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Slip-dominated structural transitions

Kanka Ghosh,1, ∗ Oguz Umut Salman,1 Sylvain Queyreau,1 and Lev Truskinovsky2, †

1CNRS, LSPM UPR 3407, Université Sorbonne Paris Nord, 93430 Villetaneuse, France
2PMMH, CNRS UMR 7636 ESPCI ParisTech, 10 Rue Vauquelin,75005 Paris, France

We use molecular dynamics to show that plastic slip is a crucial component of the transforma-
tion mechanism of a square-to-triangular structural transition. The latter is a stylized analog of
many other reconstructive phase transitions. To justify our conclusions we use a novel atomistically-
informed mesoscopic representation of the field of lattice distortions in molecular dynamics simu-
lations. Our approach reveals a hidden alternating slip distribution behind the seemingly homoge-
neous product phase which points to the fact that lattice invariant shears play a central role in this
class of phase transformations. While the underlying pattern of anti-parallel displacements may be
also interpreted as microscopic shuffling, its precise crystallographic nature strongly suggests the
plasticity-centered interpretation.

Reconstructive phase transitions are the most
widespread type of structural transformations in solids.
These transitions lack the simplifying group-subgroup re-
lationship and therefore cannot be described by the con-
ventional Landau theory. The development of the equally
encompassing theory of reconstructive transitions is still
a challenge given that they involve breaking of chemi-
cal bonds and are characterized by micro-inhomogeneous
configurations with slip, twinning, and stacking faults ap-
parently intertwined [1–7].

The BCC-HCP reconstructive transition is one of the
most representative [8–15]. Its mechanism, proposed by
Burgers based on crystallographic analysis [16–23], im-
plies the presence of a homogeneous shear and a super-
imposed alternating shuffling represented by anti-parallel
shifting of atomic layers. The origin of the shuffling can-
not be addressed based on crystallography only and var-
ious attempts to interpret it while referring to structural
mechanics, energetics and kinetics can be found in the
literature [14, 17, 24–32]. Similar problem exists for the
FCC-HCP reconstructive phase transition which can be
accomplished crystallographically by the alternating co-
ordinated gliding of Shockley partials on every second
close-packed crystallographic plane [33, 34]. The origin
of the implied antagonistic displacements still remain ob-
scure despite many insightful attempts to link it to first
principles auxiliary computations [33, 35–49].

More generally, the pattern of anti-parallel, crystallo-
graphically specific, nanoscale, highly coordinated dis-
placements appear to be a distinguishing feature of re-
constructive transitions, which is the main factor placing
them outside the classical Landau picture [1, 50, 51]. A
fundamental understanding of this phenomenon is then
of great theoretical interest and in this Letter we pro-
pose its new interpretation. Our conclusions are based on
systematic molecular dynamics (MD) studies of a proto-
typical model which suggest that the crucial non-Landau
factor in reconstructive phase transitions is the disguised
plastic slip.

Specifically, we study the simplest reconstructive tran-
sition between 2D square (S) and triangular (T) lat-

tices [2, 52, 53]. While such square-to-hexagonal phase
change is of interest by itself [54–68], it can be considered
as a stylized, low dimensional, Bravais lattice analog of
both emblematic BCC-HCP and FCC-HCP reconstruc-
tive transitions [69–71].

To interpret the results of our MD simulations we shift
attention from the conventional focus on the configura-
tions of individual atoms to the original representation
of the transformation history in terms of the evolution
of atomic neighborhoods. This new approach allows us
to map the transformation path into the configurational
space of the mesoscopic metric tensors. The purely ge-
ometrical periodic tessellation of the latter creates the
possibility to distinguish unambiguously between elas-
tic and plastic deformations [2, 53, 72]. The application
of such atomistically-informed representation of lattice
distortions in the case of S-T transition reveals that its
fundamentally non-affine mechanism involves alternating
lattice invariant shears which points towards a plasticity-
centered interpretation of this reconstructive transition.
To corroborate the results of our MD experiments, we
also performed a parallel study of a coarse grained meso-
scopic model which directly deals with the evolution of
atomic neighborhoods [72–76]. The obtained qualita-
tive agreement suggests that the observed slip-dominated
mechanism of S-T transition is a robust feature of this
class of reconstructive transformations, insensitive to mi-
croscopic details.

The molecular dynamics simulations were carried out
using LAMMPS [77, 78]. The particle interaction
potential was chosen in the form V (r) = a/r12 −
c1 exp [−b1(r − r1)

2]− c2 exp [−b2(r − r2)
2], allowing one

to stabilize in 2D both square and triangular lattices
[79]; here r1 is the lattice constant and r2 is the sec-
ond nearest neighbor distance. Periodic boundary con-
ditions were employed and pressure controlled proto-
col was implemented within isothermal-isobaric ensem-
ble [80]. The computed (kinetic) T-P phase diagram for
the direct S-T transition is shown in Fig. 1(a). The
predicted negative slope of the coexistence curve agrees
with similar numerical experiments [81–83] and is also

ar
X

iv
:2

40
9.

