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Chapter 8

Introduction to Identification Methods

8.1. Introduction

The previous chapters of this book clearly show the richness, versatility and
usefulness of kinematic or thermal full-field measurements. Such measurement
methodologies yield a large amount of data, in practice often in the form of digitized
image files. Experimental procedures based on the characterization of materials
and structures have naturally evolved so as to accommodate this kind of data and
exploit it to the full, in particular, when the measured kinematic or thermal fields
are heterogeneous. The overall goal is to optimally exploit this kind of data to
identify constitutive parameters and, in particular, to estimate as many parameters
as possible using as few experiments as possible. Given both the obvious advantages
and potentialities afforded by full-field measurements and the widespread needs they
cover, their application to the characterization of the mechanical response of materials
and structures has become a very active field of research. In this context, this chapter
aims at presenting the problem of identification in general terms and surveying the
main computational identification approaches applicable to heterogeneous field data.

8.2. Identification and inversion: a conceptual overview

8.2.1. Inversion

To know and understand better a physical system requires the gathering and
exploitation of relevant experimental data. In many situations, the quantities that are
actually being measured do not directly yield the sought information. Rather, the
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latter is hidden in the physical system under examination, the measurement being the
consequence of a cause that is the real quantity of interest.

EXAMPLE 8.1.– A body whose material properties are characterized by a (thermal,
electrostatic, etc.) heterogeneous conductivity coefficient k(x) occupies the spatial
region Ω. A flux qD is prescribed on the boundary ∂Ω. The functions u (temperature,
electrostatic potential, etc.), qD and k satisfy the equations:

div (k∇u) = 0 in Ω (local equilibrium equation)

k∇u·n = qD on ∂Ω (prescribed flux)
[8.1]

The potential u, assumed to be measurable over ∂Ω, is thus implicitly related to the
sought conductivity k.

Exploiting the available experimental data (symbolically denoted by d) thus
requires us to formulate a model describing the underlying physics so as to introduce
a mathematical (and thus a quantitative) link to the hidden quantities (symbolically
denoted by θ) of interest. The symbolic notation

g(θ,d) = 0 [8.2]

for the physical model then expresses the fact that d and θ are related through the
equations describing the relevant physics (such as those used in example 8.1, where
θ≡ k and d≡ u|∂Ω).

Models that accurately describe the mechanical response of solids or materials do
not usually enable exact, analytical solutions due to the complexity of the considered
configurations. The relevant equations are thus, as a rule, solved numerically.
Computational mechanics and engineering has undergone a tremendous development
over the last few decades, from the viewpoint of both computational power and
algorithmic development.

Generally, the mathematical model is most frequently solved for the physical
response of the system assuming the parameters that characterize its geometry,
constitutive properties and kinematic constraints and the excitations (prescribed loads,
displacements, temperatures, etc.) are known.However, in identification situations, the
commonly available measured information pertains to the response of the system to
given excitations. In other words, standard computational methods allow us to solve
the forward problem, that is to find d from [8.2] with given θ. To evaluate unknown
system parameters θ frommeasurements of the response d entails solving the physical
model [8.2] in a reverse fashion (relative to the standard situations), hence the term
inverse problem.

In example 8.1, the forward problem consists of finding the potential u by solving
equations [8.1] for given conductivity k(x), geometry Ω and excitation qD. A typical
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inverse problem consists of reconstructing the unknown conductivity field k(x)
from measured values of u on the boundary, the flux qD being again considered as
a priori known. Note that the measurement u|∂Ω depends on the conductivity k in a
nonlinear way.

8.2.1.1. Forward and inverse problems

The concepts of forward and inverse problems may be conveniently formulated
and explained by considering the action of solving the (mechanical, thermal, etc.)
governing equations as the prediction of the response d (displacement, stress,
temperature, etc.) of the system under consideration to applied excitationsX (forces,
sources, prescribed displacements, initial stresses, heat fluxes, etc.).

The system (e.g. the mechanical structure being tested, or the region where wave
propagation or flow takes place, etc.) usually depends on parameters symbolically
denoted by θ: geometry (the region in space occupied by the body), physical
characteristics of the constitutive materials, kinematic constraints, etc. The forward
problem consists of evaluating the response d given the excitationX and the system
parameters θ. The mathematical model describing the relevant physics is usually such
that the response d is an implicit function of (X, θ):

find d = d(θ;X) such that g(X , θ,d) = 0 (withX, θ given) [8.3]

In most cases, the forward problem is well-posed in the Hadamard sense, that is its
solution (1) exists, (2) is unique and (3) depends continuously on the data. Condition 3
ensures that the response will be only moderately sensitive to small errors caused by,
for example, discretization or imperfect data.

Figure 8.1. Forward problem

The inverse problem usually corresponds to situations where the system is at
least partially unknown because of incomplete available information on features
such as the geometry of the system, constitutive materials and initial conditions. To
compensate for, and reconstruct, the missing information on the system parameters θ,
supplementary (possibly partial) information about the response d must be sought in
addition to the known excitationsX . The “inverse” qualifier serves as a reminder that
the supplementary information is used in a reverse way relative to the usual solution
methodologies applied to the physical model: from (partial) information about the
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response, we use the model equations backward to find hidden system characteristics
that usually cannot be measured directly:

find θ ∈ Θ such that g(X , θ,dobs) = 0 [8.4]

whereΘ denotes the parameter space in which θ is sought. The symbolic notation used
in [8.3] and [8.4] fails to emphasize the fact that the forward and inverse problems have
very different characteristics and mathematical properties. Inverse problems are often
ill-posed in that at least one of the Hadamard well-posedness conditions is violated.
In particular, any solution θ is typically highly sensitive to experimental errors.

