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Shape optimization under constraints on the probability of a quadratic functional
to exceed a given threshold

Marc Dambrine∗ , Giulio Gargantini∗ † , Helmut Harbrecht‡ , and Jérôme Maynadier†

Abstract. This article is dedicated to shape optimization of elastic materials under random loadings where
the particular focus is on the minimization of failure probabilities. Our approach relies on the fact
that the area of integration is an ellipsoid in the high-dimensional parameter space when the shape
functional of interest is quadratic. We derive the respective expressions for the shape functional
and the related shape gradient. As showcase for the numerical implementation, we assume that the
random loading of the state equation under consideration is a Gaussian random field. By exploiting
the specialities of this setting, we derive an efficient shape optimization algorithm. Numerical results
in three spatial dimensions validate the feasibility of our approach.
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1. Introduction. In recent decades, shape optimization has been developed as an efficient
tool for designing devices optimized for a specific purpose. Many practical problems in engi-
neering lead to boundary value problems for an unknown function that must be computed to
obtain a desired quantity of interest. In structural mechanics, for example, the equations of
linear elasticity form the common model, which are then solved to compute the leading mode
of a structure, its compliance, or other quantities of interest. Shape optimization is then ap-
plied to optimize the workpiece under consideration with respect to this objective functional.
We refer the reader to [1, 20, 31, 44, 53] and the references therein for an overview on the
topic of shape optimization, which is a subfield of the optimal control of partial differential
equations.

The input parameters of the model, like the applied loadings, the material’s properties
(typically the value of the Young modulus or of the Poisson ratio), or the geometry of the
involved shape itself are usually assumed to be perfectly known. Although this assumption
is convenient for the analysis of shape optimization problems, it is unrealistic with regard
to applications. In practice, a manufactured component achieves its nominal geometry only
up to a tolerance, the material parameters never match the requirements perfectly, and the
applied forces can only be estimated. Therefore, shape optimization under uncertainty is of
great practical interest but started only recently to be investigated, see e.g. [2, 8, 11, 12, 13,
14, 22, 37, 50] for related results.

In this article, we are interested in the solution of a constrained shape optimization problem
on a set of mechanical structures subject to a random mechanical loading g = g(ω). Thus,
also the state u becomes a random field, i.e. u = u(ω). The cost functional H (Ω,g) under
consideration is supposed to depend quadratically on the state u (and thus quadratically on g),
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that covers important functionals such as the compliance or the square norm of the von Mises
stress. The objective is the identification of the structure Ω with the smallest volume for which
the probability of failure P [H (Ω,g) > τ ] does not exceed a prescribed threshold. This type
of functional is known as chance constraints or probabilistic constraints in the literature (see
[30, 45, 51] for further information). Structure optimization problems under chance constraints
are also known as Reliability-Based Topology Optimization (RBTO) problems, cf. [10, 26].

The shape optimization problem under study is known to be computationally hard as the
probability of failure defines a quantity of interest that is not smooth with respect to the
random parameter ω. Multiple approaches to this problems have been proposed in the recent
years. The authors of [4, 33, 35, 43] employ a density-based approach to represent the structure
to be optimized, and estimate the probability of failure using a First or a Second Order
Reliability Method [28]. In [34, 42], a polynomial chaos is used to estimate the probability
of failure and to compute its sensitivity with respect to a set of parameters characterizing
the structure. A different technique is proposed in [2, 11], where RBTO problems have been
tackled by approximating the non-smooth functional by a smooth one. In contrast, in the
present setting of a quadratic shape functional, we will show that the region whereH (Ω,g) > τ
holds is the exterior of an ellipsoid with respect to the stochastic parameter ω. We will exploit
this fact in order (i) to compute the shape derivative of the problem under consideration and
(ii) to derive an efficient, deterministic shape optimization algorithm.

The rest of this article is structured as follows. In Section 2, we introduce the model
problem and compute the shape functional and its shape gradient. Section 3 is then dedicated
to our showcase, where we suppose that the loading g = g(ω) is a Gaussian random field.
We develop a suitable quadrature formula that can be used to numerically compute the shape
functional and the associated shape gradient. Then, in Section 4, we present numerical results
in three spatial dimensions in order to demonstrate the feasibility of the present approach.
Finally, in Section 5, we state concluding remarks.

2. The shape optimization problem.

2.1. Problem statement. Let us consider a family of Lipschitz continuous admissible
domains Sadm in Rd (for d = 2 or 3) with fixed boundary portions ΓN and ΓD, which we
suppose to be disjoint. For each Ω ∈ Sadm, we denote Γ0 = ∂Ω \ (ΓN ∪ ΓD) the optimizable
portion of the boundary. We suppose that the structure to be optimized is made up of a linear
elastic material, characterized by the Lamé parameters λ and µ, and is clamped on ΓD.

Let further (O,F ,P) be a probability space, where F ⊂ 2O is a σ-algebra on O and P is a
probability measure. A random mechanical load g ∈ L2

(
O,P; H−1/2 (ΓN)

)
is applied on the

portion ΓN of the boundary. In particular, we suppose that g can be written in terms of a
deterministic term g0 and a finite number N of random terms in accordance with

(2.1) g(ω) = g0 + g1X1(ω) + . . .+ gNXN (ω) for almost all ω ∈ O,

whereX1, . . . , XN ∈ L2 (O,P;R) are independent, real-valued random variables, and g0, . . . ,gN ∈
H−1/2 (ΓN). Then, for almost any event ω ∈ O, the displacement uΩ,g(ω) ∈ H1 (Ω) is the so-
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lution of the following linear elasticity system:

(2.2)


−div σ (uΩ,g(ω)) = 0 in Ω,

σ (uΩ,g(ω))n = 0 on Γ0,

σ (uΩ,g(ω))n = g(ω) on ΓN,

uΩ,g(ω) = 0 on ΓD.

Here, for any displacement u ∈ H1 (Ω), ϵ (u) = (∇u+∇uT)/2 is the infinitesimal strain tensor
and σ (u) = 2µϵ (u) + λ Idiv (u) identifies the Cauchy stress tensor.

Throughout this article, we consider the shape optimization problem

(2.3)

∣∣∣∣∣∣∣∣
Find the admissible shape Ω ∈ Sadm minimizing Vol (Ω)

under the constraint P
[
⟨uΩ,g, QuΩ,g⟩H1(Ω) > τ

]
≤ p̄,

where the state uΩ,g(ω)satisfies the state equation (2.2) for almost all ω ∈ O.

Note that the safety criterion H (Ω,g) is supposed to be a quadratic functional of the displace-
ment uΩ,g. As we intend to adopt the moving boundary approach developed by Hadamard
in order to solve this shape optimization problem (see e.g. [1, 53, 31]), we require that, for
any g ∈ H−1/2 (ΓN), the mapping Ω 7→ H (Ω,g) is differentiable with respect to the shape
(we refer to [31, Chapter 5] for the complete definition of differentiability with respect to a
moving domain).

2.2. Properties of the safety criterion. We shall highlight the dependency of the con-

straint P
[
⟨uΩ,g, QuΩ,g⟩H1(Ω) > τ

]
from the random variables X1, . . . , XN appearing in the

definition (2.1) of the mechanical load. For all i ∈ {0, . . . , N}, we define the displacement
uΩ,i ∈ H1 (Ω) as the solution of the following deterministic elasticity problem:

−div σ (uΩ,i) = 0 in Ω,

σ (uΩ,i)n = 0 on Γ0,

σ (uΩ,i)n = gi on ΓN,

uΩ,i = 0 on ΓD.

Thanks to the linearity of the state equation (2.2), the random displacement uΩ,g ∈ L2
(
O,P; H1 (Ω)

)
can be written as a sum of N terms, depending on the same random variables as in (2.1):

(2.4) uΩ,g(ω) = uΩ,0 + uΩ,1X1(ω) + . . .+ uΩ,NXN (ω) for almost all ω ∈ O.

