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Abstract

Full-field measurements are used to calibrate material parameters. The Equilibrium Gap Method (EGM),

like other identification formulations that use full-field data, has the advantage of being direct for linear

behavior and some nonlinearities, thereby being computationally cheaper than iterative methods. However,

it has a high sensitivity to measurement uncertainties, which is detrimental when dealing with noisy data.

The Reconditioned Equilibrium Gap Method (REGM) has been proposed to mitigate this sensitivity. Re-

conditioning is revisited in this paper from two viewpoints. First, reconditioning may be analyzed as a way

of accounting for displacement uncertainties in the cost function. Second, the reconditioned formulation

approximates the optimization problem associated with Finite Element Model Updating (FEMU). Based

on these developments, the Sequentially Reconditioned Equilibrium Gap Method (SREGM), i.e., an inter-

mediary between FEMU and REGM, is proposed. It uses REGM results to correct the approximation in

a fixed-point scheme. Identification results on synthetic and true experiments show that considering the

covariance matrix of measured displacements in the cost function is necessary to obtain good identification

results. The analyses give insight into unsuccessful cases and confirm that SREGM provides results closer

to FEMU than EGM or REGM.
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1. Introduction

Mechanical modeling and analysis of structures require some knowledge about the material behavior,

which is generally described by constitutive equations and their associated parameters. Mechanical tests

are carried out to identify those parameters by comparing model predictions to experimental data (e.g., dis-

placement fields). Various identification methods based on displacement measurements have been developed5

over the years [1, 2, 3]. The scope of the present study is limited to full-field displacement data in quasi-

static conditions and performing one identification step per displacement field. Identification routes based

on other data provided by accelerometers, optics fibers, strain gauges, or extensometers are not discussed

herein.

The Equilibrium Gap Method (EGM), initially introduced to identify damage fields [4], is the focus10

of this paper. It determines the unknown parameters by minimizing equilibrium residuals. It has the

advantage of dealing with a quadratic cost function in linear elasticity, and the drawback of working only

for full-field measurements. The presence of bias in the result has been reported [5]. In addition, some

tests have shown that they yield identification results with higher uncertainties [6, 7, 8, 9]. To reduce the

sensitivity of the method to measurement uncertainties, subsequent work has used the EGM to identify15

a damage law with a reconditioned formulation [10]. This reconditioned formulation has received less

attention and will be further reviewed and discussed herein. The original EGM cost function has also been

used for mechanical regularization within both Digital Image Correlation (DIC) [11, 12] and Digital Volume

Correlation (DVC) [13, 14, 15] analyses as a penalty term. It was shown that the measurement uncertainties

could be significantly lowered thanks to such a mechanical filter [16].20

Other identification methods are proposed in the literature. The Virtual Field Method (VFM) [17, 18]

is derived from the principle of virtual work. This method, which also requires full-field measurements, is

direct because the identification is conducted by solving linear systems. It calls for careful construction of

the virtual fields. VFM has similarities with EGM from two perspectives. First, the latter can be formulated

as a VFM implementation with specific virtual fields [5]. Second, EGM with a finite-element formulation is25

equivalent to VFM when finite-element bases are used as virtual fields [19].
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Finite Element Model Updating (FEMU) [20, 21, 22] iteratively minimizes norms of differences between

simulated and measured displacements, forces, or both over the entire domain or parts of it. The Constitutive

Relation Error (CRE) [23, 24] uses another metric and has been applied to DIC experiments [25, 26, 6]. The

modified CRE [27] is an alternative that combines the constitutive relation error with experimental data30

mismatches in the minimized cost function [28, 29, 30, 31].

Integrated Digital Image Correlation (IDIC) minimizes the gray level residuals using simulated displace-

ment fields parameterized by the quantities of interest. The gray level residuals are directly used in the

cost function instead of the measured displacement field, combining DIC and identification in a single min-

imization problem. The kinematic bases were first constructed from closed-form solutions to mechanical35

problems [32]. Calculating these displacement fields with FE simulations [33] offers the same versatility

as FEMU. For instance, IDIC eliminates the trade-off between fine meshes and displacement uncertainties

when chaining DIC and FEMU [33, 34]. An integrated approach using the modified CRE has also been

proposed [31]. Last, the Reciprocity Gap method uses only boundary measurements of displacements and

forces as input. For instance, it has been developed to detect cracks [35, 36, 37].40

The three identification methods (i.e., EGM, REGM, and VFM) identify parameters within the domain

of measured displacement fields [2]. This constraint arises because they use the measured displacement to

probe the equilibrium equations. The latter ones cannot be calculated where the displacements are unknown.

Additionally, they require that surface displacement measurements (e.g., obtained with DIC) can only be

used with some additional assumptions for the missing (bulk) information, such as a plane stress state.45

In a recent review on identification techniques [3], the previous methods have been compared according

to their sensitivity to high-frequency fluctuations (referred to as spectral sensitivity) due measurement

uncertainties. It has been shown that EGM is very sensitive to measurement uncertainties. In contrast,

most other identification methods are less sensitive to measurement uncertainties. Therefore, using EGM

coupled with reconditioning only (i.e., REGM) was recommended [10].50

In terms of material models, IDIC and FEMU can be employed for any type of behavior. In contrast,

REGM is essentially limited to linear elasticity or damage fields. Technically, it could be used with other
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models but without the advantage of a quadratic cost function. REGM was applied to damage [10, 38]

thanks to the fact that the growth law was written in terms of measured strains. REGM is beneficial as it

involves simple optimization problems, and its implementation is much easier than that of IDIC and FEMU.55

This work discusses the reconditioning required by the EGM to reduce its sensitivity to measurement

uncertainties. Two analyses of the formulation are presented. The first one is based on the propagation

of displacement uncertainties. The covariance matrix associated with nodal displacement uncertainties is

incorporated in the formulation. By including these uncertainties, the sensitivity to noise is reduced. The

second analysis shows that the reconditioned formulation can also be found from the linearization of an60

equivalent formulation of FEMU. The difference between REGM and FEMU is expressed analytically from

this linearization. These analyses lead to the Sequentially Reconditioned Equilibrium Gap Method as an

intermediate route between REGM and FEMU. Section 2 describes the standard features of the equilibrium

gap method. Section 3 discusses the reconditioning of the cost function and analyzes the formulation.

Section 4 first illustrates the approach with multiple synthetic experiments. Particular attention is paid to65

the influence of uncertainties and model error. A case of application of the method to a biaxial test on a

composite material is finally investigated.

2. Equilibrium gap method

The Equilibrium Gap Method (EGM) [4, 39] is based on mechanical equilibrium calculated with a

measured displacement field. It is classically used with measured displacement fields essentially using Digital70

Image Correlation (DIC) or Digital Volume Correlation (DVC) data [40]. However, the EGM could also be

employed from displacement fields estimated from any simulation or measurement technique.

2.1. Inverse elastic problem

The EGM is derived from linear elasticitywith the small perturbation assumption. The goal of the

EGM is to identify elastic properties from the measured displacement field denoted um by minimizing75

equilibrium residuals using measured displacement fields. The optimization is performed in a finite element
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(FE) framework, which has many advantages for mechanical analyses. The FE equilibrium residual reads

rf (p) = K(p) um − f . (1)

where p is the parameter vector (described below), K is the associated stiffness matrix, um is the vector of

measured nodal displacements and f the vector of nodal forces.

The stiffness matrix to identify is expressed as a linear combination of a chosen set of matrices to ensure80

that the cost function is quadratic, which is the main advantage of the EGM (Section 2.2). For homogeneous

materials and using the basis {Ki}, the stiffness matrix K becomes

K(p) =
np∑
i=1

ci Ki, (2)

where the basis is defined from the parameters that are searched for. The parameter vector p= [c1, c2, ..., cnp
]

contains np quantities corresponding to the size of the chosen basis. Linear decompositions of Hooke’s tensor

have been presented in previous works [41, 8, 42]; these decompositions can be used as bases. Section 4.1.285

presents the construction of a basis for the identification of isotropic materials under plane stress conditions.

2.2. Optimization problem

The optimization problem aims to minimize the residual forces defined in Equation (1), which linearly

depend on the vector of parameters p. Therefore, the residual forces are written from the product of a force

gradient matrix L (depending on the measured displacements) and the parameter vector p, leading to the90

following residual

rf (p) = L(um) p− f with L (u) =
d
(
K(p) u

)
dp

=

[
K1u ... Knp

u

]
. (3)

The equilibrium residual can be calculated for any parameterization but the matrix L is constant with respect

to p only for linear parameterizations. The residual is minimized with the Euclidean norm ∥x∥21 = x⊤x .

As the minimization is a least-squares problem with an affine transformation, the cost function is quadratic
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in p.95

On some nodes of the finite element mesh, the nodal forces f may be unknown. For instance, for nodes

on Dirichlet boundaries or Neumann boundaries with non-zero traction, equilibrium cannot be calculated.