Figure 8.2. Inverse problem

8.2.1.2. Reformulation as an optimization problem

Practically, it is often neither convenient nor desirable to base the inversion
of experimental data on solving exactly an equation of the type [8.4], which is
usually multidimensional and nonlinear. The dimension of the data space D does
not, in general, coincide with that of the parameter space Θ (such dimensions are,
in practice, finite even though theoretical analyses often consider continuous models
with observable data and unknown parameters modeled as functions). In fact, since
reducing the adverse effect of uncertainties andmaking inversionmethodsmore robust
are main concerns, we often aim to have much more data than unknowns, making the
observation equation [8.4] overdetermined. Therefore, the latter cannot, in general,
be solved exactly (unless the data happen to verify certain solvability conditions),
for at least two reasons: (1) the model equations g(X, θ,d) only approximately
describe the actual physical behavior of the system and (2) the experimental data
dobs suffer from measurement uncertainties. To explain the general impossibility of
solving exactly [8.4] in another way, we can note that the above considerations (1)
and (2) imply that the observed data dobs cannot, in general, be exactly reproduced by
predictions d(θ;X) of the physical model [8.3].

These considerations often (although not always, as will be seen in section 8.4)
suggest the reformulation of the data inversion problem as a minimization problem,
whose typical form is:

θ = arg min
ϑ∈Θ

J (ϑ), J (ϑ) = �d(ϑ;X)− dobs� [8.5]

where � · � denotes the norm to be specified. This norm is often chosen as the usual
quadratic norm (also known as the L2-norm), possibly weighted; this choice is often
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convenient because the L2-norm, unlike other norms such as the L1 and L∞ norms, is
differentiable. Problem [8.5] is in that case referred to as a least-squares minimization.
It is important at this point to emphasize that the cost function J features an implicit
dependence on θ through the forward problem, which can be symbolized as:

J (θ) = J(d) with g(X, θ,d) = 0. [8.6]

The cost functionJ does not have general properties that would a priori guarantee
(i.e. for any inversion problem) that a local minimizer θ is unique, or global.

Upon reformulation as a minimization task, seeking a solution θ consists of
minimizing the residual of the observation equation, rather than setting it to zero. This
weakening of the concept of solution ensures its existence, and makes more practical
sense than the (often unfeasible) task of attempting to exactly match imperfect
observation by adjusting the parameters of an approximate model.

8.2.1.3. Regularization

As already mentioned, inverse problems are often mathematically ill-posed; in
particular, a solution θ is often highly sensitive to small changes to, or errors in,
the experimental data. This property has strongly influenced the design of inversion
methodologies since the pioneering works of [TIK 77] and [TWO 77], and is analyzed
in many monographs, for example [ENG 96] and [HAN 98]. Such methodologies are
based on the formulation and exploitation of prior information that is available in
addition to experimental data:

– Quantitative prior information about the parameters to be identified (e.g.
positiveness and variation range) may be specified via equality or inequality
constraints that restrict the search space Θ.

– Qualitative prior information may be prescribed via a stabilizing functional
R(θ) ≥ 0, expressing a requirement that a certain non-negative function of θ be as
small as possible. Classic examples include R(θ) = �θ− θ0� (desired closeness of
θ to a reference value θ0) and R(θ) = �∇θ� (to avoid too-oscillatory solutions θ).
This leads to the regularized form of the minimization [8.5]:

θ = arg min
ϑ∈Θ

J (ϑ), J (ϑ) = J(d(ϑ;X)) + αR(ϑ) [8.7]

where J(·) again defines the distance between the measurements and their prediction
by the forward problem, R is the stabilizing functional and 0 < α ) 1 is the
regularization parameter.

It is useful for the purpose of adjusting the inversion algorithm to have an available
estimation δ of the measurement error. For example, some algorithms select the
optimal value of the regularization parameter α on the basis of δ [TIK 95].
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8.2.1.3.1. Regularization using total variation

When the dimension of the search space Θ is high, it is, in practice, necessary
to use some form of regularization because the inversion is highly sensitive
to experimental errors, even with linear forward models (which in that case
are ill-conditioned). Such situations arise, for instance, in the reconstruction of
heterogeneous material parameters (modulus, wave velocity, conductivity, damage,
etc.), whose spatial discretization requires a large number of unknowns. A stabilizing
functional of the formR(θ) = �θ−θ0� may be useful, for example when attempting
to reconstruct medium properties that deviate moderately from a given reference value
θ0. The choice R(θ) = �∇θ�2 (with � · � denoting the L2-norm of a square-
integrable function) allows us to filter non-physical spatial oscillations that might
affect the reconstruction of θ due to the amplification of experimental uncertainties
by the inversion algorithm. However, the squared norm, while very convenient
from a computational standpoint because the corresponding stabilizing functional is
differentiable, tends to yield oversmoothed solutions θ that do not reproduce existing
contrasts (e.g. when reconstructing piecewise homogeneous media). For this reason,
it is often preferable for this kind of inversion problem to use stabilizing functionals
of the form

R(θ) =
�
�∇θ�2 + η

 1/2
0<η) 1

known as total variation functionals [ACA 94], which still filter random spatial
oscillations while permitting a limited amount of contrast (the small parameter η
serves to define a regularized form of the total variation functional that is differentiable
at ∇θ = 0). This type of regularization is, for example, used in [EPA 08] for the
reconstruction of three-dimensional (3D) heterogeneous moduli using seismic data.

