(t, k)KM(η, ρ). These two observations
establish that for all η,

Pρ
[
∃i. JtKM(η, ρ) = Jsenc(pi, k, ri)K

M
(η, ρ)

∨ Jsdec(t, k)KM(η, ρ) = JfailKM(η, ρ)
]

≤ Pρ
[
Jsdec(t, k)KM(η, ρ) = Jδ(t, k)KM(η, ρ)

]
It is therefore sufficient to show that the probabil-

ity of ∀i. JtKM(η, ρ) 6= Jsenc(pi, k, ri)K
M

(η, ρ) ∧
Jsdec(t, k)KM(η, ρ) 6= JfailKM(η, ρ) is negligible. Assuming
it is not, we construct an adversary that breaks the INT-CTXT
assumption (see Appendix).

By Lemma 8, since Γ;R `r t : Msg, t is evaluable in
(Γ;R), i.e. Pρ

[
EOM,Γ,R(t)(1η, ρa) = JtKM(1η, ρa)

]
∈ ow(η).

We construct an adversary A(1η, ρ′) against the INT-CTXT
game, where ρ′ is w.l.o.g. seen as (ρ′h, ρa), ρ′h being the part
of the random tape ρh not associated with the symbol k or
any encryption randomness symbol r associated with k in Γ.
A internally simulates the execution of EOM,Γ,R(t)(1η, ρa), and
its definition relies on Γ and R. He answers the queries to
oracle O as follows.
• O(“n”): if “n” is the symbol of a key in Γ, then fail.

Otherwise read its associated value JnKM(1η, ρ) on ρ′h,
and return it.

• O(m, “k1”, “r”): if k1 = k, call his own encryption
oracle to answer the call. Otherwise, check if r is
associated with k1 in R. If so, obtain the values associated
with r and k1 on ρ′h, then apply JsencKM to m, and fail
otherwise.

Once A obtains the value returned by EOM,Γ,R(t)(1η, ρa), he
submits it as his INT-CTXT challenge.

Whenever EOM,Γ,R(t) successfully evaluates, A accu-
rately simulates the oracle O (up to bijection be-
tween the part of ρh for k and its randoms, and
the tape used by the INT-CTXT encryption oracle).
Thus the execution of EOM,Γ,R(t) is accurately simulated,
and A obtains and submits the value EOM,Γ,R(t)(1η, ρa).
With overwhelming probability, this value is equal to
JtKM(1η, ρa). Moreover, by assumption, with non-negligible
probability, ∀i.JtKM(1η, ρa) 6= Jsenc(pi, k, ri)K

M
(η, ρ), and

Jsdec(t, k)KM(η, ρ) 6= JfailKM(η, ρ), thus with non-negligible
probability, both events occur, i.e. A submits a value that lets
him win the INT-CTXT game. This concludes the proof.



C. Main result of this section

In order to establish the sounndness of our type system,
we will prove a lemma, which states that a well-typed term t
can be transformed into another equivalent term t′ that can be
typed in the restricted system. Then, we will conclude relying
on the soundness result established for the restricted system.
In order to be able to establish such a lemma by induction and
to deal with the rule ASSIGN, we have to show the result for any
non ground term that is closed by a well-typed substitution.
The lemma is as follows:

Lemma 17. Let t be a term of the base logic, (Γ;R) be a
well-formed typing environment, (Γ;R) be a mapping typing en-
vironment that is also well-formed such that dom(R) ∩R = ∅,
and θ be a substitution grounding for t. If Γ;R `b t : T and
Γ;R `r θ, then there exist a ground term t′, and a mapping R′
such that:

1) dom(R′) ⊆ R;
2) tθ ≈ t′; and
3) Γ,RtR′ `r t′ : T.

Note that, once this lemma will be established, Theorem 3
will follow.

Proof of Theorem 3. Let (Γ;R) be a well-formed typing
environment, t a ground term of the base logic, and T a message
type such that Γ;R `b t : T. Applying Lemma 17 with the
empty substitution, we deduce that there exist t′ and R′ such
that t ≈ t′ and Γ;R `r t′ : T, and thus Γ;R′ |= t′ : T thanks
to Theorem 2, and this allows us to deduce that Γ;R |= t : T
relying on Lemma 9.

It remains to establish Lemma 17.

Proof. We establish the lemma by induction on the typing
derivation witnessing the fact that Γ;R `b t : T. When the
rule ending the typing derivation exists in the restricted type
system, the result is a direct consequence of the application
of the induction hypothesis. Thus, in addition to the rules VAR,
ASSIGN, BREAK-SUM, FST, SND, IF-TRUE, IF-FALSE, and SDEC that have
no counterpart in the restricted type system, we detail the rule
PAIR below to illustrate an easy case of the proof. We also detail
the rule SENC to illustrate the construction of R′. Note that for
each axiom, we set R′ to the empty mapping.

Case of the rule PAIR:
Γ;R1 `b t1 : T1 Γ;R2 `b t2 : T2

Γ;R1 tR2 `b 〈t1, t2〉 : T1 × T2

We have that R = R1 tR2, t = 〈t1, t2〉, and T = T1 × T2.
We have that (Γ;Ri) is well-formed and dom(R)∩Ri = ∅ for
i = 1, 2, therefore applying our induction hypothesis with θ
on both subtrees, we deduce that there exist ground t′i and R′i
(for i = 1, 2) such that:

1) dom(R′i) ⊆ Ri;
2) tiθ ≈ t′i; and
3) Γ;RtR′i `r t′i : Ti.

Let t′ = 〈t′1, t′2〉, and R′ = R′1 tR′2. We have that:

1) dom(R′) = dom(R′1) t dom(R′2) ⊆ R1 tR2 = R;
2) tθ = 〈t1θ, t2θ〉 ≈ 〈t′1, t′2〉 = t′; and
3) We have seen that Γ;RtR′i `r t′i : Ti for i = 1, 2, and

therefore we have that Γ;R t R′1 t R′2 `r t′i : Ti for
i = 1, 2 (thanks to Lemma 3). Applying the rule PAIR of the
restricted type system, we deduce that Γ;RtR′ `r t′ : T.

Case of the rule SENC:
Γ;R `b t : T k : SK[T] ∈ Γ

Γ;R t {r} `b senc(t, k, r) : Low

By induction hypothesis, there exist t′0 and R′0 such that:
1) dom(R′0) ⊆ R;
2) tθ ≈ t′0; and
3) Γ;RtR′0 `r t′0 : T.

Let t′ = senc(t′0, k, r) and R′ := R′0t{r 7→ (t′0, k)}. We then
have:

1) dom(R′) = dom(R′0) t {r} ⊆ R t {r};
2) senc(t, k, r)θ = senc(tθ, k, r) ≈ senc(t′0, k, r) = t′; and
3) Since Γ;RtR′0 `r t′0 : T, thanks to Lemma 3, we have

that Γ;RtR′ `r t′0 : T We also have Γ(k) = SK[T],
and R′(r) = (t′0, k). We can then apply the rule SENC of
the restricted system to get Γ;RtR′ `r t′ : Low.

Case of the rule VAR:
Γ(x) = T

Γ;R `b x : T

Let t′ = xθ and R′ the empty mapping. We have that:
1) dom(R′) = ∅ ⊆ R;
2) t′ ≈ xθ; and
3) Since Γ;R `r θ, we have that Γ;R `r θ(x) : Γ(x), and

therefore we have that Γ;RtR′ `r t′ : T.

Case of the rule ASSIGN:
Γ, x : T′;R1 `b t1 : T Γ;R2 `b t2 : T′

Γ;R1 tR2 `b t1[x 7→ t2] : T

We have that R = R1 t R2, and t = t1[x 7→ t2]. We have
that (Γ;R2) is well-formed, and dom(R) ∩R2 = ∅, therefore
applying our induction hypothesis on the second subtree, we
deduce that there exist t′2, and R′2 such that:

1) dom(R′2) ⊆ R2;
2) t2θ ≈ t′2; and
3) Γ;RtR′2 `r t′2 : T′.
Let θ1 = θ ∪ {x 7→ t′2}. In order to apply our induction

hypothesis on the first subtree using θ1, we first establish that
Γ, x : T′;RtR′2 `r θ1.
• Since Γ;R `r θ, we have Γ;R `r θ(y) : Γ(y) for each
y ∈ dom(θ), and thus for each each y ∈ dom(θ1) r {x},
thanks to Lemma 3, we have that

Γ, x : T′;R∪R′2 `r θ1(y) : Γ(y).

• Γ, x : T′;R ∪ R′2 `r θ1(x) : Γ(x) as we have that
θ1(x) = t′2 and Γ(x) = T′ (thanks to Lemma 3).



As θ is grounding for t1[x 7→ t2], we have that θ1 is grounding
for t1. We have also that dom(R tR′2) ∩ R1 = ∅, and thus,
applying our induction hypothesis on the first subtree using the
substitution θ1 for which we have that Γ, x : T′;R∪R′2 `r θ1,
we deduce that there exist t′1, and R′1 such that:

1) dom(R′1) ⊆ R1;
2) t1θ1 ≈ t′1; and
3) Γ, x : T′;RtR′2 ∪R′1 `r t′1 : T.

