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Abstract: The purpose of this study is to investigate the effective behaviour of a micro-cracked ma- 16 

terial whose matrix bulk and shear moduli are ruled by a linear viscoelastic Burgers model. The 17 

analysis includes a detailed study of randomly oriented and distributed cracks displaying an overall 18 

isotropic behavior, as well as aligned cracks resulting in a transversely isotropic medium. Effective 19 

material properties are approximated with the assumption that the homogenized equivalent me- 20 

dium exhibits the characteristics of a Burgers model, leading to the identification of short-term and 21 

long-term homogenized modules in the Laplace-Carson space through simplified formulations. The 22 

crucial advantage of this analytical technique consists in avoiding calculations of the inverse La- 23 

place-Carson transform. The micromechanical estimates are validated through comparisons with 24 

FE numerical simulations on 3D microstructures generated with zero-thickness void cracks of disk 25 

shape. Intersections between randomly oriented cracks are accounted for, thereby highlighting po- 26 

tential percolation phenomenon. The effects of micro-cracks on the material behavior are then stud- 27 

ied with the aim of providing high-performance creep models for macrostructure calculations at a 28 

moderate computation cost through the application of analytical homogenization techniques. 29 

Keywords: Cracked media; Viscoelasticity; Burgers model; 3D numerical simulation 30 

 31 

1. Introduction 32 

In the context of long-term deep disposal of nuclear waste in the Callovo-Oxfordian 33 

(COx) claystone, the excavation of tunnels in the host rock inevitably leads to macroscopic 34 

fracturing, raising potentially significant challenges for nuclear waste management [1–3]. 35 

Characterizing the behavior of the COx claystone is complex, as various factors are in- 36 

volved in determining the appropriate behaviour of the claystone. In particular, the creep 37 

properties of the argillite play a crucial role in the crack sealing process [4], an anticipated 38 

key phase expected to take place following the closure of the underground waste disposal 39 

[5]. This study aims to provide a description for the creep phenomenon within a simpli- 40 

fied linear viscoelastic framework. Furthermore, it is intended to model the behavior of a 41 

fractured viscoelastic material by approximating its effective properties and identifying 42 

the parameters by means of a macroscopic Burgers model [6]. For the purpose of validat- 43 

ing the analytical approach, the results are compared with numerical simulations per- 44 
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formed using the finite element method with the Cast3M1 software. This comparison be- 45 

tween the two approaches offers key validation requirements when it comes to modelling 46 

the macroscopic behavior of damaged materials while exploiting the use of multi-scale 47 

approaches. The excavation of tunnels for the Cigéo project causes fracturing of the COx 48 

claystone. Characterizing the cracking state through in situ observations provides means 49 

for dimensioning the damaged zone and determining cracks orientations as a function of 50 

distance from the excavated drifts. In the vicinity of the galleries, cracks orientations ap- 51 

pear widely variable and random. With increasing distance from the drifts, cracks show 52 

preferential orientations mostly parallel to the galleries [2]. 53 

Several techniques are employed to accurately describe the complex phenomenon of 54 

fracture in materials [7–11]. Alongside damage models, which incorporate the effect of 55 

cracks by introducing a damage variable [12], methods based on continuum mechanics 56 

can also capture the presence of cracking in a solid material [13]. In particular, microme- 57 

chanical techniques based on the calculation of homogenized moduli can be used to esti- 58 

mate the effect of fractures on the material macroscopic properties [14–16]. Cracks are 59 

considered as heterogeneities distributed in the solid matrix, and solutions based on mi- 60 

cromechanical estimates are presented to deduce homogenized properties. The approach 61 

used by Budiansky and O'connell [17] involves the utilization of a crack density parameter 62 

to characterize the fracturing effect, assuming that all cracks are circular with an identical 63 

shape and size. The crack density parameter can be associated macroscopically with a 64 

damage variable, whose effects are calculated from analytical homogenization schemes 65 

[18]. In addition, other techniques, notably finite element modeling [19], can be used to 66 

create microstructures representative of the fracturing condition, with considerably fewer 67 

limitations in terms of design simplifications. This numerical approach can be directly 68 

compared to analytical techniques obtained by approximation schemes, which is a key 69 

objective of this study. 70 

Materials subjected to constant loads can exhibit a delayed (creep) behavior, charac- 71 

terized by continuous deformation over time. Linear viscoelastic models can depict such 72 

effects in a simplified context [20]. Moreover, it is possible to use the Laplace-Carson trans- 73 

form (LC) and proceed to operate with an equivalent linear elastic behavior in the Laplace- 74 

Carson space. This provides a straightforward framework to recourse on analytical solu- 75 

tions obtained with classical homogenization procedures developed for elastic materials 76 

affected by the presence of cracks and/or heterogeneities [21]. For this purpose, the behav- 77 

ior of the COX claystone is represented here by non-aging linear viscoelastic Burgers mod- 78 

els combining Maxwell and Kelvin-Voigt models. Using a minimum number of parame- 79 

ters, the Burgers model is indeed able to capture the main features of a viscoelastic mate- 80 

rial behavior, particularly providing an adequate representation of the long-term charac- 81 

teristics of the COx claystone. In linear viscoelastic applications, dealing with heterogene- 82 

ous media considerably complexifies the formulated equations in LC space. This difficulty 83 

renders model equation inversion into real time space challenging. Commonly, numerical 84 

solutions, such as the collocation method, are used to provide effective resolutions to the 85 

equations describing the material's behavior [22,23]. 86 

The most classical approaches used to estimate the behavior of heterogeneous mate- 87 

rials with homogenization techniques are based on the Eshelby solution [24]. These ap- 88 

proaches have proved to be very efficient for approximating the effective behavior of such 89 

materials in various contexts, including for micro-cracked linear elastic materials [19,25]. 90 