Since the safety functional is quadratic with respect to the displacement, we can express it
as a quadratic function ΨΩ : RN → R of the random vectorX = (X1, . . . , XN ) ∈ L2

(
O,P;RN

)
in accordance with

(2.5) H (Ω,g(ω)) = ΨΩ (X(ω)) = X(ω)TMΩX(ω) + 2bΩ
TX(ω) + cΩ

for almost all ω ∈ O. The symmetric matrix MΩ ∈ SymN ⊂ RN×N , the vector bΩ ∈ RN , and
the scalar cΩ are functions of the displacements uΩ,0, . . . ,uΩ,N , and are defined as
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• [MΩ]i,j = ⟨uΩ,i, QuΩ,j⟩H1(Ω) for all i, j ∈ {1, . . . , N};
• [bΩ]k = ⟨uΩ,0, QuΩ,k⟩H1(Ω) for all k ∈ {1, . . . , N};
• cΩ = ⟨uΩ,0, QuΩ,0⟩H1(Ω).

Since Q is a self-adjoint positive definite operator, the matrix MΩ is symmetric, having N
eigenvalues λΩ,1, . . . , λΩ,N that are real and strictly positive.

Let us consider the (deterministic) subset E (ΨΩ, τ) of RN containing all the realizations
of the random vector X for which the constraint is satisfied:

(2.6) E (ΨΩ, τ) =
{
x ∈ RN : ΨΩ (x) ≤ τ

}
.

We denote by τ̃Ω the following quantity:

(2.7) τ̃Ω = τ −
(
cΩ − bΩ

TMΩ
−1bΩ

)
.

Given the properties of the quadratic function ΨΩ and assuming that τ̃Ω > 0, we recognize
that E (ΨΩ, τ) is an ellipsoid in RN , centered in −MΩ

−1bΩ, and whose semi-axes are oriented
as the eigenvectors of MΩ and have length rΩ,τ

1 , . . . , rΩ,τ
N :

(2.8) rΩ,τ
i =

√
τ̃Ω/λΩ,i for all i ∈ {1, . . . , N}.

However, if τ̃Ω < 0, we have that E (ΨΩ, τ) = ∅, and the constraint cannot be satisfied if p̄ < 1.
For the sake of clarity, we introduce the shape functional Φ : Sadm → R defined as the

probability of the constraint to be satisfied:

Φ (Ω) = P [H (Ω,g) ≤ τ ] = 1− P [H (Ω,g) > τ ].

The inequality constraint in problem (2.3) can be written alternatively as Φ (Ω) ≥ 1 − p̄.
Especially, Φ (Ω) can be expressed by means of the probability for the random vector X to
belong to the ellipsoid E (ΨΩ, τ)

Φ (Ω) = P [ΨΩ (X) ≤ τ ] = P [X ∈ E (ΨΩ, τ)].

Therefore, Φ (Ω) can be interpreted as the volume of the ellipsoid E (ΨΩ, τ) with respect to
the probability measure PX induced by the random variable X:

(2.9) Φ (Ω) = P [X ∈ E (ΨΩ, τ)] = PX (E (ΨΩ, τ)) =

∫
E(ΨΩ,τ)

1 dPX(x).

2.3. Sensitivity of the exceeding probability. In order to solve problem (2.3) using a
gradient-based optimization algorithm, we have to compute an expression for Φ (Ω) and for
its shape derivative d

dΩ [Φ (Ω)]. To this end, let us suppose that the random vector X admits a
probability density function f : RN → R+, such that f ∈ W1,1

(
RN
)
. Then, in view of (2.9),

the quantity Φ (Ω) can be written as:

(2.10) Φ (Ω) =

∫
E(ΨΩ,τ)

f(x) dx.
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Moreover, we suppose that all entries of MΩ and bΩ, as well as cΩ are differentiable with
respect to the shape, and we denote their shape derivatives by d

dΩMΩ,
d
dΩbΩ, and d

dΩcΩ,
respectively.

We recognize in (2.10) the expression of the integral of a fixed function over a variable
domain E (ΨΩ, τ). Let ξ ∈ W1,∞ (RN ;RN

)
be a Lipschitz continuous deformation field in RN .

Then, we can compute the derivative of the mapping ξ 7→ P [X ∈ (I+ ξ)E (ΨΩ, τ)] thanks to
the usual shape differentiation techniques (see [31, Eq. (5.24)]). Moreover, since E (ΨΩ, τ) is
an ellipsoid and supposing that ξ is also C1, we can apply Hadamard’s structure theorem (see
[31, Proposition 5.9.1]) and write

(2.11)
d

dξ̃
P
[
X ∈ (I+ ξ̃)E (ΨΩ, τ)

]∣∣∣∣
ξ̃=0

(ξ)=

∫
E(ΨΩ,τ)
div ξ(x) f(x)dx =

∫
∂E(ΨΩ,τ)

f(s)
(
ξ(s) · n(s)

)
ds.

Here, for all s ∈ ∂E (ΨΩ, τ), n(s) ∈ RN denotes the unitary vector orthogonal to ∂E (ΨΩ, τ)
in s.

Lemma 2.1. Let us consider an admissible domain Ω ∈ Sadm and a sufficiently regular
displacement field θ ∈ C1 ∩W1,∞ (Rd;Rd

)
for the domain Ω such that ∥θ∥∞ < 1. We denote

by ΞΩ,θ ∈ RN×N and rΩ,θ ∈ RN the matrix and the vector, respectively, defined as

ΞΩ,θ =
d
dΩ [τ̃Ω] (θ)

2τ̃Ω
I− 1

2
MΩ

−1 d

dΩ
[MΩ] (θ) ,(2.12)

rΩ,θ = −MΩ
−1 d

dΩ
[bΩ] (θ) +

(
d
dΩ [τ̃Ω] (θ)

2τ̃Ω
I+

1

2
MΩ

−1 d

dΩ
[MΩ] (θ)

)
MΩ

−1bΩ,(2.13)

where d
dΩ [τ̃Ω] (θ) has the expression

(2.14)
d

dΩ
[τ̃Ω] (θ) = − d

dΩ
[cΩ] (θ)−MΩ

−1 d

dΩ
[MΩ] (θ)MΩ

−1bΩ +MΩ
−1 d

dΩ
[bΩ] (θ) .

Then, ξθ : x 7→ ΞΩ,θ x+ rΩ,θ is a C1 Lipschitz continuous displacement field on RN such that
the shape derivative of Φ in Ω can be written in its volumic and surface forms as

(2.15)
d

dΩ
[Φ (Ω)] (θ) =

∫
E(ΨΩ,τ)
div

(
f(x)ξθ(x)

)
dx =

∫
∂E(ΨΩ,τ)

f(s)
(
ξθ(s) · n(s)

)
ds.

Proof. Let δ > 0 be such that τ̃(I+tθ)Ω > 0 for any t ∈ [0, δ]. We consider the following
dynamical system:

(2.16)

{
ẋ(t; x̄) = Ξ(I+tθ)Ω,θx(t; x̄) + r(I+tθ)Ω,θ for t ∈ [0, δ], x̄ ∈ RN ,

x(0; x̄) = x̄ for x̄ ∈ RN .

We set

y(t, θ, x̄) := x(t; x̄) +M(I+tθ)Ω
−1b(I+tθ)Ω
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and remark that the quantity defined as

F(I+tθ)Ω

(
y(t, θ, x̄)

)
=

y(t, θ, x̄)TM(I+tθ)Ωy(t, θ, x̄)

τ̃(I+tθ)Ω

is constant along the trajectories. Indeed, using the expressions (2.12), (2.13), and (2.16),
there holds

d

dt
F(I+tθ)Ω

(
y(t, θ, x̄)

)
= τ̃−2

(I+tθ)Ω

[
− d

dΩ

[
τ̃(I+tθ)Ω

]
(θ) y(t, θ, x̄)TM(I+tθ)Ωy(t, θ, x̄)

+ τ̃(I+tθ)Ω

(
y(t, θ, x̄)T

d

dt
M(I+tθ)Ωy(t, θ, x̄) + 2y(t, θ, x̄)T

×
(
M(I+tθ)Ωẋ(t; x̄)−

d

dt
M(I+tθ)ΩM(I+tθ)Ω

−1b(I+tθ)Ω +
d

dt
b(I+tθ)Ω

))]
= 0.