Let t′ = t′1, and R′ = R′1 t R′2. We will show that the
requirements are satisfied:

1) dom(R′) = dom(R′1) t dom(R′2) ⊆ R1 tR2 = R.
2) tθ = (t1[x 7→ t2])θ = t1θ[x 7→ t2θ] ≈ t1θ1 ≈ t′1 = t′.
3) Relying on Lemma 2 and the fact that t′ = t′1, and
R′ = R′1 tR′2, we deduce that Γ;RtR′ `r t′ : T.

Case of the rule FST:
Γ;R `b t0 : T1 × T2

Γ;R `b fst(t0) : T1

We have that t = fst(t0), and T = T1. Applying our
induction hypothesis on the subtree, we deduce that there
exist t′0 and R′0 such that:

1) dom(R′0) ⊆ R;
2) t0θ ≈ t′0; and
3) Γ;RtR′0 `r t′0 : T1 × T2.
Thanks to Theorem 2, we have Γ;RtR′0 |= t′0 : T1 × T2

which means in particular that Γ;RtR′0 |= fst(t′0) : T1. By
definition of type interpretation, we have a term t′ such that
Γ;RtR′0 `r t′ : T1 and t′ ≈ fst(t′0). Let R′ = R′0. We show
that the requirements are satisfied:

1) dom(R′) = dom(R′0) ⊆ R;
2) t′ ≈ fst(t′0) ≈ fst(t0θ) = (fst(t0))θ = tθ; and
3) Γ;RtR′ `r t′ : T1.
The case of the rule SND can be done in a similar way.

Case of the rule IF-TRUE:
Γ;R0 `b t0 : Cst0

true Γ;R1 `b t1 : T1

Γ;R0 tR1 `b if t0 then t1 else t2 : T1

In such a case, we have that t = if t0 then t1 else t2, R =
R0 t R1, and T = T1. We have that (Γ;Ri) is well-formed
and dom(R) ∩ Ri = ∅ for i = 0, 1, therefore applying our
induction hypothesis on both subtrees, we deduce that there
exist t′i and R′i (for i = 0, 1) such that:

1) dom(R′i) ⊆ Ri;
2) tiθ ≈ t′i; and
3) Γ;RtR′i `r t′i : Ti with T0 = Cst0

true.
Let t′ = t′1, and R′ = R′1. We will show that the requirements
are satisfied:

1) dom(R′) = dom(R′1) ⊆ R1;
2) We have seen that Γ;R tR′0 `r t′0 : Cst0

true. Thanks to
Theorem 2, we deduce that Γ;R t R′0 |= t′0 : Cst0

true

which means that t′0 ≈ true. Therefore, we have that:

tθ = if t0θ then t1θ else t2θ
≈ if t′0 then t′1 else t2θ
≈ if true then t′ else t2θ
≈ t′.

3) We have seen that Γ;RtR′1 `r t′1 : T1.
The case of the rule IF-FALSE can be done in a similar way.

Case of the rule BREAK-SUM:
Γ, x : T1;R1 `b t : T Γ, x : T2;R2 `b t : T

Γ, x : T1 + T2;R1 tR2 `b t : T

We have that R = R1 tR2. By hypothesis, we know that
Γ, x : T1 + T2;R `r θ, so we have that

Γ, x : T1 + T2;R `r θ(x) : T1 + T2.

Let Γ′ be the environment Γ without the mapping on variables.
Thanks to Lemma 2, we have that Γ′;R |= θ(x) : T1 + T2.

By Theorem 2, we deduce that Γ′;R |= θ(x) : T1 + T2. By
definition, this means that there exists a ground term m ≈ θ(x)
such that Γ′;R `r m : T and we are in one of the three
following cases:

a) Γ′;R |= m : T1; or
b) Γ′;R |= m : T2; or
c) there are ground terms b, m1, and m2 with m =

if b then m1 else m2 and Γ′;R |= b : Bool, and
Γ′;R |= mi : Ti for i = 1, 2.

Regarding case a) (and the proof is similar for case b)), let
θ be a substitution such that dom(θ) = dom(θ) r {x}, and
θ = θ|dom(θ). We have Γ′;R |= m : T1, so there is m′ such
that m′ ≈ m, and Γ′;R `r m′ : T1. Γ′ does not contain
variables, so m′ is closed.

Let θ′ = θ ∪ {x 7→ m′}. Before applying our induction
hypothesis on the first subtree using the substitution θ′, we
need to show that Γ, x : T1;R `r m′ : T1, and this is actually
an easy consequence of the fact that Γ′;R `r m′ : T1 by
enriching of the environment with Lemma 3. Therefore, thanks
to our induction hypothesis, we deduce that there exists a
ground term t′1 and a mapping R′1 such that:

1) dom(R′1) ⊆ R1;
2) tθ′ ≈ t′1; and
3) Γ, x : T1;RtR′1 `r t′1 : T.

Let t′ = t′1 and R′ = R′1. We show that the requirements are
satisfied:

1) dom(R′) = dom(R′1) ⊆ R1 ⊆ R1 tR2 = R;
2) t′ = t′1 ≈ tθ′ = t(θ ∪ {x 7→ m′}) ≈ tθ; and
3) It remains to establish that Γ, x : T1 + T2;R t R′ `r

t′ : T. Since t′1 is ground and t′1 = t′, it is implied by
Γ, x : T1;RtR′1 `r t′1 : T relying on Lemmas 2 and 3.

It remains to deal with case c). According to Definition 5,
we know that there exist b′, m′1, and m′2 such that:
• b′ ≈ b, and Γ′;R `r b′ : Bool; and
• mi ≈ m′i, and Γ′;R `r m′i : Ti for i = 1, 2.
For i = 1, 2, we consider the substitution θi defined as

follows:
θi = θ ∪ {x 7→ m′i}



where θ is defined as in the previous case. In order to apply
our induction hypothesis on each subtree with θ1 (resp. θ2), we
have to verify that the hypotheses are satisfied. In particular,
we have to establish that

Γ, x : Ti;R `r θi.

First, we consider the case where y ∈ dom(θi) r {x},
we have to show that Γ, x : Ti;R `r θi(y) : Γ(y),
i.e. Γ, x : Ti;R `r θ(y) : Γ(y). This is proven using
Γ, x : T1 + T2;R `r θ, and θ(y) ground relying on Lemmas 2
and 3.

Now, we consider the case of the variable x. We have to
show that Γ, x : Ti;R `r m′i : Ti. This is a consequence of
Γ′;R `r m′i : Ti and Lemma 3.

Therefore, applying our induction hypothesis with θ1 on the
first subtree, and θ2 on the second subtree, we deduce that
there exist a ground term t′i and R′i (for i = 1, 2) such that:

1) dom(R′i) ⊆ Ri;
2) tθi ≈ t′i; and
3) Γ, x : Ti;RtR′i `r t′i : Ti.

Let t′ = if b′ then t′1 else t′2 and R′ = R′1 t R′2. We show
that the requirements are satisfied:

1) dom(R′) = dom(R′1) t dom(R′2) ⊆ R1 tR2 = R.
2) We have that

t′ = if b′ then t′1 else t′2
≈ if b′ then tθ1 else tθ2

= if b′ then tθ[x 7→ m′1] else tθ[x 7→ m′2]

≈ tθ[x 7→ if b′ then m′1 else m′2]

≈ tθ[x 7→ θ(x)]
≈ tθ

3) It remains to establish that

Γ, x : T1 + T2;R∪R′ `r t′ : T.

We have Γ, x : Ti;RtR′i `r t′i : Ti; and also Γ′;R `r
b′ : Bool. Relying on Lemmas 2 and 3, we deduce that
Γ, x : T1 + T2;R∪R′ `r t′i : Ti and Γ, x : T1 + T2;R∪
R′ `r b′ : Bool. Then, we conclude using the rule IF.

Case of the rule SDEC:
Γ;R `b t : Msg Γ(k) = SK[T]

Γ;R `b sdec(t, k) : T + Cst0
fail

By induction hypothesis, we know that there exist t′0 and R′
such that:

1) dom(R′) ⊆ R;
2) tθ ≈ t′0; and
3) Γ;RtR′ `r t′0 : Msg.

We note senc(pi, k, ri) the encryptions in t′0 with k and random
symbols from dom(R). Let

t′ =

 if t′0 = senc(p1, k, r1) then p1 else
. . .
if t′0 = senc(pn, k, rn) then pn else fail

We have:

1) dom(R′) ⊆ R;
2) By Lemma 16, we know that sdec(t′0, k) ≈ t′, and thus:

t′ ≈ sdec(t′0, k) ≈ sdec(tθ, k) ≈ sdec(t, k)θ

3) It remains to establish that Γ;R∪R′ `r t′ : T + Cst0
fail.

