
HAL Id: hal-04676952
https://cnrs.hal.science/hal-04676952v1

Preprint submitted on 24 Aug 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Distributed under a Creative Commons Attribution 4.0 International License

Inadequacies in the representation of sub-seasonal
phytoplankton dynamics in Earth system models

Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski,
Marina Levy

To cite this version:
Madhavan Girijakumari Keerthi, Olivier Aumont, Lester Kwiatkowski, Marina Levy. Inadequacies
in the representation of sub-seasonal phytoplankton dynamics in Earth system models. 2024. �hal-
04676952�

https://cnrs.hal.science/hal-04676952v1
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
https://hal.archives-ouvertes.fr


1 
 

Inadequacies in the representation of sub-seasonal phytoplankton 

dynamics in Earth system models 

Madhavan Girijakumari Keerthi1,2, Olivier Aumont1, Lester Kwiatkowski1, Marina Levy1 

1LOCEAN-IPSL, Sorbonne Université, CNRS, IRD, MNHN, Paris, France 
2LMD-IPSL, École Normale Supérieure, Université PSL, CNRS, École Polytechnique, Paris, France 5 

Correspondence to: Madhavan Girijakumari Keerthi (keerthi.madhavan-girijakumari@locean.ipsl.fr) 

Abstract. Sub-seasonal phytoplankton dynamics on timescales between 8 days and 3 months significantly contribute to annual 

fluctuations, making it essential to accurately represent this variability in ocean models to avoid distorting long-term trends. 

This study assesses the capability of Earth System Models (ESMs) participating in the Coupled Model Intercomparison Project 

Phase 6 (CMIP6) to reproduce sub-seasonal surface ocean phytoplankton variations observed in ocean color satellite data. Our 10 
findings reveal that, unlike sea surface temperature, all models struggle to accurately reproduce the total surface ocean 

phytoplankton variance and its decomposition across sub-seasonal, seasonal, and multi-annual timescales. Over the historical 

period, some models strongly overestimate sub-seasonal variance and exaggerate its role in annual fluctuations, while others 

underestimate it. Our analysis suggest that underestimation of sub-seasonal variance is likely a consequence of the coarse 

horizontal resolution of CMIP6 models, which is insufficient to resolve mesoscale processes—a limitation potentially 15 
alleviated with higher-resolution models. Conversely, we suggest that the overestimation of sub-seasonal variance is 

potentially the consequence of intrinsic oscillations such as predator-prey oscillations in certain biogeochemical models. ESMs 

consistently show a reduction in variance at sub-seasonal and seasonal timescales during the 21st century under high-emission 

scenarios. The poor capability of CMIP6 models at simulating sub-seasonal chlorophyll dynamics casts doubt on their 

projections at these temporal scales and multi-annual timescales. This study underscores the need to enhance spatial resolution 20 
and constrain intrinsic biogeochemical oscillations to improve projections of ocean phytoplankton dynamics.  

1 Introduction 

Phytoplankton, the photoautotrophic microscopic organisms populating the upper layers of the ocean, form the base of marine 

food webs and play a crucial role in driving ocean biogeochemical cycles. Over recent decades, climate change due to 

anthropogenic activities has emerged as a significant threat to ocean phytoplankton, altering the key environmental factors 25 
essential for their growth and survival (Behrenfeld et al., 2006; Bindoff et al., 2019). The repercussions extend beyond the 
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marine environment, impacting the global carbon cycle and the future absorption of atmospheric carbon dioxide by the ocean 

(Bopp et al., 2005; Gregg et al., 2005).  

 

Earth system models (ESMs) are indispensable tools for forecasting the impacts of climate change on ocean primary 30 
productivity, and comprehending the intricate interplay between oceanic physical and biological processes. ESMs consistently 

project increased stratification across various climate change scenarios, enhancing phytoplankton nutrient limitation in low-

latitude oceans (Steinacher et al., 2010; Bopp et al., 2013; Krumhardt et al., 2017; Kwiatkowski et al., 2017; Moore et al., 

2018). As a consequence, marine primary production is globally projected to decrease (Sarmiento et al., 2004; Cabré et al., 

2014; Fu et al., 2016; Kwiatkowski et al., 2020). However, the extent of this decline remains highly uncertain across model 35 
ensembles, including uncertainty in even the direction of change (Bopp et al., 2013; Krumhardt et al., 2017; Kwiatkowski et 

al., 2020).  

 

A comprehensive comparison of the ocean biogeochemistry simulated by ESMs with observations can shed light on model 

deficiencies and associated driving factors (Séférian et al., 2020; Kwiatkowski et al., 2018; Kessler & Tjiputra, 2016; Planchat 40 
et al., 2023). The availability of two decades of daily satellite ocean color measurements of surface chlorophyll (SChl, a proxy 

for phytoplankton biomass) at global scale represents a unique means to evaluate the skill of ESMs to simulate phytoplankton. 

However, assessing multi-model uncertainty in climate projections has to go beyond evaluating solely the model mean state 

performance. It is crucial to assess models against observed variations across all timescales to bolster confidence in their 

projections (Séférian et al., 2020). This is particularly critical for phytoplankton as it is characterized by large natural variability 45 
at diverse timescales, which often masks the long-term trends (Henson et al., 2010; Henson et al., 2016; Doney et al., 2014; 

Keerthi et al., 2022).  

 

The seasonal cycle represents the primary mode of SChl variability (Demarcq et al., 2012). However, in many oceanic regions, 

sub-seasonal variability is equally significant and occasionally surpasses seasonal fluctuations (Keerthi et al., 2022; Prend et 50 
al., 2022; Levy et al., 2024). Sub-seasonal variability comprises high-frequency fluctuations associated with sub-seasonal 

atmospheric variability including storms and tropical cyclones (Carranza et al., 2015), sub-seasonal climate modes (Resplandy 

et al., 2009), mesoscale and submesoscale eddies (Gaube et al., 2014), and intrinsic biological processes (Mayersohn et al., 

2021). In various locations, phytoplankton variations at sub-seasonal frequencies can be more than two times as large as the 

climatological mean (Resplandy et al., 2009; Thomalla et al., 2011; Keerthi et al., 2021). In contrast, low-frequency (multi-55 
annual) variations with distinct regional characteristics are evident, and correlated with large-scale climate modes (Wilson and 

Adamec, 2001; Racault et al., 2017; Park et al., 2018; Resplandy et al., 2009; Lovenduski and Gruber, 2005; Martinez et al., 

2016). But with the exception of specific tropical regions, their contribution to total variability remains relatively modest 

(Keerthi et al., 2022).  

