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We provide a comprehensive analysis of the resonant property of the memory capacity of a time-delay reservoir com-
puter based on a semiconductor laser subjected to filtered optoelectronic feedback. Our analysis reveals first how the
memory capacity decreases sharply when the input-data clock cycle is slightly time-shifted from the time delay and its
multiples. We attribute this effect to the inertial properties of the laser. We also report on the dampening of the memory-
capacity drop at resonance with a decrease of the virtual node density and its broadening with filtering properties of
the optoelectronic feedback. These results are interpretated using the eigenspectrum of the reservoir obtained from a
linear stability analysis. Then, we unveil an invariance in the minimum value of the memory capacity at resonance
with respect to a variation of the number of nodes if the number is big enough and quantify how the filtering properties
impact the system memory in and out of resonance.

A reservoir computer carries out physics-based comput-
ing in which the computation is realized in the nonlinear
dynamics of the system. Reservoir computers are a sub-
class of recurrent neural networks, but benefit from sim-
plified training compared with the larger class of recur-
rent neural networks by only regressing a subset of hyper-
parameters associated to the network’s output layer. One
type of reservoir computer is realized by a nonlinear sys-
tem (node) with the time-delay feedback loop; the state
of the dynamical variables in the feedback loop at a set
of time intervals constitute virtual nodes of the reservoir
computer. It is important therefore to understand how the
physically realized reservoir computer affects its perfor-
mance. Here we investigate the performance of a time-
delay reservoir computer composed of a laser diode with
an optoelectronic feedback loop. The laser is a nonlin-
ear device that is characterized by its ability to demon-
strate a variety of dynamical regimes when subjected to
the optoelectronic feedback, i.e., when its emission inten-
sity signal is added to or subtracted from its pump cur-
rent. The optoelectronic signal conversion inherently has a
limited bandwidth, and we analyze how it affects frequen-
cies of the system’s small-signal response that is crucial for
the reservoir computing system. We find that the reser-
voir computer performance is severely degraded when the
symbol input rate is in resonance with the difference be-
tween adjacent frequencies of the response as the reser-
voir’s ability to remember (memory capacity) input at past
times is strongly reduced. We show that decreasing the fil-
ter bandwidth introduces inertia to the response and dis-
persive spread of the frequencies thus affecting the posi-
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tion and width of the resonance. An analysis of the mem-
ory capacity of the time-delay reservoir computer based
on the laser diode with optoelectronic feedback reveals the
persistence of minimal connectivity as well as inertial and
dispersion properties and provides guidance to attain high
performance.

I. INTRODUCTION

Recent developments in artificial neural networks (ANNs)
have enabled the emergence of novel computing paradigms
to solve highly demanding tasks in data analysis and
processing1. Recurrent neural networks (RNNs) are partic-
ularly suited for tackling time-dependent tasks and big-data
analysis. One of caveat is the complexity of training of
RNNs when compared to feedforward networks2. Reser-
voir computing (RC) simplifies the training of RNNs by
only regressing a subset of hyper-parameters associated to
the RNN’s output layer. As a result, RC can be trained us-
ing simple linear (or ridge) regression3, on a reduced set
of tunable parameters. Various physical implementations of
RC have been proposed4,5, from water buckets6 to mechan-
ical oscillators7, spintronic systems8, and micro-electronics
with field programmable gate arrays (FPGAs)9, to name a
few). Amongst the various approaches that have been consid-
ered, photonics-based RCs are attractive because of their high
energy efficiency and large data processing bandwidth10–12.
Successful experimental demonstration of photonic RCs have
been performed with optoelectronic oscillators13–15, semicon-
ductors lasers with optical feedback16,17, photonic integrated
circuits18–20, and free-space optical setups21–23.