Thus, the equilibrium gap cannot be minimized on these nodes. A diagonal matrix D is used as a mask

rf ,D(p) = D
(
L(um)p− f

)
. (4)

If all known forces vanish, the scale of p cannot be identified (i.e., if p is a solution, then for any scalar α,

vector αp is also a solution to the minimization problem). In addition, using as parameter vector αp shows100

that minimizing the cost function is achieved with an all-zero parameter vector (i.e., α = 0)

∥∥DL(um)
(
αp
)∥∥2

1
= α2

∥∥DL(um)p
∥∥2

1
. (5)

A constraint is added to the optimization problem to prevent the solution p = 0. For stiffness fields,

one may prescribe their mean [43]. The constraint is chosen depending on the material properties and their

parameterization. The general form of the optimization problem that provides p
EGM

, with all possible

linear constraints, finally reads105

min
p

∥D
(
L(um)p− f

)
∥21

subject to Hp = h and Gp ⪰ 0.

(6)

The nH equality constraints are denoted Hp = h, where h is a vector of size nH and H a matrix of size

nH × np. If Df is a zero vector, the system (H,h) includes the constraint excluding p = 0. In addition,

inequality constraints, which also depend on the parameterization, may be added to ensure the validity of

the parameters when required (e.g., Young’s moduli are positive). Assuming these inequalities are linear,

they are denoted as Gp ⪰ 0, where G is a matrix and ⪰ enforces that every component of vector Gp must110

be greater than its right-hand-side counterpart.

With no inequality constraint, the problem is solved directly from the Karush-Kuhn-Tucker equivalent

linear system, but the results may be invalid as the inequalities are not necessarily satisfied. The trade-off
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between the simplicity of the unconstrained optimization (with no inequalities) and the technicalities of the

constrained optimization (with inequalities) ensuring their validity are alleviated by the fact that active-set115

optimization algorithms already have a mechanism to check whether the inequalities are necessary [44].

The identified parameters using the EGM suffer from the double differentiation of the displacement field

in the discrete equilibrium equations (through the stiffness matrix K [10, 3]). This double differentiation

causes the minimized quantity (1) to be sensitive to high-frequency displacement fluctuations and thus to

measurement uncertainties [3]. A reconditioned version was thus proposed.120

3. Reconditioning

The reconditioning of the EGM [10] was introduced to reduce the effect of displacement uncertainties. It

consists in multiplying the equilibrium residual with a reconditioning matrix to transform the cost function.

The reconditioned formulation may be constructed from different approaches.

3.1. Reconditioning as an integration125

A first reconditioning method has been proposed by using the inverse stiffness matrix of an undamaged

material (in the context of damage field identification) [10]. It can be generalized to other situations by

choosing arbitrary material properties and constructing the associated inverse stiffness matrix. In either case,

multiplying the equilibrium residual by the constructed matrix acts as a double integration that mitigates

uncertainty sensitivities.130

The stiffness matrix alone is not invertible. Instead, the matrix of the elastic problem with zero Dirichlet

boundary conditions where the nodal forces are unknown is used. The associated system becomes


Ku+ (1− D)⊤λ = f

(1− D)u = 0

(7)

where λ is the vector of Lagrange multipliers used to enforce the Dirichlet boundary conditions. The

reconditioning matrix S0 is the part of the sub-matrix associated with u of the inverse matrix of system (7).
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In addition, the diagonal matrix D, defined previously as a mask, is unnecessary with this choice. The135

inversion of the matrix of the elastic problem yields the reconditioning matrix S0. The general optimization

problem to identify p
REGM

then becomes

min
p

∥S0

(
L(um)p− f

)
∥21 .

subject to Hp = h and Gp ⪰ 0

(8)

It may be interpreted as finding the parameter vector p for which, with the chosen Dirichlet boundaries,

the norm of the displacement field created by the residual forces is minimal. The residual forces are the

equilibrium error of the elastic problem using the parameters p and the measured displacement um. This140

modification of the optimization problem removes the uncertainty sensitivity and makes the reconditioned

equilibrium gap similar to FEMU with respect to its spectral sensitivity [3]. It is worth noting that the

construction of the reconditioning matrix is computationally expensive because of the inversion of a full

matrix. Yet, it is independent of the measured displacements. Therefore, the reconditioning matrix is only

built once for many displacement fields.145

3.2. Reconditioning as a least-squares covariance weighting

Another advantage of reconditioning lies in the uncertainty propagation of the force residual. For ex-

ample, the displacement uncertainty is Gaussian for cases where the displacement field is measured by DIC

with a white Gauss noise hypothesis on acquired images, and the covariance matrix Cu associated with

nodal displacement uncertainties is known by multiplying the acquisition noise variance with the inverse of150

the DIC Hessian matrix [45].

The minimized quantity is the residual forces rf defined in Equation (1), which are linear with respect

to the displacement field. Thus, with Gaussian uncertainties for the nodal displacements, the uncertainty

on the identified forces follows a correlated Gaussian distribution. If there is no model error, with p
ref

the

true properties of the material, the final residual reduces to noise. Considering the equilibrium residual as155
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a Gaussian random vector then leads to

rf ∼ N
(
0, Crf

(p
ref

) = K(p
ref

)CuK(p
ref

)⊤
)
, (9)

where N denotes the multivariate distribution defined by its mean vector and its covariance matrix. If there

is a model error, K(p) cannot accurately describe the measured displacement, the mean value of rf will not be

equal to 0, and the force residuals will be higher than expected. By associating a random distribution with

the equilibrium residual, the parameter p is identified by maximizing the likelihood P
(
rf (p)

)
. However,160

the covariance matrix previously defined is not a full-rank matrix because rigid-body motions lead to the

rank deficiency of the stiffness matrix. Therefore, an invertible approximation
∼
Crf

(p) needs to be built to

calculate the probability density function

P
(
rf (p)

)
=

exp

(
− 1

2∥rf (p)∥
2
C−1

rf
(p)

)
√

(2π)nr det

(
∼
Crf

(p)

) (10)

with

∥rf∥2C−1
rf

(p)
:=
(
K(p)um − f

)⊤(∼
Crf

(p)

)−1 (
K(p)um − f

)
. (11)

The inversion of the stiffness matrix K(p) is impossible due to rigid-body motions. An elastic problem165

with Dirichlet boundary conditions can be defined as an alternative problem for which an inverse exists(as

in Equation (7)). In the REGM, the choice is to solve an elastic problem with zero-Dirichlet boundary

conditions on nodes where nodal forces are not zero. The inverse matrix of this problem is denoted as

KD(p)
−1 and constructed in the same way as S0 (Equation (7)). The invertible approximation of the

covariance matrix is then recast as170

∼
Crf

(p) = KD(p)CuKD(p)
⊤. (12)
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The norm of the force residual based on the covariance (Equation (11)) is rewritten as

∥rf∥2C−1
rf

(p)
= ∥KD(p)

−1
(
K(p)um − f

)
∥2

C−1
u

(13)

with the C−1
u -norm defined as

∀ u ∈ Rnφ , ∥u∥2
C−1

u
= u⊤C−1

u u. (14)

Weighting the norm with the covariance matrix is optimal assuming the uncertainty model is correct [3].

This weighting was also used in the context of parametric [46] or FEMU [47] identification. The quantity

inside the C−1
u norm is not linear with respect to p. However, a linear approximation may be constructed175

by choosing an arbitrary vector p
0
to build a fixed inverse matrix

∥rf∥2C−1
rf

(p)
≃ ∥KD(p0

)−1
(
K(p)um − f

)
∥2

C−1
u
. (15)

To summarize, with the additional approximation that
∼
Crf

(p) ≃
∼
Crf

(p
0
), the maximization of logP

(
rf (p)

)
results in the minimization of Equation (15), which is equivalent to a reconditioned formulation of the

equilibrium gap weighted by C−1
u . The chosen parameter vector p

0
represents the undamaged material in

the initial formulation. Here, the vector p
0
represents an arbitrary choice of material parameters for a180

homogeneous material.

This formulation explains the reduction of uncertainty sensitivity. The reconditioned method leads to a

cost function that is a least-squares minimization with a covariance weighting, i.e., an approximation of the

optimal norm in the sense of the maximum likelihood. The link with the maximum likelihood means that

the reconditioned cost function includes information about displacement uncertainties from their covariance185

matrix, which helps to distinguish signal from noise.