 60 
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Previous studies on simulated ocean primary production have predominantly focused on evaluating the mean state performance 

of models (Séférian et al., 2020; Bopp et al., 2013; Kwiatkowski et al., 2020), neglecting a comprehensive exploration of 

different temporal scales in model assessments. Capitalizing on high frequency global measurements of satellite ocean color 

SChl, we evaluated the performance of historical simulations produced by ESMs participating in the Coupled Model 

Intercomparison Project Phase 6 (CMIP6) to simulate global surface ocean phytoplankton dynamics across diverse temporal 65 
scales (sub-seasonal, seasonal, and multi-annual), with a specific focus on high frequency sub-seasonal variability. To do so, 

we applied the temporal decomposition methodology developed for SChl satellite data in Keerthi et al. (2022) to CMIP6 

historical simulations. Our analysis of SChl is additionally contrasted with that of sea surface temperature (SST), a typically 

well-simulated physical ocean parameter, particularly in comparison to SChl. 

 70 
Satellite ocean color measurements of SChl reveal that the cumulative effect of high-frequency sub-seasonal fluctuations can 

modulate year-to-year variations of SChl, a factor that has historically been overlooked (Keerthi et al., 2022; Prend et al., 

2022). The changing frequency of extreme atmospheric events, such as marine heatwaves (Frolicher et al., 2018) and tropical 

cyclones (Knutson et al., 2020; Walsh et al., 2016), coupled with mesoscale and submesoscale variability linked to global 

warming scenarios (Martínez-Moreno et al., 2021), may actively contribute to alter the sub-seasonal variability of SChl. The 75 
intricate interplay between the different timescales has therefore the potential to shape overarching long-term trends in surface 

ocean phytoplankton and thus deserves a specific focus. We therefore extend our analysis to future model projections using 

simulations of the high-emission scenario SSP5-8.5.   

 

The enhancement of resolution in coupled climate models improves atmospheric and oceanic dynamics, thereby reducing 80 
biases in the mean state and variability of various quantities (Muller et al., 2018). In our analysis of CMIP6 simulations, we 

also used the opportunity to compare the performance of a higher-resolution model version (MPI-ESM1.2-HR) and its lower-

resolution counterpart (MPI-ESM1.2-LR) in simulating SChl variability across different timescales. MPI-ESM1.2-HR has a 

horizontal resolution twice as high for the atmospheric component (100 km) and more than twice as high for the oceanic 

component (~40 km) compared to MPI-ESM1.2-LR (200 km and 150 km for the atmospheric and oceanic components, 85 
respectively). 

2 Data and Methods 

Observation data: We utilised the datasets outlined in Keerthi et al., (2022) for observed SChl and SST. The SChl data is the 

Level 3 Mapped 9x9 km resolution 8-day averaged product (release 4.1), covering the period from January 1998 to December 

2014. This dataset was obtained from the European Space Agency Ocean Color Climate Change Initiative (ESA OC-CCI; 90 
Sathyendranath and Krasemann, 2014) and can be accessed at http://www.oceancolour.org/. The product is a merged 

compilation from various ocean color satellite missions, including the Moderate Resolution Imaging Spectroradiometer 
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(MODIS)-Aqua, the Sea-Viewing Wide Field-of-View Sensor (SeaWiFS) and the Medium Resolution Imaging Spectrometer 

(MERIS). Given the limited coverage of the satellite-derived SChl data in polar regions, our analysis is concentrated on the 

region between 60°S and 60°N. 95 
 

For SST, we used the daily 25x25 km resolution Optimum Interpolation Sea Surface Temperature (OISST) data, spanning 

from January 1998 to December 2014. This dataset is accessible through the National Oceanic and Atmospheric 

Administration (NOAA) at https://www.ncdc.noaa.gov/oisst/optimum-interpolation-sea-surface-temperature-oisst-v20). The 

OISST data integrates observations from satellites, ships, buoys, and Argo floats. 100 
 

 

Table 1. The CMIP6 Earth system models used in this study; their individual components used to represent ocean and marine 

biogeochemistry; nominal horizontal resolutions of their ocean and marine biogeochemical models; simulations that were 

assessed. 105 
 

 

 
CMIP6 
Simulations 
 

 
Physical 
Ocean 
Model 

 
Ocean BGC 
Model 

Horizontal 
resolution 
(Physical & 
BGC Model) 

 
Model 
Simulations 

 
         References 

IPSL-CM6A-LR  
 
NEMO-
OPA 
 

 
 
PISCES 
 

 
 
100 km 
 

 
 
Historical 

Boucher et al. 2018, 2021 ; 
Séférian, 2018 
 

IPSL-CM6A-LR-
INCA 
CNRM-ESM2-1 

CESM2  
 
POP2 

 
 
MARBL 

 
 
100 km 
 

 
 
Historical 

Danabasoglu, 2019a, b, c; 
CESM2-FV2 
CESM2-WACCM-
FV2 
MPI-ESM1.2-HAM  

MPIOM 
 
HAMOCC6 

 
150 km 

Historical Neubauer et al., 2019 ;  
Wieners,et al., 2019a, b, c ; 
Jungclaus et al., 2019a, b ;  
Schupfner et al., 2019 

MPI-ESM1.2-LR Historical, 
SSP5-8.5, 
piControl 

MPI-ESM1.2-HR MPIOM 
 

HAMOCC6 40 km 

NorESM2-LM  
MICOM 

 
HAMOCC 

 
100 km 
 

Historical, 
SSP5-8.5 
piControl 

Seland et al., 2019a, b, c ; 
Bentsen et al., 2019a, b ; NorESM2-MM 
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CMIP6 Historical Simulations: We obtained SChl and SST data for the period 1981-2014 from https://esgf-

node.ipsl.upmc.fr/search/cmip6-ipsl/. Our analysis focused on the 11 CMIP6 historical simulations that had daily SChl outputs. 110 
The horizontal nominal resolution for ocean dynamics in most models is 100 km, except for MPI-ESM1-2-LR, MPI-ESM1.2-