A subset of photonic RCs is known as time-delay RCs
(TDRCs), which rely on time-multiplexing the recurrent-
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network structure by considering virtual neurons temporally
distributed within the feedback loop delay time. The net-
work connectivity is induced by the so-called masking pro-
cedure: It is a preprocessing stage, where input data is
modulated by a fast-oscillating, periodic signal (the mask)
with a time period generally corresponding to the propaga-
tion time of signals in the feedback loop. This was orig-
inally proposed by Appeltant and coworkers in their sem-
inal work24. The main advantage of TDRC is its simpli-
fied structure that requires the use of a single physical node.
However, it usually leads to slower information-processing
speed compared with spatially-extended systems. Numer-
ous photonic implementations of the TDRC approach have
been proposed, including those with optoelectronic oscilla-
tors with delayed feedback25,26, with edge-emitting semicon-
ductor lasers (EELs) with optical feedback16 or with opto-
electronic feedback27, with vertical-cavity surface-emitting
lasers (VCSELs) with optical feedback28,29, with semicon-
ductor ring lasers30 and with photonic integrated circuits with
integrated feedback19,31. Photonic TDRC has shown state-of-
the-art performance on various tasks such as nonlinear chan-
nel equalization and spoken-digit recognition16,25,32.

As nonlinear time-delay systems, TDRC architectures can
display so-called resonant effects, which may significantly af-
fect their performance. One of these resonant phenomena ex-
ists between the input clock-cycle time Tcc (i.e., the time pe-
riod of the masking signal) and the delay time τ associated
with signal propagation in the feedback loop (time delay τ).
One of the measurable consequences of this resonance effect
is a reduction of the memory capacity (MC) of the TDRC, a
task-independent metric measuring the ability of the TDRC
to reconstruct past input from current state values33, when
Tcc and τ are similar in value. This effect has already been
documented in TDRC configurations based on EELs with op-
tical feedback34–37. Reduced performance has also been re-
ported for higher-order resonances, (i.e., aτ ≈ bTcc with a and
b natural numbers)35,36. Based on the spectral analysis of the
system’s dynamics, Köster et al. suggested that for efficient
TDRC performance, the product of the imaginary part of an
eigenvalue with the input clock cycle, should be different from
kπ with k an integer to avoid half circle rotations during one
input time38.

In recent work on a TDRC based on a laser diode subjected
to optoelectronic feedback27, we have shown that tailoring the
filtering properties of the feedback has a significant impact
on the MC of the system while preserving its computational
ability39. This suggests filtering could have a nontrivial effect
on the resonant properties of photonic TDRCs.

In the present work, we provide a detailed analysis of the
resonance properties of the MC of a TDRC based on a laser
diode with filtered optoelectronic feedback. The manuscript is
organized as follows: In Sec. II, we detail the numerical model
of the laser with delayed, filtered, optoelectronic feedback. In
Sec. III, we will provide a detail study of the MC properties
and the impact of key physical parameters such as the number
of nodes and the feedback parameters. We base our analysis
on the eigenvalue spectrum of the linearized model about its
only non-trivial equilibrium point of the TDRC. The use of an

eigenvalue analysis allows us to highlight and report on the
existence of an inertial offset in the clock cycle value leading
to the resonance, an invariance of the minimum MC at reso-
nance, and, second, the possible changing of resonance with
respect to physical properties of the feedback. In Sec. IV we
present our conclusions.

II. MODEL

We consider a delay differential equation (DDE) model for
a semiconductor laser subject to a bandpass-filtered optoelec-
tronic feedback39:

İ(t) = 2N(t)I(t), (1)

İFH(t) =−τH
−1IFH(t)+ İ(t), (2)

İFL(t) =−τL
−1[IFL(t)− IFH(t)], (3)

ε
−1Ṅ(t) = P[1+ξ M f (t)]+ηIFL(t− τ)−N(t)

−[1+2N(t)]I(t), (4)

where I(t) is the normalized intensity of the laser field; N(t)
is the carrier density; IFH(t) is the high-pass filtered inten-
sity signal and τH is the inverse of the high-pass filter cut-
off frequency; IFL(t) is the low-pass filtered intensity signal
and τL the inverse of the low-pass filter cut-off frequency;
P is the pump-above-the-threshold parameter, defined as P =
(J−Jthr)/2, with a modulation function M f (t) for the masked
input data and maximum modulation amplitude ξ P; η is the
feedback strength (either positive or negative);τ is the feed-
back delay time; and ε is the ratio of the photon to the carrier
lifetimes.

