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Belowground functioning of agroforestry systems: recent
advances and perspectives

Rémi Cardinael & Zhun Mao & Claire Chenu &

Philippe Hinsinger

Introduction

Growing crops or pastures in intimate combination with
trees is an ancient practice that farmers have been using
throughout the world. Globally, it is estimated that agro-
forestry systems cover about 1 billion hectare of land
(Zomer et al. 2014, 2016). Agroforestry systems are often
seen by farmers and practitioners as a way to diversify
production, income and services (Abdulai et al. 2018).
These systems are still very common in developing

countries. In developed countries where the intensifica-
tion and specialization of agriculture have resulted in a
massive loss of tree cover (Eichhorn et al. 2006) and in
negative impacts on the environment (Tilman et al.
2001), agroforestry systems are currently being
reconsidered and spreading (den Herder et al. 2017).
Agroforestry systems include a diversity of practices
ranging from complex associations found in
homegardens, multistrata systems or agroforests, to sim-
pler systems such as alley crops, riparian plantings, shel-
terbelts, windbreaks or hedgerows (Nair 1985). The as-
sociation between trees and crops or pastures can be
simultaneous (spatial interaction) or sequential (temporal
interaction) (Somarriba 1992; Torquebiau 2000).

The management of the aboveground part of agro-
forestry systems to deal with the competition for light
has received considerable interest (e.g. Charbonnier
et al. 2013; Bouttier et al. 2014). However, trees also
modify soil properties through numerous processes
(Rhoades 1997), and tree-soil-crop interactions have
been a research topic for decades (Szott et al. 1991;
Lehmann et al. 1998; Schroth 1998; Ilstedt et al. 2016;
van Noordwijk et al. 2019). Tree and crop root systems
play a crucial role in these interactions (Schroth 1995;
van Noordwijk et al. 1996; Smith et al. 1999; Bayala
et al. 2015) and are involved in most of belowground
processes (Bardgett et al. 2014), which determine soil
functions and, ultimately, a large set of ecosystem ser-
vices. A better understanding of these processes at the
interface between soil science and agroforestry, such as
soil organic carbon sequestration or water infiltration,
could thus help reaching some the United Nations
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Sustainable Development Goals (Keesstra et al. 2016;
van Noordwijk et al. 2018).

The aim of this special issue “Agroforestry: a below-
ground perspective” was to bring together new contri-
butions and developments about belowground process-
es and tree-soil-crop interactions in agroforestry sys-
tems. We received a total of 40 manuscripts of which
13 have been accepted for publication. Among these
papers, nine are original research papers and four are
invited reviews, including a Marschner review. Original
research papers include a large diversity of agroforestry
systems, such as fallows, parklands, shaded perennial-
crop systems and silvoarable systems from six different
countries and seven different climatic zones (Table 1;
Fig. 1). The different papers cover very different aspects
of belowground functioning and numerous processes
are studied (Table 2). The manuscripts were grouped
into three major topics: (1) water cycling in soils under
agroforestry systems; (2) closing the loop: soil nutrient
cycling in agroforestry systems; (3) soil organic carbon
cycling in agroforestry systems. For each of these sec-
tions we provide an overview of our current knowledge,
highlight the contributions of this special issue, and
pinpoint key remaining challenges for future work.

Water cycling in soils under agroforestry systems

In the context of climate change that renders global
terrestr ia l water resources more vulnerable
(Vörösmarty et al. 2000; Porporato et al. 2004;
Falkenmark 2013), the impact of agroforestry on water
cycling processes has drawn increasing attention. Com-
pared to intensive monoculture, agroforestry systems
are expected to better promote water cycling processes
(e.g. water infiltration and retention, reduced run-off)
and hydrological ecosystem services due to their higher
spatial complexity and biodiversity (Rowe et al. 1998;
Liu et al. 2016; Pavlidis and Tsihrintzis 2018). Compe-
tition for water between trees and annual crops has often
been shown (Jose et al. 2000b), but agroforestry systems
also have the potential to improve the acquisition of
water through complementary root distributions, trees
having deeper root systems than annual crops (Jackson
et al. 1996; Cardinael et al. 2015b; Germon et al. 2016),
and further to promote water sharing mechanisms such
as a redistribution of water in the soil profile through a
process called hydraulic lift, or through shared mycor-
rhizal networks. Yet, to which extent such effects are
significant and can be generalized remains unknown. To

Table 1 Summary details of articles published within the special issue

Study Paper type Agroforestry system Association Study site Köppen
climate

Battie-Laclau et
al. (2020)

Original research Silvoarable system Juglans nigra / cereals France Cfb

Bayala and Prieto
(2020)