Moreover, for any t ∈ [1, δ], the inequality F(I+tθ)Ω(x) ≤ 1 defines the same ellipsoid E
(
Ψ(I+tθ)Ω, τ

)
as the inequality Ψ(I+tθ)Ω(x) ≤ τ . Therefore, the deformation x 7→ (I+ Ft)x gives the iden-

tity E
(
Ψ(I+tθ)Ω, τ

)
= (I+ Ft)E (ΨΩ, τ), where Ft : RN → RN is defined as Ft x =

∫ t
0 ẋ(s;x)ds

for t ∈ [0, δ].
We recall that, for any differentiable shape functional F and Lipschitz continuous domain

D ∈ RN , we have

(2.17)
d

dt
F
(
D ◦

(
I+ ξ(t)

))∣∣∣∣
t=0

=
d

dD
F (D)

(
ξ′(0)

)
,

provided that ξ : [0, δ] → W1,∞ (RN ;RN
)
is a differentiable mapping that vanishes in t = 0.

Therefore, since d
dtFt

∣∣
t=0

= ẋ(0,x) = ΞΩ,θx+ rΩ,θ = ξθ(x), we conclude that

d

dΩ
[Φ (Ω)] (θ) =

d

dt
Φ ((I+ tθ)Ω)

∣∣∣∣
t=0

=
d

dt

∫
E(Ψ(I+tθ)Ω,τ)

f(x)dx

∣∣∣∣
t=0

=
d

dt

∫
(I+Ft)E(ΨΩ,τ)

f(x) dx

∣∣∣∣
t=0

=

∫
E(ΨΩ,τ)
div

(
f(x) ξθ(x)

)
dx =

∫
∂E(ΨΩ,τ)
f(s)

(
n(s) · ξθ(s)

)
ds.

A first remark on the result of Lemma 2.1 is that, since ξθ(x) is a linear function of θ, the
expression we found is a Fréchet derivative of the functional Φ. A second observation concerns
the expression of the derivative as a surface integral on a variable ellipsoid. For numerical
reasons, it might be more interesting to reformulate the integral as one on a fixed domain.
Thus, we can use the volume expression of the shape derivative to write (2.15) as an integral
on the unit N -sphere SN−1, as is done in the following proposition.

Proposition 2.2. Under the hypotheses of Lemma 2.1, the shape derivative of the functional
Φ in Ω can be written as an integral on the unit N -sphere SN−1 in accordance with

(2.18)
d

dΩ
[Φ (Ω)] (θ) =

√
τ̃NΩ

detMΩ

∫
SN−1

f
(√

τ̃ΩMΩ
−1/2s−MΩ

−1bΩ

)
×
((

ΞΩ,θMΩ
−1/2s+

1√
τ̃Ω

(
rΩ,θ −ΞΩ,θMΩ

−1bΩ

))
·
(
MΩ

1/2s
))

ds.
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Proof. In order to prove (2.18), we consider the expression of the shape derivative given by
Lemma 2.1 and apply a change of variables mapping E (ΨΩ, τ) to the N -dimensional unit ball
BN such that y = 1√

τ̃Ω
MΩ

1/2
(
x+MΩ

−1bΩ

)
. We recall that, for any function f : RN → RN

that is C1 (A) in a given open subset A of RN , the expression of the divergence with respect
to the variable y is

div f(x) =
1√
τ̃Ω

divy

(
MΩ

1/2 f
(√

τ̃ΩMΩ
−1/2y −MΩ

−1bΩ

))
.

By considering the expression of the displacement field ξθ : RN → RN as ξθ(x) = ΞΩ,θ x+rΩ,θ,
where ΞΩ,θ and rΩ,θ are defined in (2.12) and (2.13), we get

(2.19)
d

dΩ
[Φ (Ω)] (θ) =

∫
E(ΨΩ,τ)

div
(
f(x) ξθ(x)

)
dx =

∫
E(ΨΩ,τ)

div (f(x) (ΞΩ,θ x+ rΩ,θ)) dx

=

√
τ̃NΩ

detMΩ

∫
BN

divy

((
f
(√

τ̃ΩMΩ
−1/2y −MΩ

−1bΩ

)
×MΩ

1/2

(
ΞΩ,θMΩ

−1/2y +
1√
τ̃Ω

(
rΩ,θ −ΞΩ,θMΩ

−1bΩ

))))
dy.

Observing that the normal vector on the unit sphere SN−1 in any point s coincides with the
vector s itself, the expression (2.19) can be written as an integral on the sphere ∂BN = SN−1

according to (2.18).

The expression of the derivative of Φ as found in Proposition 2.2 is valid only if the random
vector X admits a C1 density function fX in an open neighborhood of the ellipsoid E (ΨΩ, τ).
However, if the sensitivity of Φ is computed as part of a shape optimization procedure, such
assumption should be verified for all nmax shapes obtained during the execution of the algo-
rithm. Therefore, it is crucial that the density fX is C1 in an open subset of RN containing
all the ellipsoids corresponding to Ω0, . . . ,Ωnmax .

The expression (2.18) can be reformulated in order to highlight the terms depending on
the argument θ of the shape derivative. We denote by {e1, . . . , eN} the canonical basis of RN ,
and we consider a basis

{
Bi,j

}
0≤i≤j≤N

for the space of N ×N symmetric matrices such that

[
Bi,j

]
k,ℓ

=


βi,j , if k = i, ℓ = j,

βi,j , if k = j, ℓ = i,

0, otherwise,

βi,j =

{
1, if i = j,

1/
√
2, if i ̸= j.
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Thus, the shape derivative of Φ in Ω becomes

(2.20)
d

dΩ
[Φ (Ω)] (θ) =

∑
1≤i≤j≤N

((
MΩ

1/2ΞΩ,θMΩ
−1/2

)
: Bi,j

×
∫
SN−1

√
τ̃NΩ

detMΩ
f
(√

τ̃ΩMΩ
−1/2s−MΩ

−1bΩ

)
sisj ds

)

+
N∑
k=1

(rΩ,θ −ΞΩ,θMΩ
−1bΩ

)
·ek
∫
SN−1

√
τ̃N−1
Ω f

(√
τ̃ΩMΩ

−1/2s−MΩ
−1bΩ

)
sk

√
detMΩ

ds

 .

The expression (2.20) of the shape derivative of Φ (Ω) requires the computation of all the
entries of ΞΩ,θ and rΩ,θ (which are functions of d

dΩ [MΩ] (θ),
d
dΩ [bΩ] (θ), and

d
dΩ [cΩ] (θ)), as

well as N(N+3)/2 integrals on SN−1. The evaluation of said integrals can be done by applying
suitable quadrature formulas on SN−1, which of course might be quite expensive if the number
N of random variables is large. An alternative approach which applies to Gaussian random
fields is proposed in the next section.

3. The generalized noncentral chi-squared distribution.

3.1. Series expansion of the cumulative distribution function. Let us consider a Gauss-
ian random vector Y ∼ N (µ, I) with N components, mean µ and covariance matrix equal to
the identity, and let D = diag {λ1, . . . , λN} be a positive definite diagonal matrix. Let T be
the random variable defined as follows:

(3.1) T = YT D Y = λ1Y
2
1 + . . .+ λNY 2

N .

In such a case, each random variable Y 2
i follows a noncentral chi-squared distribution with

one degree of freedom and non-centrality parameter µ2
i . The random variable T is said to

follow a generalized non-central chi-squared distribution

(3.2) T ∼ χ̃2 (1;µ⊙ µ;λ),

where 1 = [1, . . . , 1] is the vector of the degrees of freedom, µ ⊙ µ = [µ2
1, . . . , µ

2
N ] is the

vector of noncentrality parameters (the symbol ”⊙” represents the elementwise product), and
λ = diag {D} is the vector of the weights of the random variables Y 1, . . . , Y N .

The characterization of the cumulative distribution function FT of the random variable
T has been studied analytically in [46, 47]. The results of these articles have led to the
development of several algorithms for the numerical computation of the quantiles of T . Se-
quential methods that provide an estimate for the truncation error include the algorithms
developed by Imhof [32], Davies [18, 19], and Farebrother [23], who refined the result obtained
by Sheil and O’Muircheartaigh in [52]. If the number N of random variables is large, faster
but less accurate approximations should be considered. Among such techniques we mention
Kuonen’s method [36], which is based on a saddlepoint approximation of the distribution of
T , the approach based on the leading eigenvalues developed by Lumley et al. in [40], and
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the several approaches based on the computation of the stochastic moments of the random
variable T like the methods developed by Liu–Tang–Zhang [39], Satterthwaite–Welch [49],
Hall-Buckley–Eagleson [6, 27], and Lindsay–Pilla–Basak [38]. Further information on the
comparison between the different methods can be found in [5, 9, 21].