8.2.1.4. Bayesian formulations

Other approaches adopt a probabilistic viewpoint to model prior information and
various uncertainties. They proceed by constructing an a posteriori probability density
function on θ by considering the available prior information and the physical model
as two independent sources of information [MEN 84, TAR 05, KAI 05]. The starting
point for such formulations is the Bayes theorem, written as

fΘ|D(θ|dobs)fD(d) = fD|Θ(d
obs|θ)fΘ(θ) [8.8]

where fX|Y (x|y) is the conditional probability density on x knowing y, and the
density fX(x) is defined by the marginalization of f(x, y) (and similarly by switching
the roles of x and y). Here, the probability densities fΘ(θ), modeling the prior
information on θ, and fD|Θ(d

obs|θ), describing the forward physical model and
enabling measurement or modeling uncertainties to be taken into account, are chosen
a priori. The Bayes theorem [8.8] then yields

fΘ|D(θ|dobs) =
fD|Θ(d

obs|θ)fΘ(θ))
fD|Θ(d

obs|θ)fΘ(θ)dθ
[8.9]
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and therefore allows us to evaluate the probability of θ knowingdobs, once all available
(prior and model) information is taken into account. Practical information about θ and
the error sensitivity of its estimation are obtained by analyzing the posterior density
fΘ|D. For instance, we may estimate θ by seeking the value achieving the maximum
likelihood, that is θ = arg maxϑ fΘ|D(ϑ|dobs).

The simplest form of this approach corresponds to the case of a forward finite-
dimensional linear model g(X , θ,d) = G(X)θ − d (where G is a matrix) and
consists of setting fΘ(θ) = N (θ0,Cθ) and fD|Θ(d|θ) = N (dobs,CD) (with
N (x,C) denoting the multidimensional Gaussian random variable with mean x
and covariance matrix C). The posterior conditional probability density function
fΘ|D(θ|d) then corresponds to the Gaussian variableN (θ̄,C) with

θ̄ = arg min
θ

,
Gθ−dobs

3T
C−1

D

,
Gθ−dobs

3
+

,
θ−θ0

3T
C−1

θ

,
θ−θ0

3
,

C =
�
GC−1

D G+C−1
θ

 −1
[8.10]

The Bayesian approach constitutes a form of regularization in that [8.9]
simultaneously takes into account experimental data and prior information. For
example, the quadratic cost function featured in [8.10] corresponds to a regularized
cost function, where CDC−1

θ acts as a small regularization parameter α. Examples
where such approaches are applied to the mechanics of materials and structures
include [ARN 08], [DAG 07], [GOG 08] and [GUZ 02].

8.2.1.5. Inversion versus identification

A distinction is sometimes made between inverse problems and identification
problems. In both cases, the aim is to determine certain quantities θ that enter into
the definition of the analyzed structure or material sample by exploiting experimental
information concerning its response. The term inverse problem primarily refers to
situations where the quantity to be reconstructed is mathematically formulated in
terms of functions (such as heterogeneous moduli, time-dependent forces or sources,
solution-dependent constitutive properties and domain shape or topology), whose
discretization is expected to entail a large number of unknowns. Cases where we
a priori consider a moderate number of unknowns, such as parameters entering into
most usual constitutive models, are then referred to as identification problems. Both
types of problems are solved using similar methods, often entailing the minimization
of a cost function. Because of their smaller size, parameter identification problems are,
on average, less sensitive to (experimental, modeling, etc.) uncertainties than inverse
problems, and do not always require regularization (the cost functions used may thus
differ at least in this respect).
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8.2.2. Constitutive parameter identification

8.2.2.1. Forward problem

This chapter is primarily concerned with parameter identification problems for
(linear or nonlinear) constitutive models. Consider, for instance, a solid body whose
undeformed configuration occupies the domain Ω and whose mechanical state is
governed in the small-deformation framework (chosen for expository convenience,
but not mandatory) by the equilibrium equations

divσ = 0 in Ω [8.11a]

σ.n = T̄ on Sf [8.11b]

�

(assuming no body forces are present) and the kinematic compatibility equations

ε = ε[u] =
1

2
(∇u+∇tu) in Ω [8.12a]

u = ū on Su [8.12b]

⎧
⎪⎨
⎪⎩

(where u is the displacement, ε is the linearized stress tensor, σ is the Cauchy
stress tensor and n is the outward unit normal to ∂Ω). The surfaces Su (supporting
prescribed displacements ū) and Sf (supporting prescribed tractions T̄ ) are such that
Su ∪ Sf = ∂Ω and Su ∩ Sf = ∅, so as to define well-posed boundary conditions.

Figure 8.3. Forward problem: notations

For elastic linear material properties, the constitutive relation has the well-known
form

σ =A(θ) :ε in Ω [8.13]

where the elasticity tensor A may be constant (homogeneous material) or spatially
variable (heterogeneousmaterial, e.g. due to damage or defects). In the context of this
chapter, the elasticity tensor depends on a vector of parameters θ = {θ1, . . . , θM},
which may be emphasized in [8.13] with the notationA=A(θ) (e.g. θ= {E, ν} and
M =2 for homogeneous isotropic elasticity).
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The set of equations [8.11b]–[8.13] may be replaced by the weak formulation
(

Ω

ε[ũ] :A(θ) :ε[u]dV −
(

Sf

ũ.TdS = 0 for all ũ k.a. with 0 [8.14]

A Galerkin discretization using the finite element interpolation functions as an
approximation and trial space leads to the standard finite element matrix equation

K(θ)U = F [8.15]

where K(θ) is the stiffness matrix, here restricted to the unconstrained degrees of
freedom (DOFs), F is the vector of generalized (nodal) forces resulting from the
applied excitations [8.11b] and [8.12b] and the vector U gathers the unknown DOFs.
The notationK(θ) emphasizes the obvious but essential fact that the stiffness matrix
depends on the constitutive parameters (in this case, elastic moduli).