HAM and MPI-ESM1-2-HR, which have a resolution of 150, 150 and 40 km, respectively. For SST analysis, NorESM2-LM 

and NorESM2-MM are excluded due to the absence of daily outputs. The ensemble member "r1i1p1f1" is utilized for all 

models, except for CNRM-ESM2-1, where "r1i1p1f2" is used. Details relating to the eleven models utilized in our study are 

provided in Table 1. 115 
 

CMIP6 Future projections: To project future variability in SChl at various timescales, we utilized a subset of ESMs (MPI-

ESM1.2-LR, MPI-ESM1.2-HR, NorESM2-LM and NorESM2-MM) that performed the SSP5-8.5 scenario, providing daily 

resolution data for the period 2084-2100. Pre-industrial control simulations (piControl) were used to ensure that observed 

climate change signals were not influenced by model drift.  Analysis of piControl simulations is presented for MPI-ESM1.2-120 
LR, MPI-ESM1.2-HR and NorESM2-LM only, as NorESM2-MM does not provide daily SChl outputs in piControl 

simulations. 

 

All analyses were performed on satellite observations and CMIP6 simulations regridded on a common 1°x1° spatial grid and 

a temporal resolution of 8 days. Satellite observations were regridded using area-weighted averaging. CMIP6 simulations were 125 
transformed using the CDO remapping tool remapdis.  

 

Temporal decomposition and variance explained:  We applied a decomposition methodology akin to that in Keerthi et al., 

(2020, 2022) and Vantrepotte & Mélin (2009, 2011), to decompose the SChl and SST timeseries at each grid point to seasonal 

(St), multi-annual (MAt) and sub-seasonal (SSt) components. A comprehensive description of this methodology is available in 130 
Keerthi et al., (2020, 2022). This decomposition ensures that at every geographical location, the total time series (Xt) can be 

expressed as the sum of its sub-components: Xt =SSt +St +MAt. The seasonal component (St) encapsulates variability within a 

period of 3 months to 1 year as well as year-to-year variations in the seasonal cycle. The multi-annual component (MAt) 

represents variability with a timescale longer than 8 months, while the sub-seasonal component (SSt) captures variability with 

a period shorter than 88 days along with any irregular variability outside of that specified range. This method allows for small 135 
overlaps in the frequency ranges associated with each component. 

 

The total variance of the SChl and SST timeseries can be decomposed into the cumulative variance explained by its different 

components along with the covariance amongst these components. In practice, the covariance terms are generally negligible. 

The proportional contribution of each component to the total variance is expressed as a percentage. 140 
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Spatial scale of coherence: The spatial scale of coherence associated with each time component (seasonal, multi-annual, and 

sub-seasonal) is defined as the extent over which the temporal signal remains self-coherent. We conducted cross-correlation 

analyses by comparing the decomposed time series of all grid cells included in a disk with a diameter of 2400 km. This sets 

then an upper limit of 2400 km to the scale we can infer with this method. We then counted the number of grid cells where the 145 
cross-correlation exceeded 0.8 and converted this count into a distance measurement. The chosen threshold value of 0.8 aligns 

with that in Keerthi et al., (2020, 2022). 

 

Spatial decomposition: To assess the relative contribution of spatial scales at intervals of 100 km, 200 km, and so forth, to 

the sub-seasonal signal, we executed a spatial decomposition at every 8-day time step. This decomposition methodology is 150 
based on an iterative application of the heat diffusion equation, as presented in Weaver and Courtier (1990), that has been 

previously implemented in the work of Keerthi et al., (2013, 2016). 

3 Results and Discussions 

3.1 Evaluation of the mean state 

Before turning to the analysis of temporal variability simulated by the models, we initially compare the mean state of the 155 
models with satellite-derived SChl. It is important to note that, due to our specific model selection process, the ensemble mean 

state presented here may differ from standard CMIP6 analyses, which typically include a wider selection of models. Our study 

focuses solely on simulations providing daily SChl outputs, discarding models that do not meet this criterion. 

 

The ensemble mean of SChl from 11 CMIP6 simulations, as detailed in Table 1, is compared with satellite-based estimates 160 
derived from ESA OC-CCI Ocean color data (Figure 1a). Key features include elevated SChl levels in temperate, subpolar, 

and upwelling regions, contrasting with notably lower levels in the subtropical gyres. The latter areas are characterized by 

consistently low-nutrient conditions, while the former receive intermittent nutrient influxes through upwelling or deep mixing. 

Although the CMIP6 ensemble mean generally aligns with observations, there is a notable overestimation across the entire 

ocean (Figure 1a, b). 165 
 

Séférian et al., (2020) undertook a comparison between the mean state of CMIP6 simulations and satellite SChl measurements 

(ESA OC-CCI) also spanning 1998-2014. Their results indicate significant discrepancies between models and observational 

data in reproducing the SChl mean state. The models assessed in both studies are CESM2, CNRM-ESM2-1, IPSL-CM6A-LR, 

MPI-ESM1.2-LR, and NorESM2-LR. Their findings suggest MPI-ESM1.2-LR persistently and globally overestimates SChl.  170 
NorESM2-LR slightly overestimates SChl in the tropics and subtropics but underestimates it in polar regions. CESM2, CNRM-

ESM2-1, and IPSL-CM6A-LR displays varying biases relative to satellite SChl across regions. 
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Figure 1: Mean state evaluation: Annual mean SChl (a) Observed (ESA OC-CCI product) and (b) CMIP6 multi-model mean 175 
for the years 1998-2014 and domain 60°N-60°S. (c & d) Similarly for SST. 

 

The ability of the different model configurations to represent spatial variability is quantified in the Taylor diagram (Fig. 2a). 

This analysis reveals important differences between models. Most models analyzed here systematically underestimate the 

observed SChl spatial variance. All models, with the exception of the MPI models, exhibit weak spatial variability ranging 180 
from 0.15 to 0.3 mg Chl/m³, compared to 0.60 mg Chl/m³ in satellite observations. MPI models show a similar spatial 

variability to the satellite observations, ranging from 0.6 to 0.7 mg Chl/m³. The spatial correlation between CMIP6 models and 

observations remains below 0.6 (Fig. 2a), with MPI models showing particularly low correlations, below 0.2. 