Review Diverse Diverse Worldwide Diverse

Borden et al. (2020) Original research Shaded perennial-crop
system

Shade trees / Theobroma cacao Ghana Aw

Clivot et al. (2020) Original research Silvoarable system Populus deltoides × P. nigra / alfafa
Alnus glutinosa / wheat /

triticale / ryegrass

France Cfb

Huo et al. (2020) Original research Silvoarable system Ziziphus jujube / canola / daylily China Dwa

Isaac and Borden (2020) Marschner Review Diverse Diverse Worldwide Diverse

Ling et al. (2020) Original research Silvoarable system Ziziphus jujube / canola / daylily China Dwa

Marsden et al. (2020) Review Diverse Diverse Worldwide Diverse

Rigal et al. (2020) Original research Shaded perennial-crop
system

Shade trees / Coffea arabica China Cwa

Sida et al. (2020) Original research Parkland Faidherbia albida / Acacia
tortilis / Grevillea
robusta × cereals

Ethiopia
Rwanda

BSh

Terefe and Kim (2020) Original research Fallows Multiple tree species × cereals Ethiopia Cwb

Wartenberg et al. (2020) Original research Shaded perennial-crop
system

Theobroma cacao × shade trees Sulawesi,
Indonesia

Af

Zhu et al. (2020) Review Diverse Diverse Worldwide Diverse



address these crucial points, Bayala and Prieto (2020)
presented an original review on the acquisition, sharing
and redistribution of water by roots in agroforestry
systems. They found that root competition between
crops and trees is a common phenomenon, and that
farmers can use several techniques to alleviate it to
some extent, such as crown reduction, tree pruning and
a proper selection of trees and crops. They also
highlighted that the hydraulic lift could constitute a
very relevant mechanism to ensure productivity of
agroforestry systems in regions with erratic rainfalls.
Finally, they suggested several research perspectives,
such as the clarifying the role of mycorrhizal networks

in the hydraulic lift, as well as quantifying the volume of
water transferred to neighboring plants through
hydraulic lift. In addition to this review paper, Huo
et al. (2020) carried out a case study in a semiarid
agroforestry system in the Loess Plateau in the north
of China to characterize water uptake strategies and
hydraulic redistribution between trees and crops, using
an in situ approach based on stable isotopes (2H and
18O). Inter- and intra-annual dynamics of soil water
content (SWC) were monitored in two systems: an
agroforestry system with jujube (Ziziphus jujuba Mill.)
trees intercropped with canola (Brassica napus L.) or
daylily (Hemerocallis fulva L.), and a pure jujube tree

Fig. 1 Pictures illustrating the diversity of the study sites investi-
gated in the original research papers published within this special
issue. a Walnut trees and other high value hardwood tree species
(Fraxinus excelsior L., Sorbus torminalis L., and S. domestica L.,
Prunus avium L., Acer pseudoplatanus L.) associated with soft
wheat, Noilhan, France (Battie-Laclau et al. 2020) ©Patricia
Battie-Laclau; b Cocoa trees with Terminalia ivorensis, Ashanti
Region, Ghana (Borden et al. 2020) ©Kira Borden; c Alder trees
and triticale, La Bouzule, France (Clivot et al. 2020) ©Nicolas
Marron; d Jujube trees with Brassica napus, The Loess Plateau of
China (Huo et al. 2020) ©Gaopeng Huo; e Jujube trees with

daylily, The Loess Plateau of China (Ling et al. 2020) ©Qiang
Ling; f Arabica coffee trees with various shade tree species (in-
cluding Jacaranda mimosifolia, Cinnamomum camphora and
Bishofia javanica), Yunnan Province, China (Rigal et al. 2020)
©Clément Rigal; g Acacia tortilis with maize, Meki, Ethiopia
(Sida et al. 2020) ©Frédéric Baudron; h Shifting cultivation,
Gudeya Billa District, western Ethiopia (Terefe and Kim 2020)
©Dong-Gill Kim; i Cocoa trees with Anthoccephalus cadamba,
Wonuahoa, Southeast Sulawesi, Indonesia (Wartenberg et al.
2020) ©Ariani Wartenberg