To do so, we first type the subterms of t′, starting with
the terms pi. We know that Γ;RtR′ `r t′0 : Msg, and
each senc(pi, k, ri) is a subterm of t′0. By Lemma 4, for
each i ∈ {1, . . . , n}, there exists some message type T′i
such that: Γ;RtR′ `r senc(pi, k, ri) : T′i.
There are three possible rules to derive a judgement of
this form: FUN-LOW, FUN-MSG, and SENC. Since ri ∈ dom(R),
the rule SENC is actually the only one that can be used. It
derives Γ;R t R′ `r senc(pi, k, ri) : Low. Therefore,
Γ;R ∪ R′ `r pi : T, and T′i = Low for each
i ∈ {1, . . . , n}.
Now, using the rule SUB-TYPING with Low ≤ Msg, we can
build the typing derivation for each test t′0 = senc(pi, k, ri)
occurring in t′ using the rule EQ. For each i ∈ {1, . . . , n},
we have that Γ;R ∪R′ `r pi : T, and therefore Γ;R ∪
R′ `r pi : T + Cst0

fail. Lastly, we have also that Γ;R ∪
R′ `r fail : T + Cst0

fail, and we derive Γ;R ∪R′ `r t′ :
T + Cst0

fail using n times the IF.
This concludes the proof.

APPENDIX E
TYPE SYSTEM FOR PROTOCOLS (META-LEVEL)

Let P be a protocol well-typed in the well-formed typing
environment (ΓP ;RP), t be a meta-term built over P such that
ΓP ; ∅ ` t : T. The purpose of this section is to establish that
for any trace model T of P , we have that Γ′;R′ `b (t)TP : T
for some typing environment (Γ′;R′) that depends on the trace
model T and that is formally defined below. This result is
formally stated in Lemma 21 and is useful to establish our
main Theorem 1 stated in Section IV, and proved at the end
of this section.

For the remaining of this section, we assume given a protocol
P = (Act,U0,≺) well-typed in (ΓP ;RP). We have therefore
fixed the setM of macro symbols. Also, thanks to Definition 3,
we know the existence of disjoint sets RA, and Rs

A for each
A ∈ A, and s ∈ S. All these sets are subsets of RP .

We assume fixed the sets DI , and DT , as well as the
ordering <T . We name concrete index an element of DI ,
concrete timestamp an element of DT , and concrete macro an
object m[~k]@T with m ∈M, ~k ∈ D∗I , and T ∈ DT r{undef}.
Therefore, we consider the instance of the base logic as defined
in Section III-B and we denote NB, XB, CB, RB, FB the sets
of names, variables, constants, randoms, and function symbols.
We further assume CB is partitioned into CB,0 ∪

⋃
c∈C CB,∞c ,

where C is a finite set of identifiers. Moreover, for each concrete
macro m[~k]@T , we associate a variable in XB denoted xm[~k]@T .
Note that, only state macros have a non-empty list of indices.

In addition to the total ordering <T , we fix a total ordering
on state macros S, and we extend it to the other macro symbols
as follows. For any s ∈ S,



input <M cond <M exec <M s <M output < frame.

Given concrete macros m[~k]@T , and m′[~k′]@T ′, we write
m[~k]@T < m′[~k′]@T ′ if

(i) T ≺T T ′; or
(ii) T = T ′ and m <M m′; or

(iii) T = T ′ and m = m′ and ~k <lex
~k′.

Note that this last case occurs only when m and m′ corresponds
to the same state macro, and thus ~k and ~k′ have the same length.

Given (Γ;R) a well-formed typing environment built over
the meta-logic under study, a concrete macro cm , and a trace
model T0 = (DI , DT , <T , σ

0
I , σ

0
T ) for some σ0

I and σ0
T , we

define the sets Γ
∼cm

with ∼ ∈{=,≤, <} as follows:
{(xm@T ,Low) | m ∈ {input, frame, output},m@T ∼ cm}
∪ {(xm@T ,Bool) | m ∈ {cond, exec},m@T ∼ cm}
∪ {(xs[~k]@T ,T) | s ∈ S,~k ∈ D∗I ,T = Γ(s), s[~k]@T ∼ cm}
∪ {(n~j ,T) | n ∈ dom(Γ),~j ∈ D∗I ,T = Γ(n)}
∪ {(x,T) | x ∈ dom(Γ) ∩X,T = Γ(x)}

Then, we define the set R
=cm ⊆ RB which corresponds to

the set of randoms introduced by the concrete macro cm =
m[~k]@T0. This set is formally defined as follows2:

{r~̀ | r ∈ RA} when m = output, ~k = ∅, T0 = A[~̀]

{r~̀ | r ∈ Rs
A} when T0 = A[~̀], m = s, and

~k = σI(~i ′) with uA[~i ],s[~j ] = (if ~j =ι
~i ′ then · · · )

∅ otherwise

Lastly, we define:

RP
∼cm

=
⋃

cm′∼cm RP
=cm′

where ∼ ∈{≤, <}.

Note that, all these sets are defined w.r.t. a trace model T0 but
only depend on DI , DT and <T and not on σ0

I and σ0
T .

As the typing environment (ΓP ;RP) is well-formed, the
typing environment (ΓP

∼cm
;RP

∼cm
) is well-formed too for

any concrete macro cm , and ∼ ∈{=, <,≤}. As in the restricted
typing system, we may enrich the typing environment in a
typing judgement `b. This is formally stated below, and can
be proved as done in the restricted system.

Lemma 18. Let t be a base-logic term and (Γ;R) a well-
formed typing environment such that Γ;R `b t : T for some
type T. Consider Γ′ ⊇ Γ and R′ ⊇ R such that (Γ′;R′) is
well-formed. We have that Γ′;R′ `b t : T.

Lemma 19. Let t be a base-logic term and (Γ;R) a well-
formed typing environment such that Γ;R `b t : T for some
type T.
• For any variable x that does not appear in t, Γr{x};R `b
t : T, where Γ r {x} is the environment obtained from Γ
by removing the binding for x (if there was one).

• For any random symbol r that does not appear in t,
Γ;Rr {r} `b t : T.

2Remember that by definition of a protocol, the update term uA[~i ],s[~j ] is

such that ~i′ is a subset of ~i.

Given a trace model T = (DI ,DT , <T , σI , σT ) for some
σI and σT , and a meta-term t, we denote µT(t) the maximal
concrete macro cm w.r.t. < such that xcm occurs in tT. If t does
not contains any macro, we note µT(t) =⊥ with ⊥< cm for
any cm, and we define ΓP

≤⊥
= ΓP

<input@init
, and RP

≤⊥
= ∅.

Lemma 20. Given a meta-term t built over P , and (Γ;R)
be a well-formed typing environment such that Γ;R ` t : T.
Let T = (DI ,DT , <T , σI , σT ) be a trace model of P for
some σI and σT . Let cm be such that cm ≥ µT(t). We have
that Γ

≤cm
;R′ `b t

T
: T where:

R′ = {r~k | r ∈ R and r[~i] ∈ st(t) and σI(~i) = ~k}.

Proof. We establish this result by induction on the derivation
witnessing Γ;R ` t : T.
Case of the rule NAME: In such a case, we have that t = n[~i] for
some n such that (n : T) ∈ Γ, and tT = nσI(~i). By definition

of Γ
≤cm

, we have that Γ
≤cm

(nσI(~i)) = T, and this allows us
to conclude relying on the rule NAME.
Case of the rule VAR: In such a case, we have that t = x

for some x such that Γ(x) = T, and t
T

= x. By definition
of Γ

≤cm
, we have that Γ

≤cm
(x) = T, and this allows us to

conclude relying on the rule VAR.
Case of the rules SUB-TYPING, FST, SND, and ZEROES: We conclude
by relying on our induction hypothesis.
Case of the rule PAIR: In such a case, we have that t = 〈t1, t2〉,
T = T1 × T2, and tT = 〈t1

T
, t2

T〉. We have that R = R1tR2,
and Γ;Ri ` ti : Ti for i = 1, 2. Relying on our induction
hypothesis, as cm ≥ µT(ti) for i = 1, 2, we know that
Γ
≤cm

;R′i `b ti
T

: Ti for i = 1, 2. By definition of the
set R′1 and R′2, and relying on the fact that R1 and R2 are
disjoint, we have that R′1 and R′2 are disjoint too, and we
have that R′ = R′1 t R′2. This allows us to conclude that
Γ
≤cm

;R′ `b t
T

: T by applying the rule PAIR.
The rules FUN-LOW, FUN-MSG, EQ, EQ-FALSE, EQ-TRUE-CST, EQ-FALSE-

CST, and IF can be done in a rather similar way.
Case of the rule IF-TRUE: This case is rather similar to
the previous one except that we have to enrich the set of
randoms to obtain R′. Indeed, in such a case, we have that
t = if t0 then t1 else t2, and t

T
= if t0

T
then t1

T
else t2

T.
We have that R = R0 t R1, Γ;R0 ` t0 : Cst0

true, and
Γ;R1 ` t1 : T. Relying on our induction hypothesis, we deduce
that Γ

≤cm
;R′0 `b t0

T
: Cst0

true, and Γ
≤cm

;R′1 `b t1
T

: T.
We also have that R′0 and R′1 are disjoint, and therefore we
conclude that Γ

≤cm
;R′0 tR′1 `b t

T
: T by applying the rule

IF-TRUE. We have that R′0 t R′1 ⊆ R′. The equality may not
hold as some randoms may appear only in t2. Therefore, we
conclude relying on Lemma 18.

