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Abstract: Double-walled carbon nanotube-yttria-stabilized ZrO2 nanocomposites are prepared by a
mixing route followed by Spark Plasma Sintering. The double-walled carbon nanotubes (DWCNTs)
have been previously subjected to a covalent functionalization. The nanocomposites present a high
densification and show a homogenous dispersion of DWCNTs into a matrix about 100 nm in size.
The DWCNTs are well distributed at the matrix grain boundaries but form larger bundles upon the
increase in carbon content. The Vickers microhardness of the nanocomposites decreases regularly
upon the increase in carbon content. Incorporation of carbon at contents higher than 2 wt.% results
in significantly lower friction coefficients, both against alumina and steel balls, possibly because of
the elastic deformation of the DWCNTs at the surface of the sample. Their presence also favors a
reduction of the steel/ceramic contacts and reduces the wear of the steel ball at high loads. DWCNTs
improve wear resistance and reduce friction without incurring any severe damage, contrary to
multi-walled carbon nanotubes.

Keywords: spark plasma sintering; carbon nanotubes; zirconia; friction; wear

1. Introduction

The interest in all-solid self-lubricating materials, which eliminate the necessity of liq-
uid lubricants, is well recognized. Carbon-containing nanocomposites, especially using car-
bon nanotubes (CNTs), are particularly noteworthy for their tribological applications [1,2].
Reports on the tribological properties of CNT–ceramic nanocomposites or coatings are
abundant, in particular for the Al2O3 matrix [3–15]. The decrease in the friction coefficient
was attributed to the spreading of carbon-based transferred films (tribofilms) over the
contact area, allowing for easier shearing and providing lubrication during sliding. It has
been proposed that the variations in friction behaviors could be linked to the thickness of
the CNTs and the level of densification. The friction coefficient also shows a clear down-
ward trend as the carbon content increases. This emphasizes that key points for achieving
a higher microhardness, lower friction coefficients, and lower wear include high carbon
contents, the homogeneity of the CNT dispersion, good interfacial bonding, and a high
relative density. In spite of many potential applications, notably in the field of biomateri-
als, the friction behavior of CNT–zirconia nanocomposites is scarcely addressed [16–18]
compared to the mechanical properties [19]. These studies are focused on yttria-stabilized
zirconia (YSZ) in which either single-wall CNTs (SWCNTs) [16] or multi-walled CNTs
(MWCNTs) [17,18] have been dispersed. An alternative way to the use of SWCNTs or
MWCNTs for the preparation of self-lubricating CNT–ceramic nanocomposites is that of
double-walled CNTs (DWCNTs), which are a unique class of CNTs [20,21], possibly more
interesting for tribological applications. Indeed, it has been notably shown that the lubri-
cating mechanisms depend on the number of walls and diameter of the CNTs: MWCNTs
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are cut and exfoliated, which leads to the formation of a lubricating film in the contact
containing carbon debris, whereas DWCNTs have a better resistance to contact pressures
and are elastically deformed [22]. The electrical and mechanical properties of spark plasma
sintered DWCNT–YSZ nanocomposites have been published [23]. The aim of the present
work is to investigate their tribological properties, which, to the best of our knowledge,
have not yet been reported. It is shown that, by contrast to MWCNTs, the DWCNTs increase
the wear resistance and reduce friction without incurring any severe damage.