T
ab

le
2

B
el
ow

gr
ou
nd

pr
oc
es
se
s
an
d
re
la
te
d
ec
os
ys
te
m

se
rv
ic
es

co
ve
re
d
in

th
is
sp
ec
ia
li
ss
ue

Pr
oc
es
se
s

T
ri
gg
er
s

M
an
ag
em

en
to

pt
io
ns

E
co
sy
st
em

se
rv
ic
es

A
rt
ic
le
s

W
at
er

in
fi
ltr
at
io
n/
ru
n-
of
f

R
oo
ts
ys
te
m
s,
So

il
fa
un
a

So
il
co
ve
r,
S
oi
lt
ill
ag
e,
D
ee
p-
ro
ot
ed

tr
ee
s

an
d
cr
op
s

Fl
oo
d
re
gu
la
tio

n,
W
at
er

pu
ri
fi
ca
tio

n
2,
5,
7,
13

H
yd
ra
ul
ic
lif
t

R
oo
ts
ys
te
m
s

D
ee
p-
ro
ot
ed

tr
ee
s

P
ri
m
ar
y
pr
od
uc
tio

n,
Pr
ov
is
io
ni
ng

se
rv
ic
es

2,
5

C
om

pe
tit
io
n/
Fa
ci
lit
at
io
n/

N
ic
he

co
m
pl
em

en
ta
ri
ty

R
oo
ts
ys
te
m
s,
M
yc
or
rh
iz
al
ne
tw
or
ks

T
re
e
de
ns
ity

,T
re
e
an
d
cr
op

sp
ec
ie
s
in
cl
ud
in
g

br
ee
di
ng

(r
oo
ta
rc
hi
te
ct
ur
e,
ro
ot

pl
as
tic
ity

,r
oo
t

tr
ai
ts
),
R
oo
tp

ru
ni
ng
,S

oi
lt
ill
ag
e,
Fe
rt
ili
za
tio

n,
A
m
en
dm

en
ts

N
ut
ri
en
tc
yc
lin

g,
P
ri
m
ar
y
pr
od
uc
tio

n,
Pr
ov
is
io
ni
ng

se
rv
ic
es

1,
2,
3,
6,
9,

10

L
itt
er

de
co
m
po
si
tio

n
M
ic
ro
bi
al
co
m
m
un
iti
es
,S

oi
lf
au
na

P
la
nt

sp
ec
ie
s
(l
itt
er

qu
al
ity

),
F
er
til
iz
at
io
n,
So

il
til
la
ge

N
ut
ri
en
tc
yc
lin

g,
C
lim

at
e
re
gu
la
tio

n
8

So
il
or
ga
ni
c
ca
rb
on

se
qu
es
tr
at
io
n

R
oo
ts
ys
te
m
s,
M
yc
or
rh
iz
al
ne
tw
or
ks
,

So
il
fa
un
a

S
oi
lc
ov
er
,S

oi
lt
ill
ag
e,
D
ee
p-
ro
ot
ed

tr
ee
s
an
d

cr
op
s

C
lim

at
e
re
gu
la
tio

n
9,
11

S
ym

bi
ot
ic
ni
tr
og
en

fi
xa
tio

n
B
ac
te
ri
a

N
2
-f
ix
in
g
pl
an
ts
,I
no
cu
la
tio

n,
F
er
til
iz
at
io
n

N
ut
ri
en
tc
yc
lin

g
6

M
in
er
al
w
ea
th
er
in
g

R
oo
ts
ys
te
m
s,
M
yc
or
rh
iz
al
ne
tw
or
ks

T
re
e
an
d
cr
op

sp
ec
ie
s,
D
ee
p-
ro
ot
ed

tr
ee
s
an
d
cr
op
s

So
il
fo
rm

at
io
n

6

N
ut
ri
en
tl
ea
ch
in
g

R
oo
ts
ys
te
m
s

D
ee
p-
ro
ot
ed

tr
ee
s
an
d
cr
op
s,
Fe
rt
ili
za
tio

n,
A
m
en
dm

en
ts

N
ut
ri
en
tc
yc
lin

g,
W
at
er

pu
ri
fi
ca
tio

n
2,
13

A
gg
re
ga
te
st
ab
ili
za
tio

n
R
oo
ts
ys
te
m
s,
M
yc
or
rh
iz
al
ne
tw
or
ks
,

So
il
fa
un
a

S
oi
lc
ov
er
,S

oi
lt
ill
ag
e,
Pl
an
td
en
si
ty
,A

m
en
dm

en
ts

C
lim

at
e
re
gu
la
tio

n,
W
at
er

pu
ri
fi
ca
tio

n
8,
12
,1
3

So
il
po
ro
si
ty

fo
rm

at
io
n

an
d
m
ai
nt
en
an
ce

R
oo
ts
ys
te
m
s,
S
oi
lf
au
na

S
oi
lt
ill
ag
e,
D
ee
p-
ro
ot
ed

tr
ee
s
an
d
cr
op
s

F
lo
od

re
gu
la
tio

n,
W
at
er

pu
ri
fi
ca
tio

n,
C
lim

at
e
re
gu
la
tio

n
7,
8,
13

C
ul
tu
ra
ls
er
vi
ce
s
(a
es
th
et
ic
,s
pi
ri
tu
al
,e
du
ca
tio

na
l,
re
cr
ea
tio

na
l…

)h
av
e
no
tb
ee
n
st
ud
ie
d
he
re
.E

co
sy
st
em

se
rv
ic
es

ar
e
de
ri
ve
d
fr
om

M
ill
en
ni
um

E
co
sy
st
em

A
ss
es
sm

en
t(
20
05
).
P
ro
vi
si
on
in
g

se
rv
ic
es

in
cl
ud
e
th
e
pr
ov
is
io
n
of

fo
od
,f
re
sh

w
at
er
,w

oo
d,
fi
be
r,
an
d
fu
el
.1
:B

at
tie
-L
ac
la
u
et
al
.(
20
20
);
2:
B
ay
al
a
an
d
Pr
ie
to
(2
02
0)
;3
:B

or
de
n
et
al
.(
20
20
);
4:
C
liv

ot
et
al
.(
20
20
);
5:
H