3.3. Reconditioning as an approximation of FEMU

FEMU is an identification method that minimizes the difference between simulated and measured dis-

placements [20]. Unlike the equilibrium gap methods, it does not need full-field measurements. However,
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it is assumed hereafter that full-field measurements are available. FEMU identifies the parameter vector190

p
FEMU

by minimizing the residual

ru(p) = us(p)− um (16)

between measured nodal displacements um and the solution to a finite-element simulation us(p)

min ∥us(p)− um∥2C−1
u

(17)

using the norm (14) that weights the difference using the covariance matrix. Appendix A presents the

construction of the optimal residual covariance matrix, which includes measurement uncertainties associated

with measured boundary conditions [5]. It is not considered hereafter for the sake of simplicity.195

Assuming a linear elastic behavior, the FE simulation is expressed as a linear system of equations, which

comprises the discretized weak form of the equilibrium equation and the Dirichlet boundary conditions

enforced, e.g., via Lagrange multipliers


K(p)us(p) + A⊤λs(p) = f

Aus(p) = Aum

(18)

with λs the Lagrange multipliers, and A a projection matrix that extracts the nodal displacements that

are on Dirichlet boundaries from vectors us and um. Using the nodes where the forces are unknown to200

prescribe Dirichlet boundary conditions allows one to express A with respect to D (from Equation (4)) as

follows A = 1− D.

The cost function (17) is minimized for identifying the parameters by updating the parameter vector

p, with no inequality constraints. The update is generally performed using Gauss-Newton’s method or an

alternative adapted to least-squares problems such as the Levenberg-Marquardt scheme [22, 44].205

The REGM also minimizes displacement gaps as the reconditioning matrix transforms the equilibrium

residual (i.e., unbalanced forces) into displacements that are solution to an elastic problem with unbal-
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anced forces included as body forces. The link between FEMU and REGM is established from the link

between these two displacement fields. The REGM residual displacement is defined from the minimization

problem (8) as210

rREGM := K−1
D (p

0
)
(
K(p)um − f

)
. (19)

As REGM has no simulated displacements to link the two methods, one expresses the FEMU formulation

without us. Thus, us is derived from the measured displacement um and the residual displacement ru

us(p) =
(
us(p)− um

)
+ um = ru(p) + um. (20)

The linear system (18) is rewritten using the previous equation


K(p)

(
ru(p) + um

)
+ A⊤λs(p) = f

A
(
ru(p) + um

)
= Aum

(21)

and then, without including the simulated displacement, calculating the FEMU residual displacement ru is

equivalent to solving the following problem215


K(p)ru(p) + A⊤λs(p) = f − K(p)um

Aru(p) = 0

(22)

where λs(p) denotes the Lagrange multipliers introduced in Equation (18). After choosing an arbitrary

parameter vector p
0
, the stiffness matrix on the right-hand side is replaced by that built from p

0
, making

the matrix to be inverted independent of p. The problem is thus recast as


K(p

0
)ru(p) + A⊤λs(p) = f − K(p)um −

(
K(p)− K(p

0
)
)
ru(p)

Aru(p) = 0.

(23)
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Last, an approximation is made by ignoring the right-hand-side term, which depends on ru. Therefore, the

FEMU residual calculation is approximated by the following system220


K(p

0
)ru(p) + (1− D)⊤λs(p) ≃ f − K(p)um

(1− D) ru(p) = 0,

(24)

which can be inverted. Only the right-hand side depends on the parameter vector p. Precomputing the

inverse matrix of the system gives access to the reconditioning matrix S0 used in REGM (8) because A has

been chosen to be A = 1− D i.e., the nodes used for the Dirichlet boundary conditions are those where the

forces are not vanishing. The displacement residual ru calculated from this approximation is equivalent to

the displacement residual inside the cost function (15) obtained for the REGM, and thus to the displacement225

minimized in the REGM. The term removed for the approximation of the FEMU residual (24) reads

(
K(p)− K(p

0
)
)
ru
(
p
)
. (25)

The approximation error is small if ru
(
p
)
is small, or if the initial guess p

0
is close to the parameter p

used for the simulation. If there is no model error, the residual ru only contains displacement measurement

uncertainties when the optimization has converged. The formulations associated with FEMU and REGM

for full-field measurements are thus explicitly linked as the REGM residual is equivalent to a linearization230

of the FEMU kinematic residual

ru(p) ≃ K−1
D (p

0
)
(
f − K(p)um

)
= −rREGM(p). (26)

Provided there is no model error and the uncertainties on the measured displacement are low, at the

minimum p
FEMU

of the FEMU cost function (17), the residual ru will be small. For parameters close to

p
FEMU

, the approximation (26) holds and the REGM cost function (8) is close to the FEMU cost function.

Thus, the REGM has a solution p
REGM

close to p
FEMU

, making the two methods similar.235
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The derivations of the reconditioning as an integration or as a least-squares covariance weighting are

based on arbitrary approximations. The uncertainty sensitivity reduction was substantiated without explic-

itly quantifying the effect of these approximations. For the reconditioning formulation based on FEMU,

the approximation compared with the FEMU formulation was carried out by neglecting a term in the me-

chanical linear system, and thus, it was quantified. This quantification showed that with low displacement240

uncertainties and no model error, REGM and FEMU yielded similar results.

3.4. Sequentially reconditioned formulation (SREGM)

The REGM performs as well as FEMU with low displacement uncertainties and no model error (see

Equation (25)). However, many experiments deal with non-negligible displacement uncertainties or samples

with complex mechanical behavior, thereby leading to model errors in the identification procedure. In245

these cases, the choice of p
0
in the REGM procedure has an undesirable effect on the identification results,

assuming the reference identification method is FEMU. An explicit interpretation is given to the method

parameter p
0
of the optimization procedure as it represents a specific Hooke’s tensor. Thus, its choice may

be driven by physical knowledge. As demonstrated in the previous section, its effect on the identification

results can be reduced if its value is close to the optimized result p
REGM

.250

The Sequentially Reconditioned Equilibrium Gap Method (SREGM) is proposed to reduce the impact

of the reconditioning parameter p
0
on the identification result. The function of REGM (u,p

0
) → p

REGM

takes a displacement field u and a reconditioning parameter p
0
as input and returns the optimization result

p
REGM

. The idea behind SREGM is to find the parameter vector p
SREGM

such that the equality

p
SREGM

= REGM(um,p
SREGM

) (27)

is satisfied. Therefore, SREGM corresponds to a fixed-point problem that can be solved iteratively. At255

iteration k of SREGM, the REGM is used to estimate a new optimum as

p∗
k+1
← REGM(um,p∗

k
) (28)
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until the iterative algorithm stops when the convergence criterion is reached. A simple criterion is

∥p∗
k+1
− p∗

k
∥p ≤ ∥p∗

k+1
∥p × 10−n (29)

with ∥.∥p a norm for the parameter space and n a user-chosen threshold parameter. Thus, the SREGM

scheme alternates REGM identification and updates of the reconditioning matrix with the currently iden-

tified parameter vector. The qualifier “sequentially” is chosen because of the parallel with the Sequential260

quadratic programming optimization algorithm, which solves a nonlinear optimization problem with a series

of quadratic programming optimizations [44]. The SREGM is thus seen as an intermediary between REGM

and FEMU.

REGM has computational advantages compared to FEMU. REGM is a linear constrained least-squares

problem, whereas FEMU generally is a nonlinear least-squares constrained problem. It is still to be deter-265

mined whether SREGM keeps the advantages of REGM as it is a linear constrained least-squares problem

inside a fixed point iterative scheme.

Even if the construction of the reconditioning matrix needs a full inversion, which is computationally

expensive, REGM is a relatively low-cost approach because the reconditioning matrix is built only once and

then used for any number of identifications based on the same FE mesh. The sequential process may a priori270

lose this advantage because each fixed-point iteration needs a new reconditioning matrix to be constructed.

Multiple ways may be explored to restrict the number of reconditioning matrices to build and control the

increase in numerical cost. Reducing the number of fixed-point iterations will proportionally reduce the

number of constructions. Thus, convergence acceleration [48] could be adequate. Here, a surrogate model

is proposed, which is easy to implement for identifying a small number of parameters. It directly prevents275

one from repeatedly building reconditioning matrices as long as the surrogate model is accurate enough.

The fixed-point problem is solved using a surrogate model Mu, which aims to calculate quickly an

approximation of the identified parameters p̂
REGM

knowing a reconditioning parameter p
0
and a given

displacement field. The model Mu approximates p̂
REGM

for any reconditioning parameter p
0
and a given

15



displacement field u from a few data points. The advantage of this approach is that a small number of280

reconditioning matrices is used to build the surrogate model of any number of displacement fields. The

reuse of each matrix reduces the computational cost. The more displacement fields are exploited, the higher

the interest in the SREGM approach. After convergence in parameters has been reached, the SREGM result

and its convergence are checked directly using REGM as an additional iteration.

In Section 4, this method is used to identify the Poisson ratio. In that simple case, the chosen surrogate285

model is a low-order polynomial obtained by linear regression. The surrogate strategy is a pillar of SREGM,

but any technique (e.g., interpolation) can be employed for building it. REGM may generate an excellent

initial guess for FEMU. This guess would help reduce the number of FEMU to benefit from two advantages,

namely, low computational cost of REGM, and the FEMU cost function that does not have p = 0 as a

solution. The choice of the best numerical strategy is not obvious; it will not be studied herein.290

4. Application to the identification of Poisson’s ratio

The previous methods are applied to an equibiaxial test on a composite material, which has been de-

scribed in Refs. [4, 1, 10, 33]. Reference results are available for the Young’s modulus and Poisson’s ra-

tio [1, 33]. The parameter of interest is the Poisson’s ratio ν as it is very challenging for identification

procedures. From a previous work, a value of 0.31 is expected [33]. It is worth noting that the mechanical295

test was not designed for the identification of the Poisson’s ratio. First, the experiment and the parameter-

ization of the Hooke’s tensor are introduced. Then, results for multiple synthetic experiments are presented

and analyzed. Last, the identification is performed with experimental data.