04
06

6v
1 

 [
co

nd
-m

at
.m

tr
l-

sc
i]

  6
 S

ep
 2

02
4



2

  

(a)

SQUARE

T
R

IA
N

G
U

LA
R

ST
(1)(2)(3)

(b)

T
 (

K
)

P (x107 bar)

FIG. 1. MD simulated square-to-triangular transition: (a)
kinetic T-P phase diagram showing only the direct transition;
(b) the same transition in P-V (area A) performed at T = 10
K (as indicated in (a) by an arrow).

consistent with the data for BCC-HCP transformation
in iron [84, 85]. In Fig. 2 we illustrate the fact that the
originally pure-crystalline square lattice transforms into a
poly-crystalline triangular configuration with specifically
mis-oriented grains separated by dislocation-rich curved
grain boundaries [80].
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FIG. 2. Multigrain configuration of transformed triangular
lattice (T) colored according to the potential energy of each
atom. The atomic structure of two triangular grains with 60◦

mis-orientation is illustrated in the insets.

As a novel way of interpreting the results of MD sim-
ulations, we extracted from individual atomic position
data the local values of the deformation gradients. This
amounts to post-processing the instantaneous MD data
which are then interpreted as representing piecewise lin-
ear strain fields [86–90]. Specifically, by denoting the
reference discrete atomic positions xi and the deformed
atomic positions yi, we can define the effective defor-
mation gradient Fi by minimizing the error function∑ ∥ ∆y − Fi∆x ∥2 with summation over the pairs of
elements inside the chosen neighborhood of a given site
i [91–97]. In our case of weakly distorted lattices the
sampling neighborhood could be limited to two comple-
mentary triangular domains [80]. Most importantly, this
approach allows us to compute the MD informed local

metric tensor Ci = FiTFi.

The possibility of mapping the results of MD sim-
ulations into the C-space (with coordinates C11, C22,
and C12) is of great interest because its crucial sub-
space, det(C) = 1, is naturally tessellated by the action
of the global symmetry group of Bravais lattices. The
latter is a finite strain extension of the crystallographic

  

FIG. 3. Stereographic projection on a Poincare disk of the
configurational space of metric tensors C with detC = 1
given by the formulas x = t(C11 − C22)/2, y = tC12, where
t = 2(2 + C11 + C22)

−1, see [80] for details. In (a,b) the ref-
erence states are the square phase S and the triangular phase
T1, respectively. Dark gray indicates the minimal periodicity
domain, light gray – the minimal elastic domain; blue lines
represent the tessellation induced by the GL(2,Z) global sym-
metry.

point group and can be represented in our case explic-
itly: GL(2,Z) = {m, mIJ ∈ Z, det(m) = ±1}, see for
instance [2, 53, 98–112].

The symmetry-induced periodicity structure in the
space of metric tensors C is illustrated in Fig. 3(a,b),
where we identify both, the minimal periodicity (funda-
mental) domain and the minimal elastic domain (funda-
mental domain extended under the action of the point
group), see [80] and also [75, 76] for more details. The
two panels in Fig. 3 provide equivalent information with
the only difference that in (a) the C-space is centered
around the reference square lattice (point S), while in
(b) the reference lattice is triangular (point T1) [80]. The
importance of Fig. 3(b) for what follows is that it clearly
indicates that the two triangular lattices T1 and T2 be-
long to different elastic domains because they differ by a
lattice invariant shear representing an elementary plastic
slip.

In Fig. 4(a) we show in more detail a fragment of the
C-space centered around the point S (taken in this case
as the reference, essentially a zoom in on Fig. 3(a)). One
can see that an unbiased (pressure or temperature in-
duced) S-T transition would be represented in Fig. 4(a)
simultaneously by two paths: S → T1 and S → T2. Both
paths describe pure shear deformations traversing con-
figurations with rhombic symmetry; while those are iso-
choric projections, the actual MD transition is also ac-
companied by a volumetric contraction, see [80]. If we
advance from C-space to the larger F-space, even more
complex picture emerges, see Fig. 4(b). Thus, the “de-
formation variants” in C-space multiply as “orientation
variants” in F-space where the same deformation can
correspond to several different orientations of the basis
vectors.

More specifically, observe first that the stretch tensor
U⋄(λ) =

√
C⋄ along the path S → T1 can be written in
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FIG. 4. (a) A fragment of the configurational space of met-
ric tensors C showing the original square lattice (point S)
and two equivalent versions of the triangular lattice (points
T1 and T2). Solid arrows are directed along the two sym-
metric pure shear (rhombic) paths S → T1 and S → T2; the
elastic domain is shown in pink; (b) A schematic structure
of the four equivalent transformation paths in the extended
configurational space of metric tensors F emphasizing rota-
tions needed to recover the geometric compatibility with the
square phase.

the form [113]

U⋄(λ) =
1

2

[
λ+ 1

λ λ− 1
λ

λ− 1
λ λ+ 1

λ

]
, (1)

where λ = 1 at the square phase S and λ = λ∗ = 31/4

at the triangular phase T1; along the synchronous path
S → T2 the stretch tensor is U⋄(1/λ). Note next, that
the mappings U1 = U⋄(λ∗) and U2 = U⋄(λ−1