In this case, an alternative approach has been proposed in [26], based on the linear rela- 91 

tionship between macroscopic stress and the discontinuity of local displacements across 92 

the crack. This approach will be explored in the present study, together with an approxi- 93 

mation method assuming that the effective behavior of the material can be represented by 94 

a set of Burgers models. This efficient method provides an analytical solution of the model 95 

                                                           
1 http://www-cast3m.cea.fr/ 
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equations in simplified forms, making inversion calculations analytically achievable. One 96 

key advantage is that their parameters can be directly expressed as a function of the pa- 97 

rameters of the viscoelastic models describing the sound material, and the crack density 98 

parameter characterizing the cracking state. This differs from more classical approaches 99 

based on the application of homogenization schemes in the LC space, which generally 100 

requires a numerical inversion to characterize the model in the time space. The analytical 101 

results will be compared to finite element simulations obtained on 3D samples generated 102 

with disk-shaped voids of zero thickness, thus mimicking very accurately the behavior of 103 

micro-cracked materials. In this context, the material's behavior will be analyzed by con- 104 

sidering relevant cases of crack orientations including randomly oriented cracks as well 105 

as a parallel crack distribution in an isotropic medium.  106 

2. Viscoelastic Burgers model 107 

The majority of bedrock masses, when subjected to a permanent stress, exhibit to 108 

some degree a deferred behaviour, which is expressed by an increase in strain under con- 109 

stant loading. This phenomenon indicates that a complete description of the constitutive 110 

behavior of a rock mass must assume time-dependency. A rigorous approach is to use 111 

viscoelastic or viscoplastic behavior laws to describe the evolution of creep phenomenon 112 

for geomaterials [4,27,28]. In analyzing the behavior of the Callovo-Oxfordian claystone, 113 

the effect of delayed long-term response of the material must be taken into account to 114 

ensure an accurate representation of the COx claystone [29]. In this context, we focus 115 

mainly on non-aging linear viscoelastic models, which allow establishing a linear relation 116 

between the stress and strain in the Laplace-Carson space using the correspondence prin- 117 

ciple. The development of the Burgers model equations provides an efficient representa- 118 

tion of the material's short- and long-term behavior, while requiring a limited number of 119 

parameters. It is intended to use this model to represent the behavior of the COx claystone. 120 

The indices M and K designate respectively the Maxwell and Kelvin parts of the model, 121 

while exponents s and d are attributed to the spherical and deviatoric parts of the model 122 

(Figure 1). Moreover, we propose to use 2 different Burgers models to describe inde- 123 

pendently the shear and bulk moduli denoted by µ and 𝑘, respectively. 124 

 125 

Figure 1. Schematic representation of the Burgers model 126 
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Eq. 1 expresses the effective compressibility and shear moduli in Laplace-Carson 127 

space, denoted by 𝑘∗ and µ∗ respectively, where p is the LC variable. The eight parame- 128 

ters of the Burgers Model can be distinguished in Eq. 1. The Maxwell part is represented 129 

by four parameters, including spherical components (𝑘𝑀 , ղ𝑀
𝑠 ) and deviatoric components 130 

(µ𝑀 , ղ𝑀
𝑑 ). Additionally, the Kelvin part of the model is also composed of four parameters, 131 

with (𝑘𝐾 , ղ𝐾
𝑠 ) describing the spherical parameters and (µ𝐾 , ղ𝐾

𝑑 ) representing the deviatoric 132 
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components. The parameters of the Burgers models are identified through an analytical 133 

resolution of the strain under constant stress loading, followed by comparisons with ex- 134 

perimental creep testing results. Armand et al. [30] have published a series of creep tests 135 

widely used in the literature to characterize this phenomenon. Cores of COx were ex- 136 

tracted from the Meuse/Haute-Marne underground research laboratory and the samples 137 

were drilled perpendicular to the bedding plane of the rock, as the COx claystone natu- 138 

rally exhibits a transversely isotropic behavior. These tests include different series of load- 139 

ings and have been designed to examine the deferred behavior of the material for different 140 

loading conditions. The applied loadings are a function of the maximum deviatoric stress 141 

that the material can withstand. The argillite is considered anisotropic and therefore its 142 

properties change as a function of the imposed loading with respect to the bedding plane. 143 

Here, for commodity the solid material will be considered isotropic, meaning that the 144 

elastic moduli do not vary with respect to the bedding plane. The model parameters have 145 

been identified under loading conditions corresponding to 75% of the maximum devia- 146 

toric stress.  147 

The use of numerical models with a number of parameters can render the precise 148 

identification of each parameter from a single experimental test complex. Although some 149 

simplifications can be achieved at the limits as time tends to zero or infinity, it remains 150 

difficult to identify each parameter individually. Consequently, optimization methods 151 

were employed to refine the model parameters. The least-squares method is used to opti- 152 

mize the Burgers model parameters using standard Python libraries (Figure 2). The nor- 153 

mal and tangential components of the strain tensor (ԑ𝑛𝑛 and ԑ𝑡𝑡  respectively) in the time 154 

space are identified by calculating the inverse of the Carson Laplace transform of: 155 

ԑ∗ =  
1 + 𝜈∗

𝐸∗
𝝈∗ −

𝜈∗

𝐸∗
𝑡𝑟(𝝈∗)𝑰 (2) 