uo

et
al
.(
20
20
);
6:
Is
aa
c
an
d
B
or
de
n
(2
02
0)
;7
:L

in
g
et
al
.(
20
20
);
8:
M
ar
sd
en

et
al
.(
20
20
);
9:
R
ig
al
et
al
.(
20
20
);
10
:S
id
a
et
al
.(
20
20
);
11
:T

er
ef
e
an
d
K
im

(2
02
0)
;1
2:
W
ar
te
nb
er
g
et
al
.(
20
20
);

13
:Z

hu
et
al
.(
20
20
)



plantation as a control plot. This study showed the
highly plastic behavior of the agroforestry system in
water uptake strategy depending on soil depth and sea-
son at the early stage of land-use change from plantation
to agroforestry. Within the soil layers where crop roots
were largely present (0-1.2 m depth), jujube trees in the
agroforestry system were able to obtain more shallow
water (0–20 cm or 20–60 cm) during wet periods, but
more deep water (60–120 cm) during dry periods. It
shall be noted that this study includes some precious
water data from very deep soil layers (down to 4 m). The
authors demonstrated that, in the driest season, trees in
agroforestry systems could take up very deep soil water
(down to 4 m). According to the authors, while this is
good for tree metabolic maintenance, it may also induce
a strong desiccation of very deep soil layers as the
groundwater level was too deep (> 50m) to compensate
for such a water stress. However, this negative effect
could be partly offset by increased soil water infiltration
(Ilstedt et al. 2016; Liu et al. 2016).

Concerning water movement on soil surfaces and
shallow soil layers, stratified tree canopies over crops
in agroforestry systems have been found to effectively
reduce water loss through runoff and soil loss due to
erosion (Villatoro-Sánchez et al. 2015; Liu et al. 2016).
Litterfalls from trees can further increase soil surface
rugosity and soil aggregate stability, while tree roots can
increase soil porosity, thus resulting in increased water
infiltration and ultimately limiting water erosion (Liu
et al. 2016). Yet, to which extent such effects can be
generalized over a global scale and across different types
of agroforestry systems remains unknown. To fill such a
gap, Zhu et al. (2020) performed a systematic review to
quantitatively assess the impact of agroforestry systems
on erosion control and associated environmental issues,
such as soil nutrient losses and pollutant dispersion, for
four types of agroforestry systems in temperate and
tropical regions. While this review successfully
confirmed the general positive effect of agroforestry
systems, it also showed large discrepancies of the
performance of agroforestry systems amongst the
various case studies. This suggests the necessity of
optimizing soil and vegetation management depending
on the context of the agroforestry systems. Zhu et al.
(2020) mainly focused on water processes at the surface
of soils, or at sub-surface, but also highlighted a lack of
research on the role of belowground soil-root-biota in-
teraction in the regulation of water processes in agrofor-
estry systems, especially for deep soil layers. Water