In this section, we present the results of Ruben [47] where, for any threshold τ > 0, the
quantity FT (τ) is expressed in terms of a series of cumulative distribution functions of centered
chi-squared random variables (see [47, Theorem 1]). The coefficients of the decomposition are
defined by a recurrence relation. Moreover, an upper bound on the truncation error of the
series is provided.

Theorem 3.1 (Decomposition of FT (τ) by chi-squared random variables). Let T be a real-
valued random variable defined as in (3.1). Then, for any choice of β > 0, the quantity
FT (τ) = P [T ≤ τ ] can be expressed as

(3.3) FT (τ) =
∞∑
k=0

γkFχ2(2k+N)

(
τ

β

)
.

The weights {γk}∞k=0 are computed by using the recurrence relation

(3.4) γ0 = e−
1
2
∥µ∥2βN/2 det (D)−1/2 and γk =

1

2k

k−1∑
ℓ=0

gk−ℓγℓ for k ≥ 1,

where the coefficients {gk}∞k=1 are defined in accordance with

(3.5) gk =
N∑
i=1

(
1− β

λi

)k−1(
1 + (kµ2

i − 1)
β

λi

)
.

In particular, if 0 < β < min {λ1, . . . , λN}, the series (3.3) is a mixture representation,
meaning that all coefficients γk are non-negative and

∑∞
k=0 γk = 1.

This result is stated and proven in [47, Theorem 1], while the condition of the mixture
representation is stated in [47, Section 5]. Note that [47] provides also an explicit expression
for the coefficients {γk}∞k=0 which can be used to prove the uniform convergence of the series
(3.3) for any choice of β > 0 and for any finite value of the threshold 0 ≤ τ < ∞. Analogous
results apply also to the probability density function of T .

Corollary 3.2. If 0 < β < min {λ1, . . . , λN}, for any τ > 0, the following expression for the
probability density function of T holds:

fT (τ) =
1

β

∞∑
k=0

γkfχ2(2k+N)

(
τ

β

)
.

If the mixture representation assumption is verified (that is, if the positive parameter β is
strictly smaller than min {λ1, . . . , λN}), it is possible to establish the following upper bound
on the truncation error of the series (3.3).
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Proposition 3.3. If 0 < β < min {λ1, . . . , λN} and the hypotheses of Theorem 3.1 hold,
then

(3.6)

∣∣∣∣∣FT (τ)−
n∑

k=0

γkFχ2(2k+N)

(
τ

β

)∣∣∣∣∣ ≤
(
1−

n∑
k=0

γk

)
Fχ2(2n+2+N)

(
τ

β

)
for all 0 < τ < ∞ and any positive integer n.

Proof. One readily verifies that Fχ2(m) (τ) < Fχ2(n) (τ) for any pair of integers m > n and

any τ > 0 fixed. Therefore, the sequence
{
Fχ2(2k+N+2)

(
τ
β

)}∞

k=0
is decreasing whenever τ/β

is fixed. Thus, we conclude∣∣∣∣∣FT (τ)−
n∑

k=0

γkFχ2(2k+N)

(
τ

β

)∣∣∣∣∣ =
∣∣∣∣∣

∞∑
k=n+1

γkFχ2(2k+N)

(
τ

β

)∣∣∣∣∣
≤ Fχ2(2n+N+2)

(
τ

β

) ∞∑
k=n+1

γk =

(
1−

n∑
k=0

γk

)
Fχ2(2n+2+N)

(
τ

β

)
.

3.2. Differentiating the probability of a quadratic form to exceed a threshold. Let τ
be a positive constant and let us consider the following mappings:

• M : [0, δ] → SymN associating to any t ∈ [0, δ] a positive definite symmetric matrix;
• b : [0, δ] → RN ;
• c : [0, δ] → R.

We assume that these three functions are all C1, and further denote by Ψt the quadratic form

(3.7) Ψt : x 7→ xTM(t)x+ 2b(t)Tx+ c(t)

defined on RN . We especially suppose that, for all t ∈ [0, δ] and x ∈ RN , Ψt(x) > 0 and
τ > c(t)− bT(t)M−1(t)b(t) = Ψt

(
−M−1(t)b(t)

)
.

Let X ∼ N (h, I) be a Gaussian random vector, where h ∈ RN is constant and I is
the N × N identity matrix. We are interested in differentiating the cumulative distribution
function of the random variable Ψt(X) with respect to the parameter t. In order to do so, we
prove the following lemma about the derivative of the cumulative distribution function of a

generalized χ̃2 random variable.

Lemma 3.4. Let us consider two C1 vector-valued functions µ,λ : [0, δ] → RN such that, for
all t ∈ [0, δ], all components of λ(t) are strictly larger than a positive constant β independent
from t. For all t ∈ [0, δ], let T (t) be a random variable with the following generalized chi-
squared distribution:

(3.8) T (t) ∼ χ̃2 (1;µ(t)⊙ µ(t);λ(t)).

Due to Theorem 3.1, its cumulative distribution function evaluated in τ can be expressed as

(3.9) FT (t) (τ) =
∞∑
k=0

γk(t)Fχ2(2k+N)

(
τ

β

)
.
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Then, the coefficients γk(t) of the respective cumulative distribution function (3.3) evalu-
ated in τ are differentiable with respect to t for all t ∈ [0, δ] and all k ∈ N, and their derivative
is

γ′k(t) = λ′(t) · pk + µ′(t) · qk.

Herein, the terms pk = [pk1, . . . , p
k
N ]T and qk = [qk1 , . . . , q

k
N ]Tare defined as follows for any

j ∈ {1, . . . , N} and k ≥ 0:
• p0j = − γ0

2λj
and pkj = 1

2k

∑k−1
ℓ=0

(
νk−ℓ
j γℓ + pℓjgk−ℓ

)
for k ≥ 1;

• q0j = 0 and qkj = 1
2k

∑k−1
ℓ=0

(
κk−ℓ
j γℓ + qℓjgk−ℓ

)
for k ≥ 1;

• ν1j = β
λ2
j

(
1−µ2

j

)
and νkj = β

λ2
j

(
1− β

λj

)k−2[
(k− 1)

(
1+ β

λj
(kµ2

j − 1)
)
+
(
1− β

λj

)
(1−kµ2

j )
]

for k > 1;

• κkj = 2kµj
β
λj

(
1− β

λj

)k−1
for k ≥ 1.

Proof. According to Theorem 3.1, the coefficients γk are defined as in (3.4), where the
coefficients gk are given by

(3.10) gk =
N∑
j=1

(
1− β

λj

)k−1(
1 + (kµj(t)

2 − 1)
β

λj(t)

)
.

Differentiating (3.10), we obtain

g′1(t) =
N∑
j=1

(
2
hiβ

λj
µ′
j(t)− (h2j − 1)

β

λ2
j

λ′
j(t)

)
=

N∑
j=1

(
κ1jµ

′
j(t) + ν1j λ

′
j(t)
)

and for k > 1

g′k(t) =
N∑
j=1

[(
1− β

λj

)k−2
(
(k − 1)

β

λ2
j

(
1 + (kµ2

j − 1)
β

λj

))
λ′
j(t)

+

(
1− β

λj

)k−1(
2k

µjβ

λj
µ′
j(t)−

(
(kµ2

j − 1)
β

λj(t)2

)
λ′
j(t)

)]
=

N∑
j=1

(
κkjµ

′
j(t) + νkj λ

′
j(t)
)
.

The assertion follows by differentiating the definitions of γk, found in (3.4), and using the
expression above for the derivatives of gk.