Where the superscript * stands for a quantity expressed in the LC space. The normal and 156 

tangential strain components due to the application of a uniaxial constant stress 𝜎0 can 157 

be deduced in LC space from Eq. 2: 158 

ԑ𝑛𝑛
∗ =
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Inversion of the normal strain ԑ𝒏𝒏
∗  from LC space reads: 159 
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(4) 

This expression involves the eight parameters of the Burgers model and the time. 160 
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 161 

Figure 2. Identification of the Burgers model parameters based on experimental creep test results 162 

Overall, the proposed model provides an acceptable representation of the argillite's be- 163 

havior in both short and long term, see figure 2 for the comparison between experimental 164 

and numerical results of a creep test. The characteristic parameters of the Burgers model 165 

are summarized in the Table 1. 166 

Table 1. Identified viscoelastic parameter of the COx claystone 167 

Parts 𝑘(𝐺𝑃𝑎) µ(𝐺𝑃𝑎) ղ𝑠(𝐺𝑃𝑎. 𝑠) ղ𝑑(𝐺𝑃𝑎. 𝑠) 

Maxwell 6.872 3.870 35.381 ∙ 107 12.463 ∙ 107 

Kelvin 7.308 3.099 26.364 ∙ 106 4.020 ∙ 106 

 168 

3. Representation of cracking in a viscoelastic material 169 

In this work, we make use of the approach proposed in [6,26,31,32] for considering 170 

the presence of cracks, which is not directly based on Eshelby's classical approach [24], 171 

although being very close. The interested reader is invited to refer to the cited papers for 172 

more details that would be too lengthy to include here.    173 

3.1. Isotropic crack distribution 174 

Considering an isotropic distribution of cracks in a solid matrix (Figure 3), where 175 

cracks are characterized by the crack density parameter 𝜖 in which 𝑁 is the number of 176 

cracks per unit volume of REV (Representative Elementary Volume) and 𝑎 is the crack 177 

radius, assuming an identical circular shape and a uniform size to all cracks (Eq. 5).  178 

𝜖 = 𝑁𝑎3 (5) 

The apparent effective stiffness tensor in the Laplace-Carson space defined by ℂℎ𝑜𝑚∗
 179 

is therefore isotropic, expressed in the (𝕁,𝕂) basis in (Eq. 6). The tensors 𝕁 and 𝕂 are re- 180 

spectively the projectors of the spherical and deviatoric parts of the 4th-order unit tensor. 181 

ℂ𝒉𝒐𝒎∗
= 3𝑘ℎ𝑜𝑚∗

𝕁 +  2µℎ𝑜𝑚∗
𝕂 (6) 

 182 
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  183 

Figure 3. Schematic representation of randomly oriented crack distribution in a solid matrix 184 

The homogenized moduli 𝑘ℎ𝑜𝑚∗
 and µℎ𝑜𝑚∗

are calculated as a function of the crack den- 185 

sity parameter 𝜖, taking into account two distinct loading conditions: spherical loading 186 

which is used to determine the compressibility modulus, while deviatoric loading is used 187 

to determine the shear modulus. A homogenized stiffness matrix is then constructed in 188 

the LC space, reflecting the material cracking conditions [26]. 189 

1
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+
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1
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1
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32𝜖
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(1 − 𝜈∗)(5 − 𝜈∗)

45(2 − 𝜈∗)
  (8) 

To simplify, here the homogenized material behavior in the LC space is studied by 190 

considering a general analogy with a homogenized macroscopic Burgers model, i.e. we 191 

assume that the behavior of the homogenized material can be approached by Burgers 192 

models. This makes it possible to identify the homogenized modules 𝑘ℎ𝑜𝑚∗
 and µℎ𝑜𝑚∗

 in 193 

the LC space using a simplified form: 194 

1

𝑘ℎ𝑜𝑚∗ =
1

𝑘𝑀(𝜖)
+

1

𝑝 ղ𝑀
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+
1
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 (9) 

1
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1

µ𝑀(𝜖)
+

1

𝑝 ղ𝑀
𝑑 (𝜖) 2⁄

+
1

µ𝐾(𝜖) + 𝑝 ղ𝐾
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 (10) 

This maintains the same structure of the Burgers model formulated in Eq. 1. Proceed- 195 

ing with a Taylor expansion of the expressions of the moduli with respect to the variable 196 

p in the Carson space in the vicinity of 0 and infinity, the eight parameters of the Burgers 197 

models can be identified as a function of the crack density parameter (Figure 4). A corre- 198 

lation of the parameters as a function of crack density (Eq. 5) is established, as illustrated 199 

in Figure 4. In summary, this approach provides an alternative method for characterizing 200 

the behavior of a micro-cracked material in the Laplace-Carson space [6].  201 

 202 

Figure 4. Effective moduli calculation as a function of crack density, considering an isotropic crack 203 

distribution in the solid matrix 204 
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Determining the parameter equations as a function of crack density for a macroscop- 205 

ically cracked material of the Burgers type enables a straightforward formulation of the 206 

homogenized moduli that define this problem. This approach can provide an explicit for- 207 

mulation of the effective Burgers model equations in the time space as a function of the 208 

parameters of the undisturbed material and the crack density parameter (Eq. 9 and 10). 209 