processes at depth are largely mediated by those occur-
ring in shallow and deep soil horizons, which can be
susceptible to the distribution patterns of tree and crop
roots, as well as their associated soil biota (e.g. macro-
fauna, mycorrhizal fungi etc.). Roots and soil biota can
influence belowground water processes either by direct
hydraulic redistribution in soil due to their water
absorption and sharing strategies or by modifying soil
hydrological and hydraulic properties, e.g., water
storage capacity, infiltration rate and hydraulic
conductivity. In addition to this global synthesis, Ling
et al. (2020) proposed an original case study in a similar
context as for the study of Huo et al. (2020), but on a
different plot. The authors characterized soil water con-
tent, root distribution and soil physical properties related
to soil water cycling processes in an agroforestry system
with jujube (Ziziphus jujuba Mill.) trees intercropped
with canola (Brassica napus L.) or daylily (Hemerocal-
lis fulva L.), and in a pure jujube tree plantation as a
control plot. They found that, compared to a monocul-
ture of jujube tree plantation, the agroforestry system
could decrease soil bulk density and increase field ca-
pacity, saturated hydraulic conductivity and soil poros-
ity, especially in inter-rows, thus having a generally
positive effect on soil water cycling and vegetation
performance. In addition, the study showed a lower soil
water content in the agroforestry system inter-rows,
suggesting a competition for water between trees and
intercropped species.

Closing the loop: soil nutrient cycling in agroforestry
system

Research on nutrient cycling in agroforestry systems has
been prolific for decades (Nair et al. 1999). The follow-
ing questions have been largely addressed: the contri-
bution of agroforestry trees to nutrient requirements of
intercropped plants and the timing of nutrient transfer
from the decomposition of the pruning residues to in-
tercrops (Palm 1995; Zingore et al. 2003; Tully and
Lawrence 2012), the competition for nitrogen (Jose
et al. 2000a; Zamora et al. 2009), the use of nitrogen-
fixing trees and their effect on crop production
(Akinnifesi et al. 2010), the uplift of deep subsoil nutri-
ents by trees (Vanlauwe et al. 2005) and the role of tree
roots as a safety-net to reduce nutrient leaching (Rowe
et al. 1998; Bergeron et al. 2011; Tully et al. 2012).
Functional trait-based approach has been evidenced to



be efficient explaining plant strategies related to nutrient
use (Garnier and Navas 2012). While such an approach
is widely used in plant ecology, it is still poorly explored
in the context of agroforestry systems where tree and
crops can show intra- and interspecific facilitation or
competition interactions. TheMarschner review of Isaac
and Borden (2020) is therefore very timely. The authors
reviewed the processes underpinning nutrient acquisi-
tion in agroforestry systems, including root distribution
and plasticity, biological nitrogen fixation and deep soil
nutrient uplift. They also pointed that understanding
these mechanisms requires consideration of the multiple
scales at which trees and crops interact with each other
and acquire nutrients from soil. They further explained
that interspecific root overlap is often associated with
nutrient competition, but several studies also evidenced
facilitation for nutrient acquisition through enhanced
chemically and microbially meditated processes. They
finally suggested that root functional trait-based
approach is promising in its ability to capture the
multi-scalar nature of nutrient acquisition processes in
agroforestry systems. In addition to this review paper,
Borden et al. (2020) focused on a cocoa (Theobroma
cacao L.) agroforestry system in Ghana including two
shade tree species (Terminalia ivorensis Chev.,
Entandrophragma angolense (Welw.) C.DC.). They
mapped root distribution, root functional traits and soil
nutrients down to 60-cm depth. They found that the
species of shade tree induced root plasticity in
T. cacao. Cocoa root morphological traits indeed shifted
towards a nutrient acquisition strategy, exhibiting higher
specific root length and lower fine root tissue density,
when next to a shade tree. They also showed that root
traits plasticity depended on the soil nutrient (Ca2+,
NH4

+, NO3
−).

Through their symbiotic relationship with roots, the
crucial role of mycorrhizal fungi in nutrient acquisition
has been generally recognized (Barea et al. 2005). How-
ever, the effect of trees on the abundance, diversity and
activity of mycorrhizal communities is still poorly
known (Bainard et al. 2011, 2012). The tree-crop mixed
cultivation in agroforestry systems provides a valuable
opportunity to investigate this. Battie-Laclau et al.
(2020) studied the respective role of trees and herba-
ceous vegetation beneath trees inmaintaining arbuscular
mycorrhizal communities in temperate alley cropping
agroforestry systems. They showed that roots of trees
and associated herbaceous vegetation were extending
several meters within the cropped alley in the topsoil,

challenging the common view of a stratification and
niche separation of tree and crop roots. Such
intermingled root systems are an important feature for
potential plant-plant interactions in agroforestry sys-
tems, e.g. facilitation processes through sharing com-
mon mycorrhizal communities and networks. Surpris-
ingly, they showed that the herbaceous vegetation be-
neath the trees was better at maintaining an active
arbuscular mycorrhizal network than associated tree
roots. They therefore suggested that a proper selection
of plant species sown under the trees could benefit the
development of the annual intercrop. In addition, their
study pointed the major contribution of the herbaceous
vegetation beneath the trees to plant diversity and to
their associated above- and belowground biodiversity.