4.1. Experiment and identification framework

This section describes the features for identifying the Poisson’s ratio for synthetic and real tests. First,300

the specimen and loading of the real experiment are described, along with some preliminary analyses. These

analyses are fundamental as the synthetic experiments are constructed from the real experiment. The

material parameterization for the identification is given. Last, the different identification methods and the

quantities used to assess them are presented.
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4.1.1. Experimental data305

The sample (Figure 1) has a cross-shaped geometry. The length of the sides is 36.5 mm, and the radius of

curvature is 5 mm. The thickness is 3 mm. The material is a vinylester matrix reinforced by E-glass fibers

randomly oriented with a quasi-uniform distribution, thereby ensuring a quasi-isotropic behavior for the

in-plane response. The material was tested with unnotched and notched specimens in uniaxial tension [49].

For the experiment used herein, an equibiaxial load with a force amplitude F was applied. The experimental310

data consist of a reference image I0 with no applied load (Figure 1(a)) and 11 images I1 to I11 acquired every

kN from 1 to 11 kN. The failure of the sample was reached just after 11 kN. Each image has a definition of

1016× 1008 px. The physical size of one pixel (px) is 68 µm. Plane stress conditions are assumed.

The displacement field is discretized on an FE mesh made of triangular elements with piecewise linear

shape functions (Figure 1(b)). The mesh comprises 1,936 nodes and 3,700 elements of mean characteristic315

length equal to 13.8 px (or 94 µm). Figure 1(b) shows the mask applied to the nodes; yellow indicates nodes

where the mask is equal to 1, and blue indicates non-free boundaries (i.e., nodes where the mask is equal to

0). Dirichlet boundary conditions with measured displacements are prescribed on every node whose mask is

equal to zero; they are not accounted for in the equilibrium residual minimization as the equilibrium cannot

be calculated for them. The number of equilibrium equations is 3,652.320
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Figure 1: Cross-shaped specimen subjected to an equibiaxial loading. (a) Reference image I0. (b) Sample and FE mesh.
The color represents the mask used for evaluating the equilibrium residual: yellow indicates nodes where the equilibrium is
evaluated and is minimized; blue depicts (Dirichlet) nodes where the equilibrium is unknown.

Figure 2 shows the average strains along the two loading directions as functions of the applied force. The

strain averages are calculated using the DIC measured displacements over the whole domain Ω, weighted

by the element size. The strain levels are different in both directions, which may be explained by elastic

anisotropy [1, 50], and for the last loading steps, by the presence of damage, namely, the material degradation

inducing a reduction of the stiffness of the material [51] (Figure 3).325
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Figure 2: Average strain ⟨ϵxx⟩ and ⟨ϵyy⟩ vs. force of the studied equibiaxial experiment on a cross-shaped sample (Figure 1(a)).

When F = 6 kN, the maximum principal strains concentrate on the curved free boundaries (Figure 3(a)).
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Very high values are observed near the connecting radii and along the crack mouth when F = 11 kN

(Figure 3(b)).

(a) (b)

Figure 3: Maximum principal strain fields calculated from DIC measured displacements when F = 6 kN (a) and F = 11 kN (b).
The strain scale of sub-figure (b) is limited to a level of 0.05 for the sake of readability. Strains whose level does not lie within
the selected range are shown with a saturated hue. They are located in the elements traversed by cracks.

The acquisition noise level of the images is estimated from the gray level residuals associated with the

registration of image I1, which corresponds to the lowest displacement amplitudes. The covariance matrix330

Cu associated with displacement uncertainties is calculated with the inverse of the DIC Hessian matrix [45].

The norm ∥•∥C−1
u

in Equation (14) is employed for estimating global displacement residuals. In addition, Cu

is utilized to generate simulated displacements with their uncertainties and correlations instead of assuming

uncorrelated Gaussian white noise, which would be equivalent to approximating Cu as proportional to the

identity matrix.335

Multiple methods have been developed to specifically investigate crack propagation with DIC [52, 53].

In the following, the identified model is not intended to represent damage nor cracks. The focus is put on

the features and performances of the EGM for challenging cases. The identification results after damage has

initiated only give insight into the robustness of the identification procedures for handling model errors.
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4.1.2. Linear parameterization for plane stress isotropic elasticity340

The linearity of the force residuals depends on the dependence of Hooke’s tensor on the parameters

to identify. Therefore, the identification of the Poisson ratio ν cannot be directly performed because the

force residuals are nonlinear with respect to ν. Hooke’s law is expressed linearly with respect to Lamé’s

coefficients λ and µ in 3D situations. However, Hooke’s tensor does not depend linearly on these coefficients

under a plane stress assumption. This section presents one way to have a linear parameterization of the345

plane stress Hooke’s tensor. Another parameterization based on a spectral decomposition of Hooke’s tensor

may be used [8]. It is detailed in Appendix B, where it is compared to the previous parameterization based

on a linear interpolation.

A stiffness tensor associated with any Poisson’s ratio can be represented by interpolating two stiffness

tensors corresponding to different Poisson’s ratios. Besides, for a fixed value of the Poisson’s ratio, the350

isotropic stiffness tensor associated with any value of Young’s modulus is represented by scaling the stiffness

matrix related to another value of Young’s modulus. In the present case, a unitary Young’s modulus is

chosen for the two basis tensors. The decomposition of the stiffness matrix (Equation (2)) becomes

K(p) = c0.5K0.5 + c0K0 with p =

c0.5
c0

 (30)

where K0.5 is the stiffness matrix of an incompressible and isotropic material (i.e., ν = 0.5), and K0 that of

an isotropic material with ν = 0. The coefficients p represent the contribution of each case. Appendix B355

presents how to calculate E and ν from p and the inequalities on p that allows for valid values.

With no force data, the solution p = 0 is possible, and thus the Young’s modulus is not identifiable. A

constraint needs to be added to the optimization problem. Prescribing one value to the Young’s modulus

leads to a nonlinear constraint. Transforming the problem into a linear interpolation between the two

materials characterized by K0.5 and K0 is an alternative for not losing the computational advantages of360
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linear constraints. The constraint is chosen to be

c0.5 + c0 = 1. (31)

4.1.3. Features of the identification methods

The identification of the Poisson’s ratio is conducted for each measured displacement field with the raw

equilibrium gap formulation (EGM), the reconditioned version (REGM), and the sequentially reconditioned

method (SREGM). With the same parameterization, an identification with FEMU has also been carried out365

for comparison purposes.

The optimization problem for the equilibrium gap, which yields p
EGM

reads

min
p

∥DL(um)p∥2M

subject to c0.5 + c0 = 1 and Gp ≽ 0

(32)

where D is the matrix that discards the equilibrium equations that are not known, and G the matrix

accounting for the parameter inequalities (see Appendix B, Equation (50)). To take into account the fact

that the FE mesh may have elements of different sizes, the metric used for minimization is constructed from370

the L2 norm on the domain Ω

∀ u = [u1 u2 ... unφ ]
⊤ , ∥u∥2M = u⊤Mu =

∫
Ω

(
nφ∑
i=1

uiφi

)
·

 nφ∑
j=1

ujφj

 dΩ (33)

where φi are the (vectorial) FE shape functions, and M corresponds to a mass matrix.

The reconditioned formulation needs a reconditioning parameter vector p
0
to calculate the approximate

inverse stiffness matrix S0. As shown in Section 3, p
0
should be as close as possible to the actual material

parameter of the sample. Thus, in general, any prior knowledge about the material is beneficial to choose375

p
0
. With the multiple identifications performed hereafter, the value of p

0
could be updated between the

different application cases. In addition, for the synthetic cases, the best p
0
can be predicted. However, for
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the sake of comparison, only one reconditioning parameter vector p
0
, which is c0.5 = c0 = 0.5 corresponding

to ν0 = 0.29 according to Equation (49), is employed for all cases.

The optimization of the reconditioned formulation, which gives p
REGM

, has the same constraints, but380

the cost function reduces to

∥S0L(um)p∥2
C−1

u
(34)

where the norm uses the inverse covariance matrix C−1
u as metric. As the used least-squares optimization

solver works with the euclidean norm ∥ • ∥21, the norm associated with the metric C−1
u is implemented by

multiplying the vector of interest by a matrix equivalent to the square-root of C−1
u . This matrix can be

constructed from the eigenvalue decomposition C−1
u = PVP⊤

385

∀r, ∥r∥2
C−1

u
= ∥
√

VP⊤r∥21 = r⊤C−1
u r. (35)

It is worth noting that the Cholesky factorization C−1
u = U⊤

u Uu can also be used and yields an equivalent

norm with reduced computational cost.