This significantly reduces the complexity of the calculation of the modules in the time- 210 

space, as it avoids the direct application of the inverse of the Laplace-Carson transform on 211 

such equations. This in turn leads to the development of straightforward analytical solu- 212 

tions, offering results comparable to those obtained by alternative numerical approaches 213 

such as the finite element method [19] or the FFT approach, which also enable an analysis 214 

of the effective moduli on microstructures [7,33]. 215 

3.2. Parallel crack distribution 216 

In this section, the effect of a random distribution of parallel cracks in a linear visco- 217 

elastic material as described in the previous sections, will be discussed. In this case, a 218 

transversely isotropic behavior is obtained (Figure 5). In this context, it is convenient to 219 

work with the expression of the material compliance tensor in LC space 𝕊∗(𝑝) (Eq. 11), 220 

which is the inverse of the stiffness tensor using the Walpole basis [34]. Using the Walpole 221 

basis simplifies the expression of the viscoelastic compliance tensor in the case of anisot- 222 

ropy, making the analysis of modules affected by the fracturing more convenient.  223 

𝕊∗(𝑝) = ∑ 𝑠𝑖
∗(𝑝)𝔼𝒊

6

𝑖=1

 (11) 

with:  

𝑠1
∗(𝑝) =

1 + 𝜈∗

2µ∗(1 + 𝜈∗)
 ;     𝑠2

∗(𝑝) =
1

2µ∗(1 + 𝜈∗)
 ;    𝑠3

∗(𝑝) =
1

2µ∗
 

𝑠4
∗(𝑝) =

1

2µ∗
 ;  𝑠5

∗(𝑝) = 𝑠6
∗(𝑝) = −

𝜈∗

2µ∗(1 + 𝜈∗)
 

(12) 

By decomposing the compliance tensor in the Walpole basis (Eq. 11), we obtain six scalars 224 

with indexes i ranging from 1 to 6 denoted 𝑠𝑖
∗(𝑝). The tensors 𝔼𝑖  are defined in accord- 225 

ance with the specifications given in the Walpole basis [34]. Eq. 12 describes the expres- 226 

sions of the scalars 𝑠𝑖
∗(𝑝)  in the Laplace-Carson space. Note that the directions 227 

(𝒆𝟏, 𝒆𝟐, 𝒆𝟑) respectively corresponds to the conventional directions in a Cartesian coordi- 228 

nate system (x, y, z). 𝒏 is the direction normal to the fractures along 𝒆𝟏 (Figure 5). 229 

 230 

Figure 5. Parallel crack distribution in the solid matrix 231 
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As demonstrated e.g. in [26], the calculations highlight that for a transversely iso- 232 

tropic medium, some of the modules are not influenced by the cracking state of the mate- 233 

rial. This observation has been confirmed in an analysis of a linear elastic behaviour case, 234 

where only the Young's modulus perpendicular to the bedding plane and the shear coef- 235 

ficients were affected by the cracking [35]. Following the notation for the scalars indexes 236 

in the Walpole's basis, the expression for the moduli 𝑠2
ℎ𝑜𝑚∗

 and 𝑠4
ℎ𝑜𝑚∗

 as a function of the 237 

cracking density yields: 238 

𝑠2
ℎ𝑜𝑚∗

= 𝑠𝑀2
𝑒 (𝜖) +

1

𝑝
𝑠𝑀2

𝑣 (𝜖) + (𝑠𝐾2
𝑒 (𝜖)−1 + 𝑝𝑠𝐾2

𝑣 (𝜖)−1)−1 (13) 

𝑠4
ℎ𝑜𝑚∗

= 𝑠𝑀4
𝑒 (𝜖) +

1

𝑝
𝑠𝑀4

𝑣 (𝜖) + (𝑠𝐾4
𝑒 (𝜖)−1 + 𝑝𝑠𝐾4

𝑣 (𝜖)−1)−1 (14) 

provided that 𝑠2
ℎ𝑜𝑚∗

and 𝑠4
ℎ𝑜𝑚∗

 are the two moduli affected by the cracking [26]. The 239 

exponents e and v are attributed to the elastic and viscous parts, respectively. The model 240 

parameters are determined based on the assumption that the macroscopic model is essen- 241 

tially of the Burgers type, allowing the parameters to be identified with simplified analyt- 242 

ical expressions, analogous to the isotropic case discussed in the previous section. The 243 

determination of 𝑠2
ℎ𝑜𝑚∗

 is obtained by imposing a uniaxial tensile load along the normal 244 

to the cracks, while that of 𝑠4
ℎ𝑜𝑚∗

 requires a shear loading in the form 𝜎 (𝒆𝟐 ⊗ 𝒏 + 𝒏 ⊗ 245 

𝒆𝟐), e.g. with 𝜎 = 1𝑀𝑃𝑎. As the other modules will not be affected by the cracks, it is 246 

possible to attribute to them the modules of the undisturbed material without requiring 247 

further calculations.  248 

 249 

Figure 6. Determination of the moduli affected by cracking for the transversely isotropic case in the 250 

