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ABSTRACT Viral impacts on microbial populations depend on interaction pheno­
types—including viral traits spanning the adsorption rate, latent period, and burst size. 
The latent period is a key viral trait in lytic infections. Defined as the time from viral 
adsorption to viral progeny release, the latent period of bacteriophage is conventionally 
inferred via one-step growth curves in which the accumulation of free virus is meas­
ured over time in a population of infected cells. Developed more than 80 years ago, 
one-step growth curves do not account for cellular-level variability in the timing of lysis, 
potentially biasing inference of viral traits. Here, we use nonlinear dynamical models 
to understand how individual-level variation of the latent period impacts virus–host 
dynamics. Our modeling approach shows that inference of the latent period via one-step 
growth curves is systematically biased—generating estimates of shorter latent periods 
than the underlying population-level mean. The bias arises because variability in lysis 
timing at the cellular level leads to a fraction of early burst events, which are interpreted, 
artefactually, as an earlier mean time of viral release. We develop a computational 
framework to estimate latent period variability from joint measurements of host and free 
virus populations. Our computational framework recovers both the mean and variance of 
the latent period within simulated infections including realistic measurement noise. This 
work suggests that reframing the latent period as a distribution to account for variability 
in the population will improve the study of viral traits and their role in shaping microbial 
populations.

IMPORTANCE Quantifying viral traits—including the adsorption rate, burst size, and 
latent period—is critical to characterize viral infection dynamics and develop predictive 
models of viral impacts across scales from cells to ecosystems. Here, we revisit the gold 
standard of viral trait estimation—the one-step growth curve—to assess the extent to 
which assumptions at the core of viral infection dynamics lead to ongoing and system­
atic biases in inferences of viral traits. We show that latent period estimates obtained 
via one-step growth curves systematically underestimate the mean latent period and, in 
turn, overestimate the rate of viral killing at population scales. By explicitly incorporating 
trait variability into a dynamical inference framework that leverages both virus and host 
time series, we provide a practical route to improve estimates of the mean and variance 
of viral traits across diverse virus–microbe systems.

KEYWORDS bacteriophage lysis, mathematical modeling, population dynamics, 
cellular variability, inference, phage ecology, latent period, viral traits

V iruses have a profound impact on microbial populations through the modulation 
of population dynamics, eco-evolutionary dynamics, community structure, and 

ecosystem function (1–6). Our understanding of the ecological interactions between 
viruses and microbes depends on the study of viral life history traits that characterize 
the viral life cycle, such as the adsorption rate, latent period (LP), and burst size (7, 8). 
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During lytic infections, viral adsorption to the host cell is followed by synthesis where the 
host machinery produces new viral particles. Once assembled, viral particles burst 
from the cell and can infect new target cells. The time to complete a viral cycle, from virus 
adsorption to cell burst, is termed the latent period (7). The latent period varies across 
taxa (8) and can be influenced by environmental factors such as resource availability 
and host physiological state (9–12). This key trait affects the population dynamics of 
virus–microbe pairs, with strong consequences for virus fitness and host population fate 
(13, 14).

The one-step growth curve, introduced by Ellis and Delbrück in 1939 (15), is an 
experimental setup used to infer key viral traits from monitoring viral infection of a 
microbial population within a single round of infection. Typically, the one-step growth 
curve has the following experimental protocol. First, cells are inoculated with virus 
under conditions that allow for adsorption to take place without host reproduction or 
viral replication. Then, unadsorbed viruses are removed to allow for a single round of 
infection. Finally, free viruses are measured at several time points. From these observa­
tions, the latent period is typically reported as the time of first visible burst (Fig. 1), 
i.e., when free virus concentration first increases (15, 16). Alternatively, the midpoint of 
the rise might be used to report the latent period (8, 12). Despite widespread use, the 
first visible burst can lead to biases in estimates of the average latent period in the 
presence of cellular-level variability in lysis, as it captures the combined influence of early 
adsorption with early cell lysis events (15, 17–20).