Proposition 3.5. Let Ψt : RN → R be defined as in (3.7) for t ∈ [0, δ], let X ∼ N (h, I)
be a Gaussian random vector, and let τ be a positive constant. We assume that τ > c(t) −
bT(t)M−1(t)b(t) holds for all t ∈ [0, δ], and that all eigenvalues of M(t) λ1(t), . . . , λN (t) are
pairwise distinct and larger than a strictly positive constant β > 0. We introduce the following
notation:

• Y(t) ∈ L2 (O,P)N is the random variable defined as Y(t) = X+M−1(t)b(t), so that
its law is Y(t) ∼ N

(
h+M−1(t)b(t), I

)
;

• T : [0, δ] → R is the random variable T (t) = YT(t)M(t)Y(t);



12 M. DAMBRINE, G. GARGANTINI, H. HARBRECHT, AND J. MAYNADIER

• τ̃ : [0, δ] → R is the mapping t 7→ τ − c(t) + b(t)TM−1(t) + b(t);
• M(t) is diagonalized as M(t) = Q(t)D(t)QT(t), where Q(t) = [v1|, . . . , |vN ] is an

orthogonal matrix and D(t) = diag {λ(t)} = diag {λ1(t), . . . , λN (t)};
• µ : [0, δ] → RN is such that µ(t) = QT(t)h+QT(t)M−1(t)b(t).

Then, for any t ∈ [0, δ], Y(t) is a normalized Gaussian random variable centered in µ(t),
while T (t) has the following chi-squared distribution:

(3.11) T (t) ∼ χ̃2 (1;µ(t)⊙ µ(t);λ).

Moreover, for all t ∈ [0, δ], the following identity between the values of the cumulative distri-
bution functions of Ψt(X) and T (t) holds:

(3.12) FΨt(X) (τ) = FT (t) (τ̃(t)).

Finally, the mapping t 7→ FΨt(X) (τ) is differentiable and its derivative is written as

(3.13)
d

dt
FΨt(X) (τ) =

( ∞∑
k=0

pkFχ2(2k+N)

(
τ̃(t)

β

))
· λ′(t)

+

( ∞∑
k=0

qkFχ2(2k+N)

(
τ̃(t)

β

))
· µ′(t) +

1

β

( ∞∑
k=0

γkfχ2(2k+N)

(
τ̃(t)

β

))
τ̃ ′(t).

Here fχ2(n) is the density of a chi-squared random variable with n degrees of freedom. The

components of pk and qk are the coefficients in the decomposition of FT (t) (τ̃(t)) expressed as
in Lemma 3.4, and the derivatives of λ, µ, and τ̃ are:

λ′(t) = diag
{
QT(t)M′(t)Q(t)

}
;(3.14)

µ′
i(t) =

∑
j ̸=i

(
1

λi(t)− λj(t)

(
vi(t)TM′(t)vj(t)

) (
vj(t)T

(
h+M−1(t)b(t)

)))
(3.15)

+ vi(t)T
(
M−1(t)b′(t) +M−1(t)M′(t)M−1(t)b(t)

)
(3.16)

for all i ∈ {1, . . . , N};

τ̃ ′(t) = − d

dt
c(t)− bT(t)M−1(t)M′(t)M−1(t)b(t) + 2bT(t)M−1(t)b′(t).(3.17)

Proof. The identity (3.12) follows from

FΨt(X) (τ) = P [Ψt(X) ≤ τ ] = P
[
XTM(t)X+ 2b(t)TX+ c(t) ≤ τ

]
= P

[(
X+M−1(t)b(t)

)T
M(t)

(
X+M−1(t)b(t)

)
≤ τ − c(t) + b(t)TM−1(t) + b(t)

]
= P [T (t) ≤ τ̃(t)] = FT (t) (τ̃(t)).

We prove next the differentiability of λ, µ, and τ̃ and equations (3.14), (3.15), and (3.17).
Equation (3.14) is deduced directly from [41, Eq. (4)]. Equation (3.15) can be proven by
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using [41, Eq. (5)] on the derivative of the eigenvector of a symmetric matrix with distinct
eigenvalues

vi′(t) =
(
λiI−M(t)

)+
M′(t)vi(t) =

∑
j ̸=i

1

λi − λj

(
vjTM′(t)vi

)
vj ,

where the symbol ”+” denotes the Moore-Penrose inverse. Indeed, using the properties of the
Moore-Penrose inverse, we arrive at(

λiI−M(t)
)+

=
(
Q(t) (λi(t)I−D(t))Q(t)T

)+
= Q(t) diag

{
di(t)

}
Q(t)T.

Herein, for all i, j ∈ {1, . . . , N}, we have di(t) = [di1(t), . . . , d
i
N (t)]T with dii = 0 and dij =

1
λi(t)−λj(t)

if i ̸= j. Since µi(t) = viTM−1(t)b(t) for all 1 ≤ i ≤ N , we deduce

µ′
i(t) = vi′(t)TM−1(t)b(t) + vi(t)TM−1(t)M′(t)M−1(t)b(t)M−1(t)b′(t),

which is equivalent to (3.15). Next, Equation (3.17) can be computed directly by applying
the chain rule on the definition (3.17) of τ̃ .

Finally, in order to prove the expression (3.13) of the derivative of FΨt(T ) (τ), we consider
the identity (3.12) and the result of Theorem 3.1 to write

FΨt(X) (τ) = FT (t) (τ̃(t)) =
∞∑
k=0

γk(t)Fχ2(2k+N)

(
τ̃(t)

β

)
.

By differentiating both sides with respect to t, we obtain

(3.18)
d

dt
FΨt(X) (τ) =

∂

∂t1
FT (t1) (τ̃(t))

∣∣∣∣
t1=t

+
∂

∂t2
FT (t) (τ̃(t2))

∣∣∣∣
t2=t

.

We treat the two terms on the right-hand side of (3.18) separately.
In order to evaluate the first term, we aim to prove the uniform convergence of the series∑∞

k=0 p
k · λ′(t)Fχ2(2k+N)

(
τ̃(t)
β

)
and

∑∞
k=0 q

k · µ′(t)Fχ2(2k+N)

(
τ̃(t)
β

)
. We start to prove by

induction the inequalities

(3.19)
∣∣∣pkj ∣∣∣ ≤ ηkγk and

∣∣∣qkj ∣∣∣ ≤ ζkγk for all j ∈ {1, . . . , N}, k ≥ 0,

where ηk and ζk are defined for k ≥ 0 as

(3.20)

ηk = max
i∈{1,...,N}

{
1

2λi

}
+

k(k + 1)

2
max

i∈{1,...,N}

 β(h2i + 3)

λ2
i

(
1− β

λi

)
 ,

ζk =
k(k + 1)

2
max

i∈{1,...,N}

 2β |hi|

λ2
i

(
1− β

λi

)
 .
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For k = 0, the inequalities in (3.19) are satisfied. Let us suppose that they are valid for
the step k − 1 and prove that they hold for the step k. Thanks to the fact that 0 < β <
min {λ1, . . . , λN}, we have that, for all k ≥ 1,

∣∣∣νkj ∣∣∣ ≤ β

λ2
j

(k − 1)(
1− β

λj

) (1− β

λj

)k−1
(
1 + (kh2j − 1)

β

λ2
j

)
+

β

λ2
j

(
1− β

λj

)k−1 ∣∣kh2j − 1
∣∣

≤ β

λ2
j

gk

 k − 1(
1− β

λj

) +

∣∣∣kh2j − 1
∣∣∣(

1− β
λj

+ β
λj
kh2j

)
 ≤ β

λ2
j

gk
k − 1 +

∣∣∣1− kh2j

∣∣∣(
1− β

λj

)
≤ kgkβ max

i∈{1,...,N}

1 + hi
2 + 2/k

λ2
i

(
1− β

λi

)
 ≤ kgk max

i∈{1,...,N}

 β(hi
2 + 3)

λ2
i

(
1− β

λi

)
 ,

and

∣∣∣κkj ∣∣∣ ≤ 2k |hj |
β

λj

(
1− β

λj

)k−1

(
1 + (kh2j − 1) β

λ2
j

)
(
1− β

λ2
j
+ kh2j

β
λ2
j

)

≤ 2kgk |hj |β

λj

(
1− β

λj

) ≤ kgk max
i∈{1,...,N}

 2β |hi|

λi

(
1− β

λi

)
 .