 

In agreement with Séférian et al., (2020), models sharing a common physical ocean model generally have similar skill, though 185 
exceptions are noted for CNRM-ESM2-1 and MPI-ESM1.2-HR. CNRM-ESM2-1, which, like IPSL-CM6A-LR and IPSL-

CM6A-LR-INCA, includes the coupled physical biogeochemical model NEMO-PISCES, shows a slightly higher spatial 

standard deviation than the IPSL models.  MPI-ESM1.2-HR, which shares the same physical and biogeochemical model 

MPIOM-HAMOCC as MPI-ESM1.2-HAM and MPI-ESM1.2-LR, exhibits a higher spatial standard deviation.  CESM and 
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NorESM2 configurations, which respectively use the coupled physical biogeochemical models POP2-MARBL and MICOM-190 
HAMOCC, simulate similar spatial correlations.  Despite MPI and NorESM2 models using the same ocean biogeochemical 

model HAMOCC, there are notable differences in their simulated spatial standard deviations. However, the spatial correlation 

with observations remains consistent among these models. 

 

 195 
Figure 2: Evaluation of the mean spatial distribution:  Taylor diagram for the annual mean (a) SChl and (b) SST over the 

years 1998-2014 and domain 60N-60S. 

 

A comparison of model ensemble mean SST with observed SST reveals that model ensemble mean and observations exhibit 

a similar spatial variability, both in terms of amplitude and patterns (Figure 1c, d). All models display a particularly high 200 
correlation (>0.95) as well as comparable standard deviations (8-9°C) to the satellite observations (9°C) (Figure 2b).  Among 

the models, MPI-ESM1.2-HAM is positioned at the outer boundary with a spatial standard deviation of approximately 8°C. In 

conclusion, all CMIP6 models examined here achieve a much better agreement with the observed spatial patterns of SST than 

SChl. 

3.2 Exploring differences in model performance across temporal scales 205 

Here, we assess the capability of each CMIP6 model to capture the variability of SChl across different timescales (seasonal, 

sub-seasonal, and multi-annual), as defined in Section 2. Figures 3a and 3b illustrate the SChl variance across these timescales 

and their respective contributions to the overall SChl variance, averaged globally, in comparison with satellite-derived SChl 
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observations. Our analysis reveals that, for satellite-derived SChl, seasonal variability demonstrates the highest normalised 

standard deviation (~0.3), followed by sub-seasonal variability (~0.2), and then multi-annual variability (~0.15). The relative 210 
contribution of these timescales to the overall SChl variance mirrors this pattern, with seasonal variability accounting for 

approximately half of the total variance, while sub-seasonal and multi-annual variability contribute 30% and 20% respectively. 

Despite being based on the same satellite SChl dataset as in Keerthi et al., (2022), we observe a notable reduction in the relative 

contribution of sub-seasonal variability to the total SChl variance in the current satellite SChl product. This difference is 

discussed in section 3.4.  215 
 

The variability of SChl across different timescales varies significantly among the CMIP6 simulations. With the exception of 

IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, and CNRM-ESM2-1, most models overestimate the observed standard deviation 

at both seasonal and sub-seasonal timescales, often exceeding it by a factor of 3. With the exception of MPI-ESM1.2-HAM 

and MPI-ESM1.2-LR, the distribution of standard deviation among the three defined timescales resembles that observed in 220 
satellite SChl: variability at seasonal timescales is the largest followed by sub-seasonal variability and then multi-annual. In 

contrast, MPI-ESM1.2-HAM and MPI-ESM1.2-LR exhibit the largest variance at sub-seasonal timescales. In the case of IPSL-

CM6A-LR and IPSL-CM6A-LR-INCA, there is a slight overestimation of the standard deviation at seasonal timescales and 

conversely a slight underestimation at sub-seasonal timescales.  Multi-annual variance, compared to other timescales, is 

relatively similar between models.  CESM2, CESM2-FV2, CESM2-WACCM-FV2, MPI-ESM1.2-HAM, and MPI-ESM1.2-225 
LR slightly overestimate the observed variance at the multi-annual timescale, whereas CNRM-ESM2-1, NorESM2-LM, and 

NorESM2-MM models show a slight underestimation. 

 

To compare the relative importance of each component, we calculated the normalized standard deviation for each time series 

component (SSt, St, MAt). This normalization allows for a standardized comparison across different locations and variables, 230 
providing insight into the dominant modes of variability in the SChl and SST time series. 

 

When examining the relative contribution of each component to the total variance, differences between models are more 

apparent. With the potential exception of MPI-ESM1.2-HR, none of the models accurately replicate the observed 

decomposition. IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, and CNRM-ESM2-1 overestimate the variance attributed to the 235 
seasonal timescale (60-70%), while the remaining 30-40% is evenly distributed between the sub-seasonal and multi-annual 

components. Conversely, CESM2, CESM2-FV2, CESM2-WACCM-FV2, MPI-ESM1.2-HAM, MPI-ESM1.2-LR, NorESM2-

LM, and NorESM2-MM overestimate the relative contribution of sub-seasonal variability (40-50%) and consistently 

underestimate the contribution of the multi-annual timescale (5-15%). In these simulations, both seasonal and sub-seasonal 

variations contribute approximately equally to the total variance, deviating from the observed patterns. 240 
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Figure 3: Variability across timescales for SChl : (Left Panel) (a) Normalised standard deviation of SChl from observation 

and CMIP6 historical models. Standard deviation at each grid point is normalised by the mean over each grid. (b) Percentage 

of SChl variance explained by each component (sub-seasonal, seasonal and multi-annual) for observations and CMIP6 245 
historical models. Shading represents the different model groups described in Section 3.2, with green for Group 1, pink for 

Group 2, and blue for Group 3. 

 

The CMIP6 SChl simulations can be broadly categorized into three distinct groups based on their performance in capturing 

SChl temporal variability: 250 
 

1. Overestimation of sub-seasonal variability: Models falling into this category, including CESM2, CESM2-FV2, CESM2-

WACCM-FV2, MPI-ESM1.2-LR, MPI-ESM1.2-HAM, NorESM-LM, and NorESM-MM, predominantly overestimate the 

relative contribution of sub-seasonal variance to the total variance. Consequently, the relative contribution of seasonal and 
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multi-annual timescales is strongly underestimated. They strongly overestimate the observed SChl standard deviation by 255 
approximately threefold at both seasonal and sub-seasonal timescales. 