Indeed, it is already well understood that even when an infected cell population is 
perfectly synchronized, i.e., ensuring adsorption synchronization, individual cells may 
burst at different times. This variation could be due to differences in the host phenotype 
at the time of infection, e.g., physiological states (12, 17, 19, 33, 34), or due to stochastic­
ity at the cellular level (20, 35–37). For instance, variability in the latent period of 
genetically identical populations has been found in multiple strains of λ phage through 
single-cell analysis (14, 35). The majority of this variation was accounted for by processes 
that regulate the production of holins that trigger lysis by forming holes in the inner 
membrane and allowing endolysin into the periplasmic space. Variation in holin 
genotypes can lead to different mean latent periods suggesting a (partially) viral-
encoded origin of cell-to-cell variability in the latent period (35, 36). In addition, recent 
work has characterized heterogeneity in timing for a lytic phage for the first time, 
showing that variability in lysis time may provide fitness advantages to phage popula­
tions (20).

Here, we explore the effect of latent period variability on microbe–virus dynamics and 
its impact on current approaches to infer the latent period in practice. Our findings reveal 
that the presence of latent period variability results in systematic biases that can lead to 
the underestimation of latent periods in the one-step growth curve used for viral trait 
estimation. Hence, established methods infer a more rapid lysis process from population 
measurements than what is likely to occur when accounting for cellular-level heteroge­
neity. Instead, by integrating cellular-level heterogeneity in lysis timing in an explicit 
virus–microbe infection model, we are able to estimate both the mean and variability of 
lysis timing from population-level data. As we show, expanding current protocols to 
include measurements of both virus and host abundances via the use of “multi-cycle 
response curves” provides a route to improved estimates of viral traits and their variabil­
ity, essential to quantify the impact of viruses on microbial populations in both ecologi­
cal and therapeutic contexts.

RESULTS

Latent period variability impacts one-step growth curves

We use a coupled system of nonlinear differential equations to model interactions 
between a population of microbial cells and a lytically infecting viral population 
(Materials and Methods; Fig. S1). The model considers a microbial population where 
infected cells burst at different times following an Erlang distribution described by the 
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mean latent period and the coefficient of variation (CV). We perform simulations of one-
step growth curves to elucidate the impact of individual-level variation on conventional 
methods of viral trait estimation (Fig. 2). As described in Materials and Methods, we 
replicate a classic one-step growth curve protocol where phage is added to a bacterial 
population in the exponential growth at a multiplicity of infection (MOI) of 0.01, the 
system is diluted to reduce new infections, and the accumulation of free viruses is 
measured over time (Fig. 2A).

Figure 2B and C shows three different simulations in which all host and viral traits 
are consistent across scenarios including the average latent period, except for the latent 
period CV, which varies across 0.05, 0.1, and 0.2 (see Table 1 for complete specification 
of parameter values). The resulting one-step growth curves are visibly different between 
simulations. Furthermore, the time of first visible burst, which is conventionally used as 
a proxy for the average latent period (Fig. 1), varies greatly for the different simulations 
despite them having the same mean latent period. This also applies to other features 
of the curve, e.g., the midpoint of the rise. Specifically, in wider distributions (larger CV), 
the first visible burst occurs earlier because of a higher proportion of cells lysing at 
shorter times. Hence, the time of first burst leads to a biased estimate of shorter latent 

FIG 1 The one-step growth curve protocol for inferring lysis timing. The one-step growth curve is used to estimate burst 

size and latent period by observing a single round of infection. In such experiments, virus is added to a microbial population 

and left to adsorb until the majority of the cells are infected. The population is diluted or viruses are removed to prevent the 

occurrence of new infections. From this point, plaque-forming units (PFUs) are measured over time. The time of first visible 

burst, when PFU counts start to increase due to cell lysis and viral progeny release, is commonly reported as the latent period 

(18, 21). The latent period of multiple virus–microbe pairs has been characterized using this method. Here, we show examples 

of different microbe–virus pairs where the time of first burst was reported as the latent period ranging from 15 min to 4 h. The 

dotted line represents the reported value in the corresponding study. The list of data sources (10, 22–32) is available in Table 

S1.
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periods than the true, underlying latent period for all simulated distributions, including 
distributions with small CV. These results indicate that reporting the time of first burst as 
the latent period is a misleading conflation: doing so systematically underestimates the 
population mean, and this bias worsens with increasing cellular-level variability.