SREGM identification is accelerated with the surrogate approach introduced in Section 3.4. This identi-

fication route has the advantage of involving only one parameter. Thus, a simple function Mu : ν0 7→ νREGM

is used as the surrogate model, as it is not constrained to a linear parameterization. A polynomial of degree 2390

is constructed by linear regression from 10 REGM identifications, which are performed with different values

of ν0. This simple surrogate model allows one to solve the fixed-point problem by finding the roots of a

polynomial. After solving the SREGM problem with the surrogate, a last identification step is performed

by REGM with an updated reconditioning matrix. The surrogate model solution and the updated REGM

solution are compared to check that the surrogate model has not introduced errors. The criterion is that395

the change in ν is less than 0.01 in absolute value. The degree and the number of observation points are

empirical.

For the FEMU method, the cost function (17) is minimized. The equality constraint (31) is not necessary

with FEMU because the method updates the simulated displacements using the displacement sensitivity
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to the parameters of interest. Synthetic experiments show that adding the linear constraint (31) (or the400

nonlinear constraint E = 1) reduces the required number of iterations and the computational time.

All linear least-squares problems are solved with Matlab’s solver lsqlin using default stopping criteria

and the active-set algorithm [54]. Nonlinear least squares minimizations (e.g., FEMU) are carried out

with the lsqnonlin solver with stopping criteria identical to those used in lsqlin and the interior-point

algorithm [55].405

4.1.4. Identification residuals

Several identification residuals can be constructed to assess results. As the experimental data used by

the identification methods are nodal displacements, the displacement residual (Equation (16)) is naturally

exploited. This residual is defined locally as the difference between two displacements. It carries meaningful

information about potential problems in the identification procedure. For a simple overview, the global410

displacement residual χ is defined as the norm of the nodal displacement residual

χ2(p) =
1

nφ
∥ru(p)∥2C−1

u
. (36)

The squared norm is divided by nφ, the number of displacement degrees of freedom for the sake of interpre-

tation. In the case of a perfect identification (i.e., if the displacement residual is only due to displacement

uncertainties), χ statistically converges to 1 (with its variance equal to 2/nφ). If χ is close to 1, it is likely

that the residuals between measured and simulated displacements are only due to the displacement uncer-415

tainties. If χ is significantly greater than 1, some displacements are not explained by the uncertainties but

are due to model error.

4.2. Synthetic experiments

For comprehensive analyses, the EGM reconditioning is first investigated for synthetic experiments, where

the reference value of the Poisson’s ratio denoted νref is a priori chosen. A series of synthetic experiments are420

conducted to run identifications with and without measurement uncertainties, and to examine the influence
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of the values of the Poisson’s ratio and boundary conditions. The synthetic experiments use the same

geometry as the real test.

4.2.1. Synthetic experiment with perfect measurements

The identification methods are first investigated with fields designed as perfect measurements. They425

consist of 1,000 displacement fields, which are solutions to elastic problems. The boundary conditions of

the simulations are measured displacements prescribed on the non-free boundary nodes for image I1, i.e.,

at the first loading step. The material parameters are the Young’s modulus, but its value does not affect

the displacement field as only Dirichlet boundary conditions are used, and the Poisson’s ratio ν with values

in the range [−1, 0.5]. The elastic problems to design the simulated displacement fields, as well as the430

identification procedures, use the same FE mesh.

The error between the reference Poisson’s ratio νref assumed for designing the simulated displacement

fields and the identified Poisson’s ratio for the various parameterizations and methods is plotted in Figure 4.

For the two parameterizations and all the identification methods, the errors are very small. They are

mainly attributed to numerical imprecision. Therefore, all identification procedures are proficient. FEMU435

sometimes gives higher errors than EGM, REGM, and SREGM. The behavior of the optimization algorithm

explains these FEMU errors. They depend on the initial guess and on the stopping criterion. For the

interpolation parameterization, few outliers are caused by the stopping criterion, which is activated before

the optimality criterion.
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Figure 4: Identification error for perfect synthetic measurements with the interpolation (a) and the spectral (b) parameteriza-
tions.

Higher errors are observed for FEMU for the subset νref ∈ [0, 0.25] for the spectral parameterization.440

They are due to the end of the optimization procedure. The stopping criterion is reduced by a factor of

100 at each iteration. The process stops in the subset with high errors just after the criterion threshold. In

contrast, for the other parameters, the second to last step is just before the criterion threshold. The last

step leads to a residual less than the stopping criterion (Figure 5).
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Figure 5: Evolution of the First-Order Optimality measure [56] (i.e., criterion based on the cost-function and constraint
gradients [44]) for two reference Poisson’s ratios with FEMU.

25



4.2.2. Synthetic experiments with measurement uncertainties and various Poisson’s ratios445

The synthetic experiment consists of 1, 000 displacement fields generated with the same geometry and

mesh as before. The Young’s modulus is again chosen as unitary. The reference values of the Poisson’s

ratio are selected in the range [−1, 0.5]. The boundary conditions employed for the simulation are the

displacements measured for image I1, which corresponds to the smallest signal-to-noise ratio, and image

I6, which is associated with a higher displacement level. Measurement uncertainties are generated from a450

centered Gaussian distribution using the DIC covariance matrix Cu.

The error between the reference values νref and the Poisson’s ratios identified by various methods is

shown in Figure 6 for the interpolation and spectral parameterizations (Appendix B). All the points for the

EGM error are not visible as they vary linearly according to the reference value for both parameterizations.

The EGM gives biased results with a direction depending on the parameterization. This bias saturates455

the inequality constraints, making νEGM constant, and therefore, the error is linear with respect to νref .

The interpolation parameterization always gives ν = −1, whereas the spectral parameterization always

yields ν = 0.5. This bias is related to the attraction to the solution p = 0 discussed with Equation (5) in

Section 2.2.
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Figure 6: Identification error for synthetic experiments including measurement uncertainties with the interpolation parameter-
ization (a) and the spectral decomposition (b) using boundary conditions of image I1 (i.e., F = 1 kN).

The only mathematical difference between the two optimization problems lies in the equality constraint,460

which restricts the acceptable parametric space differently. Without these constraints, both parameteriza-
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tions represent any plane stress and isotropic Hooke’s tensor and are thus equivalent. Performing identifi-

cations with any parameterization with the same equality constraint in the parametric space leads to the

same bias. Therefore, the bias depends on the equality constraint. REGM and SREGM do not suffer as

significantly as the EGM from this bias, but it is still observable for the spectral parameterization. FEMU465

does not suffer from bias, its error is constant for any reference value of the Poisson’s ratio.

The presence of bias is linked to the cost function on which the identification method is based. Ana-

lytically, the analysis of FEMU and EGM (formulated as particular cases of VFM) confirms that bias is

expected in EGM in the presence of uncertainties on measured displacement [5]. A similar numerical analysis

to the one carried out herein has been conducted for the problem of identifying properties of elastomechan-470

ical systems [57]. The “input residual method,” which minimizes the equilibrium equations using measured

displacements (i.e., EGM herein) shows a bias compared to the “output residual method”, which simu-

lates displacements and compares them to measurements (i.e., FEMU). In addition, appropriate covariance

weighting of the input residual method greatly reduces the bias and the variance [58]. This improvement

is similar to the effect of reconditioning in REGM, which is constructed using covariance weighting (Sec-475

tion 3.2).

The results for another synthetic experiment using Dirichlet boundary conditions constructed from the

displacement field measured for image I6 are shown in Figure 7. The EGM bias depends on the material

parameter for reference values of ν far from the maximum and minimum acceptable values (above 0.5 for the

interpolation parameterization and under 0.2 for the spectral decomposition). When the reference Poisson’s480

ratio is close to the limit values, the bias pushes the identification toward the limit. The identified values are

constrained, which leads to a linear dependency of the error with respect to the reference values. The high

uncertainty sensitivity may explain why the optimization for the EGM prefers a solution close to zero rather

than the true solution. Excluding the case p = 0, the residuals cannot vanish because of measurement

uncertainties even if the residual is calculated with the exact parameters p
ref

. It is consistent with the485

fact that such a bias does not occur with displacements with no uncertainties (Section 4.2.1). This analysis

is also reinforced by the observation that increasing the signal-to-noise ratio reduces the bias, comparing
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Figures 6 and 7. In addition to the bias, EGM results exhibit higher uncertainties than the other methods,

which is consistent with a higher spectral sensitivity [3].
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Figure 7: Identification error for synthetic experiments including measurement uncertainty with the interpolation parameteri-
zation (a) and the spectral decomposition (b) using boundary conditions of image I6 (F = 6 kN).