The case of the rule IF-FALSE is similar.
Case of the rule SENC: In such a case, t = senc(t0, k[~j], r[~i]),
T = Low, Γ(k) = SK[T0], and R = R0 ∪ {r}. Moreover,
we have that Γ;R0 ` t0 : T0, and t = senc(t0, kσI(~j), rσI(~i)).

The induction hypothesis give us: Γ
≤cm

;R′0 `b t0
T

: T0. By



definition of Γ
≤cm

and R′, we know that Γ
≤cm

(kσI(~i)) =
SK[T0], and rσI(~i) ∈ R

′. Applying the rule SENC, we deduce
that

Γ
≤cm

;R′0 ∪ {rσI(~i)} `b senc(t0, kσI(~j), rσI(~i)) : Low.

As R′ = R′0 ∪ {rσI (~i)}, this allows us to conclude that
Γ
≤cm

;R′ `b t
T

: T.
The rule SDEC can be done in a similar way. It is even simpler

as the SDEC does not involve any random.
Case of the rule ASSIGN: We have that t = t0[x 7→ t′0], R =
R1tR2, Γ, x : T0;R1 ` t0 : T and Γ;R2 ` t′0 : T0. Applying
our induction hypothesis, we deduce that:

• Γ
≤cm

, x : T0;R′1 `b t0
T

: T, and
• Γ
≤cm

;R′2 `b t′0
T

: T0

Applying the rule ASSIGN, this allows us to conclude that:

Γ
≤cm

;R′1 tR′2 `b t0
T
[x 7→ t′0

T
] : T.

Actually, we have that:

R′ = R′1 tR′2, and t0
T
[x 7→ t′0

T
] = t0[x 7→ t′0]

T
.

This allows us to conclude.
The rule BREAK-SUM can be done in a similar way.

Case of the rules CST-0 and CST-∞: In case of the rule CST-0, we
have that t = c ∈ C0, T = Cst0

c , and t
T

= c ∈ C0 ⊆ CB,
thus the same rule applies and give us Γ

≤cm
;R′ `b t

T
: T.

Now, in case of the rule CST-∞, we have that t = c ∈ C∞. We
have that tT = cσI(~i) ∈ CB,∞c , and applying the rule CST-∞

of the base logic, we deduce that Γ
≤cm

;R′ `b cσI(~i) : Cst∞c .
Hence, the result.
Case of the rules IN: In such a case, we have that T = Low,
t = input@T , and thus tT = xinput@T ′ with T ′ = T

T
. By

definition of Γ
≤cm

, we have that Γ
≤cm

;R′ `b t
T

: Low using
the rule VAR.

The rules FRAME, OUT, COND, and EXEC can be done in a similar
way.
Case of the rule STATE: In such a case, we have that T = Γ(s),
t = s[~i]@T , and thus tT = xsσI(~i)@T

′ with T ′ = T
T

. By

definition of Γ
≤cm

, we have that Γ
≤cm

;R′ `b t
T

: T using
the rule VAR.
Case of the rule EQ-IND: In such a case, we have that t =~i =ι

~j,
t
T is equal to true or false according to σI , and T = Bool. We

prove that Γ
≤cm

;R′ `b t
T

: Bool with the rule CST-0, followed
by SUB-TYPING. This concludes the proof.

Lemma 21. Let (ΓP ;RP) be a well-formed typing environ-
ment, P be a protocol well-typed in (ΓP ;RP), and t be a
ground meta-term built over P . Let T = (DI ,DT , <T , σI , σT )
be a trace model of P for some σI and σT and such that
T

T 6= undef for any m[~i]@T occurring in t. We have that:

ΓP ; ∅ ` t : T implies ΓP
≤µT(t)

;RP
≤µT(t) `b (t)TP : T

Proof. We establish that for any trace model T′ that coincides
with T on DI ,DT , and <T , for any ground meta-term t such
that T

T′

6= undef for any m[~i]@T occurring in t, and any set
R0 such that R0 ∩R

≤µT′ (t) = ∅, we have that

ΓP
≤µT′ (t);R0 `b t

T′

: T implies

ΓP
≤µT′ (t);R0 tRP

≤µT′ (t) `b (t)T
′

P : T

by induction on (µT′(t), <).
Note that, once this result is proved, then the result

immediately follows relying on Lemma 20. Indeed, applying
Lemma 20 on ΓP ; ∅ ` t : T with T, and µT(t), we deduce
that

ΓP
≤µT(t)

; ∅ `b t
T

: T.

Relying on the result stated above using T, we then deduce
that:

ΓP
≤µT(t)

;RP
≤µT(t) `b (t)TP : T.

Base case: The term t
T′

does not contain any variable
representing a macro. Therefore, we have that (t)T

′

P = t
T′

, and
µT′(t) =⊥. By hypothesis, we have that ΓP

≤⊥
;R0 `b t

T′

: T,
and thus we have that ΓP

≤µT′ (t);R0 tRP
≤µT′ (t) `b (t)T

′

P : T.
Induction case: We perform a case analysis on the maximal
(w.r.t. < and considering the trace model T′) macro occurring
in t.
Case of an input macro. We denote input@T0 one of this
occurrence of such a maximal macro, and T = T0

T′

∈ DT .
Note that by hypothesis, we know that T 6= undef. We consider
the case where T 6= init but this case can be done in a rather
similar way, since input@init is defined as empty. We have that
µT′(t) = input@T . Let R0 be such that R0 ∩RP

≤µT′ (t) = ∅.
By hypothesis, we have that:

ΓP
≤input@T

;R0 `b t
T′

: T.

We have also that:

ΓP
<input@T

; ∅ `b att(xframe@T ′) : Low

where T ′ = predT (T ). This derivation is obtained using the
rule VAR (since ΓP

<input@T
= ΓP

≤frame@T ′

) and FUN-LOW. Then,
using the rule ASSIGN, we obtain that:

ΓP
<input@T

;R0 `b t
T′

[xinput@T 7→ att(xframe@T ′)] : T

Let t′ be the meta-term obtained from t by replacing each
occurrence of input@T ′′ for some timestamps T ′′ such that
T ′′

T′

= T by att(frame@pred(T0)). We have that:

t
T′

[xinput@T 7→ att(xframe@T ′)] = t′
T′

Since T 6= undef and T 6= init, frame@T ′ < input@T , and
thus ΓP

≤frame@T ′

= ΓP
<input@T

, we can apply our induction
hypothesis to:

ΓP
≤frame@T ′

;R0 `b t′
T′

: T.



Note that R0 ∩ RP
≤µT′ (t

′)
= ∅ as RP

≤µT′ (t
′) ⊆ RP

≤µT′ (t)

and R0 ∩RP
≤µT′ (t) = ∅ by hypothesis. Therefore, we deduce

that

ΓP
≤µT′ (t

′)
;R0 tRP

≤µT′ (t
′) `b (t′)T

′

P : T

Actually, we have that

(t′)T
′

P = t′
T′

θ

= t
T′

[xinput@T 7→ att(xframe@T ′)]θ

= t
T′

θ as xinput@T θ = att(xframe@T ′)θ

= (t)T
′

P

Therefore, relying on Lemma 18, we conclude that

ΓP
≤µT′ (t);R0 tRP

≤µT′ (t) `b (t)T
′

P : T.

The case of a frame, cond or exec macro for which the
unfolding does not introduce any random can be done in a
similar way.

Case of an output macro. We denote output@T0 one of this
occurrence of such a maximal macro, and T = T0

T′

∈ DT .
Note that by hypothesis, we know that T 6= undef. We consider
the case where T = A[~k], and thus T 6= init but this case can
be done in a rather similar way since output@init is defined
as empty. We have that µT′(t) = output@T . Let R0 be such
that R0 ∩RP

≤µT′ (t) = ∅. By hypothesis, we have that:

ΓP
≤output@T

;R0 `b t
T′

: T.

As we consider a well-typed protocol, we have that:

ΓP ;RA ` if φA[~i] then oA[~i] else empty : Low

Let toutput = if φA[~i] then oA[~i] else empty. We consider w.l.o.g.
that ~i does not appear inside t. We note T′′ = T′[~i 7→ ~k].