In view of such upper bounds and since the sequences {ηk}∞k=0 and {ζk}∞k=0 defined in
(3.20) are strictly increasing, we arrive at

∣∣∣pkj ∣∣∣ =
∣∣∣∣∣ 12k

k−1∑
ℓ=0

(
νk−ℓ
j γℓ + pℓjgk−ℓ

)∣∣∣∣∣ ≤ 1

2k

k−1∑
ℓ=0

∣∣∣νk−ℓ
j

∣∣∣ γℓ + 1

2k

k−1∑
ℓ=0

∣∣∣pℓj∣∣∣ gk−ℓ

≤ max
i∈{1,...,N}

 β(hi
2 + 3)

λ2
i

(
1− β

λi

)
 1

2k

k−1∑
ℓ=0

(k − ℓ)gk−ℓγℓ +
1

2k

k−1∑
ℓ=0

ηℓγℓgk−ℓ

≤ max
i∈{1,...,N}

 β(hi
2 + 3)

λ2
i

(
1− β

λi

)
 k

2k

k−1∑
ℓ=0

gk−ℓγℓ +
1

2k
ηk−1

k−1∑
ℓ=0

γℓgk−ℓ

=

k max
i∈{1,...,N}

 β(hi
2 + 3)

λ2
i

(
1− β

λi

)
+ ηk−1

 γk = ηk γk
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and ∣∣∣qkj ∣∣∣ =
∣∣∣∣∣ 12k

k−1∑
ℓ=0

(
κk−ℓ
j γℓ + qℓjgk−ℓ

)∣∣∣∣∣ ≤ 1

2k

k−1∑
ℓ=0

∣∣∣κk−ℓ
j

∣∣∣ γℓ + 1

2k

k−1∑
ℓ=0

∣∣∣qℓj∣∣∣ gk−ℓ

≤ max
i∈{1,...,N}

 2β |hi|

λi

(
1− β

λi

)
 1

2k

k−1∑
ℓ=0

(k − ℓ)gk−ℓγℓ +
1

2k

k−1∑
ℓ=0

ζℓγℓgk−ℓ

≤ max
i∈{1,...,N}

 2β |hi|

λi

(
1− β

λi

)
 k

2k

k−1∑
ℓ=0

gk−ℓγℓ +
1

2k
ζk−1

k−1∑
ℓ=0

γℓgk−ℓ

=

k max
i∈{1,...,N}

 2β |hi|

λi

(
1− β

λi

)
+ ζk−1

 γk = ζk γk.

In order to prove the uniform convergence of the series of (3.19), we use two results from
[47]. The first one is presented as [47, Eq. (4.14)] and states that

(3.21) γk ≤ γ0
Γ
(
N
2 + k

)
Γ
(
N
2

) νk

k!

for any k ≥ 0, where α is a positive constant depending on β, λ(t), and µ(t). The second
result is [47, Lemma 4] and states that the series

(3.22)

∞∑
k=0

Γ
(
N
2 + k

)
Γ
(
N
2

) α̃k

k!
Fχ2(2k+N) (x)

is uniformly convergent (and therefore absolutely convergent) for any positive and finite α̃
and x̄ on the interval [−∞, x̄]. Thus, we can introduce the quantities ρ1, ρ2, σ1 and σ2 with
the property

(3.23) ηk ≤ ρ1σ
k
1 and ζk ≤ ρ2σ

k
2 for all k ≥ 0.

A suitable choice is given by

(3.24)

ρ1 = max
i∈{1,...,N}

{
1

2λi

}
, ρ2 = 1,

σ1 = max
i∈{1,...,N}

 β(h2i + 3)

λ2
i

(
1− β

λi

)
 , σ2 = max

i∈{1,...,N}

 2β |hi|

λ2
i

(
1− β

λi

)
 .

Using the bounds from (3.19) and the two results from [47] stated above, we remark that
the first and second series in (3.13) are absolutely convergent since

∞∑
k=0

∣∣∣pkj ∣∣∣Fχ2(N+2k)

(
τ

β

)
≤

∞∑
k=0

ηkγkFχ2(N+2k)

(
τ

β

)

≤
∞∑
k=0

ρ1γ0
Γ
(
N
2 + k

)
Γ
(
N
2

) (σ1α)
k

k!
Fχ2(N+2k)

(
τ

β

)
< ∞,
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and

∞∑
k=0

∣∣∣qkj ∣∣∣Fχ2(N+2k)

(
τ

β

)
≤

∞∑
k=0

ζkγkFχ2(N+2k)

(
τ

β

)

≤
∞∑
k=0

ρ2γ0
Γ
(
N
2 + k

)
Γ
(
N
2

) (σ2α)
k

k!
Fχ2(N+2k)

(
τ

β

)
< ∞.

Thus, the series
∑∞

k=0 p
k ·λ′(t)Fχ2(2k+N)

(
τ̃(t)
β

)
and

∑∞
k=0 q

k ·µ′(t)Fχ2(2k+N)

(
τ̃(t)
β

)
are abso-

lutely convergent and, hence, uniformly convergent by the Weierstrass criterion (see e.g. [48,
Thm. 7.10]). Consequently, it is possible to swap the summation and the derivative for the
first term of (3.18) (see [48, Thm. 7.17]) and obtain

(3.25)
∞∑
k=0

(
pk · λ′(t)Fχ2(2k+N)

(
τ̃(t)

β

))
+

∞∑
k=0

(
qk · µ′(t)Fχ2(2k+N)

(
τ̃(t)

β

))

=

∞∑
k=0

(
pk · λ′(t)Fχ2(2k+N)

(
τ̃(t)

β

)
+ qk · µ′(t)Fχ2(2k+N)

(
τ̃(t)

β

))

=

∞∑
k=0

γ′k(t)Fχ2(2k+N)

(
τ̃(t)

β

)
=

∂

∂t1

∞∑
k=0

γk(t)Fχ2(2k+N)

(
τ̃(t)

β

)
=

∂

∂t1
FT (t1) (τ̃(t))

∣∣∣∣
t1=t

.

We pass to the second term of (3.18). Since the generalized chi-squared distribution of
T (t) is continuous in R+, the quantity fT (t) (τ

∗) exists and is finite for any τ∗ > 0. Moreover,

thanks to Theorem 3.1 and Corollary 3.2, we have fT (t) (τ
∗) =

∑∞
k=0 γk(t)fχ2(2k+N)

(
τ∗

β

)
.

Since the set {τ̃(t) : t ∈ [0, δ]} is compact, the series converges pointwise, and all of its terms

are positive, while the series
∑∞

k=0 γk(t)fχ2(2k+N)

(
τ∗

β

)
is uniformly convergent on T (see [48,

Thm. 7.13]). Hence, thanks to the absolute continuity of τ̃ ′(t) for all t ∈ [0, δ], we find

(3.26)
τ̃ ′(t)

β

∞∑
k=0

γk(t)fχ2(2k+N)

(
τ̃(t)

β

)
=

∞∑
k=0

∂

∂t2

(
γk(t)Fχ2(2k+N)

(
τ̃(t2)

β

)) ∣∣∣∣
t2=t

=
∂

∂t2

( ∞∑
k=0

γk(t)Fχ2(2k+N)

(
τ̃(t2)

β

)) ∣∣∣∣
t2=t

=
∂

∂t2
FT (t) (τ̃(t2))

∣∣∣∣
t2=t

.

In conclusion, the combination of the equations (3.18), (3.25), and (3.26) proves the ex-
pression (3.13) for the derivative of the cumulative distribution function of Ψt(X).

3.3. Shape optimization under Gaussian perturbations. Let us consider once again the
shape optimization problem (2.3). Using the notations of Section 2, we suppose that the
random vector X follows a Gaussian distribution with mean h = [h1, . . . , hN ]T and, without
loss of generality, with covariance matrix equal to the identity.

If the vector h or the deterministic load g0 are large enough, the uncertain component
can be seen as a small random perturbation around a deterministic load g = g0+g1h1+ . . .+
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gNhN , and the shape derivative can be computed as in [2, Section 4.2.3]. Otherwise, if the
mechanical loads are centered in 0 or the uncertainties are wide enough not to be treated as
small perturbations, a different method should be considered. If the probability density fX of
the uncertainties is known, the technique detailed in Subsection 2.3 can be applied. However,
if the number of random variables involved in the modeling of the uncertainties is significant,
the computation of the integrals on the N -ball and the N -sphere can be challenging.

Since we suppose that X follows a Gaussian distribution, by considering the diagonaliza-
tion of the matrix MΩ = QΩDΩQΩ

T, we can use Corollary 3.2 and Proposition 3.5 to express
Φ (Ω) = P [ΨΩ (X) ≤ τ ] as the cumulative distribution function of a generalized chi-squared
random variable in order to compute the shape derivative of Φ in Ω ∈ Sadm.