 

2. Underestimation of sub-seasonal variability: The models in this category, which are IPSL-CM6A-LR, IPSL-CM6A-LR-

INCA, and CNRM-ESM2-1, underestimate both the variance at sub-seasonal timescales and its relative contribution to the 

total variance. Nevertheless, they approximately reproduce the observed total variance because the variance at seasonal 260 
timescales and its relative contribution to total variance are both overestimated.  

 

3. Overestimation of total variance but consistent temporal decomposition: The only model in this category is MPI-

ESM1.2-HR. This model correctly simulates the relative contribution of the three considered timescales to the total variance. 

However, the variances are strongly overestimated.   265 
 

The standard deviation across different timescales and the relative contribution of these timescales to the total SST variance 

show distinct patterns compared to SChl (Figure 4). As for SChl, the primary driver of natural variability in SST is the seasonal 

cycle (Keerthi et al., 2022). In observations, the seasonal cycle exhibits the largest standard deviation (0.19) and accounts for 

approximately 80% of the total SST variance. Multi-annual variability has a standard deviation of 0.05 and explains around 270 
10-12% of the total variance, while sub-seasonal variability is characterized by the lowest standard deviation (0.04) and 

contributes the least to the total variance (<10%). The multi-annual component makes a relatively minor contribution 

everywhere, except in the tropics where it is largely related to ENSO (Keerthi et al., 2022).  Sub-seasonal variability has a 

minimal impact on the total SST variance everywhere in the ocean (Keerthi et al., 2022). 

 275 
Consistent with observations, all simulations exhibit the highest SST standard deviation at the seasonal timescale, followed by 

the multi-annual and then the sub-seasonal timescale. Across all simulations, seasonal variability accounts for approximately 

80% of the total variance, followed by the multi-annual component (~10%). In contrast to SChl, the standard deviation of the 

sub-seasonal and multi-annual timescales and their relative contribution to the total variance show minimal differences 

between models and closely resemble observations.  All simulations slightly overestimate the standard deviation at the seasonal 280 
timescale and its relative contribution (by approximately 5%) whereas both are slightly underestimated at sub-seasonal 

timescales (by about 5%). Among the models, the IPSL-CM6A-LR and MPI-ESM1.2-LR show a larger overestimation of the 

observed standard deviation at both seasonal and multi-annual timescales.  
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 285 
Figure 4: Variability across timescales for SST. Similar to Figure 3, but for SST. 

3.3 Spatial scales corresponding to timescales of variability 

The evaluation of spatial scales provides insights into the distance over which a signal remains coherent. This helps identify 

the relevant driving processes at each timescale, aiding understanding of the differences between models and observations. 

 290 
In the satellite-derived observations of SChl, the seasonal component displays the largest spatial scales, between 500 and 1500 

km (Figure 5a, b). These scales are coherent with factors driving seasonality, such as variations in surface stratification and 

solar irradiance which operate at basin scales. Likewise, in all CMIP6 simulations, the largest spatial scales (>~800 km) 

correspond to the seasonal cycle. Two groups can be broadly identified among the models (Figure 5a,b). The first group, that 

includes CESM2, CESM2-FV2, CESM2-WACCM-FV2, NorESM2-LM, and NorESM2-MM, is characterized by the largest 295 
spatial scales, approximately ~1500 km. In contrast, in the second group that comprises IPSL-CM6A-LR, IPSL-CM6A-LR-
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INCA, CNRM-ESM2-1, MPI-ESM1.2-HAM, MPI-ESM1.2-LR and MPI-ESM1.2-HR, spatial scales associated to seasonal 

variability are smaller, ~1000 km. Similarly, the seasonal cycle of SST is characterized by very large spatial scales exceeding 

2000 km which are even greater than those of SChl (Figure 5c, d). Indeed, both in the models and the observations, the 

computed scales reach the upper limit of 2400 km we set in our methodology which is not the case for SChl.  300 
 

 
Figure 5: Spatial scales corresponding to each timescales: The spatial scales associated with sub-seasonal (yellow), 

seasonal (green) and multi-annual (blue) variations of SChl (a,b) and SST (c,d). The black line within each box denotes the 

median. Shading in panel a and b represents the different model groups described in Section 3.2, with green for Group 1, pink 305 
for Group 2, and blue for Group 3. 

 

For both SChl and SST, the spatial scales corresponding to multi-annual variability are the second largest (Figure 5 a,c). 

Satellite SChl measurements associate multi-annual variability with spatial scales ranging from about 300 to about 600 km 

with a median close to 400 km, aligning with climate mode scales on average. However, in the tropics, where this temporal 310 
component dominates, spatial scales can extend beyond these averages (Keerthi et al., 2022). In CMIP6 simulations, the spatial 

scales simulated for this component vary among models. IPSL-CM6A-LR, IPSL-CM6A-LR-INCA, CNRM-ESM2-1, 

CESM2, CESM2-FV2, and CESM2-WACCM-FV2 simulate the largest values with a median close to about 700 km, whereas 

MPI-ESM1.2-HAM, MPI-ESM1.2-LR, MPI-ESM1.2-HR, NorESM2-LM, and NorESM2-MM have comparatively smaller 
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spatial scales, with a median close to that of the observations (~400-500 km). For SST, observational data show spatial scales 315 
of about 900 km, while CMIP6 simulations display a broader range from ~500-1800 km. This variability in models may stem 

from averaging across regions where multi-annual variability is not dominant, given that for both SST and SChl, multi-annual 

variability is primarily significant only over the equatorial Pacific and Indian Ocean where ENSO is dominant (Keerthi et al., 