Applying Lemma 20 with T′′ and the element µT′′(toutput),
we deduce that:

ΓP
≤µT′′ (toutput);R′A `b toutput

T′′

: Low

where R′A ⊆ {r~k | r ∈ RA}. Then, using the rule ASSIGN, and
relying on Lemma 18, we obtain that:

ΓP
<output@T

;R0 tR′A `b t
T′

[xoutput@T 7→ toutput
T′′

] : T

Let t′ be the meta-term obtained from t by replacing each
occurrence of output@T ′′ for some timestamps T ′′ such that
T ′′

T′

= T by toutput. Since~i does not appears in t, we have that
t
T′

= t
T′′

, and so t
T′

[xoutput@T 7→ toutput
T′′

] = t′
T′′

. Using
Lemma 19, we deduce that:

ΓP
≤µT′′ (t

′)
;R0 tR′A `b t′

T′′

: T

Applyin our induction hypothesis (with T′′), we deduce that:

ΓP
≤µT′′ (t

′)
;R0 tR′A tRP

≤µT′′ (t
′) `b (t′)T

′′

P : T.

Actually, we have that

(t′)T
′′

P = t′
T′′

θ

= t
T′′

[xoutput@T 7→ toutput
T′′

]θ

= t
T′′

θ as xoutput@T θ = toutput
T′′

θ

= (t)T
′′

P
= (t)T

′

P

Therefore, relying on Lemma 18, we conclude that

ΓP
≤µT′ (t);R0 tRP

≤µT′ (t) `b (t)T
′

P : T

This allows us to conclude.

Case of a state macro: s[~̀]. We denote s[~j]@T0 one of this
occurrence of such a maximal macro, and T = T0

T′

∈ DT .
Note that by hypothesis, we know that T 6= undef. We have
that µT′(t) = s[~̀]@T . Let R0 be such that R0 ∩RP

µT′ (t) = ∅.
By hypothesis, we have that:

ΓP
≤s[~̀]@T

;R0 `b t
T′

: T.

We have three cases to consider. First, (i) the case T = init.
In other cases, T = A[~k], with:

uA[~i ],s[~j ] = if ~j =ι
~i ′ then u else s[~j ]@pred(A[~i ])

In this case, we will consider w.l.o.g. that ~i, ~j do not appear
inside t, and note T′′ = T′[~i 7→ ~k,~j 7→ ~̀]. The two other cases

are (ii) ~j =ι
~i ′

T′

= false and (iii) ~j =ι
~i ′

T′

= true.
• Case (i): By definition of a well-typed protocol, we have
Rsinit = ∅, and thus ΓP ; ∅ ` uinit,s[~j ] : ΓP(s). Applying
Lemma 20 with T′, we have that:

ΓP
≤µT′ (uinit,s[~j ]); ∅ `b uinit,s[~j ]

T′
: ΓP(s)

We can then conclude with the application of the rule
ASSIGN as in the case of an input macro.

• Case (ii): In this case, we have that:
uA[~i ],s[~j ]

T′′
= if false then uT

′′
else xs[~̀]@pred(A[~k]).

Notably with rule IF-FALSE, we get:

ΓP
<s[~̀]@T

; ∅ `b uA[~i ],s[~j ]
T′′

: ΓP(s)

Then, we conclude with the application of the rule ASSIGN

as in the case of an input macro.
• Case (iii): In this case, we have that:

uA[~i ],s[~j ]
T′′

= if true then uT
′′
else xs[~̀]@pred(A[~k]).

By definition of a well-typed protocol, we have that

ΓP ;Rs
A ` uA[~i ],s[~j ] : ΓP(s)

Applying Lemma 20 with T′′, we have that:

ΓP
≤µT′′ (uA[~i],s[~j]);R′ `b uA[~i ],s[~j ]

T′′
: ΓP(s)

with R′ ⊆ {r~k | r ∈ R
s
A}. Then, we conclude with the

application of the rule ASSIGN as in the case of an ouput
macro.

This conclude the proof.

We should be able now to prove our main result, i.e.
Theorem 1, stated in Section IV. In fact, due to the presence



of states, the statement of the Theorem needs to be slightly
modified, as follows.

Theorem 4. Let (ΓP ;RP) be a well-formed typing environ-
ment, P a protocol well-typed in (ΓP ;RP), tL and tH be two
meta-terms such that ΓP ; ∅ ` tL : Low and ΓP ; ∅ ` tH : High.
Let T be a trace model such that T

T 6= undef for any
timestamp T occurring in tL or tH . Then (tL)TP I (tH)TP .

Compared to Theorem 1, the additional condition that all
timestamps occurring in tL, tH must happen, i.e. not evaluate
to undef, in the trace model T. This condition is required for
a technical reason: by definition, states at timestamp undef
all evaluate to empty, which does not necessarily have the
same type as that of the state. For that reason, we assume
all timestamps in the terms happen, which is fine, since our
definition of secrecy also requires it.

Proof. We have that ΓP ; ∅ ` tL : Low and ΓP ; ∅ ` tH : High,
and therefore we deduce that:

ΓP ; ∅ ` 〈tL, tH〉 : Low ×High.

Let T = (DI ,DT , <T , σI , σT ) be a trace model of P such
that T

T 6= undef for any m[~i]@T occurring in tL or tH . By
definition of being well-typed, we have that ΓP does not
contain variable, and therefore tL and tH are ground meta-
terms. Applying Lemma 21, we deduce that:

ΓP
≤µT(〈tL,tH〉)

;RP
≤µT(〈tL,tH〉) `b (〈tL, tH〉)TP : Low ×High

Applying Theorem 3, we deduce that:

ΓP
≤µT(〈tL,tH〉)

;R |= (〈tL, tH〉)TP : Low ×High

for some R.
Applying Definition 5, we know that:

• ΓP
≤µT(〈tL,tH〉)

;R |= fst((〈tL, tH〉)TP) : Low, and
• ΓP

≤µT(〈tL,tH〉)
;R |= snd((〈tL, tH〉)TP) : High,

and thus, relying on Lemma 9, we have that:

• ΓP
≤µT(〈tL,tH〉)

;R |= (tL)TP : Low, and
• ΓP

≤µT(〈tL,tH〉)
;R |= (tH)TP : High.

Relying again on Definition 5, we know that for all t′L such
that ΓP

≤µT(〈tL,tH〉)
;R |= t′L : Low, we have that t′L I (tH)TP .

We have that ΓP
≤µT(〈tL,tH〉)

;R |= (tL)TP : Low, and thus
we deduce that (tL)TP I (tH)TP , i.e. for any computational
model M, and any PPTM A, we have that:

Pρ
[
A(1η, ρa, J(tL)TPK

M
(1η, ρ)) = J(tH)TPK

M
(1η, ρ)

]
∈ negl(η).

This concludes the proof.

APPENDIX F
REVIEW OF OUR CASE STUDIES (SYMMETRIC PROTOCOLS)

We provide below a short description of each protocol that
we have analysed, as well as a partial description of the well-
formed typing environment under which we succeed to perform
the typing. Below, we do not make explicit the way we add
parentheses around the + operator as it does not really matter.

Regarding parentheses around the × operator, we implicitly
assume that T1 × T2 × T3 means T1 × (T2 × T3) similarly
to our pairing operator.

Denning-Sacco: The tagged version of the protocol we
consider is as follows:

A→ S : A,B
S → A : {B,Kab, {resp,Kab, A}Kbs}Kas
A→ B : {resp,Kab, A}Kbs

With the explicit tag resp, this protocol can be typed when
considering an environment such that:

ks : SK[Cst∞a ×High× Low + Cst0
resp ×High× Cst∞a +

Cst∞ad × Low × Low + Cst0
resp × Low × Cst∞ad ]

This allows us to give a precise type to each plaintext contained
in an encryption with a key ks[i], and therefore to infer that
the established key has type High when needed.

Needham-Schroeder?: As we do not model the challenge-
response mechanism, the Needham-Schroeder protocol is
actually rather similar to the Denning-Sacco protocol, and
we have to consider its tagged version to be able to type it
and establish secrecy of the session key.

A→ S : A,B,Na
S → A : {B,Na,Kab, {resp,Kab, A}Kbs}Kas
A→ B : {resp,Kab, A}Kbs

This protocol can be typed when considering an environment
such that ks is typed as follows:

SK[Cst∞a × Low ×High× Low + Cst0
resp ×High× Cst∞a

+ Cst∞ad × Low × Low × Low + Cst0
resp × Low × Cst∞ad ]

Otways-Rees: The tagged version of the Otway-Rees
protocol can be informally described as follows.

A→ B : M,A,B, {req, Na,M,A,B}Kas
B → S : A,B, {req, Na,M,A,B}Kas , {req, Nb,M,A,B}Kbs
S → B : {rep, Na,Kab}Kas , {rep, Nb,Kab}Kbs
B → A : {rep, Na,Kab}Kas
Note that, it is actually not possible to provide a typing
environment allowing us to type its untagged version, i.e.
without req and rep (together with terms tXH ). The absence of
this typing environment actually corresponds to the existence
of an attack due to the possible confusion between ciphertexts
that allows the intiator (and the responder) to accept 〈M,A,B〉
as a key. Establishing the secrecy of the key as seen by S
is actually not an issue, even when considering the untagged
version of the protocol, and can be done in a typing system
where: ks : SK[Msg].