2. Materials and Methods
2.1. Powder Preparation

A commercial nanometric (grain size slightly lower than 100 nm) 3 mol.% yttria-
stabilized zirconia (3YSZ) powder (TZ-3Y, Tosoh, Tokyo, Japan) was used for the study.
The proportions of tetragonal and monoclinic ZrO2 determined by X-ray diffraction (XRD)
are 77 and 23 vol.%, respectively. DWCNTs were synthesized by a CCVD route [24]. The
catalytic material designated as Mg0.99(Co0.75Mo0.25)0.01O was submitted to a catalytic
chemical vapor deposition (CCVD) treatment (H2-CH4, 18 mol.% CH4, heating and cooling
rates 5 ◦C·min−1, maximum temperature 1000 ◦C, no dwell), producing a CNT-Co/Mo2C-
MgO nanocomposite powder. The powder was immersed in a 37% HCl aqueous solution in
order to dissolve MgO along with the majority of cobalt and molybdenum species without
damaging the CNTs [25]. The resulting suspension was filtered, washed with deionized
water until neutrality, and kept wet (without any drying step) to facilitate further dispersion.
The CNTs in the sample are mostly DWCNTs (80%), SWCNTs (15%), and CNTs with three
walls (5%). The outer diameter is in the range of 1–3 nm, and the inner diameter is in the
range of 0.5–2.5 nm [25]. The wet as-prepared DWCNTs were acid-functionalized using a
mixture of nitric, sulphuric, and hydrochloric acidic solutions at room temperature [26].
The mixture was neutralized with ammonia and filtered while keeping the DWCNTs wet.

Five different DWCNT–3YSZ nanocomposite powders were prepared using the fol-
lowing route. The appropriate amount of acid-treated CNTs was dispersed in deionized
water with a sonotrode (Vibra Cell 75042, Rosny-sous-Bois, VWR, France, 20 kHz, 500 W)
for 15 min. The so-obtained CNT suspension was poured into a suspension of 3YSZ in
water (pH = 12), which was prepared previously (15 min tip sonication and 1 h mechan-
ical stirring). The mixture was then tip-sonicated for 30 min. The vessel containing the
DWCNT–3YSZ suspension was immersed in liquid N2 until freezing and freeze-dried
(Christ alpha 2–4 LD, Bioblock Scientific, Illkirch, France) at −84 ◦C for 48 h in a primary
vacuum (12 Pa). The carbon content (Cn) in the so-obtained DWCNT–3YSZ powders was
measured by flash combustion (Perkin Elmer, Villebon-sur-Yvette, France, 2400 Series II)
and is equal to 0.5, 1.2, 1.7, 4.5, and 6.3 wt.%.

2.2. Spark Plasma Sintering

The 3YSZ and DWCNT–3YSZ powders were densified by spark plasma sintering (SPS,
Dr. Sinter 2080, SPS Syntex Inc., Kawasaki, Japan). A graphite die with a 20 mm inner
diameter was loaded in the following order from bottom to top: a graphite punch, a sheet
of graphitic paper, an alumina powder bed approximately 1.2 mm thick (in order to block
the current and ensure uniform heating in specimens with varying electrical conductivities),
another sheet of graphitic paper, the powder sample, and then the same materials in reverse
order. The graphitic paper was also placed along the internal walls of the die to facilitate
the easy removal of the pellets after sintering. SPS was conducted in an argon atmosphere
using a conventional pulse pattern of 12–2 (12 current pulses followed by two periods of no
current). The heating rate was 250 ◦C/min from room temperature to 600 ◦C, with a 3-min
hold at 600 ◦C to stabilize the temperature reading. A heating rate of 100 ◦C/min was then
applied from 600 ◦C to the target dwell temperature, either 1200 or 1350 ◦C, depending on
the carbon content (Table 1), with a 10 min dwell period. A uniaxial load (equivalent to
100 MPa on the pellet) was gradually applied during the hold at 600 ◦C and maintained
throughout the remaining heating and dwell period, then released in the final minute of
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the dwell. The cooling rate was set at 60 ◦C/min. The sintered specimens were formed into
pellets 20 mm in diameter and approximately 2 mm thick, which were then polished to a
1 µm finish using diamond slurries. These sintered specimens will be referred to as 3YSZ,
C0.5, C1, C2, C4.5, and C6 hereafter.

Table 1. Carbon content in weight (Cn), SPS dwell temperature (TSPS), relative density (d), Vickers
microhardness (HV), ID/IG (%) ratio between the D and G bands of the Raman spectra for the sintered
nanocomposites and average arithmetic roughness (Ra). Standard deviations are reported for HV. The
ID/IG ratios have been calculated from three to six spectra depending on the sample; the minimum
and maximum values (min–max) are also reported.