A modulation function M f (t) describes an input signal S
multiplied by a Tcc-periodic mask M(t), which is piecewise-
constant on the inter-delay interval θ = Tcc/N, where N is
the number of virtual nodes, and Tcc is the clock cycle. See
Ref. 27 for details. The mask values are random numbers
uniformly distributed in [−1,1].

We consider the following set of experimentally relevant
parameters according to Ref. 40 for further numerical analy-
sis: ε = 0.1, τH = 2000, τ = 1000, and ξ = 0.1. Time param-
eters are measured in the units of the photon lifetime tp = 10
ps.

III. RESONANT PROPERTIES OF THE MEMORY
CAPACITY

We analyze the effect on MC defined in Eq. (5) below, when
the clock cycle Tcc is approximately equal to the delay time τ ,
for a photonic RC with optoelectronic feedback (see Fig.1).
We numerically investigate the impact of key tunable param-
eters of the reservoir, such as the number of nodes N and low-
pass-filter cut-off frequency τ

−1
L on the appearance, location,

and minimum value of the MC resonance. The MC is a metric
that characterizes the ability of a RC to reconstruct the previ-
ous inputs from its current state vector. It is mathematically
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defined as41:

MC =
∞

∑
d=1

mcd =
∞

∑
d=1

cov2(Oi,Si−d)

σ2(Si)σ2(Oi)
, (5)

where mcd is called a memory function, σ2 is the variance,
cov is the covariance, Oi is the output data value at the i-th
input step (corresponding to the input of one symbol during
a period Tcc), Si−d is the input data value delayed by d input
steps. The memory function mcd characterizes how well the
output of the reservoir, that is trained to restore the input that
occurred d inputs before, correlates with the aforementioned
input. Numerically, the maximum calculated depth d was cho-
sen to be 500, and we took only values mcd ≥ 0.01 for the sum
in Eq. 5.

Further, we examine the memory functions to specify their
connection to the resonance effect, provide the eigenvalue
spectrum analysis determining the resonance location, and ex-
plain the impact of the dispersive spread of the eigenfrequen-
cies on the resonance width.

A. Node density and memory profiles

In this section, we analyze the impact of the number of
nodes on the MC resonance. It is known that MC scales with
the number of nodes in a RC, with the upper-bound being the
network size33,42. In the case of time-delay based RCs, the
inter-delay θ controls the local connectivity between neigh-
boring virtual neurons with an evanescent coupling kernel, so
that a quasi-disconnected network is achievable if θ is large
with respect to the the typical response time of the physical
node41.

Considering a fixed time delay τ while changing the num-
ber N of virtual nodes will result in a change in the virtual-
node density, and hence in the strength of the connectivity be-
tween nodes. Here, we change Tcc for a constant N modifying
the inter-delay θ and time during which the input symbol is
fed into reservoir. Figure 1 shows the dependence of MC on
the clock cycle Tcc for various numbers N of nodes. When the
number of node exceeds N > 70, we observe a saturation of
the MC at an average value ∼ 35 with a drop at the resonance
leading to MC(Tcc ≈ τ)∼ 10. This saturation may originate in
a large density of virtual nodes that imposes highly correlated
input-output responses, thus strongly limiting the contribution
of additional nodes beyond N = 70 in the overall MC of the
TDRC with filtered optoelectronic feedback.

Another salient feature is the persistent minimum value of
MC at the resonance and its steady location for the fixed pa-
rameters of the reservoir. However, the resonant effect is at-
tenuated if the number of nodes N is below the minimum
value of the MC (around 10), as shown in Fig. 1. Indeed,
even though there is a drop at the same position, its magni-
tude is comparable with MC fluctuations within the full Tcc
range [0.9τ,1.1τ], so it is less clear that the drop is caused by
the resonance effect. Of note, in Fig. 1 MC is shown only for
positive feedback sign; nevertheless, its minimum value and
its location do not depend on the feedback sign and remain
the same.
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FIG. 1. MC versus clock cycle Tcc for various numbers N of nodes.
Black and red marks provide the reference for the resonant and off-
resonant position for further discussion, correspondingly. P = 0.2,
τL = 7.5, η = 0.98. The other parameters are given in the text.