2022). Additionally, models generally display broader and more intense ENSO patterns that extend too far west compared to 

observations (Vaittinada Ayar et al., 2023). 320 
 

Sub-seasonal variability exhibits the smallest spatial scales for both SChl and SST (Figure 5 a,c).  In satellite-derived SChl, 

sub-seasonal variability has spatial scales of around 100-150 km, at the resolution limit of the grid to which we regridded the 

satellite data (100 km). Using the same satellite product at 25 km resolution, Keerthi et al (2022) identified sub-seasonal spatial 

scales of around 50 km. Most simulated sub-seasonal variability of SChl, except in MPI-ESM1.2-HR, is characterized by 325 
spatial scales exceeding 350 km. Among the simulations, the CESM2 models exhibit the largest scales close to 500 km, 

followed by the MPI models (excluding MPI-ESM1.2-HR), then IPSL, CNRM, and NorESM2 models. MPI-ESM1.2-HR, an 

eddy-permitting model, exhibits the smallest scales (~200 km) for sub-seasonal timescales, although still larger than in 

observations. The mean spatial scale corresponding to SST sub-seasonal variability is ~200 km in observations. In contrast, 

simulations, with the exception of MPI-ESM1.2-HR, display scales exceeding 600 km.  330 

3.4 Drivers of sub-seasonal variability  

Sub-seasonal SChl fluctuations result from various drivers across different spatial scales: submesoscale/mesoscale processes 

(1–100 km), cyclones and tropical storms (100–1,000 km), large-scale climate modes (>1,000 km) and internal variability. A 

prior study (Keerthi et al., 2022), based on satellite ocean color SChl measurements, suggests that sub-seasonal variability is 

strongly associated with mesoscale and submesoscale variations, as evidenced by their mean spatial scales of about 50 km. 335 
However, in the high latitudes and tropics where sub-seasonal variability has a large contribution to the SChl total variability, 

>50% of the sub-seasonal variability has spatial scales greater than 100 km. At high latitudes, these large spatial scales reflect 

synoptic storms (Prend et al., 2022; Keerthi et al., 2022; Thomalla et al., 2011), while in the tropics, they reflect intraseasonal 

climate modes such as Madden Julian Oscillations, Kelvin waves, and tropical instability waves (Keerthi et al., 2022; 

Resplandy et al., 2009; Strutton et al., 2001; Xu et al., 2018; Jin et al., 2013).  340 
 

We observe a significant reduction in the relative contribution of sub-seasonal variability to the total SChl variance in the 

satellite SChl product compared to that in Keerthi et al., (2022). This disparity can be attributed to the spatial regridding process 

used to analyse the satellite SChl data at a mean horizontal resolution comparable to that of the CMIP6 models. In the present 

study, the horizontal resolution of the satellite product is approximately 100 km, while in Keerthi et al., (2022), it is 25 km. 345 
Since the mean spatial scale of sub-seasonal variability has been shown to be of the order of 50 km (Keerthi et al., 2022), 
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regridding to coarser resolution removes substantial variability. Due to effective coarse-resolution, which is several times 

lower than grid resolution (Levy et al., 2012), CMIP6 simulations should structurally underestimate sub-seasonal variability. 

However, contrary to this expectation, most models overestimate the relative contribution of sub-seasonal variability to the 

total SChl variance. Furthermore, the mean spatial scale is about 4 to 6 times larger than in observations. 350 

 
Figure 6: Sub-seasonal variance across spatial scales:  Percentage of total SChl variance explained by sub-seasonal 

variability after applying a spatial smoothing of varying scale from 100km to 800Km to the SChl data. Coloured boxes for the 

model names represent the different model groups described in Section 3.2, with green for Group 1, pink for Group 2, and blue 

for Group 3. 355 
 

When the sub-seasonal variance is assessed at spatial scales from 100 to 800 km, a clear pattern emerges in the SChl data. The 

relative contribution of sub-seasonal variations to total SChl variance in satellite observations drops from 30% at 100 km to 

18% at 200 km, followed by a gradual decline up to 800 km (Figure 6). Using the categories of models defined in section 3.2, 

the model in category 3 (MPI-ESM1.2-HR) shows a decline of 7% from 100 km to 200 km to values relatively close to the 360 
observations. Above 200 km, the simulated sub-seasonal relative contribution then decreases similar to observations.  Models 

in category 2 also exhibit a pattern similar to that of observations with a modest decrease of (~5%) from 100-200km and then 

a gradual decrease up to 800km. But these models underestimate the contribution of sub-seasonal variability by about 4-5% at 

all spatial scales from 200-800km. This suggests that these models correctly simulate the large-scale component of sub-

seasonal variability but are unable to capture its small-scale component as expected due to their limited resolution. Category 365 
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1 models systematically overestimate the sub-seasonal contribution by about 20%. In addition, the downward slope tends to 

be steeper than observed, particularly in CESM2 configurations. We hypothesize that the large sub-seasonal variability 

simulated by models in this category is generated by driving mechanisms that differ from observations.  

 
Figure 7: Sub-seasonal SChl variability across temporal subperiods:  Pie diagram showing the relative contribution of 370 
each time period to the total SChl sub-seasonal variance in the observations and different CMIP6 historical simulations. 

Coloured boxes represent the different model groups described in Section 3.2, with green for Group 1, pink for Group 2, and 

blue for Group 3. 
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The discrepancies between the three model categories in capturing SChl sub-seasonal variability are also evident in an analysis 375 
of temporal subscales (Figure 7). Satellite observations show that 40-50% of sub-seasonal variability is present in the 16-32day 

temporal window, followed by 20% in the 33-48day window, and 0-15% in days 49-64. Category 2 and 3 models show a 

similar pattern, but tend to underestimate the contribution of the 16-32day period, probably due to an underestimation of 

mesoscale variability. In contrast, all other simulations predominantly overestimate sub-seasonal variability in the 16-32day 

period. 380 
 

Much of the phytoplankton variability is often attributed to fluctuations in their physical environment. However, phytoplankton 

time series also exhibit variability that is not strongly correlated with key physical variables and is distinctly nonlinear 

(Mayersohn et al., 2021, 2022). These intrinsic oscillations are primarily associated with two mechanisms: one related to 

species succession and resource changes (Tilman, 1977; Huisman and Weissing, 1999, 2001), and the other to changes in total 385 
phytoplankton biomass due to predator-prey interactions (Gilpin, 1979; Edwards and Brindley, 1996). Predator-prey 

oscillations typically occur on shorter subseasonal time scales of up to 60 days while resource-related oscillations can extend 

to longer time scales (Mayersohn et al., 2021, 2022). This intrinsic variability can complicate the accurate simulation of high-

frequency, subseasonal fluctuations in phytoplankton populations by models. 