Specimen Cn
(wt.%)

TSPS
(◦C)

d
(%)

ID/IG
(Min–Max)

HV
(GPa)

Ra
(µm)

3YSZ 0 1200 98 - 14.5 ± 0.3 0.01
C0.5 0.5 1200 100 0.23 (0.09–0.72) 13.8 ± 0.6 -
C1 1.2 1200 100 0.74 (0.45–1.46) 12.3 ± 0.8 -
C2 1.7 1200 99 0.49 (0.37–0.61) 11.7 ± 0.1 0.05

C4.5 4.5 1200 98 1.07 (0.69–1.31) 10.0 ± 2.8 0.07
C6 6.3 1350 96 0.85 (0.33–1.20) 9.5 ± 0.7 0.06

2.3. Characterization

Raman spectroscopy (Horiba Jobin-Yvon, Plaiseau, France, LabRAM HR800, 632.82 nm
laser excitation) was used to characterize the raw DWCNTs, nanocomposite powders, the
surface of sintered samples, and wear tracks, averaging at least three spectra for each
specimen. X-ray diffraction (XRD, Bruker, Champs-sur-Marne, France, D4 Endeavor, Cu
Kα radiation) was performed on sintered specimens. The density of the pellets was mea-
sured using Archimedes’ method after removing the graphitic surface contamination by
polishing it with 600-grade SiC paper. Relative densities were calculated using 6.05 g/cm3

for tetragonal zirconia and 1.80 g/cm3 for DWCNTs, with a relative uncertainty estimated
at 1%. The fracture surfaces of the pellets, coated with a 1 nm thick platinum layer, were
examined using field emission gun scanning electron microscopy (FESEM, JEOL, Croissy,
France, JSM 6700F). For each sample, the linear intercept method [27] was used to measure
the size of a hundred 3YSZ grains. Indentation tests (3 N applied for 10 s in the air at room
temperature) were performed on the polished surfaces of the specimens using a Vickers in-
denter (Shimadzu, Noisiel, France, HMV 2000). The calculated microhardness values (HV)
are the average of ten measurements. Friction tests were conducted using a pin-on-disc
reciprocating flat geometry (CSM Instruments, Peseux, Switzerland, Tribometer) in ambient
air (30–36% relative humidity, 21–25 ◦C). Alumina and 100C6 steel balls 6 mm in diameter
were used against the flat surfaces of 3YSZ and DWCNT–3YSZ samples. The sliding speed
was set at 5 cm.s−1. Tests were performed with normal loads of 1, 5, and 10 N, depending
on the ball used. Higher loads were not tested to avoid damaging the pellets and altering
the contact geometry. The frictional force was recorded throughout the test using a load
cell. Each friction test was repeated three times, yielding consistent results. Initial sample
roughness was measured by white light interferometry (Zygo, Les Ulis, France, NewView
100). Wear tracks were analyzed using 3D optical profilometry (SENSOFAR, Terrassa,
Spain, S neox) on the samples and optical microscopy (Keyence, Bois-Colombes, France,
VHX-1000E) on the balls.

3. Results and Discussion

Analysis of the XRD patterns (Figure 1) revealed only the presence of tetragonal
zirconia in 3YSZ and C6. Similar patterns were obtained for all other sintered specimens,
indicating that the presence of CNTs has no influence on the monoclinic to tetragonal
phase transformation of 3YSZ during sintering. The densification occurs between 900 and
1200 ◦C for 3YSZ (Figure 2), in agreement with previous SPS studies starting from the same
3YSZ powder [28], and the relative density d reaches 98% at the end of the temperature
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dwell. The relative density (Table 1) is in the range of 98–100% for 3YSZ, C0.5, C1, C2,
and C4.5 and is lower for the sample with a higher carbon content (C6), reaching only
96% despite the higher sintering temperature (1350 vs. 1200 ◦C). This agrees with earlier
studies showing that CNTs above a certain proportion inhibit densification [29]. For all
composite powders, the intensity ratio of the D band to the G band (ID/IG) in the high-
frequency range of the Raman spectra (typical of the spectrum shown for the C6 powder
in Figure 3) to that found for raw DWCNTs (0.11 ± 0.06 vs. 0.13) [23], indicating that the
functionalization and mixing processes did not damage the DWCNTs. The higher ID/IG
ratio (Table 1) and the broadening of the G band attributable to the appearance of the
D’ band for the sintered nanocomposites (typical spectrum shown for the C6 sample in
Figure 3) compared to the powders could indicate that some DWCNTs were damaged
during the SPS treatment. Ukai et al. [30] reported that the formation of zirconium carbide
during hot-isostatic pressing of MWCNT/YSZ nanocomposites at 1450 ◦C during 2 h was
responsible for MWCNT damage.
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Figure 3. Raman spectra of C6 and corresponding nanocomposite powder.