In order to gain insight into the system behavior in and
out of the resonance, the memory functions mcd are plotted
in Fig. 2. For more details about the memory function see
Ref. 24. The memory profiles are very different, for differ-
ent values of N, for nonresonant cases [panels (a), (c), (e)],
but remain nearly the same for the resonant cases at any N,
showing an initial fast decay, corresponding to a decreased
MC, followed by a slow decay stage. A possible explanation
of such behavior of the memory function is that fast decay
of the memory profile is associated with a topological change
the RC’s connectivity at the resonance: the resonance breaks
the propagation of the delayed signal from one virtual node to
another.

The slope of the slow stage at the resonant cases [Fig. 2(d)
and (f)] is the same as the slope of the decaying memory pro-
file at the non-resonant cases [Fig. 2(c) and (e)], illustrating
the persistence of the connectivity except the loss of connec-
tions which correspond to the fast decay of the memory pro-
file. Invariance of the memory profile with respect to N results
in the persistence of the minimum MC for the resonant cases.
The resonance effect is not pronounced for a small number of
nodes (N = 8, 10) as the memory profile decays very slowly
and the mcd values are very small for the both resonant and
non-resonant cases.

B. Eigenspectrum analysis for inertia, dispersion, and
filtering

The low-pass filtering of the feedback signal affects the RC
performance39, but its impact on the MC is different within or
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FIG. 2. Memory function mcd for various numbers N of nodes for
the Tcc values denoted by red and blue arrows in Fig. 1 correspond-
ing to the cases of (a), (c), (e) out of resonance and (b), (d), (f) on
resonance. The number of nodes: (a), (b) N = 8, (c), (d) N = 38, (e),
(f) N = 70. The other parameters are the same as in Fig. 1.
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FIG. 3. (a) MC versus clock cycle Tcc for various values of τL with
P = 0.2 and η = 0.98. (b) diagram of MC in (τL,Tcc) plane with
P = 0.4, η = 0.6. The red line represents the calculated resonance’s
location and its shifting with τL using the spectral analysis that is
defined as the inverse of the mean eigenvalue interval 1/D1. The
white line is the minimum MC.

outside of the resonance. In non-resonant cases, MC decreases
with reduced fluctuations levels as is observed in Fig. 3(a).
Moreover, the resonance becomes wider, leading eventually
to a nearly flat MC profile without pronounced resonance.

To gain insight into why this happens, we perform a linear
stability analysis of the system for the non-trivial steady-state
I(t) = P, IFL(t) = IFH(t) = 0, N(t) = 0, for which the charac-
teristic equation reads (see also Ref. 39):

[2εP(1+λ )+λ (ε +λ )](1+ τHλ )(1+ τLλ )

−2e−λτ
ηεPλτH = 0, (6)

where λ is an eigenvalue of the linearization of Eqs. (1)–(4)
about the non-trivial steady-state of interest and describes the
small-signal response of the system to the input signal.

The calculated eigenvalue spectra are given in Fig. 4(a).
Particularly, we are interested in the imaginary parts of the
eigenvalues Im(λ ), or eigenfrequencies, that characterize the
frequencies of the system’s response to perturbations and,
therefore, characterize MC39. As τL increases, the eigenvalue
spectrum transforms and its shape becomes narrower meaning
increased damping of the eigenfrequencies less than 1/τ

−1
L .

Furthermore, we have shown in a previous study39 the exis-
tence of a dependence of MC on the flatness and proximity
of the eigenvalue spectrum to the imaginary axis. As a result,
MC is reduced out of resonance [Fig. 3(a)] because a smaller
number of eigenvalues is in proximity to the imaginary axis.

The bandwidth limitation of the feedback has a significant
effect on the eigenvalue spectrum, and may result in com-
pletely filtering out the feedback signal at the frequencies cor-
responding to the modulational instability, i.e., undamping of
the laser’s relaxation oscillations (see Ref. 39 for details), as
occurs for τL = 30 and τL = 70 in Fig. 4(a). In this case, only
a few eigenvalues contribute to the system’s response, and the
timescales associated with the laser are not manifested in the
dynamics of the system, so the instabilities can be character-
ized only by feedback-related timescales (i.e. τ and bandpass
filter cut-off frequencies τ

−1
L and τ

−1
H ).