Studies on nutrient provision in agroforestry systems
have mostly focused on tree litter decomposition and
release of nutrients from pruning residues, in terms of
amounts and use efficiency (Palm 1995; Montagnini
et al. 1999; Gnankambary et al. 2008) as well as on
biological N2-fixation (Chikowo et al. 2004). However,
studies on the nutrient use efficiency of mineral fertiliza-
tion in agroforestry systems remain scanty (Cannavo
et al. 2013). Sida et al. (2020) designed an original trial
to disentangle tree-crop-fertilizer interactions in several
agroforestry systems in Ethiopia and Rwanda. They
found that in parkland with the nitrogen-fixing tree spe-
cies Faidherbia albida (Delile) A. Chev., the addition of
nitrogen only had not effect on wheat yields under the
canopy compared to nitrogen addition in open field plots,
while the application of phosphorus only doubled the
wheat grain yields. Moreover, the phosphorus use effi-
ciency was doubled under the canopy of Faidherbia
albida. Phosphorus was therefore more limiting than
nitrogen for wheat production under the canopy of
Faidherbia albida, and nitrogen fertilization could be
saved under tree canopies. The phenology of Faidherbia
albida is unique as it sheds its leaves during the rainy
season, and cattle usually graze under its canopy during
the dry season, potentially bringing some nitrogen, but
also phosphorus and potassium through their dejections.
On the opposite, the yield and nutrient use efficiency
were reduced for maize grown under another nitrogen-
fixing tree species Acacia tortilis (Forssk.) Hayne and
Grevillea robusta A.Cunn. ex R.Br. Processes of facili-
tation and competition are therefore site-specific and
fertilizer recommendations should account for local con-
ditions (soil type and fertility level) and the type of
agroforestry systems (tree and crop species).



Soil organic carbon cycling in agroforestry systems

Early research on agroforestry systems has focused on
the effect on soil organic matter and soil fertility (Young
1989; Onim et al. 1990; Chander et al. 1998). More
recently, research on soil fertility in agroforestry sys-
tems was extended to the concepts of soil health and soil
quality (Barrios et al. 2012; Muchane et al. 2020). In the
last two decades, the burning issue of global warming
induced a new research in agroforestry systems, with a
huge increase in the number of articles dealing with
climate change mitigation via carbon sequestration in
soils (van Noordwijk et al. 2019). Despite the important
diversity of agroforestry systems, recent reviews and
meta-analyses suggest that the conversion of arable land
to agroforestry systems leads to increased soil organic
carbon (SOC) stocks (Lorenz and Lal 2014; Kim et al.
2016; Cardinael et al. 2018b; Feliciano et al. 2018; Shi
et al. 2018; Corbeels et al. 2019), and these systems are
now better taken into account in the 2019 Refinement to
the 2006 IPCC Guidelines for National Greenhouse Gas
Inventories (Cardinael et al. 2018b; Ogle et al. 2019),
which is a critical but insufficient step to gain access to
finance and other support (Rosenstock et al. 2019). SOC
storage at the plot scale is controlled by a balance
between organic carbon inputs and losses. In agrofor-
estry systems, higher organic carbon inputs to the soil
are often observed compared to treeless croplands
(Cardinael et al. 2018a), as a result of tree litterfall
(Sileshi and Mafongoya 2007; Negash and Starr 2013)
and pruning residues (Zingore et al. 2003; Nyamadzawo
et al. 2012), but also tree root inputs (Sierra and Nygren
2005; Germon et al. 2016). Increased organic inputs
under trees are also due to tree canopy throughfall
inputs, nutrients and to soil particles transported by the
wind and captured by tree canopy (Bielders et al. 2002),
accumulation of windborne soil around trunks, as well
as fecal inputs from perching bird or grazing animals
(Rhoades 1997). Increased biomass production at the
plot scale (Graves et al. 2010) and organic inputs might
explain the enhanced SOC sequestration in agroforestry
systems. Besides, other soil and soil biota related pro-
cesses favored by agroforestry systems can promote
higher SOC sequestration, such as enhanced aggregate
stability (Udawatta et al. 2008) promoting SOC stability
and reduced erosion due to increased water infiltration
and reduced runoff (Anderson et al. 2009).