Otherwise, to be able to type both the protocol, and the
terms tXH expressing the secrecy properties, the following type
is required for ks:

ks : SK[Cst0
req ×High× Low × Cst∞a × Cst∞a +

Cst0
req × Low × Low × Cst∞a × Cst∞ad +

Cst0
req × Low × Low × Cst∞ad × Cst∞a +

Cst0
rep ×High×High + Cst0

rep × Low × Low]



Yahalom?: Consider now the original Yahalom protocol.
Its tagged version (without the last ciphertext) can be informally
described as follows.

A→ B : A,Na
B → S : B, {1, A,Na, Nb}Kbs
S → A : {2, B,Kab, Na, Nb}Kas , {3, A,Kab}Kbs
A→ B : {3, A,Kab}Kbs

Again, tags are needed to avoid confusion. Moreover, as the
nonce Na is sent in clear in the first message, it is important
that na (and also nad) is typed Low, and typing similarly nb
and nbd will allow us to type the protocol, and the terms tXH
expressing secrecy using the following type for ks:

SK[Cst0
1 × Low

+ Cst0
2 × Cst∞a ×High× Low + Cst∞3 × Cst∞a ×High

+ Cst0
2 × Cst∞ad × Low × Low + Cst∞3 × Cst∞ad × Low ]

The type of the key ks reflects the fact that ciphertexts tagged
with 1 do not contain any secret information, and therefore the
resulting plaintexts can be leaked to the attacker.

Yahalom-Paulson?: Similarly, the Yahalon-Paulson pro-
tocol need to be explicitly tagged in order to be shown to be
well-typed. The last ciphertext, a key confirmation step, has
been removed to perform the analysis.

A→ B : A,Na
B → S : B,Nb, {1, A,Na}Kbs
S → A : Nb, {2, B,Kab, Na}Kas , {3, A,B,Kab, Nb}Kbs
A→ B : {3, A,B,Kab, Nb}Kbs

As the previous protocol, this protocol can be typed using Low
for typing nonces, and the following type for ks.

SK[Cst0
1 × Low

+ Cst0
2 × Cst∞a ×High× Low + Cst0

2 × Cst∞ad × Low
+ Cst0

3 × Cst∞a × Low ×High× Low
+ Cst0

3 × Cst∞ad × Low ]

Mechanism 6: This protocol does not rely on a server
to establish the session key, but assume the existence of a
symmetric key between the two participants A and B.

B → A : Rb
A→ B : {1, Ra, Rb, B,Ka}Kab
B → A : {2, Rb, Ra,Kb}Kab

Then, the fresh symmetric key is derived using a key derivation
function taking as input Ka and Kb, and at least the random
numbers Ra and Rb. Here, we consider weak secrecy of Ka

(resp. Kb) from the point of view of both A and B. This can
be established considering the following type for the long-term
key k shared between honest agents:

k : SK[Cst0
1 ×High× Low × Cst∞a ×High

+ Cst0
2 × Low ×High×High ]

Mechanism 9: This protocol does rely on a server that is
responsible of the generation of the session key K.

B → A : Rb
A→ S : Ra, Rb, B
S → A : {1, Ra,K,B}Kas , {2, Rb,K,A}Kbs
A→ B : {2, Rb,K,A}Kbs

This protocol can be typed using Low for nonces, and the
following type for ks:

SK[Cst0
1 × Low ×High× Cst∞a

+ Cst0
1 × Low × Low × Cst∞ad

+ Cst0
2 × Low ×High× Cst∞a

+ Cst0
2 × Low × Low × Cst∞ad ]

Mechanism 13: This protocol does rely on a server but
the session key K is generated by one of the participant of
the protocol (here A).

B → A : Rb
A→ S : {1, Ra, Rb, B,K}Kas
S → A : {2, Ra, Rb, B}Kas , {3, Rb,K,A}Kbs
A→ B : {3, Rb,K,A}Kbs

Again, this protocol can be typed using Low for nonces,
and the following type for ks:

SK[Cst0
1 × Low × Low × Cst∞a ×High

+ Cst0
1 × Low × Low × Cst∞ad × Low

+ Cst0
2 × Low

+ Cst0
3 × Low ×High× Cst∞a

+ Cst0
3 × Low × Low × Cst∞ad ]

Regarding mechanisms 9 and 13, an optional key confirma-
tion exchange has not been modelled. We may also note that
the tags used in the norm are distinct constants per protocol
meaning that a similar analysis (with similar conclusions) would
have been possible considering all the mechanisms together.

APPENDIX G
DEALING WITH ASYMMETRIC ENCRYPTION

In this section, we showcase the extensibility of our type
system by adding support for asymmetric encryption. We
assume three new function symbols: aenc and adec, interpreted
respectively as the encryption and decryption algorithms of
an asymmetric scheme, and pk that produces the public
encryption key associated to a private key. The encryption
scheme is assumed to satisfy the IND-CCA-2 property (see
Appendix A-A).

A. Some extra rules for the type system

We add a new type for asymmetric private keys: AK[T].
Similarly to the symmetric case, the type of a private key
indicates the type of plaintexts intended to be encrypted with
the associated public key, which provides information when
decrypting. Public encryption keys, on the other hand, are
typed Low. We consider three extra rules:

Γ(k) = AK[T]
PK

Γ;R ` pk(k[~j]) : Low

Γ;R ` t : T Γ(k) = AK[T]
AENC

Γ;R t {r} ` aenc(t, pk(k[~j]), r[~i]) : Low



Γ;R ` t : Msg Γ(k) = AK[T]
ADEC

Γ;R ` adec(t, k[~j]) : T + Low

Except for the possibility to publish the encryption key, the
main difference with the symmetric case is the decryption rule.
As the encryption key is public, the attacker can use it to encrypt
messages of his own. Decryption hence returns either an honest
message (type T) or a public one, i.e. of type Low. This creates
an additional difficulty compared to symmetric case: when
decrypting a ciphertext, if it was constructed by the attacker,
there may not always exist a term that represents the decrypted
message. That requires some work, since the interpretation of
T + Low mandates the existence of an equivalent term typing
Low in the restricted system.

To find a term for public results of decryptions, we add
in the base logic a new ternary function symbol adec? with
a fixed semantics: adec? takes a ciphertext t, a private key
k and a list of ciphertexts. Lists are represented by nested
pairs 〈t1, 〈t2, . . . , 〈tn−1, tn〉 . . .〉〉, and are noted 〈ti〉1≤i≤n. We
define Jadec?(t, k, 〈ti〉1≤i≤n)KM(1η, ρ) as:
• JfailKM(1η, ρ) if JtKM(1η, ρ) = JtiK

M
(1η, ρ) for some i ∈

{1, . . . , n}
• Jadec(t, k)KM(1η, ρ) otherwise.

As for symmetric encryption, we conduct the proof in two steps.
Symbols adec are removed and replaced with adec?, similarly
to how we removed sdec using the INT-CTXT assumption.
Then, in the restricted system, we only need to handle adec?

instead of adec.

B. Restricted type system

Due to the peculiar semantics of adec?, the associated typing
rule is rather complex. Indeed, we must check that the list of
forbidden ciphertexts contains all possible protocol-generated
ciphertexts in the term. In that case, since adec? prevents
the decryption of ciphertexts in its argument, it only decrypts
adversarially generated ciphertexts, and its result is thus of
type Low.

Γ(k) = AK[T]
PK

Γ;R `r pk(k) : Low

Γ;R `r t : T Γ(k) = AK[T] R(r) = (t, pk(k))
AENC

Γ;R `r aenc(t, pk(k), r) : Low

Γ;R `r t : Msg Γ(k) = AK[T]
ADEC?

Γ;R `r adec?(t, k, 〈ti〉1≤i≤n) : Low
where 〈ti〉1≤i≤n is the sequence of all the ciphertexts

(terms headed with symbol aenc) using pk(k) as a key,
using an element of RB as random, and occurring

as a subterm in t.

The soundness proofs for the restricted type system must be
adapted to handle these additional rules. In most cases, this is
simply a matter of adding another case to the inductions, which
is proved similarly to the symmetric case – we will not detail
these adjustments. Some parts, however, are modified more
significantly. We identify three important changes. The defini-
tion of the evaluator for terms, and the associated Lemma 8,

needs to be adapted to evaluate asymmetric operations. The
sub-section dealing with the cryptographic arguments must of
course be extended. Lastly, Lemma 6 also needs adjustments:
a subterm typing High can now also be contained under an
asymmetric encryption. The proof and the use of this modified
lemma in the main theorem of the section are similar to the
symmetric case, so we do not detail them.

Evaluator. We have to modify the definition of the evaluator
and its oracle to handle the function symbols aenc and adec?.

Definition 18 (Modification of Definition 9). We give the
evaluator access to three new oracles, in addition to the one
for names and the one for symmetric encryption, to handle
asymmetric encryption and decryption, and public keys. For
simplicity, we call O = {Oname,Oenc,Oaenc,Oadec,Opk} the
set of five total oracles, and see it as a single oracle when
there is no ambiguity as to which oracle is called.
• EOM,Γ,R(pk(k))(1η, ρa) calls Opk(“k”) and returns its

answer.
• EOM,Γ,R(aenc(m, pk(k), r))(1η, ρa) first checks that r ∈

dom(R), and if so computes the plaintext p =
EOM,Γ,R(m)(1η, ρa), and then calls Oaenc(p, “k”, “r”) and
returns its answer.