However, no zirconium carbide was detected in the XRD patterns of the present
sintered samples, possibly because SPS was conducted at lower temperatures (T ≤ 1350 ◦C)
and for shorter durations (t = 10 min) in the present study. The potential for CNT damage
during SPS may be more closely associated with the material’s mixed ionic–electronic
conductivity at high temperatures [31]. Owing to their significant mobility, O2− ions
may react with the outer wall of the DWCNTs, especially since they are weakened by
the covalent functionalization step [32], resulting in localized damage. For all samples,
FESEM observations of the fracture surface (Figure 4) reveal little or no porosity, which is
in agreement with the high relative densities (Table 1) and shows an intergranular fracture
mode. The average grain size of the 3YSZ sample is equal to 100 ± 10 nm (Figure 4a),
only slightly higher than in the starting powder. The same size (100 nm) is observed for
the zirconia matrix for all samples, regardless of the carbon content. For C6, the high
amount of DWCNTs hampered grain growth despite the higher sintering temperature
(1350 vs. 1200 ◦C), thus accounting for the lower relative density, as noted above. For
all specimens, the DWCNTs are well distributed at the matrix grain boundaries without
forming agglomerates (Figure 4b–d). However, increasing amounts of DWCNTs lead to the
formation of larger diameter bundles, up to about 100 nm (Figure 4b–d).

The Vickers microhardness of the nanocomposites (13.8–9.5 GPa, Table 1) is lower than
that of the 3YSZ specimen (14.5 GPa, Table 1) and decreases regularly upon the increase
in carbon content (Figure 5). The same behavior has been reported for fully densified
SWCNT–3YSZ [33] and MWCNT–3YSZ [34] and is associated with a weak interfacial
bonding between the CNTs and the zirconia matrix. The values obtained in this study
are higher than those reported for SWCNT–3YSZ [16,33] and MWCNT–3YSZ [34,35], for
which the composite powders were also prepared by a mixing route. The higher values
could reflect a better dispersion of DWCNTs in the matrix and/or a slightly lower matrix
grain size.
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images, highlighting stretched DWCNT bundles emerging from grain boundaries and anchored in
the ceramic matrix.
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The arithmetic average roughness (Ra) calculated from white-light interferential ru-
gosity images is equal to 0.01 µm for 3YSZ and is in the range of 0.05–0.07 µm for C2,
C4.5, and C6 (Table 1). These higher values can be ascribed to the tearing of grains in
the nanocomposites caused by the weakening of grain boundaries due to the presence
of the DWCNTs. Typical curves showing the friction coefficient (µ) against the alumina
ball versus distance for a 5 N load are shown in Figure 6a. For 3YSZ, C0.5, and C2, µ
increases sharply during the running-in period and then stabilizes on the last 5 m. By
contrast, for C4.5 and C6, µ increases smoothly and to a much lesser extent, with much less
noisy curves. The observed noise reflects that the contact lacks stability and also a certain
amount of wear, which is more pronounced for 3YSZ and the nanocomposites with low
carbon contents. The alumina ball being harder (15 GPa) than the samples (9.5–14.5 GPa),
wear can probably be attributed to that of the sample. The average friction coefficients
calculated on the last 0.5 m versus carbon content are presented in Figure 6b. For the
sake of comparison, earlier results on eight-wall carbon nanotube-yttria-stabilized ZrO2
nanocomposites (8WCNT–3YSZ) [17] are reported in Figure 6b. For loads of 5 and 10 N, µ
decreases for carbon contents higher than 2 wt.% and reaches a value of 0.23, i.e., 2.4 times
lower than for 3YSZ (µ ≈ 0.55). Thus, small amounts of DWCNTs probably weaken the
3YSZ grain boundaries but do not provide a lubricating effect, in agreement with results on
SWCNT–3YSZ [15] and MWCNT–3YSZ nanocomposites [17,18,36].