We further illustrate the influence of latent period variability on key features of 
the one-step growth curve by comparing three simulations with varying latent period 
distributions, each characterized by distinct mean and CV (Fig. 2D). Host and viral traits, 

A

FIG 2 The latent period distribution connects individual variation to population-level microbe–virus dynamics. (A) Using our 

microbe–virus dynamical model, we simulated one-step growth curves following standard protocols, as described in Materials 

and Methods. (B) Populations in each simulation have the same traits (Table 1), i.e., microbial growth rate, carrying capacity, 

adsorption rate, burst size, and LP mean (4 h, dashed gray line), and only differ in the CV of the latent period distribution, 

which varies across simulations with larger CV depicted in lighter shades of blue. (C) The one-step growth curves for the 

different simulations show different free virus dynamics. The standard estimates of the latent period, as measured by the time 

of first burst (dotted lines), vary across simulations. Latent period variability affects the one-step growth curves for otherwise 

identical populations. (D) In this set of simulations, the populations have the same traits (Table 1), i.e., microbial growth rate, 

carrying capacity, adsorption rate, and burst size, but differ in latent period distributions with varying latent period mean and 

CV. (E) Systems with visibly different latent period distributions can result in similar first burst estimates derived from one-step 

growth curves.
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excluding latent period-associated traits, remain the same across all simulations (see 
Table 1 for parameter values). Despite distinct underlying latent period distributions, 
including differences in the mean latent period, the simulated one-step growth curves 
consistently result in the same time of first burst (Fig. 2E, dotted line).

Based on these observations, we revisited data from references 13, 35 to compare the 
differences between population and cellular-level measurements of lysis timing. In these 
studies, the lysis time, i.e., the time to lysis after prophage induction, was measured using 
population-scale turbidity assays (13) and single-cell lysis event microscopy observations 
(35) of isogenic λ lysogens with mutations in holin and antiholin coding genes. We 
observe that the lysis time is systematically shorter in population-scale turbidity assays 
when compared to the mean lysis time obtained from the quantification of single-cell 
lysis events (Fig. 3). The discrepancy between measurements follows a trend similar to 
that predicted by theory, especially in mutants where the antiholin gene expression 
is abolished (Fig. S2). Although variations in bacterial treatment could contribute to 
the observed differences, the disparity between measurements at the population scale 
and those at the single-cell level may indicate that underestimation of life history traits 
regarding timing in lysis may be a generic feature of population-level protocols and 
relevant to both temperate and lytic-only viruses.

Free virus and host temporal dynamics provide better resolution than 
one-step growth curves to discern between latent period distributions

Next, we set out to explore the link between viral population dynamics arising from 
one-step growth curve protocols and the shape of the underlying latent period 
distribution. We systematically varied both the mean and CV of the latent period 
distribution. In each case, we simulated the one-step growth curve protocol and 
compared the resulting viral population dynamics to a reference (i.e., the true but 
unknown mean and CV of the virus–host pair). For example, given a reference latent 
period of 10 h and CV of 0.25, we calculated the sum of relative errors in viral population 
dynamics for each combination of latent period and CV (Fig. 4A). Growth curves resulting 
from combinations featuring a higher mean and larger CV will resemble those with 
a smaller mean and smaller CV (Fig. 4A). This, coupled with experimental uncertainty, 
results in a space of latent period distributions difficult to distinguish from each other 
when comparing one-step growth curves (Fig. 4B and C). These results suggest that 
one-step growth curve protocols lack the resolution needed for accurate characterization 
of latent period distributions.

As an alternative, we propose the use of a “multi-cycle response curve” protocol. 
In this protocol, phages are mixed with a susceptible bacterial population at low MOI. 
Next, both free virus and host cells are quantified at various time points after phage 
addition (Fig. 5). In contrast to the one-step growth curve simulations, there is neither 
an incubation period nor a subsequent dilution. While some combinations of the mean 
latent period and CV result in similar viral population dynamics (Fig. 5B), the correspond­
ing host population dynamics for these combinations are markedly different from each 
other (Fig. 5C). These observations imply that population-level temporal dynamics data 
of hosts and viruses have the potential to be used to predict individual-level variation in 
viral traits.