• if Γ(k) = AK[T], EOM,Γ,R(adec?(t, k, 〈ti〉1≤i≤`)(1η, ρa)
computes c = EOM,Γ,R(t)(1η, ρa) and 〈ci〉1≤i≤` =

EOM,Γ,R(〈ti〉1≤i≤`)(1η, ρa). If the bitstring c is equal to
one of the ci, then the evaluator returns JfailKM(1η).
Otherwise, it calls Oadec(c, “k”) and returns its answer.

The three new oracles behave as follows.
• for any k typed AK[T] in Γ, Opk(“k”) returns

Jpk(k)KM(1η, ρ) and fails otherwise;
• for any random r, asymmetric key k, and bit-

string m, the oracle Oaenc(m, “k”, “r”) checks whether
R(r) = (m′, pk(k)) for some m′ such that
m = Jm′KM(1η, ρ). If so, it computes c =
JaencKM(m, Jpk(k)KM(1η, ρ), JrKM(1η, ρ)) and returns it.
Otherwise, it fails.

• for any asymmetric key k, and bitstring t, the oracle
Oadec(c, “k”) returns JadecKM(c, JkKM(1η, ρ)).

It might seem surprising that we include an oracle for
asymmetric encryption, given that the evaluator already has
access to all public keys through Opk. Oracle Oaenc is still
needed, as we do not wish to give the evaluator direct access
to the encryption randomness. Contrary to the symmetric case,
we need to include the decryption oracle Oadec, in order to
evaluate terms that use adec?. The evaluator however only
calls that oracle when the ciphertext is “authorised” by adec?.

Now, we must adjust the proof of Lemma 8, showing that
well-typed terms are evaluable. There are some subtle changes,
and thus we present it in detail.

Lemma 8. Let (Γ;R) be a well-formed mapping environment,
t a ground base-logic term such that Γ;R `r t : T for some
message type T. We have that t is evaluable in (Γ;R).



Proof. This proof is done by induction on the typing tree. We
detail here the cases for the additional rules used for asymmetric
encryption.

In the case of rule PK, k has type AK[T′], so the oracle does
not fail and sends the correct value.

The case of rule AENC is similar to SENC.

Finally, the case of rule ADEC? is slightly more involved.
In that case, T = Msg, Γ(k) = AK[T′] for some T′, and
t = adec?(t′, k, 〈ti〉1≤i≤`), where ti are all ciphertexts (terms
headed with symbol aenc) using pk(k) as a key, using an
element of RB as random, and occurring as a subterm of t′.

First, the evaluator computes c = EOM,Γ,R(t)(1η, ρa) and
ci = EOM,Γ,R(ti)(1

η, ρa) for 1 ≤ i ≤ `. Since, by the premise
of the rule, Γ;R `r t′ : Msg, we have by induction hypothesis
Pρ
[
c = Jt′KM(1η, ρ)

]
∈ ow(η). We deal with the ti similarly.

Since each ti is a subterm of t (but neither a name nor a
random), by Lemma 4, we get Γ;R `r ti : T′′ for some
T′′ (as a subtree of the derivation witnessing Γ;R `r t : T).
Thus, we can apply the induction hypothesis to it, and we have
Pρ
[
ci = JtiK

M
(1η, ρ)

]
∈ ow(η) for each i.

Consider the probability of c and each ci all being correctly
evaluated. Since ` is fixed, independent of ρ, η (it only depends
on the structure of term t), that probability is overwhelming.
From now on consider only the ρ for which that event occurs.

The evaluator then checks if c = ci for any i.
• If so, it returns JfailKM(1η). In that case, we

also have Jt′KM(1η, ρ) = JtiK
M

(1η, ρ), and adec?

also fails: EOM,Γ,R(adec?(t′, k, 〈ti〉1≤i≤`))(1η, ρa) =

Jadec?(t′, k, 〈ti〉1≤i≤`)KM(1η).
• Otherwise, adec? successfully decrypts t′, and

Jadec?(t′, k, 〈ti〉1≤i≤`)KM(1η) = Jadec(t′, k)KM(1η, ρ).
The evaluator on the other hand calls the oracle Oadec,
which computes the same value.

Thus, with overwhelming probability, the evaluator successfully
computes JtKM(1η, ρ), which concludes the proof.

Cryptography. The previous proofs, in the symmetric game
reductions, involve replicating the behaviour of EOM,Γ,R using
the oracles given by the games IND-CPA or INT-CTXT. We
must extend these proofs to simulate the additional oracles. This
is straightforward, since the attacker in these games has access
to any name except the symmetric key used for the challenge,
and any nonce used as encryption randomness with that key.
Therefore, the attacker has access to the private asymmetric
key, and can easily use it to simulate Oaenc,Oadec,Opk.

Now, more importantly, we have also to deal with asy-
metric encryptions. For that, similarly to δc in the sym-
metric case, we define δac for an asymmetric ciphertext c,
such that, in particular, δaaenc(m,pk(k),r)(aenc(m, pk(k), r)) =
aenc(zeros(m), pk(k), r). The statement and the proof of
Lemma 12 remain unchanged. We then prove the following
lemma, analogous to Lemma 13.

Lemma 22. Consider two ground base logic terms t, t′, a well-
typed mapping environment (Γ;R) such that Γ;R `r t : Msg

and Γ;R `r t′ : Msg. Consider a term c = aenc(m, pk(k), r),
such that R(r) = (m, k). We have that:

δac (t) I δac (t′) implies t I t′.

Proof. The proof is similar to the one for Lemma 13. It consists
in reducing the IND-CCA-2 assumption on the encryption
primitive.

Assume δac (t) I δac (t′). Fix a computational model M and
a PPTM A that has access to the attacker tape ρa and t’s
interpretation, and attempts to compute t′. We must show that
Pρ
[
A(1η, ρa, JtK

M
(1η, ρ)) = Jt′KM(1η, ρ)

]
∈ negl(η).

The structure of the proof is the same as in Lemma 13.
We first consider the evaluators EO0

M,Γ,R and EO2

M,δc(Γ),δc(R),
evaluating terms as specified in Definition 18, respectively in
(Γ;R) and (δac (Γ); δac (R)). We consider an additional oracle
O1, which is similar to O0, except that for any k0, m0, it
answers encryption query O1(m0, “k”, “r”) by checking that
k0 = k, and m0 = JmKM(1η, ρ), and returning the encryption
of JzerosKM(m0) with k, r. All other queries (in particular for
other random symbols r′) are answered like O0. We establish
that EO1

M,Γ,R(t0) = EO2

M,δc(Γ),δc(R)(δ
a
c (t0)) for any t0. That part

of the proof is exactly as in Lemma 13, and we do not detail
it again here.

As before, by Lemma 8 and Lemma 12 (which still holds),
we have

Pρ
[
EO0

M,Γ,R(t)(1η, ρa) = JtKM(1η, ρa)
]
∈ ow(η),

and

Pρ
[
EO1

M,Γ,R(t)(1η, ρa) = Jδac (t)KM(1η, ρa)
]
∈ ow(η),

and similarly for t′.

We then construct an attacker B(1η, ρ′) playing the IND-
CCA-2 game, depicted in Appendix A-A, where ρ′ is w.l.o.g.
seen as (ρ′h, ρa), ρ′h being the part of the random tape ρh not
associated with k or r. The machine B internally simulates the
execution of evaluator EOβM,Γ,R (depending on the side β of the
IND-CCA-2 game) on t and t′, obtaining bitstrings mβ , m′β .
This way, B computes (with overwhelming probability):
• either m0 = JtKM(1η, ρa) and m′0 = Jt′KM(1η, ρa), when
β = 0;

• or m1 = Jδac (t)KM(1η, ρa) and m′1 = Jδac (t′)KM(1η, ρa),
when β = 1.

By applying A to mβ and checking whether it successfully
computes m′β , B guesses the value of β (0 if A succeeds, 1
otherwise). We can then show, just as in Lemma 13, that if A
has a non-negligible probability of computing t′ from t, then
B has a non-negligible advantage in the IND-CCA-2 game. We
do not repeat the argument here.