Proposition 3.6. Let X ∼ N (h, I) be a Gaussian random vector in RN , Ω ∈ Sadm a Lip-
schitz continuous domain in R2 or R3, and τ ∈ R+ a strictly positive threshold. The quantities
MΩ ∈ SymN , bΩ ∈ RN , and cΩ ∈ R are functions of the domain Ω ∈ Sadm and are defined
as in Subsection 2.2, and we suppose that τ̃Ω, defined as in (2.7), is strictly positive for all
Ω ∈ Sadm. In addition, we suppose that the mappings Ω 7→ [MΩ]i,j, Ω 7→ [bΩ]i, and Ω 7→ cΩ
admit a shape derivative at Ω for all i, j ∈ {1, . . . , N} and that all eigenvalues of MΩ are
distinct, strictly positive, and larger than a positive constant β independent from Ω.

Then, Φ (Ω) can be written as the cumulative distribution function as Φ (Ω) = FTΩ
(τ̃Ω),

where TΩ is a random variable such that

TΩ ∼ χ̃2 (1;µΩ ⊙ µΩ;λΩ)

with λΩ being the vector of the eigenvalues of MΩ and µΩ =
(
h+MΩ

−1bΩ

)
. Moreover, Φ is

shape-differentiable at Ω, and its derivative can be expressed as

(3.27)
d

dΩ
[Φ (Ω)] (θ) =

( ∞∑
k=0

pkFχ2(2k+N)

(
τ̃Ω
β

))
· d

dΩ
[λΩ] (θ)

+

(∞∑
k=0

qkFχ2(2k+N)

(
τ̃Ω
β

))
· d

dΩ
[µΩ] (θ) +

1

β

( ∞∑
k=0

γkfχ2(2k+N)

(
τ̃Ω
β

))
d

dΩ
[τ̃Ω] (θ) .

Once again, the components of pk and qk are the coefficients appearing in the decomposition of
FTΩ

(τ̃Ω) expressed as in Lemma 3.4, while d
dΩ [τ̃Ω] (θ) is as in (2.14), and the shape derivatives

of λΩ and µΩ are

d

dΩ
[λΩ] (θ) = diag

{
QΩ

T d

dΩ
[MΩ] (θ)QΩ

}
;

d

dΩ
[µΩi] (θ) =

∑
j ̸=i

(
1

λΩ,i − λΩ,j

(
viT d

dΩ
[MΩ] (θ)v

j

)(
vjT

(
h+MΩ

−1bΩ

)))

+ viT
(
MΩ

−1 d

dΩ
[bΩ] (θ) +MΩ

−1 d

dΩ
[MΩ] (θ)MΩ

−1bΩ

)
for all i ∈ {1, . . . , N}.

Proof. The proof of the identity Φ (Ω) = FTΩ
(τ̃Ω) is analogous to the proof of (3.12) in

Proposition 3.5. In order to compute the shape derivative of Φ at Ω, we recall that the identity
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(2.17) holds for any differentiable shape functional F : Sadm → R, any Lipschitz continuous
domain Ω, and any mapping ξ : [0, δ] → W1,∞ (Rd;Rd

)
. Thus, by taking ξ(t) = tθ as

deformation field, we have

d

dΩ
[Φ (Ω)] (θ) =

d

dt
Φ ((I+ tθ)Ω)

∣∣∣∣
t=0

=
d

dt
FT(I+tθ)Ω

(τ̃Ω)

∣∣∣∣
t=0

.

We denote T (t) = T(I+tθ)Ω, λ(t) = λ(I+tθ)Ω, µ(t) = µ(I+tθ)Ω, and τ̃(t) = τ̃(I+tθ)Ω. Equa-
tion (3.27) and the expressions of the shape derivatives of λΩ, µΩ and τ̃Ω are found by using
Proposition 3.5 and the identity (2.17).

4. Numerical simulations.

4.1. Presentation of the algorithm. The theoretical results stated in the previous section
have been applied to the shape optimization of a cantilever and a bridge-like structure. In both
examples, we considered the structure to be composed by an isotropic linear elastic material,
subject to random mechanical loads. For the two structures, we aimed to minimize their mass
under constraints on the probability of the compliance to exceed a threshold. We recall that
the compliance of an elastic structure Ω is defined as the work of the external mechanical load
g and can be expressed as a quadratic function of the displacement uΩ,g:

(4.1) C (Ω,uΩ,g) =

∫
ΓN

g · uΩ,g ds =

∫
Ω
σ (uΩ,g) : ∇uΩ,g dx.

The RBTO problems considered in the following section can be summarized by the following
structure:

(4.2)

∣∣∣∣∣∣∣∣∣∣∣∣

Find the admissible shape Ω ∈ Sadm minimizing J = Vol (Ω)

under the constraint H(Ω) =
P [C (Ω,uΩ,g(ω)) > τ ]

p̄
− 1 ≤ 0,

where the state uΩ,g satisfies the state equation (2.2) for almost all ω ∈ O
with g ∈ L2

(
O,P; L2 (ΓN)

)
satisfying (2.1) and X = (X1, . . . , XN )T ∼ N (h, I).

All simulations have been performed under the Python-based sotuto platform proposed
by Dapogny and Feppon in [16], which relies on the nullspace optimization algorithm [24, 25].
The computation of the elastic displacements and the adjoint states has been performed by
using the finite-element solver FreeFem++ [29]. We represented the domains by the means
of conforming meshes obtained by using the implicit-domain remeshing tool of mmg [15],
coupled to the level-set representation of the shapes [3, 54]. The advection of the level-set
function is handled by the advect library [7], while the computation of the signed distance
function is performed by mshdist [17]. Finally, for the computations with the generalized chi-
squared distribution we used the algorithms which are found in the supplementary material.
The simulations have been run on a VirtualBox Linux virtual machine with 1GB of dedicated
memory, installed on a Dell PC equipped with a 2.80 GHz Intel i7 processor.

Remark 4.1. The nullspace method, implemented in the sotuto platform, is used in struc-
tural optimization to deal with a large number of constraints. It is based on a dynamic system
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approach by decomposing the gradient of the objective and modifying the component in the
space generated by the gradients of the active constraints. A projected gradient or Lagrange
multiplier method could be used instead.

4.2. Optimization of a 3D cantilever. We consider Ω to be the cantilever structure
represented as seen in Figure 1, subject to an uncertain mechanical load g perpendicular to
the main axis of the cantilever. The load is applied to the region of the boundary denoted by
ΓN, while the structure is clamped at the four corner regions marked as ΓD. We suppose that
the cantilever has a square cross-section with side length ℓs, and its length along the x-axis
is ℓx. Moreover, we consider the structure to consist of an elastic material characterized by
the Young’s modulus E and the Poisson’s ratio ν. We consider the uncertain load to have the
structure

(4.3) g(ω) = gxXx(ω)ex + gyXy(ω)ey +
(
g0 + gzXz(ω)

)
ez,

where Xx, Xy and Xz are real-valued Gaussian random variables, {ex, ey, ez} is the canonical
basis of R3, and gx, gy, gz and g0 are deterministic forces. The geometric and material
properties of the structure are collected in Table 1.

ΓD

ΓD

ΓD

ΓD

ΓN

Figure 1. Structure of the cantilever. The region ΓN where the random load is applied is marked in red,
while the clamping region ΓD is highlighted in grey.

We performed three different simulations. In the first two, we solved the optimization
problem (4.2) for different distributions of the random vector X = [Xx, Xy, Xz]

T. In case
A, we consider a random load gA orthogonal to the main axis of the cantilever, which is
symmetric in the y-direction, but on average a traction in direction −z with modulus g0.
In case B, the stochastic term in the y-direction of the load gB is replaced by a random
traction-compression force being parallel to the main axis x. The third simulation considered
is fully deterministic: gD = g0ez is the only load applied to ΓN, and the constraint H(Ω) ≤ 0
of the optimization problem (4.2) is replaced by

H̃(Ω) = C (Ω,uΩ,g(ω))− τ ≤ 0.