For more complex constitutive properties (plasticity, damage, etc.) that are history-
dependent, we often have to solve a (time-discrete) evolution problem using an
incremental and iterative algorithm (typically involving an implicit treatment such as
the radial return algorithm [SIM 98, BES 01]). Such treatment is based on a spatially
continuous weak formulation of the form(

Ω

ε[ũ] :σ[un;un−1,Sn−1, θ]dV −
(

Sf

ũ.T ndS = 0

for all ũ k.a. with 0 [8.16]

where T n denotes the applied loading at time tn, un = u(·, tn) is the unknown
displacement at time tn and σ[un;un−1,Sn−1] denotes the stress at time tn predicted
by the (time-discretized) constitutive model for an assumed value of the displacement
un and knowing the displacement un−1 and all other mechanical quantities Sn−1

(strains, stresses and internal variables) at time tn−1. For finite element discretization
in space, the incremental weak formulation [8.16] takes the form

Rn(Un;Un−1,Sn−1, θ) = 0 [8.17]

It is solved by an iterative Newton–Raphson-typemethod, the iteration i+1 of the
solution being obtained by solving the linear system

K(i)
n (θ)U

(i)
n =K(i)

n (θ)U
(i−1)
n −Rn(U

(i−1)
n ;Un−1,Sn−1, θ) [8.18]

whereK(i)
n (θ) ≡ ∂Rn/∂Un(U

(i−1)
n ;Un−1,Sn−1, θ) is the tangent stiffness matrix,

also known as the “consistent tangent operator” [SIM 98].

For a given set of parameters θ, formulations such as [8.14] and [8.16] define
the forward problem, allowing the computation of the response of a structure
whose material has known properties. Solving the forward problem uses classic
computational structural mechanics approaches, the main approach of which is the
finite element method (FEM).
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8.2.2.2. Identification problem

In cases where parameters θ, associated with a constitutive model or with
other characteristics of the sample being analyzed such as internal defects, are
unknown, the forward problem [8.14] or [8.16] cannot be solved as it is. Finding
the parameters θ requires supplementary information, obtained from experiments, in
addition to the boundary data ū, T̄ entering into the definition of [8.14] or [8.16]. Such
supplementary data may, in particular, consist of kinematic field measurements.

It is worth emphasizing, moreover, that the available experimental information
regarding applied loads is limited, for many practical identification situations, to
resultant loads or couples. Depending on the chosen solution approach, we will then
either treat distributed applied loads as supplementary unknowns, define kinematic
boundary conditions from the measured kinematic fields or use virtual or adjoint fields
so that the formulation of the identification would involve only the (known) resultant
load.

8.3. Numerical methods based on optimization

For the sake of generality, consider the task of identifying parameters for
a nonlinear, incremental constitutive model using a sequence of kinematic field
measurements, obtained at various stages of the loading history, applied to the
examined sample. Assume for definiteness that the kinematic response dobs

n is
measured at all discrete time instants t0 = 0, t1, . . . , tN = T introduced for the time-
marching algorithm. Identification then consists of determining θ so as to achieve the
best fit between the experimental data dobs

n and its computed prediction dn(θ). This
approach naturally leads to the problem of minimizing a cost function of the form

J (θ) =
N;

n=1

J(Un(θ)) [8.19]

whereUn depends on θ through the equilibrium problem [8.16]. For instance, for the
least-squares method, the function J is defined by

J(V ) =
1

2
�PV − dobsn �2 [8.20]

8.3.1. Gradient-based methods

The evaluation of each cost function may entail substantial computational work
because it requires a complete analysis of the structure, possibly under dynamic
and/or nonlinear conditions. Therefore, we often prefer to rely on gradient-based
optimization algorithms that allow us to reduce the total number of evaluations of
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J (θ). For a detailed presentation of the main optimization algorithms, the reader may
refer to many monographs [FLE 00, NOC 06].

Gradient-based optimization algorithms assume that both the cost function J
and its gradient ∇θJ can be numerically evaluated for a given θ. They are usually
designed so that each iteration ensures that the cost function is decreased. Classic
algorithms of this kind include the steepest descent method (historically the first of its
kind, but currentlymore or less abandoned due to its too-slow convergence), conjugate
gradient and quasi-Newton. The latter consists, in fact, of solving the necessary first-
order optimality condition ∇θJ = 0 using the Newton–Raphson method, where
the true Hessian H = ∇2

θJ , a priori required by the Newton–Raphson method, is
replaced by the (positive definite) approximation of the inverse Hessian that is updated
(using the BFGS or DFP formula [BER 99, FLE 00, NOC 06]) after each iteration.