All that remains to be shown is how B is able to simulate
the execution of EOβM,Γ,R on t, t′. That proof is slightly more
involved than in the symmetric case. As before, the main point
is to simulate the oracle Oβ . We have shown how to do so for
the symmetric oracles in Oβ , and need to extend that argument



Gindcca,β
A (1η, ρ)

sk←$ {0, 1}η

pk ← pk(sk)

ch← ⊥
β′ ← AOd,OLR(pk, 1η, ρ′)

return β′

Od(c)

if ch = ⊥ ∨ c 6= ch then

return JadecKM(1η, c, sk)
else

return ⊥

OLR(m0,m1)

r←$ {0, 1}η

ch← JaencKM(1η,mβ , sk, r)

return c

A can call OLR only once and Od any number of times. Note that Od answers any query before OLR has been called, and only
queries other than the challenge ciphertext afterwards. ρ′ is the tape ρ, except for the parts used by the left-right oracle and the

key generation. The advantage of A is AdvindccaA (η) =
∣∣∣Pρ [Gindcca,0

A (1η, ρ) = 1
]
− Pρ

[
Gindcca,1
A (1η, ρ) = 1

]∣∣∣.
Fig. 7: The IND-CCA-2 game (in computational model M)

to the asymmetric oracles Oaenc, Oadec, Opk. Opk is easy, as B
has access to pk(k). Oaenc(m0, “r0”, “k0”), when r0 6= r, is
similar: B has access to all k0 6= k, to pk(k), and to all r0 6= r,
and can compute the encryption himself. When r0 = r, B needs
to call his encryption oracle (from the IND-CCA-2 game) to
compute either the encryption of m0 or of JzerosKM(m0), as
expected.

The issue here is the unrestricted decryption oracle Oadec.
When it is called on a key other than k, B can simply compute
the decryption, as he knows the key. However, the case of
Oadec(c0, “k”) for an arbitrary c0 is more subtle. B can only
use the IND-CCA-2 decryption oracle before submitting the
challenge to OLR – and he can only call it on c0 6= JcKM(1η, ρ)
afterwards. Therefore, we must ensure that B never needs
to make a forbidden decryption query after submitting the
challenge. That situation could possibly arise, e.g. if B started
to evaluate a subterm of t that contains c, requiring a call to
OLR, before evaluating another subterm where another term c′

needs decryption, that happens to have the same interpretation
as c.

To get around this issue, B evaluates the terms t, t′ in a
slightly different order than EOβM,Γ,R. Note that, since EOβM,Γ,R
is not stateful, any order in which it evaluates terms leads to
the same result.
B goes recursively through the terms as EOβM,Γ,R would, until

it reaches an occurrence of subterm c, the ciphertext to be
replaced. He then pauses the evaluation for that branch of the
term, and continues to evaluate the rest of t and t′. While
doing so, B never calls OLR, as he never needs to evaluate
c. Thus, any decryption is still permitted. Then, B evaluates
m, the challenge plaintext. Since c cannot be a subterm of
m (as it is itself c’s subterm), B can evaluate m completely.
Next, B calls OLR on m and the corresponding null bitstring,
to evaluate c (or the corresponding encryption of 0s, on the
right). He then finishes the evaluation of t and t′, i.e. goes back
up through the terms, from all positions of subterm c in t, t′.
While doing so, he may encounter a subterm adec?(c′, k, 〈ci〉i),
for some c′ which admits c as a subterm. That decryption
must be evaluated using oracle Oadec. We thus need to ensure
Jc′KM(1η, ρ) 6= JcKM(1η, ρ). By construction of EOβM,Γ,R and
typing rule ADEC?, we know that Jc′KM(1η, ρ) 6= JciK

M
(1η, ρ)

for all i, and that 〈ci〉i contains all subterms of c′ that are

ciphertexts – in particular c. Thus, c′ and c have different
interpretations, and the decryption is permitted. This allows B
to finish simulating the evaluation of t, t′, which concludes
the proof.

Similarly to the symmetric case, we then define δaΓ, the
operation that adds the symbol zeros in all ciphertexts in a
given term t, i.e. the iteration of δac for all ciphertexts c in t
that use a key in Γ. We apply Lemma 22 repeatedly, to show
that, informally, δaΓ(t) I δaΓ(t′) implies t I t′ for any t, t′

(similarly to Lemma 15).
Finally, the statement of Theorem 2 is unchanged. The

updates to its proof are straightforward: in the case of
rule NAME, we use the previous property to add zeros in
all asymmetric ciphertexts, as we did with Lemma 15 for
symmetric ciphertexts, and the rest of the proof remains the
same.

C. Elimination of adec

In Appendix D, we have proved that if a term t type-
checks in the system for base terms, then there exists a term
t′ ≈ t that type-checks in the restricted system. We extend
that result to the case of asymmetric encryption. To do so,
we remove from t all subterms typed with the rule ADEC

of the base system, and replace them with terms containing
adec?, that can be typed with rule ADEC?. The idea is the same
as when removing occurrences of SDEC using the INT-CTXT
assumption. In the asymmetric case however, we could not
remove decryption entirely, and have handled that difficulty
in the previous subsection using adec? and IND-CCA-2. The
following replacement lemma, analogous to Lemma 16 is thus
simpler than in the symmetric case.

Lemma 23. Let (Γ;R) be a well-formed mapping environ-
ment, T a message type, k a key with Γ(k) = AK[T],
and t a ground term such that Γ;R ` t : Msg. Let
aenc(p1, pk(k), r1), . . . , aenc(p`, pk(k), r`) be the sequence of
encryptions using public key pk(k) and randoms in RB that
occur in t. Let

δa(t, k) =


if t = aenc(p1, pk(k), r1) then p1 else
. . .
if t = aenc(p`, pk(k), r`) then p`
else adec?(t, k, 〈aenc(pi, pk(k), ri)〉1≤i≤`)



We have adec(t, k) ≈ δa(t, k).

Proof. If JtKM(1η, ρ) = Jaenc(pi, pk(k), ri)K
M

(1η, ρ)
for some i, then δa(t, k) correctly evaluates
to JpiK

M
(1η, ρ). Otherwise, δa(t, k) evaluates to

Jadec?(t, k, 〈aenc(pi, pk(k), ri)〉1≤i≤`)KM(1η, ρ), in the
innermost “else” branch. That term, by definition,
has the same semantics as adec(t, k), since
JtKM(1η, ρ) 6= Jaenc(ti, pk(k), ri)K

M
(1η, ρ) for any i,

which concludes the proof.

Finally, in the proof of Lemma 17 used to established
Theorem 3, we use Lemma 23 for the case of rule ADEC, in the
same manner as Lemma 16 was used for the case of rule SDEC.

D. Some case studies

We apply our framework on two protocols relying on
asymmetric encryption.

Needham-Schroeder-Lowe protocol: We consider the
tagged version of this protocol informally described below [25].

A→ B : {1, Na, A}pk(B)

B → A : {2, Na, Nb, B}pk(A)

A→ B : {3, Nb}pk(A)

We consider secrecy of the nonce Nb from the point of view of
each role and we consider that some agents may be corrupted.
In order to type the protocol, we give type AK[T0 + Low] to
ska[i] – the symbol used to represent private keys of honest
agents a[i] – with T0 as follows:

Cst0
1 ×High× Cst∞a

+ Cst0
2 ×Msg ×High× Cst∞a

+ Cst0
3 ×High

The modelling of this protocol is made up of two actions
per role, and we have to consider two cases: the honest agent
executing the role can be engaged in the communication with
an honest agent or a dishonest one. Therefore, in total, we
have 8 actions to consider. We detail below the typing of the
second action of the role A when the agent is engaged in the
communication with a dishonest responder. In this case, the
term outputted by a[i] responding to ad[j] in session k is of
the form:

aenc(〈3, fst(snd(snd(tdadec)))〉, pk(skad[j]), rda [i, j, k])

where tdadec = adec(input@Ad
1[i, j, k], ska[i]), and rda is a name

having Low type (used here as a random). However, this output
is performed under some conditions, in particular, a[i] will test
the tag as well as that snd(snd(snd(tadec))) = ad[j]. When
typing this output, we will have to consider the case where
tdadec is of type T0, and the case where tdadec is of type Low.
The latter one will be easily handled using the rule FUN-LOW.
To handle the former one, we will rely on the tag, and also
on the test done on the agent name to show that actually the
condition will always fail, and thus the resulting output will be
the constant empty of type Low. This additional check on the
name of the responder is crucial to show that the protocol is
well-typed and explain also why the secrecy of the nonce Nb
can not be established on the well-known flawed Needham-
Schroeder protocol using our technique.

To establish the secrecy of Nb from the point of view of A,
we have to show how to type

if Φ then fst(snd(snd(tadec))) else nfresh

where tadec = adec(input@A1[i, j, k], ska[i]), nfresh is a name
having type High, and Φ is a conjunction of conditions
expressing in particular the check regarding the tag, and the
check performed by A on its own nonce. This last check is
actually crucial to deal with, relying on the rule EQ-FALSE, the
case where tadec will be assumed of type Low. The nonce Na
generated by A can not be equal to something having type
Low, and thus we know that the condition will fail, and we
only have to type nfresh in this case.

Mechanism 6 (ISO-11770/part III): This protocol is
informally described below. The norm does not mention any
tagging mechanism, and we do not have to assume one for
applying our typing result.

A→ B : {A,KA, RA}pk(B)

B → A : {B,KB , RA, RB}pk(A)

A→ B : RB

We consider here secrecy of the key KB from the point of
view of each role. Actually, the situation is rather similar to
the case of the Needham-Schroeder-Lowe protocol, and we are
able to type the protocol, as well as the terms representing the
secrecy properties of the key KB . It can be done using type
AK[Cst∞a ×High×Msg + Low] for typing ska.
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