The reduction in the average friction coefficient starts at a lower carbon content for
8WCNT–3YSZ (2 wt.%) than for DWCNT–3YSZ (2 wt.% < Cn ≤ 4.5 wt.%) nanocomposites,
probably because the pull-out of DWCNTs is more difficult than that of 8WCNTs, limiting
their participation to the contact lubrication. Indeed, DWCNTs are longer (up to several
tens of micrometers) than 8WCNTs (1.5 µm), and their significant sinuosity between the
3YSZ grains forms a network more firmly anchored in the matrix. The lowest value of µ
(0.23) reached at both 5 and 10 N is lower than the one reported (0.35) by Hvizdoš et al. [37],
who performed tests under similar experimental conditions (pin-on-disk test, alumina
ball, 5 N, 25 m, room temperature, and dry conditions) on 3YSZ matrix nanocomposites
containing 1.07 wt.% of carbon in the form of carbon nanofibers (CNF). Wear tracks on
3YSZ and C6 samples were observed by optical microscopy (Figure 7).

The track widths expand with the applied load, corresponding to the increase in
contact radius calculated using Equation (1) and reported in Table 2:

a = (3FR/4E*)1/3 (1)

where F is the applied load (N), R is the ball’s radius (m), and E* is the equivalent Young
modulus defined as follows:

1/E* = (1 − ν2
alumina)/Ealumina + (1 − ν2

sample)/Esample (2)

where νalumina = 0.27, Ealumina = 390 GPa, ν3YSZ = 0.31, and E3YSZ = 212 GPa.

Table 2. Ball and applied load (F) used for tribological tests, contact radius (a), maximum Hertzian
contact pressure (Pmax), and maximum shear strength (τmax).

Ball F (N) a (µm) Pmax (MPa) τmax (MPa)

alumina
5 42 1346 586

10 53 1696 657

steel
1 27 656 258
5 46 1122 421
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Figure 7. Optical micrographs of wear tracks after tests with an alumina ball at 10 and 5 N on 3YSZ
sample (a) and C6 nanocomposite (b).

The track widths are approximately twice as large for C6 as for 3YSZ. Whether the
test is conducted with a load of 5 or 10 N, the tracks on C6 are similar in appearance
and can be identified by a significant amount of black debris, certainly containing carbon
on the sides and less inside. The observation of the wear profiles (Figure 8) after tests
at 10 N reveals a track with a depth estimated at 4 µm for C6, while it is superficial for
3YSZ, showing that the wear of the nanocomposite is much more significant than that of
3YSZ. For an alumina/C6 test compared to an alumina/3YSZ test, the reduction in the
coefficient of friction is not correlated with a decrease in wear. Therefore, it seems that
the threshold of carbon in the form of DWCNTs beyond which wear decreases has not
been reached, contrary to what was observed for 8WCNT-based nanocomposites [17]. As
with the difference in the coefficient of friction between 8WCNT–3YSZ and DWCNT–3YSZ
nanocomposites, the difference in wear is likely attributable to a less easy DWCNT pull-out
than 8WCNT pull-out.