To extend the analysis quantitatively, Table 1 displays the mean and standard deviation of the error for490

both synthetic experiments for EGM, REGM (with different norms) and FEMU. With no bias, the mean

error should converge to zero when the number of simulations increases. The standard deviations of the

REGM and FEMU errors give a scale to compare the identification error to the uncertainty. This analysis

may be improved as the errors are calculated using different Poisson’s ratios. Thus, as seen before, the

standard deviation (and the bias) varies with the parameter of interest. However, taking into account these495

changes allows for the same analysis. Thus, for the sake of simplicity, only this simple version is presented.

The REGM bias is significantly smaller than the EGM bias for both parameterizations due to reconditioning,

even with the Euclidean norm on the vector uREGM , which does not consider the influence of element size.

Using the M-norm (Equation (33)) reduces the bias and yields similar results as weighting by the co-

variance matrix, which is linked to the number of pixels available for each degree of freedom. Therefore,500

as the M norm accounts for the element size, it is a rough approximation of the covariance matrix. The

true covariance matrix also depends on the image gradient. Thus, this approximation would be weaker for

images with bad speckle patterns [45]. REGM with the norm based on the covariance gives mean relative
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errors at least one order of magnitude higher than the FEMU errors. The FEMU mean error is negligible

compared to the standard deviation, whereas the REGM mean errors are not negligible. The bias of the505

EGM has been reduced when using reconditioning, but the REGM bias still has not vanished. FEMU gives

the same results for the two parameterizations. Therefore, FEMU is not affected by bias, which would lead

to different results for the two parameterizations. This hypothesis is consistent with the explanation that

bias is caused by the attraction to p = 0, which does not exist in FEMU.

Table 1: Mean and standard deviation of the error using REGM and FEMU with various norms and parameterizations for
synthetic experiments based on images I1 and I6, including measurement uncertainties.

Mean Standard deviation

EGM REGM FEMU REGM FEMU

Norm M 1 M C−1
u C−1

u C−1
u C−1

u

p (c0, c0.5)

I1 -0.75 1.10× 10−2 7.44× 10−3 7.35× 10−3 9.1× 10−4 2.8× 10−2 2.3× 10−2

I6 -0.40 2.80× 10−4 1.82× 10−4 2.42× 10−4 6.7× 10−5 3.8× 10−3 3.1× 10−3

p (c1, c2)

I1 0.75 7.50× 10−2 3.92× 10−3 3.40× 10−3 9.1× 10−4 3.0× 10−3 2.3× 10−2

I6 0.46 1.98× 10−3 1.04× 10−3 1.01× 10−3 6.7× 10−5 3.6× 10−3 3.1× 10−3

Pearson’s correlation coefficients between identification errors obtained by REGM, SREGM, and FEMU510

are gathered in Table 2 for both parameterizations. The errors between different methods are correlated,

meaning that the effect of measurement uncertainties is similar for all approaches. This trend was expected

since REGM and SREGM formulations are approximations of FEMU. For both parameterizations, the

SREGM errors are more correlated to FEMU errors than to REGM errors, proving that SREGM reduces

the effect of the approximation compared to the REGM formulation.515

Table 2: Correlations between the identification errors (in ν) for results simulated with image I1.

Parameterization

Compared methods Interpolation Spectral

REGM - SREGM 0.66 0.69

REGM - FEMU 0.69 0.76

SREGM - FEMU 0.98 0.94
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4.2.3. Synthetic experiments with model error

The experimental data indicate that damage occurred in the sample (Figures 3(b) and 18(b)). Previous

works have identified damage fields [4] and damage law [10, 43] for this experiment. In this section, damage

is not represented explicitly but is considered as a model error with respect to a perfectly elastic model.

The Poisson’s ratio is identified from simulated displacement fields with experimentally measured boundary520

conditions and damage field to analyze the effect of model errors for the different methods.

The synthetic data consists of 1, 100 displacement fields generated on the same mesh as previously.

The generation of the simulated nodal displacements is performed in three steps. First, the set of 11

experimentally measured nodal displacements uk is enriched by linear (temporal) interpolation into a new

set u
(interp)
i . Between u0 = 0 and u1, and then between two consecutive displacement fields uk associated525

with image Ik and uk+1, 100 fields are created by linear interpolation (uniformly distributed)


u
(interp)
i = i−1

100u1 i ∈ [1, 100]

u
(interp)
i = i−100(k−1)

100 uk + 100k−i
100 uk−1 i ∈ [100(k − 1) + 1, 100 k], k ∈ [2, 11].

(37)

Then, a damage field is calculated for every field of the augmented set of measured displacements. An

element is considered damaged (i.e., D = 0.99) if the major principal strain is greater than a threshold

strain and undamaged (D = 0) otherwise. The threshold strain is chosen to be 0.02, which is the level for

which macroscopic damage appears for this material [49]. Figure 8 shows the damage field for the simulations530

corresponding to images I9, I10 and I11.

Last, for each displacement field of the enriched data set, an elastic simulation is performed with the

measured boundary conditions assuming an isotropic material with a Poisson’s ratio νref = 0.31 and the

effective elastic property associated with the calculated damage field. The displacement fields obtained from

these simulations are the synthetic data employed to test the identification methods. No uncertainties are535

added to the simulated displacement fields so that the main source of error is due to damage when ν = νref .
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(a) (b) (c)

Figure 8: Damage fields used for the synthetic experiments corresponding to image I9 (a), I10 (b) and I11 (c).

Figure 9 shows the identified values of the Poisson’s ratio ν with the different methods. When there is no

damage (i.e., up to image I5), all identification methods give the reference value with no error. When damage

occurs, bias affects EGM, and its results approach −1. The other three methods behave similarly. First,

the value of ν increases slightly as damage increases, and between images I10 and I11, the value becomes540

significantly underestimated. When the model error leads the identification methods to overestimate ν,

SREGM results fall between REGM and FEMU, as expected. When ν is underestimated, SREGM results

do not lie between FEMU and REGM, as the link between REGM (and therefore SREGM) and FEMU only

holds if the model error is small.
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Figure 9: Poisson’s ratio identified by the different methods (νref = 0.31) for the synthetic experiment with a model error.
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4.3. Real experiment545

The various identification methods are now investigated for the displacements measured from the series

of images captured during the real experiment.

4.3.1. Identification over the whole image series

The identification for the real experiment is performed using the same methods as for the synthetic

experiments on the displacement fields corresponding to images I1 to I11. Figure 10(a) shows the Poisson’s550

ratio identified for each image independently. The EGM bias is present in the results as the Poisson’s ratio

is pushed against its minimum value before image I3 and after image I8. In between, it increases toward the

results of the other methods but never reaches comparable values. These results are poor, as the residuals

will later confirm. Biases may result from a low signal-to-noise ratio (SNR) and/or model error. The results

corresponding to images I6 and I7 are the least affected by EGM bias, which is likely due to their highest555

SNR and lowest model error. The influence of the parameterization on the EGM bias is also illustrated in

Appendix C from the results using the spectral parameterization.
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Figure 10: Identification results based on measured displacement fields using the interpolation parameterization. All results (a)
and focus on a limited range (b).

REGM, SREGM and FEMU results are consistent with each other until the last image, where they differ

because the crack is large and thus model errors occur (Figure 10(b)). Some variations occur in the first

two images, where the SNR is low. For images I3 to I6, the methods converge with similar trends toward560
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the value of 0.31, which was also found in previous studies [33]. From images I6 to I7, the Poisson’s ratio

increases probably because of damage initiation. This increase is consistent with a strain threshold of 2% [49],

which is exceeded after image I6. For images I7 to I10, the REGM results oscillate and those of SREGM and

FEMU slightly increase. The outputs of all methods drop for the last image, due to macrocrack propagation.

Its formulation and the synthetic experiments showed that the SREGM behaves as an intermediate route565

between REGM and FEMU when no model error is present. This trend is confirmed for the usable range

of images I3 to I6.

The analysis of the displacement residuals (Figure 11(a)) confirms that the EGM results are poor com-

pared to all other methods. Regarding the other methods, the displacement residuals are very similar (i.e.,

a relative difference less than 0.2%). The gradual increase of the residuals with applied force indicates that570

the model used for identification purposes (i.e., isotropic, plane stress elasticity) is insufficient to describe

the measured displacements even before damage occurs. The initiation and propagation of the main crack

explain the high residuals in the last image.
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Figure 11: Errors in terms of displacements (a) and gray level (b) residuals for each image depending on the identification
method using the interpolation parameterization

Figure 11(b) displays the gray level residuals (Appendix D) for each identification result and raw DIC.

They exhibit similar trends as the displacement residuals. The DIC residuals slightly increase after image575

I8, which may indicate that the FE mesh is too coarse to capture the displacements near the cracks.