Other algorithms exploit the nonlinear least-squares cost function structure
[8.19–8.20] often used for identification problems. They are also based on solving
equation ∇θJ = 0 by the Newton–Raphson method, using an approximation of
the Hessian H in order to avoid the often complex task of its numerical evaluation.
The Gauss–Newton algorithm uses the approximationH ≈ (∇θU)

T∇θU , in which
second-order derivatives of the residualsPU−dobs are dropped (this approximation is
correct at the local minimum reached upon convergence provided that the converged
residuals themselves are small). The matrix (∇θU)

T∇θU may, however, be non-
invertible, or ill-conditioned. The Levenberg–Marquardt algorithm addresses this
issue by using in the Gauss–Newton algorithm an approximate Hessian of the form
H ≈ (∇θU)

T∇θU +αI , where the parameter α > 0 is updated after each iteration
(this approximation is thus positive definite by construction). The Gauss–Newton
and Marquardt–Levenberg algorithms require repeated evaluations of the complete
Jacobian matrix ∇θU , that is of all the partial derivatives of the solution U to the
forward problem rather than the partial derivatives of the cost function J (θ) only.

It is sometimes useful, or even necessary, to reduce the search space Θ by
prescribing constraints (e.g. moduli are positive and the Poisson ratio must belong to
a certain interval), if only to avoid the occurrence of non-physical forward problems
caused by forbidden values of θ that may otherwise be reached by the iterative
algorithm. Many constrained optimization algorithms are available; readers can refer
to monographs such as [BER 99], [FLE 00] and [NOC 06]. Some of these are
based on iteratively solving the Karush–Kuhn–Tucker necessary optimality conditions
(generally using gradients of J and the functions defining the constraints, and
approximate Hessians). Others consist of recasting the constrained optimization in
terms of a sequence of unconstrained optimization problems via the introduction of
penalty, barrier, etc., functions. For example, an augmented Lagrangian method was
implemented for the combined shape and material identification of elastic inclusions
in [BON 09b].
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Various approaches, briefly reviewed next, are available to evaluate the gradient
∇θJ or the Jacobian matrix ∇θU . A detailed presentation of parameter sensitivity
analysis is, for example, available in [KLE 97].

8.3.1.1. Numerical differentiation

Numerical differentiation is based on the approximate formula

∇θJ ·Δθ ≈ J (θ+Δθ)− J (θ) [8.21]

for small but finite increments Δθ of θ. If θ ∈ Rp, one evaluation of the full
gradient∇θJ then requires 1+p forward solutions, corresponding to the unperturbed
configuration Δθ = 0 (for the evaluation of J (θ)) and perturbed configurations
defined by Δθ = (Δθ1, 0, . . . , 0), . . . , (0, . . . , 0,Δθp). Similarly, we may use a
numerical differentiation of the forward solution for the purpose of setting up the
Jacobian matrix:

∇θUn ·Δθ ≈ Un(θ+Δθ)−Un(θ)

This approach is simple to implement and does not require modifications to
the forward solution code (it is thus said to be non-intrusive). It is, however,
computationally expensive because a gradient evaluation entails p complete forward
solutions, each new choice for θ redefining the mechanical system anew and
implying a complete analysis. Thus, it is sometimes desirable to replace numerical
differentiation by other approaches based on a preliminary analytical differentiation.

8.3.1.2. Direct differentiation of J
The direct differentiation approach consists of evaluating the gradient of J by

means of the chain rule:

∇θJ =
N;

n=1

∇J(Un)·∇θUn [8.22]

This expression requires the derivatives ∇θdk of the kinematic field that solves
the forward incremental problem [8.17]. Differentiating the latter with respect to θ
yields:

Kn(θ)∇θUn = −∇Sn−1Rn∇θSn−1 −∇θRn (0 = 1, 2, . . . , N−1) [8.23]

The above derivative equations define a linear incremental problem, whose
governing matrix is the tangent stiffness Kn(θ) reached on convergence of the
Newton–Raphson algorithm [8.18]. A natural time-stepping procedure then consists,
for each n (0 = 1, 2, . . . , N − 1), of solving [8.17] (which requires an iterative
algorithm) and then the linear problem [8.23]. The fields Un and∇θUn then enable
the evaluation of the corresponding contribution to both J and ∇θJ . Moreover, this
approach allows the computation of Jacobian matrices of the form ∇θUn, required
by the Gauss–Newton or Marquardt–Levenberg methods.
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8.3.1.3. Adjoint state

Another strategy for evaluating the gradient of J without recourse to numerical
differentiation consists of adopting the viewpoint of minimizing J subject to the
constraint defined by the forward problem [8.17]. Accordingly, we introduce the
Lagrangian:

L =
N;

n=1



J(Un) + ŨT

nRn(Un;Un−1,Sn−1, θ)

+ S̃T
n

�
Sn − P(Un,Un−1,Sn−1, θ)

 �
[8.24]

where the relation Sn − P(Un,Un−1,Sn−1, θ) = 0 expresses in symbolic notation
the process of updating the mechanical quantities at t = tn once Un is found, and
Ũn, S̃n are Lagrange multipliers. The first-order variation of L then reads

δL =∇SnL·δSn +∇UnL·δUn +∇S̃n
L·δS̃n +∇Ũn

L·δŨn +∇θL·δθ

The cofactors ∇S̃n
L, ∇Ũn

L vanish whenever Un,Sn satisfy the forward
problem equations. The cofactors∇SnL, ∇UnL are given by the formulas

∇SnL = ŨT
n+1∇SnRn+1 − S̃T

n+1∇SnP + S̃n [8.25a]