Inferring latent period distributions from temporal dynamics

We developed a computational framework with the goal of inferring latent period 
distributions from multi-cycle response curves (Fig. 6A). This framework involves fitting 
host and viral data to our population model of lytic infections (equation 1), achieved by 
selecting combinations of model parameters that minimize the error between observed 
data and the model. The framework is comprised of two steps: (i) using a likelihood 
function to narrow the initial search space of parameters and (ii) implementing a 
Bayesian Markov chain Monte Carlo (MCMC) search. The Bayesian MCMC search is 
guided by prior distributions informed by the likelihood function used in the initial step 
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(see Materials and Methods for further details). Using this approach, we can estimate 
host traits, i.e., growth rate (μ) and carrying capacity (K), and viral traits, i.e., adsorption 
rate (ϕ), burst size (β), and the latent period distribution (characterized by the mean T
and CV) from host and viral dynamics data.

As our main interest is in inferring the latent period distribution, we test the accuracy 
of our approach at predicting these distributions using simulated data. Using simulated 
data allows us to have a priori knowledge of the underlying latent period distribution. 
We use our nonlinear dynamical model to generate host and viral time series. We sample 
the time series to obtain 10 data points equally spaced in time, consistent with current 
experimental standards, and add 30% normally distributed noise to mirror uncertainty in 
experimental measurements (Materials and Methods). To test our framework on a variety 
of biologically relevant data, we generate dynamics using three different parameter 
sets that represent (i) E. coli and λ phage, (ii) the marine cyanobacteria Prochlorococcus 
marinus and the P-HM2 cyanophage, and (iii) the eukaryotic microbe Emiliania huxleyi 
and a EhV (Table 3; Fig. S3). We use literature point estimates of the latent period for 
the mean latent period (though Fig. 2 suggests these are underestimates). The true 

FIG 3 Population-level measurements systematically underestimate the lysis time in λ phage lysogens. The measured lysis 

time, i.e., time to lysis after prophage induction, of λ lysogens is systematically shorter in population-scale turbidity assays (13) 

when compared to the mean lysis time obtained from microscope observations of single-cell lysis events (35). The lysogens 

are isogenic with mutations in holin and antiholin coding genes that result in changes in lysis time. Solid circles represent 

S107 mutants where antiholin expression is abolished. The dashed line shows a one-to-one relationship. Confidence intervals 

were calculated by multiple resampling using experimental mean and standard deviation assuming normality, as explained in 

reference 38. Data recovered from references 13, 35 are available in Table S2.
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underlying CV of the latent period distributions for microbe–virus pairs is not known. 
Therefore, we generate data with CV values ranging from 0.1 to 0.5, assessing our 
framework’s prediction accuracy across a large range of coefficients.

Consider first the viral population dynamics, host population dynamics, and latent 
period distribution associated with the E. coli and λ phage parameter set (Fig. 6A). In this 
simulation, both free virus and host density increase before host density starts to decay 
around 7 h after initial inoculation. With a reduction in susceptible hosts available for 
infection, the free virus density starts to plateau shortly after. Note that these population 
dynamics reflect multiple mixed rounds of infection in contrast to the single cycle 
represented in one-step growth curves. The data fit is shown as the shadow region 
with a 95% confidence. The free virus and host data were simulated with an underlying 
distribution with the latent period mean equal to 1 h and CV of 0.25. The underlying 
distribution is correctly predicted at 95% confidence. We observe that for this example, 
the individual parameters that describe the underlying latent period distribution (T
and CV) fall within the 95% confidence interval for the predicted parameters (denoted 
by arrows in Fig. 6B). Furthermore, the estimation for the average latent period mean 
is closer to the underlying value than that predicted by the corresponding one-step 
growth curve simulation (dotted line in Fig. 6B).