Walpole basis as a function of crack density 251 

The same identification technique as for the isotropic case was used, considering that the 252 

homogenized behavior of the cracked material corresponds to a macroscopic Burgers 253 

model, while accounting for the crack density parameter. Conserving the same structure 254 

of the Burgers model formulation, it is possible to define a correlation of the 8 coefficients 255 

in Eq. 13 and 14 as a function of crack density (Eq. 5) as shown in figure 6. The moduli 256 

affected by cracking in a Cartesian coordinate system, such as 𝐸1
ℎ𝑜𝑚 and 𝜇12

ℎ𝑜𝑚, can be 257 

determined from calculations in the Walpole basis as a function of the coefficients 𝑠2
ℎ𝑜𝑚 258 

and 𝑠4
ℎ𝑜𝑚 [34]. As mentioned above, investigating the transversely isotropic case is rep- 259 

resentative of the in situ behavior of the fractured COx claystone, since in reality, fracture 260 

formation in parts of the damaged zone is produced with a preferential orientation paral- 261 

lel to the excavated drifts [2]. A more in-depth analysis of the analytical results is carried 262 

out by comparing the results with the numerical simulations obtained with the Cast3M 263 

finite element code.  264 

4. Numerical simulations 265 

4.1. 3D microstructures and meshes 266 
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The Burgers model is implemented in the Mfront 2  library, offering several ad- 267 

vantages and convenient access for Cast3M users. Mfront is a code generator that enables 268 

convenient implementation of behavioral laws, which can be efficiently linked to Cast3M 269 

to perform finite element calculations [36]. The parameters of the Burgers model have 270 

been calibrated in the previous section. A simple uniaxial creep test with a loading of 271 

𝛴11 = 1 𝑀𝑃𝑎 is performed to verify the perfect agreement between analytical and numer- 272 

ical results for the case where a homogeneous isotropic material is portrayed (Figure 7). 273 

 274 

Figure 7. Cast3M verification of the conformity between the implemented Burgers model and the 275 

analytical results, obtained following a creep test using the undisturbed material 276 

The 3D sample generation procedure is based on a random distribution of inclusions 277 

of prescribed shape and size in a box [37,38]. Disk-shaped cracks of zero thickness were 278 

introduced as they are suitable for direct comparisons with analytical results [7,39,40]. 279 

From this viewpoint, this generation procedure constitutes an improvement with respect 280 

to the previous method in which the inclusions are constituted of volume inclusions of 281 

non-zero thickness [19]. The geometry of the REV is periodic, which implies that periodic 282 

boundary conditions can be applied. The 3D meshes with tetrahedral elements were gen- 283 

erated according to the selected periodic geometries using an automatic software con- 284 

nected to Salome3 (Figure 8). In this study, we use the MG-CADSurf algorithm since it 285 

allows us to generate periodic meshes. A mesh refinement is imposed systematically on 286 

the surfaces of the cracks by increasing the density of elements, to improve the quality of 287 

the simulation results. The technique employed to create the cracks is intended to be used 288 

with specific interface elements of zero thickness, i.e. double-nodes are created at each 289 

point of the cracks mesh. Here as the cracks are void, no interface elements are introduced, 290 

allowing to drastically reduce the calculation time at the REV scale [7,40].  291 

                                                           
2 https://tfel.sourceforge.net/gallery.html 

3 https://www.salome-platform.org 
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 292 

Figure 8. Microstructure meshes generation in Salome with a crack density equal to 0.1 with 100 293 

cracks distributed in the solid matrix (ratio of crack radius to cube side length is 20/200), consid- 294 

ering a parallel crack distribution (left) and an isotropic crack distribution (right) in the REV 295 

A series of test cases were examined featuring an increasing range of crack density 296 

parameters, and comparisons were subsequently conducted with analytical results. Start- 297 

ing with relatively low crack density parameters, the 4 crack density parameters investi- 298 

gated are 0.05, 0.1, 0.15 and 0.2. A progressively increasing number of cracks has been 299 

used, in order to keep a constant size of the micro-cracks in the REV. Thus, for the corre- 300 

sponding testing cases, the number of cracks used is 50, 100, 150 and 200, respectively. 301 

This is applicable to both isotropic and transversely isotropic cases. In order to achieve a 302 

consistent isotropic behavior of the microstructure, the "Fibonacci sphere" method is used, 303 

defining a uniform distribution of points on a sphere [41]. The number of these points is 304 

equivalent to the number of cracks considered, and the uniformly distributed points on 305 

the sphere serve to define the crack orientations in the microstructure (Figure 9). The 306 

placement of the cracks however remains completely random in all considered cases. 307 

 308 

Figure 9. Even distribution of points across the sphere in order to define crack orientations in the 309 

microstructure and ensure an isotropic behavior 310 

Sufficient numbers of micro-cracks must be included in the solid matrix to ensure a good 311 

representativeness, which is why a comprehensive study must be carried out prior to cal- 312 

culations to minimize errors attributable to the REV generation. 313 
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 314 

Figure 10. Evaluation of REV representativity by varying the number of cracks distributed in the 315 

microstructure while keeping a constant crack density ϵ = 0.2. The effective Young's modulus in 316 

the direction normal to the cracking plane for the transverse isotropic case are calculated (left) as 317 

well as the effective Young's modulus for the isotropic case (right) and periodic stress boundary 318 

conditions were applied 319 

The analysis of Figure 10 demonstrates that the microstructures generated are fairly rep- 320 

resentative, and with minimized deviations, based on the calculation of the effective 321 

Young’s modulus as a function of time, whereas the number of cracks involved is varied 322 

from 100 to 200 cracks while the crack density parameter is constant at 0.2. An exponential 323 

evolution of the time steps was considered, using 100 time steps in total, ensuring a high 324 

concentration of time steps at the early stages of the calculation where there is the greatest 325 

variation in the material's behavior. The loading applied is a stress of 𝜎 = 1𝑀𝑃𝑎 with 326 