∇UnL =∇J(Un) + ŨT
nKn + ŨT

n+1Kn+1,n − S̃T
nPn − S̃T

n+1Pn+1,n

[8.25b]

having set Kn+1,n:=∇UnRn+1, Pn:=∇UnP(Un,Un−1,Sn−1, θ), and Pn,n−1:=
∇Un−1P(Un,Un−1,Sn−1, θ). They can be made to vanish by a judicious selection
of the Lagrange multipliers Ũn, S̃n. To this end, we can note that for n = N , no
quantity bearing the subscriptN+1 should appear in expressions [8.25a] and [8.25b],
which leads to the equalities

0 =∇SNL = S̃N , 0 =∇UNL =∇J(UN ) + ŨT
NKN − S̃T

NPN

=⇒ S̃N = 0, ŨN = −K−1
N ∇J(UN ) [8.26]

Moreover, setting∇SnL, ∇UnL to zero for n<N yields:

S̃T
n = S̃T

n+1∇SnP − ŨT
n+1∇SnRn+1 [8.27a]

KnŨn = S̃T
nPn + S̃T

n+1Pn+1,n −∇J(Un)− ŨT
n+1Kn+1,n [8.27b]

A backward adjoint state is hence defined by (1) initialization [8.26] and
(2) (backward) transition ([8.27a] and [8.27b]). The latter is linear irrespective of
the possible nonlinearity of the forward problem. Equation [8.27b] uses the tangent
stiffness matrix Kn, reached on convergence of the Newton–Raphson step [8.18].
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This allows for a very efficient computation of the adjoint state, provided that the
converged tangent stiffness matrix has been stored, preferably in a factored form. In
view of the backward nature of the adjoint problem, it is necessary to store all tangent
stiffness matrices Kn and ∇Sn−1Rn arising in the course of solving the forward
incremental problem, as well as the complete forward solution historyUn,Sn, before
solving the adjoint problem.

This approach finally leads to the result

∇θJ =∇θL =
N;

n=1



ŨT

n∇θRn(Un;Un−1,Sn−1, θ)

− S̃T
n∇θP(Un,Un−1,Sn−1, θ)

�
[8.28]

where Un,Sn is the forward solution and Ũn, S̃n is the adjoint solution.

For linear constitutive behavior and equilibrium problems, the cost function
depends only (assuming no regularization term) on the solution U(θ) of the elastic
equilibriumproblem [8.15]:J (θ) = J(U ). The gradient ofJ and the adjoint solution
Ũ are then defined simply by

∇θJ = ŨT∇θK(θ)U , Ũ = −K−1∇J [8.29]

It can thus be seen that adjoint state methods exploit a shortcut (the adjoint state)
that enables us to completely avoid computing the Jacobian matrix ∇θU associated
with the solution. They are designed to maximize the evaluation efficiency for the
gradient of cost functions (such as J (θ)) and are not suited to the evaluation of
Jacobian matrices used in Gauss–Newton or Marquardt–Levenbergmethods.

8.3.2. Other methods

8.3.2.1. No-derivative methods

In addition to previously discussed methods that exploit gradient information
regarding the solution or the cost function, no-derivative minimization methods are
also available. The theory and algorithms for no-derivative minimization methods
are less developed than those for the more widely used gradient-based methods.
No-derivative methods, which include the Nelder–Mead simplex algorithm [NEL 65,
LAG 98] (not to be confused with the simplex method of linear programming), are
inefficient for high-dimensional optimization problems.

8.3.2.2. Evolutionary algorithms

These algorithms aim at performing a global exploration of the search space Θ,
and are designed by analogy with (and using the terminology of) Darwinian evolution;
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see [MIC 96], [LER 07] or [BUR 08] for applications to identification. Among their
advantages is the ability to identify multiple optimal solutions (and hence remove
the dependency on an initial guess which traditional optimization algorithms suffer
from), and to solve optimization problems that are ill-suited to classic algorithms due
to the presence of combinatorial features. This, of course, comes with a price: such
algorithms necessitate very large numbers of forward solutions. This has prompted
investigations into the combined use of evolutionary algorithms and model reduction
methods such as the proper orthogonal decomposition (POD) [BRI 07].

8.3.2.3. Topological sensitivity

Classic iterative inversion methods sometimes require significant computational
work. In the context of flaw identification, where objects are sought whose geometry
(location, size, shape) is unknown and whose support is small relative to the size
of the sample being tested, alternative approaches aiming at the construction of a
defect indicator function have recently been proposed. In particular, the concept of
topological sensitivity, which aims to evaluate the asymptotic behavior of the featured
cost function as the characteristic size of a trial defect becomes vanishingly small,
leads to a global probing approach that is approximate but computationally fast (with
a computational cost of the order of one forward solution) [AMS 05, BON 09a,
BEL 09]. This approach is not restricted to specific types of cost functions or data,
and is, in particular, easily amenable to the exploitation of full-field measurements.

8.4. Methods specifically designed for full-field measurements: an overview

8.4.1. Finite element model updating

Finite element model updating (FEMU) is primarily aimed at the identification
of constitutive parameters by using equation [8.15], or similar equations, based
on an FEM model of the sample. FEMU is usually based on the minimization
of a discrepancy between a measured quantity and its prediction by the model
for an assumed value of θ. Such a discrepancy is usually defined for measured
displacements, strains or forces.

The cost functions introduced in this context are defined in direct relation to
observable quantities. The latter may, advantageously, take the form of kinematic
fields, but this is not necessary. Indeed, any information that is supplementary relative
to boundary conditions ensuring the well-posedness of a forward problem with
known material properties may, in this framework, be exploited. In cases where
overdetermined data are available (e.g. the simultaneous knowledge of forces and
displacements over some part of the sample under examination), part of the data
may be considered as contributing to the boundary conditions, the remaining part
being considered as overdetermined (the misfit with its simulation being used to
define the cost function), with variations arising according to which part of the data is
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considered as overdetermined (e.g. cost functions focusing on either kinematic fields
or forces). The choice of variant may depend on the precise nature of the available data
and be determined by considerations such as algorithmic robustness, computational
efficiency and ease of implementation.