The eigenvalue spectrum analysis can provide further in-
sight about the typical scaling of the MC with respect to the
filtering characteristic of the feedback at the resonance. Based
on the spectral analysis, we introduce two quantities D1 and
D2 that characterize the distribution of the eigenvalues. We
find that the inverse of the mean difference between adjacent
eigenfrequencies provides a good estimation of the scaling of
the resonant clock cycle Tcc value. The normalized interval
between two adjacent eigenfrequencies is defined as

D1(i) =
Im(λi+1)− Im(λi)

2π
τ, (7)

where i≥ 0 is the eigenvalue number, and the eigenvalues are
numbered according to increasing Im(λi). We take only the
positive part of the eigenvalue spectrum for the analysis due
to its symmetry with respect to the real axis39.

In our system, D1(i) deviates significantly from unity [see
Fig. 4(b)] due to filtering. This is drastically different from
the case described in Refs. 35 and 38 where Im(λ ) ≈ πK/τ

with K ∈ Z. In the following we relate the variation of the
resonance’s properties to the inertia and dispersion imposed
by the filtering.

Figure 3(b) shows the position of the resonant dip and the
inverse of the mean eigenfrequency interval 1/D1, both shift-
ing to higher values when τL increases. The mean eigenfre-
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quency interval is defined as

D1 =
1
C ∑

j≥0:
Re(λ j)τ≥−2

D1( j), (8)

where C is the number of eigenvalues having a real part satis-
fying Re(λ j)τ ≥−2, i.e., the averaging goes over eigenvalues
that are not strongly damped. If we consider the reservoir as
an ensemble of coupled oscillators at different eigenfrequen-
cies driven by the reservoir’s input, the quantity D1 charac-
terizes the mean frequency spacing between them. In our ac-
tive nonlinear time-delayed system, the decrease of D1 mani-
fests the effect of inertia when the feedback loop bandwidth is
shrinking, and the system dynamics is mainly determined by
the feedback as the laser timescales are significantly damped.

By inertia here we understand the effect of the increase of
the characteristic response time in a dynamical system with
respect to τ . This effect is an inherent feature of time-delayed
dynamical systems and is associated with information prop-
agation and causality (see, e.g., Ref. 43). In our system,
the effect is enhanced because of the presence of filtering in
the feedback loop. The effect of filtering on the character-
istic time-scale was previously studied in lasers with feed-
back, e.g., it was shown that decreasing the optical filter band-
width leads to the decrease of the spacing between external
cavity modes of a semiconductor laser with delayed optical
feedback44.

In our system, 1/D1 > τ which also highlights that the reso-
nant value of Tcc is determined by the interval between eigen-
frequencies accounting for the inertial effect, and therefore
can be different from τ .

Further, apart from the shift, the resonant dip also becomes
broader for large values of τL [Fig. 3(a)]. If we, again, con-
sider the reservoir as an ensemble of oscillators, this broaden-
ing is determined by the dispersive spread of the eigenvalues,
which forms their non-equidistant character. To illustrate this
and to characterize the dispersive spread of the eigenfrequen-
cies, we compute the differences between the adjacent eigen-
frequency intervals as

D2(i) = [D1(i+1)−D1(i)]τ =

= (Im(λi+2)−2Im(λi+1)+ Im(λi))τ
2/(2π), (9)

that is reminiscent of a numerical second derivative definition,
and also optical dispersion.

It is seen in Fig. 4(c) that increasing τL results in an en-
hancement of the non-equidistance between eigenfrequencies.
Equidistant eigenfrequencies define the location of a unique
resonance, but multiple non-equidistant eigenfrequencies gen-
erate multiple resonant drops slightly shifted from each other.
These drops coalesce in a single broaden drop.

C. Intensity patterns and connectivity

To illustrate the reservoir behavior inside and outside the
resonance, as well as connections between virtual nodes, 2D
diagrams (Figs. 5, 6), in the spirit of the spatio-temporal repre-
sentation of delay systems proposed in Ref. 45, are presented.