𝜮 = 𝜎 𝒆𝟏 ⊗ 𝒆𝟏, constant with time. Simulations last around 2 hours on average in these 327 

cases. The number of elements in the meshes in each case majorly affects the simulation 328 

time. A mesh convergence study must be carried out to ensure that a sufficient number of 329 

mesh elements is used to guarantee optimized results with minimized deviations. In this 330 

case, convergence is achieved with a relatively low error of no more than 1% in cases 331 

where the number of tetrahedral mesh elements averages 1.5 million. This is shown by 332 

calculating the homogenized Young and shear modulus considering microstructures with 333 

an increasing numbers of elements. Consequently, increasing the number of elements be- 334 

yond this level has no significant effect on the investigated mechanical properties. The 335 

calculations are illustrated for the last time step of 100 days (Table 2 and Table 3), with 336 

periodic boundary conditions and material subjected to a constant stress of 𝜎 = 1𝑀𝑃𝑎. 337 

Two simulations are required to calculate the effective properties: one with 𝜮 = 𝜎 𝒆𝟏 ⊗ 338 

𝒆𝟏 for the calculation of the homogenized Young’s modulus, and the second one with 339 

𝜮 = 𝜎 (𝒆𝟏 ⊗ 𝒆𝟐 + 𝒆𝟐 ⊗ 𝒆𝟏) to determine the homogenized shear modulus. For all subse- 340 

quent simulations, a mesh size of around 1.5 million elements was used. It's important to 341 

note that the number of elements is strongly related to the number of cracks, and techni- 342 

cally to the crack density, given that the mesh refinement is imposed to accurately describe 343 

the cracks. 344 

Table 2. Mesh convergence study considering an isotropic behavior: computation of the homoge- 345 

nized Young's modulus and shear modulus. The relative error with respect to the last column is 346 

given in parentheses 347 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 

Number of mesh 

elements 
0.614 M  1.115 M 1.602 M 2.55 M 

𝐸ℎ𝑜𝑚(𝐺𝑃𝑎) 2.9877 (2.45%) 2.8543 (1.78%) 𝟐. 𝟖𝟗𝟒1 (0.41%) 2.9063  

𝜇ℎ𝑜𝑚(𝐺𝑃𝑎) 1.2299 (4.39%) 1.2066 (2.41%) 𝟏. 𝟏𝟓𝟕𝟖 (1.71%) 1.1781 
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Table 3. Mesh convergence study considering a transversely isotropic behavior: computation of the 348 

effective out-of-plane Young’s modulus 𝐸1
ℎ𝑜𝑚 and shear modulus 𝜇12

ℎ𝑜𝑚. The relative error with 349 

respect to the reference case (last column) is calculated. 350 

 Mesh 1 Mesh 2 Mesh 3 Mesh 4 

Number of mesh 

elements 
0.675 M  0.919 M 1.88 M 2.88 M 

𝐸1
ℎ𝑜𝑚(𝐺𝑃𝑎) 1.3627 (6.71%) 1.4053 (3.79%) 𝟏. 𝟒𝟒𝟗𝟑 (0.78%) 1.4607  

𝜇12
ℎ𝑜𝑚(𝐺𝑃𝑎) 0.8918 (2.27%) 0.9054 (0.77%) 𝟎. 𝟗𝟎𝟖𝟗 (0.38%) 0.9125 

 351 

The specific nature of imposed boundary conditions can also influence the numerical 352 

results, and in this case three boundary conditions were tested: uniform displacement 353 

boundary conditions (KUBC), uniform stress boundary conditions (SUBC) and finally pe- 354 

riodic boundary conditions (PBC). Modules are calculated by applying a constant load of 355 

stress equal to 1 MPa and the full load is applied from the very first time step. As expected, 356 

the calculation results reported on Figure 11 show that the most rigid response is obtained 357 

when imposing uniform displacement boundary conditions, while the softest response is 358 

obtained when imposing homogeneous stress boundary conditions. Considering that pe- 359 

riodic boundary conditions yield an intermediate response both when testing the isotropic 360 

and transversely isotropic material, one assume that they provide the most accurate re- 361 

sults and they will be used as a reference for comparison with analytical results. 362 

 363 

Figure 11. Effects of the applied boundary conditions KUBC, SUBC and PBC on the calculated ho- 364 

mogenized Young's modulus (a) and shear modulus (b) for the isotropic medium, and on the 365 

Young's modulus in the direction normal to the crack (c) and the effective shear modulus (d) for the 366 

transverse isotropic case, as a function of time 367 

 368 
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4.2. Transversely isotropic case results 369 

Starting with the transversely isotropic medium and applying periodic stress bound- 370 

ary conditions, a uniaxial creep test is carried out under constant normal stress  𝛴11 = 371 

1 𝑀𝑃𝑎. The time steps intervals are identical to the ones defined in section 4.1. At t = 0, 372 

the initial conditions correspond to the REV assumed at rest and without any loading. 373 

At t = 0 +, the full loading is applied. Again, the size of REV meshes is around 1.5 million 374 

elements, consistent with the mesh convergence study presented in section 4.1. Compari- 375 

sons are subsequently conducted between numerical and analytical methods through the 376 

calculation of homogenized moduli and the determination of the normal strain as a func- 377 

tion of time. In the present case, the moduli affected by cracking are Young's modulus 378 

𝐸11 and shear modulus 𝜇12 = 𝜇13, considering the case of parallel cracks where the Ox 379 

axis is the direction perpendicular to the corresponding fractures plane in a Cartesian ref- 380 

erence coordinate system. The normal strain is calculated as a function of time for the 381 

considered crack density parameter (Figure 12). The effective moduli are determined from 382 

two separate simulations: the first involving an axial loading at constant stress 𝛴11 = 383 