A detailed presentation of FEMU is given in Chapter 9. Methodologies reviewed in
section 8.3 are particularly relevant to FEMU. Applications of FEMU to constitutive
parameter identification are the subject of many investigations, such as [FOR 04],
[KAJ 04], [LEC 07], [COO 07], [MAH 02], [MAH 96], [PAG 07] and [SIL 09] (to
cite just a few examples). FEMU in the context of structural dynamics and vibrations
is also an active research topic; see, for instance, the survey article [FRI 95].

8.4.2. Constitutive relation error

Constitutive relation error (CRE) is an energy measure of the discrepancy between
a stress field τ given a priori and another stress field evaluated from a given
displacement field v using a constitutive model. For example, for a linear elastic
constitutive model defined by the (possibly heterogeneous) elasticity tensor A, the
CRE between τ and v is defined by

E(v, τ ,A) = 1
2

(

Ω

(τ −A :ε[v]) :A−1 : (τ −A :ε[v]) dV [8.30]

Note that using the compliance tensor A−1 for the purposes of weighting lends
units of energy to E(v, τ ,A).

The CRE concept, which was initially introduced for linear elasticity by [LAD 83]
in connection with error estimation for the FEM, quickly turned out to be very
useful for model updating [REY 90, CHO 96, BAR 04]. More general formulations
of CRE, applicable to incremental nonlinear constitutive models, have been proposed
in [LAD 99], based on Drucker stability inequality, and in [MOË 99], based on free
energy and dissipation potentials. The following remarks explain the usefulness of the
CRE concept for identification:

1) The solution (u,σ) to a forward problem for a linear elastic solid is
characterized by

(u,σ) = arg min
(v,τ)∈C(ū)×S

E(v, τ ,A) and E(u,σ,A) = 0 [8.31]

where S and C(ū) denote the spaces of kinematically and statically admissible fields,
respectively, corresponding to well-posed boundary conditions.

2) For a constitutive parameter identification problem for which overdetermined
data are used, it is possible to modify the definitions of the admissible field spaces
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S and C(ū) so as to include all the available experimental information. The
constitutive parameter identification problem then typically takes the form

θ9 = arg min
θ∈A

J(θ) with J(θ) = min
(v,τ)∈C×S

E(v, τ ,A(θ)) [8.32]

where A is the set of physically admissible parameters θ. Equation [8.32] summarizes
the CRE approach, which alternates minimizations with respect to (1) the admissible
fields (v, τ ) (with fixed θ) and (2) the parameters θ (with fixed admissible fields).

The concept of CRE is, in principle, applicable to any identification problem for
which overdetermined data are available, that is which does not specifically require
full-field measurements. This versatility has given rise to many applications in the
context of model updating. However, the CRE concept is generally applicable to full-
field measurements, as explained in Chapter 10.

8.4.3. Methods based on equilibrium satisfaction

This class of approach specifically relies on the experimental availability of a
kinematic field (displacement ū or strain ε̄), or of a sequence of such fields when
considering the identification of parameters for incremental constitutive models.
Assuming, for simplicity, quasi-static conditions and no body forces, the local
equilibrium equation

divσ[ε̄; θ] = 0

yields, at any point of the sample where ε̄ is known, an equality that must be
satisfied by any constitutive model predicting σ for known ε̄ (the necessity of
knowing experimentally the field ε̄ is, in particular, a consequence of the fact that the
equilibrium equation involves spatial derivatives of ε̄ via the divergence operator).We
may thus conceivably identify, for example, parameters θ associated with a model,
or some spatial distribution of heterogeneous properties, by enforcing satisfaction
of local equilibrium. Measurement or modeling errors generally implying the
unfeasibility of exact equilibrium satisfaction, we may instead consider minimizing
a global equilibrium residual J(θ), such as

J(θ) =

(

Ω

�divσ[ε̄; θ]�2 dV

In principle, the formulation of an equilibrium residual requires a 3D kinematic
field measurement, which may be obtained by means of some recently developed
experimental methods. Measurements of kinematic fields on sample surfaces are
otherwise commonly done, for instance, using digital image correlation. Such
measurements must then be extrapolated to the whole 3D sample by exploiting
kinematic modeling assumptions pertaining to, for example, plane-strain or plane-
stress settings, thin or elongated structures, etc.
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8.4.3.1. Local form: the equilibrium gap method

The enforcement of local equilibrium equations underlies the approach initiated
in [CLA 04] for the identification of spatial distributions of a scalar damage variable
0≤D(x)≤ 1 [LEM 90] such that

A(x) = (1−D(x))A0 [8.33]

(A0 denoting the elasticity tensor of the undamaged material) from displacement
fields measured by means of digital image correlation. In this approach, whose
detailed presentation is the subject of Chapter 12, the local equilibrium is exploited
through equations generated by the FEM (i.e. the differential equilibrium equations
written in weak form using locally supported trial functions) rather than pointwise
local equations; the FE-generated equations may be considered local because they act
over the element length scale h. The FE mesh is defined so that its nodes coincide with
measurement points for the displacement field. The equilibrium equation associated
with themth DOF (assumed to be unloaded) thus has the form

;

e|m∈Ee

(1 −De){em}T[Ke0]{ue} = 0 [8.34]

where {ūe} denotes the restriction to element Ee of the measured displacement,
[Ke0] is the element stiffness for the undamaged element and De is the (unknown)
value of the damage variable in Ee. The set of all possible equations [8.34] is usually
overdetermined. It is thus solved for {D} in the least-squares sense and subject to the
constraints 0≤{D}≤ 1. This work has since then been extended to the identification
of parameters associated with damage laws [PÉR 09].