 390 
A recent study (Rohr et al., 2023) emphasizes significant differences in CMIP6 simulations regarding the representation of 

zooplankton-specific grazing, which could have a profound impact on the temporal variability of phytoplankton (Mayersohn 

et al., 2021, 2022; Talmy et al., 2024). Despite the diversity of functional roles and distributions of zooplankton species 

(Kiorboe, 2011; Benedetti et al., 2023; Pata and Hunt, 2023), biogeochemical (BGC) models must represent aggregated 

behaviour using a limited number of zooplankton groups. This limitation introduces considerable uncertainty into the modeling 395 
of complex zooplankton communities and their role in the marine carbon cycle. The representation of grazing in CMIP-class 

BGC models varies considerably, from models with a single zooplankton functional type grazing on a specific phytoplankton 

type to those incorporating multiple zooplankton groups and potential preys (Sailley et al., 2013; Petrik et al., 2022; Rohr et 

al., 2023). Beyond differences in grazing formulations, there are significant variations between models in terms of 

phytoplankton groups/size classes, temperature-dependent phytoplankton growth, biogeochemical factors influencing 400 
phytoplankton growth, and resource competition (Séférian et al., 2020), further contributing to the overall uncertainty in model 

simulations. For instance, many studies have shown that the mathematical formulation and the parameter values of the closure 

term representing predation by unresolved higher trophic levels have profound impacts on the temporal stability of the 

biogeochemical model, especially at high resource levels (e.g., Edwards and Brindley, 1999; Edwards and Yool, 2000; Omta 

et al., 2023).  405 
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Analysing the relative significance of each factor—biogeochemical models, ocean dynamical models, and horizontal 

resolution—influencing the observed differences between simulations in capturing the temporal variability of SChl proves 

challenging. For example, even though MPI-ESM1.2-HR and MPI-ESM1.2-LR use similar ocean, atmosphere, and 

biogeochemical models, they show notable differences in the simulation of SChl temporal variability, with improved horizontal 410 
resolution playing a crucial role. Interestingly, models like IPSL and CNRM, classified as type 2, which differ from MPI-

ESM1.2-HR in ocean, atmosphere, and biogeochemical components and utilize a coarse horizontal resolution (100 km), show 

comparable, if not superior, performance in simulating SChl temporal variability. This is despite a minor underestimation in 

sub-seasonal variability contribution to the total SChl variance. Furthermore, the MPI and NorESM models, which share the 

same biogeochemical model but not the same physical ocean model, simulate contrasting SChl variability. 415 

3.5 Role of sub-seasonal variability in year-to-year variations of SChl 

Recent studies have highlighted the significant role of sub-seasonal variability in modulating annual variations in SChl (Keerthi 

et al., 2022; Prend et al., 2022; Levy et al., 2024). In the Southern Ocean and western and eastern boundary upwelling systems, 

high frequency sub-seasonal SChl variations can accumulate and modulate the year-to-year variations in SChl. We quantify 

the impact of sub-seasonal variability on year-to-year SChl variations using the annual mean low-frequency index, following 420 
the methodology of Keerthi et al., (2022). This index is computed as the squared correlation between the annual mean SChl 

and the mean multi-annual component of SChl for each year. An index approaching 1 implies that year-to-year variations are 

primarily associated with multi-annual variations, while an index less than 1 indicates a contribution of sub-seasonal and 

seasonal variability to year-to-year variations in SChl. A smaller index thus signifies a greater contribution of sub-seasonal 

variability to year-to-year variations. 425 
 

For satellite-derived SChl data with a horizontal resolution of 25km, consistent with Keerthi et al. (2022), the index is very 

close to 1 in parts of the tropics and subtropics. However, it decreases, reaching values as low as 0.5, in regions such as the 

equatorial Atlantic, the Southern Ocean, western boundary current regions and eastern boundary upwelling systems, where 

sub-seasonal variability and irregular seasonal cycles intensify.  These regions are characterized by substantial eddy and frontal 430 
activity. When regridded to a 100km horizontal resolution, the index is close to 1 over most of the ocean, except in the southern 

subpolar regions and in the northern Indian Ocean (Figure 8a). This implies that much of the sub-seasonal variability that 

imprints on year-to-year variations is due to mesoscale processes.  

 

The distribution of the index computed for the CMIP6 models is presented in Figure 8 b-l. Models simulate contrasting 435 
distributions which can be structured according to the three categories defined in section 3.2. Category 2 models, with the 

exception of CNRM ESM2-1, show sporadic contributions in the Southern Ocean. All models in category 1 strongly 

overestimate the impact of sub-seasonal variability on year-to-year variations in the Southern Ocean. The category 3 model 
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shows a similar pattern to observations with a slight overestimation. This is further supported by regression of annual mean 

SChl with the annually-averaged sub-seasonal component of SChl (Supplementary Figure 1). In the observations, sub-seasonal 440 
variability contributes 10 to 30% of the amplitude of year-to-year variations in the Southern Ocean. In models, with the 

exception of category 2 models, this contribution is significantly larger, exceeding 30% in large parts of the Southern Ocean.  

 

 
Figure 8: Annual mean low-frequency index for SChl, which is defined as the correlation square between annual mean and 445 
annual mean of the multi-annual component. When the index is close to one, year-to-year fluctuations in the annual mean 

reflect low-frequency variability. The value of the index decreases as high-frequency variability contributes more to year-to-

year variations. Coloured boxes for the model names represent the different model groups described in Section 3.2, with green 

for Group 1, pink for Group 2, and blue for Group 3. 
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3.6 Projected changes to SChl temporal variability  450 

 
 
Figure 9: Future projections (a) Normalised standard deviation of SChl from two different periods of CMIP6 historical 

simulations (1981-1997 & 1998-2014) and CMIP6 SSP585 simulation for the period (2084-2100). (b) Difference between 

different periods considered. Shading in panel a and b represents the different model groups described in Section 3.2, with 455 
green for Group 1, and blue for Group 3. 