FIG. 4. Eigenvalue analysis: (a) the numerically computed eigenval-
ues of the linearized system of Eqs. (1)–(4); (b) the intervals D1(i)
between the adjacent eigenfrequencies, according to Eq. 7; (b) dif-
ferences of the adjacent eigenfrequency intervals D2 (Eq. 9) show-
ing their non-equidistant character. Color shows the low-pass filter
timescale: τL = 7.5 (blue), τL = 10 (orange), τL = 30 (green), and
τL = 70 (red). The other parameters are the same as in Fig. 3.

The diagrams are constructed as follows: the intensity time-
trace is split into intervals having a length equal to Tcc, and
successive slices are stacked in the vertical direction result-
ing in the two-dimensional plot. This representation shows
the dynamic reservoir development within one clock cycle,
for a total of 100 cycles. Figure 5 illustrates that information
is diffused across non-neighboring virtual nodes, in the non-
resonant cases [diagonal lines in Figs. 5(a) and (c)], while it
remains localized to specific positions in time [vertical lines
in Figs. 5(b) and (d)], in the resonant cases. This could ex-
plain the reduced MC with resonant conditions. Of note, the
number of vertical lines is larger in Fig. 5(d) compared with
Fig. 5(b), since in the former case a larger number of vir-
tual nodes used. Further, a comparison of Figs. 6(a) and (b)
with Figs. 6(c) and (d) illustrates the reduction of connections
between virtual nodes, when the fast timescale related to re-
laxations oscillations is damped, due to the choice of a large
value for τL. Similarity between Fig. 6(c) and Fig. 6(d) relates
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FIG. 5. 2D diagrams of the laser intensity evolution for 100 subse-
quent roundtrips (a), (c) outside and (b), (d) inside the resonance as
indicated in Fig. 1. The diagonal features in (a) and (c) represent the
connectivity between the nodes in the reservoir. The node number N
is varied: (a), (b) N = 15, (c), (d) N = 70. P = 0.2, τL = 7.5, η = 0.98.

FIG. 6. 2D diagrams of the variation of τL. 2D diagrams of the laser
intensity evolution for 100 subsequent roundtrips (a), (c) outside and
(b) ,(d) inside the resonance as indicated in Fig. 3(a). The diagonal
features in (a) represent the connectivity between the nodes in the
reservoir. (a), (b) τL = 7.5, (c), (d) τL = 70. P = 0.2, N = 48, η =
0.98.

to the overall small MC in the case of strongly filtered feed-
back when the resonance is not well-pronounced (see Fig. 3).
Therefore, increasing τL, according to the Fig. 6, leads to a
loss of connectivity between some nodes as has also been dis-
cussed in the relation to the memory profiles.

IV. CONCLUSION

In this work, we have explored the resonant effects in the
MC of a RC based on a semiconductor laser subjected to
delayed optoelectronic feedback which are known to signif-
icantly affect the RC’s performance. The spectral analysis
revealed that the inertial and dispersive properties of eigen-
frequencies define the location and width of the resonant drop
in the MC. These properties are strongly dependant on the
low-pass filter timescales τL and τH . The resonant value of

the input clock time is shifted from the delay time τ due to the
inertial effect and is determined by the inverse of the average
interval between eigenfrequencies. Dispersive spread, corre-
sponding to nonequidistant eigenfrequencies, lead to signifi-
cant broadening of the resonant drop.

The virtual-node density of the RC affects the width of the
resonant drop, but its location and the minimum MC value re-
main unaffected. We analyzed the memory function and found
that while its profile changesn at the resonance, it does not de-
pend on the number of nodes if this number is sufficiently
large. At resonance, the profile consists of a fast decay in-
dicating the loss of connectivity of some nodes, and a slow
decay with the same slope as that of the memory function in
the nonresonant case. The memory profile in the resonant case
remains the same if the number of nodes is large, leading to a
constant value of the minimum MC. We illustrate the change
of connectivity between the virtual nodes at resonant cases by
plotting 2D diagrams of the laser intensity evolution.
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