Typical curves showing the friction coefficient (µ) against the steel ball versus distance,
for a 5 N load is shown in Figure 9a. For a load of 1 N against steel, µ starts decreasing
for a carbon content above 1 wt.%., at least twice lower than at 5 N (Figure 9b). Beyond
2 wt.%, µ no longer depends on the load and carbon content. The lower value (about 0.2
for both C4.5 and C6) is almost three times lower than that for the steel/3YSZ pair. The
steel ball being less hard (8.6 GPa) than the samples (9.5–14.5 GPa), wear can probably
be attributed to that of the ball, and only the track width on the steel ball versus carbon
content is presented (Figure 10). At 1 N, the wear track width on the steel ball remains
constant at about 100 µm regardless of carbon content and is lower than those reported at
5 N, in agreement with the increase of the contact radius a (Table 2). At 5 N, wear track
widths vary: those on steel balls in contact with samples with less than 2 wt.% of carbon
are about 400 µm (similar to 3YSZ), while for C4.5 and C6 samples, they are less than
200 µm, showing significantly less wear. Moreover, this reduced wear is associated with
lower and similar friction coefficients for C4.5 and C6 in comparison to other samples. The
difference between the hardness of the ball (8 GPa) and the hardness of the nanocomposites
(Table 1) decreases as the carbon content increases. This makes the contact between the
two less aggressive, leading to a reduction in the wear of the ball with a 5 N load. Also,
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increasing carbon content in the form of DWCNTs appears to limit steel/ceramic contacts
and improve the sliding of the ball.
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Figure 8. Wear tracks profiles after tests with an alumina ball at 10 N on 3YSZ sample (a) and C6
nanocomposite (b).

The surface and wear tracks for C4.5 and C6 were analyzed using Raman spectroscopy
after the tests with the alumina and steel balls. In each case, a signal corresponding to
carbon appeared. The ID/IG ratios calculated from the spectra (not presented) are similar,
revealing no significant damage to the DWCNTs. According to Caillier et al. [38], DWCNT
elastic deformation starts with a modification of the outer wall cross-section from circular
to oval at above 80 MPa. The deformation of the inner wall into a peanut-like cross-section
then occurs above 450 MPa. An increase of the pressure until 1 GPa did not reveal any
irreversible deformation, while Aguiar et al. [39] reported a permanent deformation of the
outer wall at about 21 GPa and of the inner wall at 25 GPa. The maximum Hertzian contact
pressures sustained by the DWCNTs in the contact (Pmax—Table 2) were calculated using
Equation (3):

Pmax = 3F/2πa2 (3)

where F is the applied load (N) and a is the contact radius (m) calculated using Equa-
tion (1), νalumina = 0.27, Ealumina = 390 GPa, νsteel = 0.33, Esteel = 200 GPa, ν3YSZ = 0.31, and
E3YSZ = 212 GPa.
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The comparison of Pmax with the values reported for DWCNTS [38,39] supports the
Raman spectroscopy findings, indicating that the DWCNTs are elastically deformed under
compression during friction. The DWCNTs are also submitted to shear strengths during the
sliding of the ball. The maximum shear strength reached at the sample surface is calculated
using Equation (4):

τmax (MPa) = Ff/A = µmaxF/A (4)

where Ff is the tangential shearing force (N), µmax is the maximum friction coefficient
reached during the tests using four sets of conditions (alumina ball at 5 and 10 N, steel ball
at 1 and 5 N), F is the applied load (N), and A is the contact surface area (m2) calculated
using the contact radius a calculated using Equation (1) and reported in Table 2.

The calculated maximum shear strengths are in the range of 258–657 MPa (Table 2).
Based on the average tensile strength of aligned DWCNT bundles, Li et al. [40] deduced
that the average strength of an individual bundle is 6 GPa. An approximate value for
the shear yield strength would be half of this or 3 GPa; therefore, it is significantly higher
than the calculated τmax values. Contrary to MWCNTs [17], DWCNTs are not severely
damaged, cut, or destroyed to form a third lubricating body in contact, at least in the
present experimental tribological conditions.

4. Conclusions

For the first time, a significant decrease in the average friction coefficient against
both an alumina ball and a steel ball (by a factor of 2.4 to 3) is reported for DWCNT–
3YSZ nanocomposites in comparison to 3YSZ. The decrease could result from the elastic
deformation of the DWCNTs present at the surface of the sample. The presence of the
DWCNTs also favors a reduction of the steel/ceramic contacts and reduces the wear of
the steel ball at high loads. These tribological properties are achieved because of the
specific microstructure of the nanocomposites, DWCNTs quality, DWCNTs homogeneous
dispersion, low matrix grain size (100 nm), and sample high densification even for a
relatively high carbon content (6 wt.%).
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