Several authors found an increase abundance, bio-
mass and diversity of earthworms in agroforestry

systems (Price and Gordon 1999; Cardinael
et al. 2019b). Soil fauna is largely involved in litter
and SOC decomposition (Lavelle et al. 2006) and its
effect on SOC stabilization is still debated (Frouz et al.
2015; Lubbers et al. 2017). Agricultural practices large-
ly impact soil biota (Ponge et al. 2013) but very little is
known about agroforestry systems. To fill this knowl-
edge gap, Marsden et al. (2020) performed a systematic
review on the effect of agroforestry systems on soil
macro, meso and microfauna and their functions. They
found that most studies have so far focused on soil
macrofauna community (abundance, diversity and bio-
mass) in agroforestry compared to a reference plot. They
showed that the effects on fauna abundance and diver-
sity are mainly positive when agroforestry is compared
to cropland, and neutral or negative when compared to
forests. However, soil fauna functions in agroforestry
systems were only studied in 17 out of the 67 retrieved
papers. Interestingly, the main soil function addressed
was soil structure maintenance, while very few studies
investigated the role of soil fauna on carbon and nutrient
cycling in agroforestry systems.

Several years, often a decade, are necessary to detect
a change in SOC stocks (Smith 2004). However, early
changes in SOC dynamics can be tracked using early
indicators such as some soil fractions or soil enzyme
activities. Rigal et al. (2020) and Clivot et al. (2020)
both studied such early changes, four years after tree
planting in very different contexts. In Rigal et al. (2020)
studied the effect of three shade tree species
(Cinnamomum camphora (L.) J. Presl, Bishofia
javanica Blume, Jacaranda mimosifoliaD.Don) on soil
quality in a coffee (Coffea arabica L.) agroforestry
system. More specifically, they characterized soil en-
zyme activities, soil microbial communities, including
arbuscular mycorrhiza fungi (AMF) and non-AMF fun-
gi, nematode communities, as well as soil chemical
properties. They observed a significant increase in the
abundance of bacterial and fungal communities in shad-
ed areas compared to open areas, especially during the
dry season, and a significant build-up of soil organic
matter under shaded coffee. As the yields of shaded
coffee were maintained, except under C. camphora,
they concluded that carefully selected shade trees could
rapidly contribute to restoring soil quality, while main-
taining high coffee yields. In France, Clivot et al. (2020)
studied the effect of two alley cropping agroforestry
systems, poplar (Populus deltoides × P. nigra)-alfalfa
(Medicago sativa L.) and alder (Alnus glutinosa L.)-



ryegrass (Lolium perenne L.) on several soil properties
and microbial and enzymatic activity, compared to tree-
less control plots. No significant differences in SOC
contents nor in labile soil organic matter fractions were
found in the topsoil (0–15 cm). Microbial enzyme ac-
tivity varied greatly across years, but no general trend
was found. However, near-infrared and mid-infrared
spectroscopy showed a differentiation in soil organic
matter quality between the poplar-alfalfa agroforestry
system compared to the alfalfa treeless plots. In contrast,
Guillot et al. (2019) reported in an older alley cropping
agroforestry system with hybrid walnut trees that there
was an increased microbial biomass and activity in the
alley, beyond the tree row. In such agroforestry systems,
as also pointed by Battie-Laclau et al. (2020), such
effects on soil microbial communities are possibly im-
pacted by the herbaceous vegetation beneath trees, not
just by the trees.

Farmers implement various agroforestry systems to
restore soil fertility, such as planting nitrogen-fixing
shade trees, or shifting cultivation. Wartenberg et al.
(2020) and Terefe and Kim (2020) studied changes in
soil fertility and SOC contents and stocks in these two
systems, respectively. More specifically, Wartenberg
et al. (2020) investigated the interactions between 11
commonly intercropped shade trees and cocoa trees in
cocoa (Theobroma cacao L.) agroforests in Sulawesi,
and their impact on cocoa productivity and on some soil
properties, such as aggregate stability. Mean weight
diameter of stable aggregates are key indicators of the
fate of macro- and micro-aggregates in soils, both in-
volved in the stabilization of SOC (Oades 1984; Six
et al. 2004). While many studies have focused on soil
tillage (Six et al. 2000), little is still known about the
effect of agroforestry systems on soil aggregates
(Udawatta et al. 2008). The authors found that SOC,
soil nitrogen and aggregate mean weight diameter
were increased under shade tree canopies compared
to open areas. Cocoa tree growth was reduced but
with no adverse effects on cocoa yields. Interestingly
and similarly to Rigal et al. (2020), the authors sug-
gested that shade trees do not always induce a direct
trade-off between yield and soil fertility. In Ethiopia,
Terefe and Kim (2020) studied shifting cultivation sys-
tems, an example of sequential agroforestry, with dif-
ferent fallowing durations compared to adjacent
monocropping fields and a natural forest. The authors
found that long-term shifting cultivation did not affect
soil pH, soil organic carbon (SOC) and soil total

nitrogen stocks compared to the forest. However, the
conversion of shifting agriculture to conventional
monocropping resulted in a huge loss of SOC stocks
(about − 50% over 10 years). Shifting cultivation is
therefore a relevant practice to maintain high SOC
stocks.