1 𝑀𝑃𝑎 to calculate the effective Young's modulus, and the second requiring a deviatoric 384 

loading at 𝛴12 = 1 𝑀𝑃𝑎 to assess the effective shear modulus (Figure 12). The analytical 385 

approach however involves calculating the inverse of the Laplace transform, and thus re- 386 

turning to temporal space. The inverse of the Laplace-Carson transform can be derived 387 

directly from the simplified expressions outlined in the previous sections, since it follows 388 

a classical form of the Laplace transforms, which can be analytically computed. The ana- 389 

lytical results are deduced from the equations presented in section 3.2. For the transverse 390 

isotropic case, homogenized moduli are calculated using Walpole's basis (Eq. 13 and 14), 391 

which is used to determine subsequently the Young's modulus and the homogenized 392 

shear modulus. 393 

 394 

Figure 12. Comparison between numerical and analytical results with 𝜖 = 0.05 and a number of cracks equal to 50, the strain 395 

under constant stress loading is calculated (a) as well as the homogenized moduli affected by the cracking for transverse isotropic 396 

medium (b) and (c) 397 

Initial results show that for the relatively low crack density parameter equal to 0.05, 398 

whereby the material still retains a large proportion of its mechanical strength, the numer- 399 

ical and analytical approaches produce very similar results for this case (Figure 12). How- 400 

ever, upon investigating the cases with greater crack density parameter, the numerical 401 

results gradually start to deviate from the analytical estimations for the transverse iso- 402 

tropic case, as shown in Figure 13 which depicts the evolution of the creep strain as a 403 

function of time for crack density parameters of 0.1, 0.15 and 0.2.  404 
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 405 

Figure 13. Creep strain calculation featuring numerical-analytical comparisons with an increasing crack density of 0.1 (a), 0.15 (b) 406 

and 0.2 (c) 407 

In the final case where the crack density parameter is equal to 0.2, it becomes clear that 408 

the numerical results are no longer comparable with the analytical ones (Figure 13 c)). In 409 

this situation, a different and more appropriate analytical technique is required since the 410 

previously described analytical method is only suitable for low crack density parameters. 411 

In this regard, previous studies have demonstrated that, in the case of parallel cracks 412 

within a linear elastic framework, the differential scheme gives very good results when 413 

compared to numerical calculations using the finite element method [35]. This aspect will 414 

be investigated in a future contribution. 415 

4.3. Isotropic case results 416 

We analyze in this section the creep response of the material when the cracks are 417 

randomly oriented, assuming periodic stress boundary conditions. Identical simulation 418 

conditions in this section are used to determine the properties of an isotropic medium 419 

where the only difference relative to the transverse isotropic case presented in section 4.1 420 

lies in the definition of cracks orientations. The first test is based on a REV with a defined 421 

crack density parameter of 0.05 (Figure 14), and the numerical results in terms of normal 422 

strain and effective moduli evolutions show good agreement with the analytical ones, 423 

similarly to the transverse isotropic results. The analytical solution was obtained using the 424 

simplified equations for homogenized moduli in Laplace-Carson space (Eq. 9 and 10), en- 425 

abling direct calculation of the homogenized Young's modulus and shear modulus in real 426 

time space. The normal strain  ԑ𝑛𝑛  is calculated as a function of the Young's modu- 427 

lus 𝐸ℎ𝑜𝑚 and the applied constant stress 𝜎 = 1𝑀𝑃𝑎 in LC space (Eq. 3). 428 

 429 

Figure 14. Comparison between numerical and analytical results with 𝜖 = 0.05, the normal strain under constant stress loading is 430 

calculated (a) as well as the effective Young’s modulus (b) and the shear modulus (c) for isotropically cracked medium 431 
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For the remaining analyses performed with crack density parameters equal to 0.1, 0.15 432 

and 0.2, the results show that there is a better agreement between the analytical results 433 

and the numerical ones than for the transverse isotropic case (Figure 15). Therefore, it can 434 

be concluded that the validity domain of the analytical approach for this particular case 435 

of isotropic behavior is extended to include more significantly damaged cases. 436 

 437 

Figure 15. Influence of increasing the crack density on the normal strain determined from a creep test with 𝜖 equal to 0.1 (a), 0.15 438 

(b) and 0.2 (c). Numerical results are then compared to the analytical ones for the tested cases 439 

Additional investigations were carried out with crack density parameters of 0.3 and 0.4 440 

(Figure 16) for confirming the conclusion of the previous analysis. As shown in Figure 16, 441 

the results were consistently similar, maintaining a relatively good agreement between 442 

the analytical and numerical approaches even for higher crack density parameter. Conse- 443 

quently, the validity of the analytical solution can be considered as reasonable up to crack 444 

density parameter reaching 0.3-0.4. This is an important conclusion since the reliable ana- 445 

lytical solution can be used with confidence to perform structure simulations, thus bene- 446 

fiting from a significant reduction in computational time. The application of this analytical 447 

approach within the framework of investigating the behavior of damaged claystone can 448 

be advantageous for a simplified isotropic representation. As mentioned, this applies pri- 449 

marily to situations where cracks are assumed to have a random orientation in some areas 450 

of the damaged zone. 451 

 452 

Figure 16. Results of a uniaxial creep test in an isotropic medium considering crack densities of 0.2, 453 