Figure 12 shows the computation time for each method and each image. All calculations were run
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on a computer with two Intel(R) Xeon(R) CPUs E5-2630 v4 (Broadwell) at 2.20 GHz. The run time

only includes the construction and calculation associated with the optimization problems (i.e., operations

performed for each displacement field). The total computation time includes preparation (i.e., 1.5 s), which580

does not depend on the number of identifications, and construction of the surrogate model, which only

slightly depends on the number of iterations. As expected, EGM and REGM are much faster than FEMU

and SREGM. SREGM is faster than FEMU per iteration, but taking into account the construction of the

surrogate model, the two methods have similar computation times. This observation cannot be generalized,

as the benefit of the surrogate highly depends on the number of analyzed displacement fields.585
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Figure 12: Computation time for each image depending on the identification method.

4.3.2. Identification excluding the crack

As seen before, the crack (and damage) on the last loading step causes the failure of all identification

methods. An easy improvement is removing the part of the sample where the crack propagates so that

damage mechanisms may not perturb the identification methods. The nodes of the elements where the crack

appears are defined as Dirichlet nodes (where the equilibrium is not calculated and minimized). Figure 13590

shows the mesh with the mask applied to the nodes excluding the crack.
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Figure 13: FE mesh used for identifications excluding the crack. The color represents the mask used for evaluating the
equilibrium residual: yellow indicates points where the equilibrium can be evaluated and is minimized, and blue indicates
points where the equilibrium is unknown and ignored.

Figure 14 shows the identification results obtained with the mesh excluding (Figure 13) or including

the cracked zone. Between images I3 and I10, the results are consistent even though the two identification

domains differ. Removing the crack cancels out most of the sharp drop occurring for image I11 in the results,

though not entirely presumably because other regions are also damaged (Figures 3(b) and 8). In both cases,595

SREGM values lie between REGM and FEMU levels for images I3 to I7. EGM results, which are not visible

in Figure 14, are still biased and mainly similar to the ones obtained with the mesh including the crack.

The maximum Poisson’s ratio identified by EGM is νEGM = −0.12 for image I7.
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Figure 14: Identification results based on measured displacement fields for the mesh without (a) and with (b) the crack using
the interpolation parameterization.

Figure 15 displays the gray level residuals for both meshes. Excluding the crack reduces the residuals

of all methods for images after I7, particularly for image I11. The residuals with EGM results are greatly600

reduced but are still above the other three methods. REGM, SREGM and FEMU residuals decrease after

image I6 confirming that the model error has been reduced. The residuals still increase with loading (with

values greater than the raw DIC residuals), showing that damage may also have occurred in other places,

or model errors related to elastic isotropy [50], or both.
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Figure 15: Errors in terms of gray level residuals for the mesh without (a) and with (b) the crack for each image depending on
the identification method using the interpolation parameterization.
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5. Conclusion605

This work presented different variants for identifying elastic parameters with the equilibrium gap method

(EGM), which minimizes norms of local equilibrium residuals. The EGM has the advantage of being direct

and computationally inexpensive compared to other identification methods, which generally are iterative.

However, it is limited to the use of full-field measurement, has a high sensitivity to measurement uncertain-

ties, and may yield biased results. Even though not discussed herein, it is worth noting that the EGM cost610

function was very useful for constructing a mechanical filter in regularized DIC/DVC [11, 12, 14, 15].

When the EGM cost function does not account for resultant forces nor body forces, it is homogeneous of

degree two with respect to the Young’s modulus (or similarly, with respect to Lamé’s moduli). Thus, without

force measurements, a material with vanishing stiffness is a solution to the optimization problem. More

generally, reducing the stiffness reduces the EGM cost function independently of true material parameters,615

which explains the bias that was observed when calibrating the Poisson’s ratio with the original (EGM) cost

function. The Reconditioned EGM (REGM) retains its predecessor advantages while lowering its uncertainty

sensitivity and significantly reducing bias.

Uncertainties in the measured displacements were shown to be one cause of biased results. The variability

of EGM results is generally higher than those of the other investigated procedures. This work investigated620

different reconditioning routes to mitigate such drawbacks. Reconditioning was initially introduced as a

way of mending high sensitivities to measurement uncertainties. It was proven herein that it could also be

seen as an approximation of a covariance weighting of the least-squares EGM cost function. The bias was

reduced with the REGM because the reconditioned formulation accounted for measurement uncertainties;

thus the signal is more easily distinguished from noise. The EGM was also shown to be sensitive to model625

error; the REGM was on par with FEMU in that context.

This work illustrated the fact that the EGM may not be the best path for identification purposes.

Conversely, REGM yielded accurate results similar to FEMU with a fraction of the computational cost. In

favorable conditions, when there is no model error and a good signal-to-noise ratio, REGM was shown to be

a close approximation of FEMU. A finite element simulation using the identified parameters easily indicates630
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whether the REGM-FEMU approximation holds. Thus, REGM, used in conjunction with a verification of

the results, is an efficient identification route, for instance, for cases when the computational cost is an issue.

It is worth noting that the reconditioning may include the unknown parameters. This observation led to

the introduction of the Sequentially Reconditioned EGM. It generally improved the FEMU approximation

but increased the computational cost as well.635
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[1] S. Avril, M. Bonnet, A.-S. Bretelle, M. Grédiac, F. Hild, P. Ienny, F. Latourte, D. Lemosse, S. Pagano, E. Pagnacco, and

F. Pierron. Overview of identification methods of mechanical parameters based on full-field measurements. Experimental640

Mechanics, 48(4):381–402, 2008.

[2] M. Grediac and F. Hild, editors. Full-Field Measurements and Identification in Solid Mechanics. John Wiley & Sons, Ltd,

2012.

[3] S. Roux and F. Hild. Optimal procedure for the identification of constitutive parameters from experimentally measured

displacement fields. International Journal of Solids and Structures, 184:14–23, 2020.645

[4] D. Claire, F. Hild, and S. Roux. A finite element formulation to identify damage fields: the equilibrium gap method.

International Journal for Numerical Methods in Engineering, 61(2):189–208, 2004.

[5] S. Avril and F. Pierron. General framework for the identification of constitutive parameters from full-field measurements

in linear elasticity. International Journal of Solids and Structures, 44(14-15):4978–5002, 2007.

[6] E. Florentin and G. Lubineau. Identification of the parameters of an elastic material model using the constitutive equation650

gap method. Computational Mechanics, 46(4):521–531, 2010.

[7] G. Lubineau and E. Florentin. The global equilibrium method and its hybrid implementation for identifying heterogeneous

elastic material parameters. Computers & Structures, 89(7):656–667, 2011.

[8] A. Moussawi, G. Lubineau, E. Florentin, and B. Blaysat. The constitutive compatibility method for identification of

material parameters based on full-field measurements. Computer Methods in Applied Mechanics and Engineering, 265:1–655

14, 2013.

[9] J. M. P. Martins, A. Andrade-Campos, and S. Thuillier. Comparison of inverse identification strategies for constitutive

mechanical models using full-field measurements. International Journal of Mechanical Sciences, 145:330–345, 2018.

38



[10] S. Roux and F. Hild. Digital image mechanical identification (DIMI). Experimental Mechanics, 48(4):495–508, 2008.
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A. Covariance weighting for FEMU using measured boundary conditions

This appendix presents the construction of the covariance matrix as the weighting of the FEMU cost

function, which takes into account uncertainties associated with the measured displacements used as Dirichlet760

boundary conditions in the simulations.

The simulated nodal displacements are calculated with the system presented in Section 3.3, which in-

cluded the weak form of the equilibrium equations and the Dirichlet boundary conditions prescribed via

Lagrange multipliers 
K(p)us(p) + A⊤λs(p) = f

Aus(p) = Aum.

(38)

In the above system, the degrees of freedom contained in the solution vector x = [u⊤
s λ⊤

s ]
⊤ are the nodal765

displacements and the Lagrange multipliers are used to prescribe Dirichlet boundary conditions. The right-

hand side b = [f⊤ (Aum)⊤]⊤ contains the nodal forces and the prescribed displacements. The extractor

matrices Eu and Eλ are defined as



us = Eux

λ = Eλx

x = E⊤
u us + E⊤

λ λ

and



f = Eub

Aum = Eλb

b = E⊤
u f + E⊤

λ Aum.

(39)

Using these matrices, the simulated nodal displacements of system (38) are expressed linearly with respect

to f and um770

us = Eu

K(p) AT

A 0


︸ ︷︷ ︸

KA(p)

−1 (
E⊤
u f + E⊤

λ Aum

)
. (40)

In many cases, f = 0 because body forces are neglected. To propagate the uncertainties of the measured

displacements um only, the gradient of the simulated displacement with respect to the measured displace-

ments is necessary. From Equation (40), the gradient Sum
(p) =

∂us

∂um
is independent of um. Thus, for a
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fixed parameter set p, if the uncertainties on um are Gaussian, the uncertainties of us are Gaussian as well.