The latent period mean and CV values predicted using our framework are close 
to those with which data were generated for all simulations and all parameter sets 
for E. coli and λ phage, cyanobacteria and cyanophage, and Ehux and its associated 
giant virus (Fig. 6B). Therefore, the underlying latent period distribution with which data 
were generated is recapitulated by the data fitting framework. Our estimates for the 
latent period mean are closer to the population’s true underlying latent period than 
the time of first burst obtained from simulated one-step growth curves (dotted lines). 
In addition, we successfully predict all other host and viral traits (Fig. S4). Hence, by 
incorporating cellular-level variability and fitting models to host and viral abundance 
data, our approach yields accurate estimates of the latent period distribution and other 
host and viral traits, for a variety of biologically relevant systems.

DISCUSSION

Here, we explored how individual-level variation in the latent period impacts virus–host 
dynamics and its consequences on the inference of viral life history traits, including the 
mean and variability of the latent period distribution. To do so, we developed a model 
of virus–host interactions that incorporates latent period variability. We show that latent 

FIG 4 Latent period distribution identifiability when using one-step growth curves. (A) Simulated one-step growth curves (see Materials and Methods) obtained 

from microbe–virus pairs with different underlying latent period distributions can resemble each other. When we compare a reference curve (red cross) to curves 

obtained from systems with different distributions, we observe that curves that resemble the reference the most are found along an ascending slope. These 

correspond to combinations of larger mean, larger CV (green cross) or smaller mean, smaller CV (purple cross). (B) Example of different combinations of latent 

period mean and CV that produce similar curves. One-step growth curves become harder to differentiate when taking experimental noise into account. Changes 

in host density, represented by colony-forming units per volume unit, resulting from viral lysis in a single cycle of infection are insignificant owing to the low 

multiplicity of infection (MOI) utilized in protocols. (C) Corresponding latent period distributions for panels A and B. All nonlatent period traits, i.e., microbial 

growth rate, carrying capacity, adsorption rate, and burst size, are the same across simulations (Table 2).
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period estimates obtained from current viral life history trait estimation protocols—
specifically the one-step growth curve—can deviate systematically and substantially 
from the actual mean latent period. The rationale is that variability in the latent period 
can lead to a subpopulation of infected cells lysing early, which is then misinterpreted as 
a shorter mean latent period for the population as a whole. Instead, we propose using 
host and viral dynamics to infer the population latent period via a “multi-cycle response 
curve” protocol. By fitting nonlinear population models, we show that it is possible to 
recover unbiased estimates of the mean and variability of latent periods along with 
accurate estimates of other viral and cellular life history traits.

The present approach extends efforts leveraging model fitting to characterize viral 
life history traits (12, 39–42). Similar to the modeling structure proposed here, other 
models of virus–host dynamics have incorporated explicit treatment of multiple infection 
compartments as an approximation to the delay between infection and lysis (12, 41, 
43). In these cases, the model interpretation does not link variability in the latent period 
with impacts on the estimate of the latent period itself. Inaccurate estimates of viral 
latent periods can lead to incorrect assumptions about virus turnover, potentially leading 
to overestimates of viral-induced mortality at population scales. Instead, accurate and 
unbiased estimates of viral traits are required to inform ecological and ecosystem models 
(7, 42, 44, 45).

The use of multi-cycle response curves leverages information in both viral and 
host population time series to connect cellular-level processes to population-level 
dynamics. In doing so, early increases in virus population dynamics are linked to the 
early components of variable latent period distributions rather than an indication of a 
systematically faster lytic process. This feature is likely relevant across virus–host systems. 
However, more work is needed to identify the mechanisms underlying variability, 
including those that impact other viral traits. For example, while correlations between 
latent period and burst size have been observed, with phage strains with longer latent 
periods having larger burst sizes (13), recent studies suggest that variation in (induced) 
lysis time does not contribute to observed burst size variability (46, 47). Caution in the 
interpretation of multi-cycle response curves is required, as viral traits often depend on 
the host growth rate, which can vary in experimental timescales (12). In addition, the 
current method could be extended in multiple ways, e.g., to include virion decay on the 
timescale of the protocol, which may be relevant for extending the method in situ and/or 
in vivo where reduced viral stability is expected, or to include coinfection of a single cell 
by multiple viruses.