0.3 and 0.4 454 

 455 
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5. Discussion 456 

This research suggests an analysis of micro-cracked viscoelastic materials by com- 457 

paring a numerical approach based on the finite element method and an analytical sim- 458 

plified approach. This analytical approach consists in approximating the effective moduli 459 

of the material in the Laplace Carson space by Burgers models, thereby providing analyt- 460 

ical solutions that can be directly compared with the numerical calculations. One key ad- 461 

vantage is that the parameters of these approximated Burgers models can be calculated as 462 

a function of the parameters of the linear viscoelastic models defining the behavior of the 463 

sound material, and the crack density parameter. This makes the approach adapted for 464 

structure simulations as the models can be implemented as a classical behavior law. The 465 

presented results include uniaxial creep tests, involving the calculation of normal strain 466 

as well as the evaluation of homogenized moduli affected by the cracking. The analysis 467 

for the transverse isotropic medium shows that the analytical approach only seems satis- 468 

factory for crack density parameters below around 0.1-0.15. For higher values, the numer- 469 

ical calculations diverge significantly from the analytical results. It is envisaged to inves- 470 

tigate the use of more adapted analytical approaches for this case of parallel cracks such 471 

as methods deriving from the differential scheme, as it has previously proven to be valid 472 

in a linear elastic context [35].  473 

In the case of an isotropic crack distribution, the analytical results were consistently closer 474 

to the numerical ones, including in the case of a crack density parameter up to 0.4. In that 475 

case, although the material is considered severely damaged, the analytical calculations 476 

were still in line with the numerical results, proving the validity of this method in the 477 

specific case of randomly oriented cracks in an isotropic medium. 478 

Numerical approaches can be used to increase crack density parameter to values 479 

greater than 1, which opens up possibilities for investigating phenomenon occurring in 480 

severely damaged materials. As crack density increases, interactions between cracks in- 481 

evitably intensify, creating microstructures highly dense in fractures. This can lead to the 482 

formation of preferential cracking paths, particularly in the case of randomly oriented 483 

cracks, generating a percolation phenomenon particularly interesting to explore. It would 484 

also be pertinent to consider irregular crack shapes to achieve an accurate representation 485 

of cracks in reality. Numerical approaches provide means of studying more complex crack 486 

geometries, which can be compared with the conventional example of penny shaped 487 

cracks. Overall, this study highlights the importance of combining analytical and numer- 488 

ical approaches to fully understand the behavior of cracked materials, taking into account 489 

the respective limitations of each method and exploiting the results to obtain a more ac- 490 

curate and representative model. 491 

6. Conclusions 492 

In this study, the combined application of numerical and analytical approaches was 493 

explored in order to characterize the behavior of the cracked viscoelastic COx claystone. 494 

This approach features a concrete application for representing the argillite in the context 495 

of the Cigéo project devoted to the storage of nuclear waste. Indeed, cracking of the host 496 

rock results from the excavation of the tunnels at 500m below ground level. Given the 497 

significant creep properties of the claystone, it is essential to account for both cracking and 498 

creep of the material. For simplification purposes, a linear viscoelastic behavior has been 499 

adopted, which allows the application of the Laplace Carson transform. This reduces the 500 

problem to a linear elastic behaviour in the Carson space, greatly simplifying the equa- 501 

tions to provide straightforward analytical solutions. The Burgers model is selected as the 502 

viscoelastic model as it is capable, with a minimum number of parameters, of providing 503 

an appropriate representation of the behavior of the undamaged COx claystone. 504 

In addition, two different cases were investigated, one involving an isotropic distri- 505 

bution of cracks in the solid matrix, resulting in an isotropic behavior, and the second 506 

featuring a parallel distribution of cracks, resulting in a transversely isotropic behavior of 507 
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the material. A simplified approach was used to calculate the homogenized moduli, as- 508 

suming that the macroscopic behavior of the damaged material conforms to a Burgers 509 

model. This approach makes the identification of the model parameters feasible as a func- 510 

tion of the parameters of the sound material and the crack density parameter, using sim- 511 

plified analytical expressions. While examining the transversely isotropic case, increasing 512 

the crack density parameter induces a progressive divergence in the approaches, and the 513 

analytical and numerical solutions are no longer fully comparable for parameters greater 514 

than 0.1-0.15. Advanced numerical studies can be pursued by investigating the material's 515 

behavior at crack densities greater than 0.2. The objective is to represent the behaviour of 516 

a severely damaged material, particularly in the context of describing the damaged zone 517 

behaviour for applications associated with the Cigéo project. With this background, two 518 

different cases of crack orientations are examined, consistent with in situ observations of 519 

the damaged zone. The first case involves a parallel crack distribution with a preferential 520 

orientation, while the second features randomly oriented cracks in an isotropic matrix. 521 

Ultimately, further testing with an isotropic medium showed that the analytical so- 522 

lution gives fairly good results even for relatively high crack density parameters, as shown 523 

when comparing it with the numerical results. Potentially, time-consuming calculations 524 

of complex microstructures using the finite element method can be replaced by analytical 525 

solutions, as they have been proven to provide very similar results in certain conditions. 526 

Furthermore, this approach would provide basic solutions for multi-scale applications, in 527 

order to obtain the macroscopic response of a cracked material. Further investigations 528 

would involve examining different crack geometries, given that the crack shape can influ- 529 

ence the calculations of the effective properties of the material. Alternatively, different 530 

analytical approaches can be explored, particularly in the case of aligned cracks exhibiting 531 

a transverse isotropic behavior. This could involve the use of homogenization schemes 532 

that could produce results more consistent with the numerical ones. The application of 533 

the differential scheme would be relevant, given its proven validity in the case of a trans- 534 

versely isotropic medium in a linear elastic framework [19]. The application of this ap- 535 

proach with the differential scheme in a linear viscoelastic context is currently being in- 536 

vestigated, and will be discussed in a forthcoming contribution. 537 
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