To calculate the covariance matrix of the displacement residual us−um, both nodal displacement vectors775

are gathered in a single combined vector defined as

us

um

 =

Sum
(p)

1

um. (41)

This reformulation allows the covariance matrix of us and the correlation between us and um to be calcu-

lated. From the covariance matrix of the measured nodal displacements Cu, the covariance matrix of the

combined vector becomes

Cov


us(p)

um


 =

Sum
(p)CuST

um
(p) Sum

(p)Cu

CuST
um

(p) Cu

 . (42)

The uncertainties of the simulation and the measurements are correlated. The residual displacement780

(Equation (16)) is obtained by a linear transformation of the combined vector. Applying this linear trans-

formation to the covariance matrix (42) yields

Cru
(p) = Cu −

(
Sum

(p)Cu + CuST
um

(p)
)
+ Sum

(p)CuST
um

(p). (43)

The negative sign associated with the second term cancels out the covariance of the Dirichlet nodes. One

additional step is required to construct the cost function. The displacements associated with Dirichlet

boundary nodes are equal to measured displacements785

Aru(p) = Aus(p)− Aum = 0. (44)

Thus, the rank of Cov(ru) is less than the size of ru. As the inverse covariance matrix is needed to minimize

the weighted cost function, the residual only accounts for non-Dirichlet degrees of freedom. Let B denote

the matrix extracting the non-Dirichlet degrees of freedom, the residual vector becomes ru,B(p) = Bru(p),
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and the corresponding cost function

ru,B(p)
(
B Cru

(p) B⊤)−1
ru,B(p). (45)

The covariance matrix depends on Sud
(p), which requires a full-matrix inversion. In addition, it depends790

on the parameter vector p. Consequently, minimizing this last cost function requires multiple recalculations

of the covariance matrix. In Section 3.2, the same situation appears for the reconditioning matrix of REGM.

The computational cost is reduced by assuming p constant for Cru

Cru
(p) ≃ Cru

(p
0
). (46)

This assumption does reduce the computational cost but the residual ru,B(p) is still nonlinear with respect

to p.795

B. Decomposition of Hooke’s tensor under plane stress conditions

This appendix presents the construction and analysis of two linear decompositions of Hooke’s tensor in

plane stress for an isotropic and elastic medium. Let us consider Voigt’s notation (i.e., stress and strain

tensors are described with the following vectors)

σ = [σ11 σ22 σ12]
⊤
, ϵ = [ϵ11 ϵ22 2ϵ12]

⊤
. (47)

The stiffness matrix in Voigt’s notation for an isotropic and elastic material in plane stress reads800

C(E, ν) =
E

2(1− ν2)


2 2ν 0

2ν 2 0

0 0 1− ν

 . (48)
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B.1. Parameterization based on interpolation

A first parameterization based on a linear interpolation was introduced in Section 4.1.2. The Young’s

modulus and Poisson’s ratio are calculated from p as

E = (2 c0.5 + c0)
2 c0.5 + 3c0
4 c0.5 + 3 c0

and ν =
2 c0.5

4 c0.5 + 3 c0
. (49)

The physical meaning behind c0 and c0.5 is not explicit. From the definition domains of E and ν and using

Equation (49), the system of linear inequalities that the parameters c0.5 and c0 must satisfy becomes805


E ≥ 0

ν ∈ [−1, 0.5]

⇔


2 c0.5 ≥ −c0

c0 ≥ 0

⇔

2 1

0 1


︸ ︷︷ ︸

G

c0.5
c0


︸ ︷︷ ︸

p

≽ 0. (50)

Due to the nonlinear dependence of E on c0.5 and c0 (Equation (49)), the Young’s modulus is not

constant when c0.5 changes. For the same reasons, the Poisson’s ratio ν varies nonlinearly when c0.5 ranges

from −1 to 1. The equality constraint (c0.5 + c0 = 1) is added in the identification procedures to avoid

the trivial solution 0 (Section 4.1.2). This arbitrary choice may have undesirable effects on the results as

reported for the synthetic experiments (Section 4.2.2).810

B.2. Parameterization based on spectral decomposition

Another parameterization is obtained from the spectral decomposition of Hooke’s tensor in Voigt’s no-

tation giving C(p) =
∑3

i=1 ci Ci where ci are the eigenvalues of Hooke’s tensor and Ci the Voigt sitffness

matrices of associated eigentensors [8]. This parameterization gives a linear decomposition in the isotropic

plane stress case, where only the eigenvalues depend on the parameters. There are three eigenvalues for two815

parameters. The parameterization is usable because the two eigenvalues c2 and c3 are proportional to each

other. Therefore, the matrix [C] representing Hooke’s tensor in Voigt’s notation in two dimensions, with
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the eigenvalues replaced by their expressions, reads

C(E, ν) =
1

2

E

1− ν︸ ︷︷ ︸
c1


1 1 0

1 1 0

0 0 0

+
1

2

E

1 + ν︸ ︷︷ ︸
c2




1 −1 0

−1 1 0

0 0 0

+


0 0 0

0 0 0

0 0 1



 . (51)

The two parameters for this decomposition are c1 and c2, thus p is defined as [c1, c2]. Observing the matrices

and their eigenvalues, the first matrix is responsible for a hydrostatic state of stress, which is consistent with820

c1 being the bulk modulus. The sum of the second and third matrices is associated with deviatoric stress

states. The eigenparameter c2 is linked to the shear modulus [8]. The elastic parameters become

E =
c1c2

c1 + c2
and ν =

c1 − c2
c1 + c2

. (52)

A linear transformation exists between (c0.5, c0) and (c1, c2). The admissible domain for the parameters

c1 and c2 is also defined by linear inequalities

 1 0

−1 3


c1
c2

 ≽ 0. (53)

For the sake of simplicity, if an equality constraint on the parameters c1 and c2 is chosen, it is the same as825

for the other parameterization (Equation (31)), i.e., c1 + c2 = 1.

C. Identification on the real experiments with the spectral parameterization

Identification results for the real experiments based on the interpolation parameterization were given in

Section 4.3.1. This appendix presents the results obtained with the spectral parameterization (Figure 16).

The EGM bias is also present, this time positive, as anticipated from the synthetic experiments. Only the830

results for images I6 and I7 are not pushed toward the maximum Poisson’s ratio, which is consistent with the

results obtained with the interpolation paramterization where the least biased results were also for images
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I6 and I7 (Figure 10). The differences between REGM, SREGM and FEMU are more marked than with the

interpolation parameterization, and the SREGM results are farther away from FEMU than those of REGM.

This observation shows that, as expected, the link between REGM, SREGM, and FEMU results is reduced835

when the displacement residual cannot converge toward zero in the absence of measurement uncertainties

because of model error. In addition, this result shows that when the displacement residual is large, SREGM

has no guarantee of approximating FEMU compared with REGM.
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Figure 16: Identification results based on measured displacement fields using the spectral parameterization.

Figure 17 reports the displacement and image residuals for the identification based on the spectral param-

eterization. The residuals are similar to those obtained with the interpolation parameterization (Figure 11),840

except for EGM residuals, which are smaller with the spectral parameterization because the EGM bias is

limited by the maximum value of ν equal to 0.5 which is close to 0.31 (i.e., the reference value).
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Figure 17: Errors in terms of displacements (a) and gray level (b) residuals for each image depending on the identification
method using the spectral parameterization.

D. Gray level residuals for probing identification results

DIC allows displacement fields u to be measured by registering image Ik with respect to the reference

image I0. The pixel-wise residual rk is defined as the gray level difference between that in the reference845

image I0(x) and that in the image of the deformed configuration Ik corrected by the measured displacement

field u

rk(u,x) = I0(x)− Ik (x+ u(x)) . (54)

where x denotes any pixel position in the considered region of interest of DIC analyses. DIC estimates the

displacement field by minimizing the root mean square (RMS) residual Rk

R2
k(u) =

1

N

N∑
i=1

rk (u,xi)
2

(55)

where N is the number of pixels in the region of interest, and xi the position of each pixel in the reference850

image. Global DIC encodes the displacement field on an FE mesh, denoted here Uh(Ω) [59, 60, 61].

To illustrate the gray level residuals (Equation (54)) obtained in DIC, two results are shown for the

studied experiment. The gray level residuals are uniform for image I6 (Figure 18(a)) and essentially reduce

to acquisition noise. Conversely, the crack is clearly visible from the gray level residuals of the registration
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of image I11 when F = 11 kN (Figure 18(b)). From these analyses, identifying the Poisson’s ratio up to the855

end of the experiment is expected to be challenging because damage will create model errors if homogeneous

elastic properties are sought.

(a) (b)

Figure 18: Gray level residuals of the DIC analyses when F = 6 kN (a) and F = 11 kN (b). The dynamic range of the registered
images is 8 bits.

For real experiments, images are available and DIC can be used to measure displacement fields by

minimizing the RMS gray level residuals. The local gray level residuals rk (Equation (54)) and their RMS

level Rk (Equation (55)) can also be calculated with displacements obtained from FE simulations when860

driven by measured boundary conditions. The lower bound for the gray level residuals (for a specific mesh)

is the one obtained from DIC, which directly minimizes its RMS. Comparing the gray level residuals for

simulated displacements to the reference DIC residual gives insight into the relevance of any simulated

displacement.
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