In summary, for more than 80 years, the one-step growth curve has been the standard 
to characterize essential viral life history traits: the latent period and burst size (15). As we 
have shown, this protocol comes with a significant caveat: leading to estimates of more 

FIG 5 Multi-cycle response curves provide a better alternative for latent period distribution identification. (A) We simulate an experimental protocol where 

infecting viral particles are added to a microbial population at MOI 0.01 (see Materials and Methods). Free virus and host cells are quantified at multiple time 

points after infection. Unlike one-step growth curve protocols, there is no removal of free viral particles after an incubation period. The simulated time captures 

multiple rounds of infection. (B) Free virus dynamics of three simulations with different latent period distributions but otherwise the same viral and host 

parameters (Table 2). Note that multiple rounds of infection are observed. (C) Corresponding host dynamics for the three simulations. While the one-step growth 

curves for the same parameters are highly similar (Fig. 4), the multi-cycle response curves differ from each other.
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rapid lysis when neglecting the impacts of latent period variability. Our work suggests 
that reframing the latent period as a distribution is essential to improve viral life history 
trait estimates and connect viral traits to population-level dynamics. In practice, the 
use of multi-cycle response curves leverages host and viral time series to reduce biases 
in trait inferences. Moving forward, we are optimistic that embedding measurements 
of both viral and host time series in the context of mathematical models with explicit 
treatment of variability can be used to improve inference in experiments and estimates 
of viral traits in environmental and therapeutic contexts.

E. coli and 

P. marinus and P-HM2

E. hux and EhV

B

A

FIG 6 Latent period distribution estimated from simulated multi-cycle response curves. (A) Estimation of the latent period 

distribution of a virus–microbe system by fitting a nonlinear dynamical model to the simulated time series with added noise. 

In this example, we estimate the latent period distribution of free virus and host time series simulated data with added 

noise (left and middle panels). Thus, we have a priori knowledge of the underlying latent period distribution (black curve) of 

the system to evaluate our framework. We can accurately estimate the original mean (mean LP = 1 h, black line) and CV = 

0.25 and therefore estimate the original latent period distribution (compare black curve and confidence interval estimations). 

Gray shaded region indicates 95% confidence intervals. (B) We use parameter values that capture the interactions of three 

biologically relevant systems: Escherichia coli and λ phage, Prochlorococcus and P-HM2, and Emiliania huxleyi and EhV (Table 

3). We model these systems assuming different latent period distribution dispersions. The dashed lines represent the original 

mean and CV values of the distribution used to create the data, red dots represent point estimates of the latent period 

mean (T) and CV, and error bars show 95% confidence intervals that fall within one order of magnitude of the original value 

across all simulations. The time of first burst obtained from the corresponding simulated one-step growth curves (dotted line) 

systematically underestimates the population mean, while our approach predicts the parameter value more accurately.
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MATERIALS AND METHODS

Latent period distribution incorporated into a nonlinear population model of 
lytic viral infections

We use a coupled system of nonlinear differential equations to model virus–host 
dynamics, including susceptible cells (S), free viruses (V ), exposed cells (E), and actively 
infected cells (I). In this model, susceptible host cells (S) are infected by free virus 
particles (V ). We assume that viruses and hosts are well mixed. Under these assumptions, 
the incidence, the rate at which susceptible cells are infected, is given by the mass action 
term i t = ϕ S V , where ϕ (mL/h) denotes the adsorption rate.

To incorporate variability in the latent period, we assume that before entering the 
actively infected stage (I), infected cells advance through several exposed E stages: E1,…, En, where n is a non-negative integer; infected cells move between stages at a 
rate of n + 1  η with exponentially distributed times, where η is the lysis rate. As the 
cells remain in each stage for a period of T/(n + 1) on average and there are n + 1 stage 
transitions, the average time from adsorption (i.e., entering the first exposed class [ E1]) 
to cell burst (i.e., exiting the actively infected class [I]) is the latent period mean, equal 
to the inverse of the mean lysis rate, T = 1/η. At the end of the actively infected stage 
(I), the cell bursts and free virus (V ) increase as a result of viral release of β virions. The 
system of nonlinear, ordinary differential equations can be written in the following form:

(1)

Ṡ = μ S  1−NK
growth − ϕ S Vadsorption

E1. = ϕ S Vadsorption − n + 1  η E1transition

E2. = n + 1  η  E1 − E2⋮Ėn = n + 1  η  En − 1 − Enİ = n + 1  η  En − I
V̇ = β  n + 1  η Iburst − ϕ S Vadsorption

where μ (1 /h) denotes the maximal cellular growth rate, K (1 /mL) denotes the 

cellular carrying capacity in the absence of viruses, and N = S + I + k = 1

n Ek is the total cell 

population. Note that when the number of E stages n equals 0, the model is reduced to 

the SIV model where İ = i t − η I. We assume that infected cells at any stage of infection 
do not grow and that cell death rates and virus washout rates are negligible compared 
to other key rate constants of the system. See Table 1 for model parameter descriptions. 
Hence, this model describes the latent period distribution as an Erlang distribution with 
shape n + 1, the number of exposed (E) compartments plus the infected (I) compart­

ment, and rate η, the lysis rate. In this form, the mean (T), variance (σ2), and coefficient of 
variation (σ/T) of the latent period are given by

(2) Mean(LP):  T = 1η
(3)Var(LP): σ2 = T2n + 1

(4)CV(LP): σT = 1n + 1
.
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The number of E compartments modulates the dispersion of the distribution through 
the CV, with larger n resulting in tighter distributions with smaller CV (Fig. S1). Note that 
requiring n to be an integer limits the CV values that can be simulated. For example, n = 0 corresponds to CV = 1, while n = 1 corresponds to CV ≈ 0.7, meaning that 
CV values between 0.7 and 1 cannot be represented using our model. Latent period 
distributions with CV lower than 0.5 can be simulated with our model at a tolerance of 
0.05. Based on lysis timing variability of induced lysogens (35), we expect latent period 
CV values in natural systems to be <0.5, consistent with our model’s effective coverage of 
latent period variability.

Model implementation

One-step growth curve

When using our model to simulate one-step growth curves, we replicate the protocol 
in experimental one-step growth curves by simulating the addition of phage to a 
microbial population in the exponential growth phase. We initialize the system with S = 108 CFU/mL and V = 106 PFU/mL with MOI 0.01. We dilute the system 1,000-fold 
10 min after phage addition to reduce microbe–virus encounters and prevent further 
adsorption (15, 16). After dilution, free virus (V ) is quantified at multiple time points (Fig. 
2A). Parameters used to simulate the curves in Fig. 2 can be found in Table 1. Parameters 
used to simulate one-step growth curves in Fig. 4 can be found in Table 2. Errors in Fig. 5 
were calculated using 200 equally spaced time points.

Multi-cycle response curve

In our simulation of multi-cycle response curves, we initialize the system with S = 108 CFU/mL and V = 106 PFU/mL with MOI 0.01. Free virus (V ) and total host 

(N = S + I + k = 1

n Ek) are sampled at multiple time points. In contrast to the one-step 

growth curve simulations, there is no incubation period and subsequent dilution. The 
experiment time is longer in the multi-cycle response curve than one-step growth 
curve simulations to capture multiple rounds of infection. The parameter values used 
to simulate temporal dynamics in Fig. 5 are the same as for the one-step growth curve 
simulations in Fig. 4 and can be found in Table 2.

To simulate the dynamics of a variety of host and viral systems, we use reference 
parameter values for three different microbe–virus pairs: E. coli and λ phage, Emiliania 
huxleyi and EhV, and Procholorococcus and P-HM2 cyanophage (Table 3). Different latent 

TABLE 1 Model parameter values for one-step growth curvesa

Value Unit

Parameter

  μ, growth rate 0.1 h−1

  K, carrying capacity 1 × 109 CFU/mL

  ϕ, adsorption rate 1 × 10−7 mL/(CFU × h)