 
Under climate change scenarios, ESMs consistently project increased stratification and a reduction in nutrient concentrations 

in the euphotic zone (Bopp et al., 2001; Sarmiento et al., 2004; Cabré et al., 2014; Fu et al., 2016). These changes generally 

lead to an overall reduction in net primary production due to increased limitation of phytoplankton growth by nutrients (Bopp 460 
et al., 2013; Krumhardt et al., 2017; Moore et al., 2018), although results from CMIP6 models show a more modest reduction 

associated with greater uncertainty than CMIP5 models (Kwiatkowski et al., 2020; Tagliabue et al., 2021). In addition to these 

simulated mean changes, global warming has been also shown to alter seasonal cycles (Henson et al., 2013; Thomalla et al., 

https://doi.org/10.5194/egusphere-2024-2294
Preprint. Discussion started: 16 August 2024
c© Author(s) 2024. CC BY 4.0 License.



21 
 

2023), to modify interannual and decadal climate modes (Cai et al., 2014, 2021), and to increase the frequency of extreme 

events like heatwaves and tropical cyclones (Frolicher et al., 2018; Knutson et al., 2020; Walsh et al., 2016; Jo et al., 2022). 465 
The multi-model mean seasonal amplitude of global SST is projected to increase by +0.59±0.21°C under SSP5-8.5 

(Kwiatkowski et al., 2020), mainly resulting from an overall shoaling and increasing seasonal amplitude of the mixed layer 

(Alexander et al., 2018; Jo et al., 2022). By the end of the 21st century, most models forecast an increase in frequency and 

amplitude of central Pacific El Niño events and a rise in the frequency of eastern Pacific El Niño events (Vaittinada Ayar et 

al., 2023). The increased frequency of extreme events such as marine heatwaves (Frolicher et al., 2018) and tropical cyclones 470 
(Knutson et al., 2020; Walsh et al., 2016), coupled with mesoscale and submesoscale variability linked to global warming 

scenarios (Martínez-Moreno et al., 2021, 2022), contributes to an increase in sub-seasonal variability. With respect to the SChl 

temporal variability, our knowledge of its potential changes is more limited. To our knowledge, an analysis of the simulated 

change of the sub-seasonal variability of SChl, using for instance CMIP-type models is lacking.  

Here, we analyzed the changes in SChl temporal variability under the high-warming scenario SSP5-8.5, using simulations that 475 
provide daily SChl outputs to be able to include sub-seasonal variability in our analysis. SChl standard deviations at sub-

seasonal, seasonal and multi-annual timescales for the end of the century (2084–2100) and for the end of historical simulations 

(1998-2014) are compared in Figure 9. To determine whether the changes noted between the two periods can be explained by 

decadal variability,  we also applied our analysis to the 1981-1997 period. All models simulate a consistent decrease in the 

normalized standard deviation of both seasonal and sub-seasonal timescales from over the 21st century. The MPI models tend 480 
to simulate a stronger decrease at both timescales (7-10% sub-seasonally and about 3-8% seasonally), with larger changes in 

the high resolution configuration. In NorESM models the simulated decrease is smaller, 4-5% and 2-3% at sub-seasonal and 

seasonal timescales respectively. At multi-annual timescales, changes are of a similar relative magnitude, about 3-8% but show 

opposite signs between MPI and NorESM models. Comparison with the period 1981-1997 and a similar analysis carried out 

with the piControl experiments (Figure S2) shows that these changes cannot be explained by decadal natural variability.    485 

4 Summary 

In this study, we assessed how ESMs participating in CMIP6 reproduce surface phytoplankton variations across various 

temporal scales, with a particular focus on the often-overlooked sub-seasonal timescales. We compared 13 ESMs that have 

daily SChl outputs for the historical period (1998-2014) with the ESA OC-CCI merged ocean color satellite SChl product. 

Unlike SST, where ESMs generally exhibit consistent behaviour, we find significant intermodel variability and discrepancies 490 
between SChl simulations and observational data, both in terms of the amplitude of variability and likely driving mechanisms. 

Our findings indicate that none of the analyzed models accurately replicate both the observed variability across timescales and 

their relative contributions to the total temporal variance in SChl. 
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Based on globally averaged metrics of sub-seasonal timescales we categorized the models into three distinct groups. Group 1 

models strongly overestimate sub-seasonal SChl standard deviation and its relative contribution to total variance, despite their 495 
coarser horizontal resolution compared to observations. Group 2 models better represent the observed SChl variability across 

timescales but underestimate the sub-seasonal variance and its relative contribution to total variance. These models capture 

large-scale sub-seasonal variability but fail to resolve small-scale components, partly due to their resolution, which does not 

permit mesoscale processes—a bias that can be reduced with higher-resolution models. Group 3 models correctly simulate the 

relative contribution of different timescales to total variance but significantly overestimate SChl variances. This overestimation 500 
of sub-seasonal variance in Group 1 and Group 3 models is possibly due to intrinsic oscillations (e.g., predator-prey 

oscillations) inconsistent with observations and potentially stemming from the structure of the biogeochemical models. Models 

that overestimate sub-seasonal variability exaggerate its influence on annual variations, potentially impacting long-term trends. 

In contrast, Group 2 models exhibit a diminished impact of sub-seasonal variations on annual variations, which could also 

influence long-term projections. 505 

Overall, our findings highlight the challenges and discrepancies in ESM representation of surface phytoplankton dynamics, 

emphasizing the crucial role of spatial resolution and the accurate representation of biogeochemical processes in determining 

model accuracy. A direct relationship between model performance and horizontal resolution might not always exist. Group 2 

models, despite having a lower resolution comparable to Group 1 models, exhibit comparatively better performance among 

the models analyzed. However, increasing the resolution of both the atmospheric and ocean components of a model 510 
significantly improved its performance. 

By the end of the 21st century, models project a modest global decrease in both seasonal and sub-seasonal variability. However, 

projected changes on multi-annual timescales diverge. This analysis is however limited by the number of models that provide 

daily output for the historical and future periods (only four ESMs). We therefore advocate that, in future exercises, more 

modeling groups submit daily surface outputs of biogeochemical variables, particularly, but not only, SChl. The poor capability 515 
of the models at simulating sub-seasonal SChl dynamics casts doubt on projections at these temporal scales and potentially 

also limits long-term projections due to the ability of sub-seasonal dynamics to influence year-to-year variations. 
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