Other procedures based on the satisfaction of local field equations by an
experimentally known field variable have been proposed, in connection with, for
example, the identification of heterogeneous thermal diffusivities [BAM 09] or
medical applications of elastography [SIN 05] based on 3D displacement field
measurements using magnetic resonance imaging (MRI). They directly exploit finite-
difference approximations of the local field equations and do not resort to weak finite
element-type formulations. The main difficulty raised by this kind of approach lies in
the fact that local field equations require (usually second-order) partial derivatives of
the measured field quantity. Numerical differentiation of sampled data unfortunately
often causes significant amplification of the original measurement errors. Following a
similar approach, the identification of heat sources from infrared thermography data,
treated as the right-hand side of the local heat diffusion equation (written in 2D form
after integration along the thickness so as to exploit data available on the sample
surface), has been investigated in [MOR 07]; there, the measured temperature field
is replaced in the field equation by its projection onto a predefined finite-dimensional
approximation space.
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8.4.3.2. Weak form: the virtual fields method

This approach relies on the experimental availability of the strain field ε̄ (possibly
via the approximate differentiation of a measured displacement field) and assumes
that loading conditions are known (we may, however, manage by using information
on global resultant loads by using well-chosen virtual fields). The identification of
constitutive parametersθ then exploits the equilibrium equation in weak (virtual work)
form, for example

−
(

Ω

σ[ε̄; θ] : ε[u9] dV +
(

Sf

T .u9 dS = 0 [8.35]

where u9 denotes the virtual field admissible with zero kinematic data and which is
otherwise arbitrary, under quasi-static conditions and assuming zero body forces. Each
possible choice of virtual field u9 thus yields a scalar equation that must be verified
by the constitutive model σ[ε̄; θ] that predicts the stress value for given strain and
constitutive parameters.

The virtual fields method, initiated in [GRÉ 89], consists of exploiting an identity
of type [8.35] with judiciously chosen virtual fields according to the specificities
of the identification problem at hand and presumes an a priori chosen constitutive
model whose parameters are to be identified. This approach is detailed more in
Chapter 11. Many applications and extensions of the virtual fields method have been
investigated, for example by [CHA 06] (anisotropic elasticity with damage) or by
[GRÉ 06, AVR 08] (elastoplasticity).

It is worth noting that the FE-based equilibrium gap method coincides with the
virtual fields method if each virtual field is chosen as the interpolation function
associated with a finite element DOF. Moreover, it is shown in [AVR 07] that
the stationarity conditions for cost functionals associated with FEMU, CRE or
equilibrium gap can be interpreted in terms of the virtual fields method for specific
suitably chosen virtual fields.

8.4.4. Reciprocity gap

The reciprocity gap method mainly concerns situations where the field
measurements are available at the boundary. Denoting by (û, T̂ ) the displacement and
density fields on the boundary, we can define a reciprocity gap functional based on the
virtual power principle. For example, we can consider measurements performed on a
solid Ω whose behavior is defined by the elasticity tensor field A(x), which we are
seeking to identify. An auxiliary displacement u9, often called “adjoint”, is defined.
This displacement is generated, in a solid of identical geometry Ω but for a fictitious
reference material characterized by the elastic tensor A9(x), by a force density T 9

applied on ∂Ω. By combining the equations given by the virtual work principle for
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(û,u9) and (u9, û) (or else, equivalently, by writing the Maxwell–Betti reciprocity
theorem for states û and u9), we obtain

(

Ω

ε[u] : [A−A9] :ε[u9] dV =
(

∂Ω

(T̂ .u9−T 9.û) dS ≡ R(A9,u;u9) [8.36]

Identity [8.36] provides an independent scalar equation that must be verified by the
unknown elasticity tensor field A(x), or by parameters θ defining it, for each choice
of adjoint loading T 9; this defines the essence of the reciprocity gap method, which
is presented in detail in Chapter 13. We can consider the reciprocity gap method as a
variant of the virtual fields method for which the kinematic fields are only available
at the boundary. In the absence of arguments enabling the kinematic extrapolation
of the data to Ω in its entirety, the real displacement field u is a priori unknown in
Ω and must be reconstructed together with A, at least on the geometrical support
of the contrast A − A9. A linearized version of [8.36] for weak contrasts (�A −
A9�) �A9�) enables the theoretical analysis of the identifiability of heterogeneous
elastic moduli [IKE 90] or of heterogeneous stiffnesses in plate bending [IKE 93],
the identifiability condition generally being the knowledge of the Dirichlet–Neumann
map, that is, of all the possible (û, T̂ ) pairs. Reciprocity gap functionals are also useful
for identifying cracks [AND 97, BEN 99] or discrete point sources [ELB 00].

8.5. Conclusion

In this introductory chapter on identification, we proposed an overview of
the concepts of inversion and identification, and the numerical solution methods
commonly used in this context. Finally, the main methodologies devoted to
constitutive parameter identification using full-field kinematic measurements are
briefly described; they will be analyzed in more detail in Chapters 9 to 13.
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