  β, burst size 200

  η, lysis rate b h−1

  CV, coefficient of variation b

Initial condition

  S0, initial microbial density 108 CFU/mL

  V0, initial free virus density 106 PFU/mL
aWe simulate one-step growth curves in Fig. 2 using the parameter set and initial conditions specified here. The 
CV and lysis rate (η) for each simulation are specified in the corresponding figure. The lysis rate is represented as 
inverse of the mean latent period (η = 1/T).
bValue specified in the corresponding section.
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period distributions are generated by fixing the mean (Fig. 2) and varying the CV 
(equation 4) from 0.15 to 0.5 (Fig. S3). For every set of parameters, we model two 
scenarios: a control where the host grows in the absence of virus and an experiment 
with free virus and an initially susceptible microbial population. The control simulation 
is used to estimate host-only parameters. The corresponding initial microbial and free 
virus densities are presented in Table 3. We simulate three experimental replicates by 
sampling the dynamics at 10 equally spaced time points and adding measurement noise 
according to a normal distribution with mean equal to 0 and standard deviation of 20% 
constrained to non-negative numbers. The standard deviation value was chosen from 
observations of experimental replicates (48).

Latent period distribution inference

We use a computational framework to estimate latent period distributions from host and 
free virus temporal dynamics data by fitting to our population model of lytic infections 
(equation 1). Our framework predicts all host and viral-associated parameters comprised 
in the model, i.e., host growth rate (μ), carrying capacity (K), adsorption rate (ϕ), burst 
size (β), and latent period distribution-associated parameters (T and CV). The framework 
is comprised of two main steps: (i) a likelihood function to narrow the search space of 
parameters and (ii) a MCMC search with prior distributions informed by the likelihood 
function in step i.

TABLE 2 Model parameter values for one-step growth curves and multi-cycle response curvesa

Value Unit

Parameter

  μ, growth rate 0.025 h−1

  K, carrying capacity 1 × 109 CFU/mL

  ϕ, adsorption rate 4 × 10−9 mL/(CFU × h)

  β, burst size 100

  η, lysis rate b h−1

  CV, coefficient of variation b

Initial condition

  S0, initial microbial density 108 CFU/mL

  V0, initial free virus density 106 PFU/mL
aWe simulate one-step growth curves and the corresponding multi-cycle response curves in Fig. 4 and 5 using the 
parameter set and initial conditions specified here and obtained from reference 39. The CV and lysis rate (η) for 
each simulation are specified in the corresponding figure. The lysis rate is represented as the inverse of the mean 
latent period (η = 1/T).
bValue specified in the corresponding section.

TABLE 3 Model parameter values for three distinct microbe–virus pairsa

Value for:

UnitE. coli and λ P. marinus and P-HM2 cyanophage E. hux and EhV

Parameter

  μ, growth rate 1.2 0.035 0.015 (49) h−1

  K, carrying capacity 1 × 108 3 × 109 1 × 109 CFU/mL

  ϕ, adsorption rate 1 × 10−8 9.3 × 10−10 1.5 × 10−7 (50) mL/(CFU × h)

  β, burst size 200 40 800 (51)

  η, lysis rate 1 0.2 0.1667 (51) h−1

Initial condition

  S0, initial microbial density 105 108 105 CFU/mL

  V0, initial free virus density 103 106 103 PFU/mL
aWe simulate host and free virus temporal data using biologically relevant parameter values of three different microbe–virus pairs. Parameter values were recovered from 
reference 7 for the E. coli and λ and from reference 40 for the Prochlorococcus and P-HM2 cyanophage. References for Emiliania huxleyi and EhV parameters are shown next 
to the corresponding value.
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In step i, rough parameter ranges are found using a grid search for the maximum 
likelihood parameter combination from a range of biologically plausible parameter 
values (52). In step ii, we implement MCMC using the Turing package in Julia (53) 
and inform prior distributions using the predictions obtained in step i. The resulting 
posteriors are then used as priors for a second round of MCMC. Details on the prior 
distributions and convergence analysis can be found in the supplemental information. 
We obtain 95% confidence intervals by sampling the MCMC posterior distributions. We 
test our framework by fitting data generated with added noise, as explained above, for 
which the underlying latent period distribution is known.
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