The results for the three simulations are reported in Table 2. The optimal shapes resulting
from the solution of case A, case B, and the deterministic case are shown in Figure 2,
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Cross section length ℓs 1.0 cm
Longitudinal length ℓx 2.0 cm
Sidelength of ΓD 0.3 cm
Radius of ΓN 0.1 cm

Young’s modulus E 200MPa
Poisson’s ratio ν 0.3

Horizontal load gy 10 kPa

Vertical load gz 10 kPa

Minimal mesh size hmin 0.025 cm
Maximal mesh size hmax 0.10 cm
Average mesh size havg 0.05 cm

Threshold on the compliance τ 3× 10−3MPa cm3

Bound on the probability of failure p̄ 1.0%
Table 1

Numerical data concerning the geometry and the mechanics of the cantilever structure of Figure 1.

Figure 3, and Figure 4, respectively. The decrease of the objective function in the three
problems is shown in Figure 5a, and the trend of the constraint for case A and case B is
reported in Figure 5b.

case A case B deterministic case

Number of iterations 500 500 348
Execution time 152min 32 s 177min 49 s 114min 15 s

Final volume Vol (Ωopt) 0.4605 cm3 0.4103 cm3 0.0573 cm3

P [H (Ω,uΩ,g(ω)) > τ ]
Load gA 0.996% 4.005% 59.579%
Load gB 4.726% 0.991% 88.293%

Table 2
Numerical results for the optimization of the volume of a cantilever subject to uncertain mechanical loads

under constraint on the probability of the compliance to exceed a threshold τ .

By comparing Figure 2 and Figure 3, we observe that the optimal solutions for case
A and case B are quite similar, being convex hulls that are slightly reinforced on the z-
direction. In contrast, the solution of the deterministic problem presented in Figure 4 is
radically different, showing a thin branched structure. Such difference can be explained by
the fact that, on average, the cantilever is subject to a stronger mechanical load in case A
and case B, therefore the corresponding optimal structures ought to be more robust in order
to satisfy the constraint on the probability for the compliance to exceed the threshold τ .

Another notable difference between the deterministic and the uncertain cases concerns
the speed of convergence. Indeed, Figure 5a shows that the volume of the cantilever in the
deterministic problem converges much faster than the simulations of case A and case B.
Moreover, in the deterministic case, the optimization algorithm reaches a satisfying result
and stops after 349 iterations, while the rate of convergence is much slower for case A and



SHAPE OPTIMIZATION UNDER CHANCE CONSTRAINTS 21

Figure 2. Optimal shape for case A, where the applied load is gA(ω) = gyXy(ω)ey + (g0 + gzXz(ω)) ez.

Figure 3. Optimal shape for case B, where the applied load is gB(ω) = gxXx(ω)ex + (g0 + gzXz(ω)) ez.

case B. Difficulties in the convergence of the cantilever structure discussed here have also
been observed in [24, Section 6.2.1].

Finally, we remark that the shapes resulting from the solution of case A and case B
comply with the constraint on the probability of failure, as shown in Table 2. The observance
of the constraint, the decrease of the objective functional, and the radically different result
with respect to the deterministic case justify the use of the nullspace optimization algorithm for
the solution of Problem 4.2, and the feasibility of the approach of Section 3 for the expression
of Φ (Ω) and its shape derivative.

4.3. Optimization of a 3D bridge. As a second example, we consider the optimization
of the bridge structure found in Figure 6. The structure is pinned on the lower surface at
its four corners, marked in light green in the picture. The pinned region, where Dirichlet
boundary conditions on the displacement are applied, is denoted by ΓD. The upper face of
the bridge is divided into five sections Γ1

N, . . . ,Γ
5
N of equal size. On each section Γi

N, a random
load gi ∈ L2

(
O,P; L2

(
Γi
N

))
is applied. We suppose that the mechanical loads are oriented
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Figure 4. Optimal shape for the deterministic case, where the mechanical load applied is gD = g0ez.
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(a) Evolution of the objective function (in cm3).
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Figure 5. Convergence of the objective and the constraints for the cantilever problems.

vertically (that is along the z-axis), independent from each other, and such that

(4.4) gi(ω) = −giXi(ω)ez on Γi
N

for all i ∈ {1, . . . , 5}, where giez is a deterministic vertical pressure and Xi is a Gaussian
random variable. The numerical parameters describing the geometry and the mechanical
properties of the bridge are reported in Table 3.

We suppose that X = [X1, . . . , X5] is a Gaussian random vector with covariance matrix
equal to the identity where all random variables Xi have a mean equal to −1.0. Thus, the
mean of X corresponds to an average compression load of 1.0MPa on each of the five sections
of the bridge. We consider the shape shown in Figure 6 as initial condition, while the optimized
shape is reported in Figure 7. The optimization algorithm needed only 100 iterations, which
results in a computation time of 126min and 54 s. The volume Vol (Ωopt) of the final shape
is 1.217 cm3 and the excess probability P [H (Ω,uΩ,g(ω)) > τ ] equals to 0.961%. The trends
of the objective and the constraint are presented in Figure 8a and Figure 8b. As for the
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Γ1
N

Γ2
N

Γ3
N

Γ4
N

Γ5
N

Figure 6. Structure of the bridge. The non-optimizable supports of the bridge are marked in light green and
their lower surface ΓD is where Dirichlet boundary conditions are applied. The yellow block is non-optimizable
as well, and on its upper surface five random mechanical loads are applied on the sections Γ1

N, . . . ,Γ
5
N.

Longitudinal length ℓx 4.0 cm
Cross section length ℓy 1.0 cm
Height ℓz 1.0 cm

Sidelength of ΓD 0.2 cm
Sidelength of each Γi

N 1.0 cm

Young’s modulus E 200MPa
Poisson’s ratio ν 0.3
Vertical load gi 1MPa

Minimal mesh size hmin 0.10 cm
Maximal mesh size hmax 0.05 cm
Average mesh size havg 0.06 cm

Threshold on the compliance τ 1× 10−1MPa cm3

Bound on the probability of failure p̄ 1.0%
Table 3

Numerical data concerning the geometry and the mechanics of the cantilever structure of Figure 6.

cantilever in Subsection 4.2, these results validate that the constraint on the probability of
failure is upheld. Moreover, Figure 8a shows that the convergence of the objective function is
faster for the bridge than for the cantilever.

5. Conclusion. In this article, we presented a numerical approach to solve reliability-
based topology optimization problems for elastic structures using Hadamard’s approach to
shape derivatives. We restricted our study to problems where the constraint functional is
quadratic, and we proved the shape differentiability in a rather general setting. We provided
an efficient gradient based algorithm in case of Gaussian random fields which uses the series
expansion of the cumulative distribution function of a generalized chi-squared random variable.
Numerical results in three spatial dimensions have been presented to show the feasibility of
our approach.
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Figure 7. Result of the shape optimization of the bridge for the non-centered case.
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Figure 8. Evolution of the objective and constraint functions throughout the execution of the algorithm
when optimizing a bridge-like structure.
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[17] C. Dapogny and P. Frey, Computation of the signed distance function to a discrete contour on adapted
triangulation, Calcolo, 49 (2012), pp. 193–219.

[18] R. B. Davies, Numerical Inversion of a Characteristic Function, Biometrika, 60 (1973), pp. 415–417.
[19] R. B. Davies, Algorithm AS 155: The Distribution of a Linear Combination of X2 Random Variables,

Journal of the Royal Statistical Society. Series C (Applied Statistics), 29 (1980), pp. 323–333.
[20] M. C. Delfour and J.-P. Zolesio, Shapes and Geometries: Metrics, Analysis, Differential Calculus,

and Optimization, Advances in Design and Control, SIAM, Philadelphia, 2nd ed., 2011.
[21] P. Duchesne and P. Lafaye De Micheaux, Computing the distribution of quadratic forms: Further

comparisons between the Liu–Tang–Zhang approximation and exact methods, Computational Statistics
& Data Analysis, 54 (2010), pp. 858–862.

[22] P. D. Dunning and H. A. Kim, Robust Topology Optimization: Minimization of Expected and Variance
of Compliance, AIAA Journal, 51 (2013), pp. 2656–2664.

[23] R. W. Farebrother, Algorithm AS 204: The Distribution of a Positive Linear Combination of χ2

Random Variables, Journal of the Royal Statistical Society. Series C (Applied Statistics), 33 (1984),
pp. 332–339.
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