Conclusion and perspectives

To better understand the belowground functioning of
agroforestry systems, a considerable effort has been
made over the recent years to explore the various and
numerous processes in diverse types of agroforestry
systems. This special issue is a perfect illustration of
such an effort, gathering studies dealing with different
topics and approaches related to a broad range of disci-
plines such as soil ecology and biology, hydrology,
biochemistry, ecophysiology, ecology and agronomy.
However, a comprehensive understanding of the below-
ground functioning of these systems is still lacking,
because numerous and complex site-specific interac-
tions and trade-offs are at play. We summarize here
what we think should be further explored in the coming
decade. Future works should:

& Document temporal dynamics. More precisely,
future studies should study the processes on the
long-term, and better document temporal effects
(seasonal, year-to-year, short- vs. long-term effects).
For instance, significant changes in SOC stocks can
only be observed on the long-term while short-term
transitional effects might be misleading. Maintain-
ing long-term trials is critical in that respect.

& Investigate spatial dynamics. Future studies should
better document lateral spatial heterogeneities
generated in such systems (Battie-Laclau et al. 2020;
Marsden et al. 2020), depending on the types of
agroforestry systems and spatial arrangement of
trees, and how these affect soil functions and related
ecosystem services (Cardinael et al. 2017, 2019b;
Roupsard et al. 2020). Beyond the role of trees, that
of the herbaceous cover under the trees shall also be
better accounted for (Cardinael et al. 2017, 2018a;
Battie-Laclau et al. 2020), whenever present, or the
contribution of grazing animals, when relevant, as
they are likely to be additional sources of
heterogeneity.



& Dig deeper. Several papers of this special issue were
innovative in also focusing on deep soil layers
(Battie-Laclau et al. 2020; Ling et al. 2020; Terefe
and Kim 2020; Huo et al. 2020). Deep-rooting of
trees in agroforestry systems is likely to impact the
whole soil profile (Mulia and Dupraz 2006;
Cardinael et al. 2015b) and better understanding of
soil processes at depth is critical for water and nu-
trient cycling (Bayala and Prieto 2020; Isaac and
Borden 2020), as well as for carbon sequestration
(Cardinael et al. 2015a, 2018a, 2019a) as also sum-
marized in recent reviews on the role of deep roots
(Maeght et al. 2013; Thorup-Kristensen et al. 2020;
Germon et al. 2020).

& Be integrative. Develop an integrative approach,
linking above- and belowground processes, and also
coupling the cycling of different elements, such as
water, nutrients and carbon. Modelling of agroforest-
ry systems should be particularly developed towards
this aim (Luedeling et al. 2016; Dupraz et al. 2019).
For instance, the complete radiative forcing of agro-
forestry systems should be quantified including a
balance of greenhouse gases and if possible also
changes in biophysical effects such as albedo. Only
quantifying the carbon balance of agroforestry
systems might lead to a biased understanding in
their role towards climate change mitigation. Only a
few studies have focused on nitrous oxide (N2O)
emissions in agroforestry (Kim et al. 2016) and on
the role of nitrogen-fixing trees in such emissions
(Rosenstock et al. 2014). Beyond the potential con-
tribution of agroforestry systems to climate change
mitigation, how such systems adapt to climate change
compared to conventional cropping systems shall
deserve further consideration.

& Embrace diversity. Globally, agroforestry systems
are very diverse, and some are poorly studied. More
data should be for instance collected in temperate
agroforestry systems, as works on tropical agrofor-
estry systems are over-represented by now. Only
two studies in this special issue presented new data
on temperate agroforestry systems (Battie-Laclau
et al. 2020; Clivot et al. 2020) despite the growing
development of such systems in temperate regions
of the world.

& Highlight the multifunctionality. The multifunc-
tional features of agroforestry systems should be
better taken into account in management practices.
This demands future studies to understand and

characterize a larger and more transdisciplinary pool
of ecosystem services in the assessment of agrofor-
estry systems, not only biophysical indicators of soil
ecosystem functions and services, but also when
possible, social and economic indicators. Simulta-
neously, future studies should analyze synergies and
trade-offs among expected ecosystem functions and
services. Rigal et al. (2020) and Wartenberg et al.
(2020) both reported an absence of trade-off be-
tween yield and soil fertility, but this might not be
the case everywhere. Synergies and trade-offs
among ecosystem services could then be optimized
to achieve multifunctional agroforestry systems
(Andreotti et al. 2018).
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