∗ ), describe
area preserving stretching along two opposite diagonals
of a square lattice cell with one of the diagonals becom-
ing longer than the other. These mappings, however, do
not fully characterize the complete S → T transition be-
cause the underlying rigid rotation remains unspecified.
For instance, to ensure geometrically compatible lattice
orientations, a clockwise rotation R+(ϑ) and anti clock-
wise rotation R−(ϑ) with ϑ = ± 15◦ have to be added
to U1 and U2. Such specification of rotations produces
four equivalent triangular lattices T+

1 , T
−
1 , T

+
2 and T−

2

shown schematically in Fig. 4(b). The corresponding
deformation gradients are F±

1,2 = R±
1,2U1,2, where, for

instance,

R+
1 =

1√
coshα

[
cosh(α/2) sinh(α/2)
− sinh(α/2) cosh(α/2)

]
, (2)

with α = 2 lnλ∗: the rotation aligns in this case the basis
vector e1 (already rotated by the mapping U⋄(λ∗)) with
the horizontal direction.

In Fig. 5(a,d) we show that all four variants T±
1,2 have

been indeed observed in our MD experiments. One can
see that the two representations of the same atomic con-
figuration, reached at the end of the S-T transformation,
feature alternating rows/columns of positive and nega-
tive components of the deformation gradients, F±

12 and
F±
21, see Fig. 5(b,e). In other words, we observe mix-

tures of alternating states, either T+
1 and T−

2 , in Fig.
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FIG. 5. In (a), (d) we depict the MD simulated fields F12 and
F21 in the transformed triangular phase. Zoomed-in views of
fragments from (a,d) are presented in (b,e) where we see the
corresponding atomic configurations visualized using OVITO
[114]. In (c,f) we show triangulation representations corre-
sponding to zoomed-in fragments from (b,e). In (g,h) we
identify the corresponding variants T±

1,2.

5(g), or T−
1 and T+

2 , in Fig. 5(h). In Fig. 5(c,f) we illus-
trate the associated Delaunay triangulations visualizing
the non-affine deformation behind the apparently homo-
geneous grains. The parallel numerical experiments using
athermal molecular statics fully corroborate these rather
remarkable observations, see [80] for details.

The main conclusion is that the standard representa-
tion of MD data, showing in the case of the S-T transi-
tion a polycrystal with mis-oriented homogeneous grains,
is deceptive. Instead, our new way of representing MD
data reveals crystallographically specific nano-twinning
disguised as rigid rotations. Given that the underlying
antiparallel atomic displacements correspond exactly to
lattice invariant shears, it is natural to interpret the re-
sulting pattern as representing alternating plastic slips.
The emerging depiction of the transformation path com-
plements and broadens previous studies of the mechanism
of the S-T transition [1, 2, 18, 51, 53, 62, 81, 83, 115–120].
The apparently overlooked peculiarity of the S-T transi-
tion is the possibility to compose elementary variants of
the product phase at the atomic level to obtain the final
configuration with no overall shear deformation and no
‘surface’ energy penalty inside any of the grains.

Additional insights can be obtained if we present the
obtained strain distribution against the energy landscape
ϕ(C) in the C-space. To construct such a landscape it
is sufficient to apply homogeneous deformation C to a
mesoscopic set of atoms, while accounting for all pairwise
interactions, and then use the Cauchy-Born rule [121,
122] and write ϕ(C) = 1

2Ω

∑
x

∑
xc∈N (x) V (

√
RiCijRj),

where Ri are the vectors representing reference points
and the internal summations extend over all points xc

belonging to the cut-off neighborhood N (x). The glob-
ally symmetric potential ϕ(C) emerges if we extend by
GL(2,Z) periodicity the results of computations
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FIG. 6. Gradual progression of the S→T transformation in
C-space at three different stages corresponding to points (1-
3) indicated in Fig. 1(b). Fragments of the initial square
and the transformed rhombic and triangular configurations
are shown in the insets. The energy landscape is visible at
the background.

performed in a single elastic domain.

In Fig. 6, we show a fragment of the computed
energy landscape around the reference configuration S
which includes the two target configurations T1 and T2.
We mapped into the same C-space the atomic strains
from our MD simulations while showing separately the
three stages (1-3) of the S-T transition indicated in Fig.
1(b). Specifically, Fig. 6(a) shows the beginning of
the transformation when all atomic strains populate the
marginally stable square configuration S located at the
origin. At the intermediate stage of the transformation,
shown in Fig. 6(b), we observe spreading of atomic
strains along the two symmetric rhombic (pure shear)
paths towards two energy wells representing the variants
T1 and T2. Note that both paths are pursued simultane-
ously and, as a result, the transformed triangular phase
emerges as comprised of strains populating both energy
wells T1 and T2, see Fig. 6(c). A broader picture, rep-
resenting also a small number of elements which end up
in distant energy wells, can be found in [80].

Further analysis of the stage-by-stage transformation
process in the physical space, see Fig. 7(a), shows that
the alternating micro-slips (represented by oscillatory
fields F12 or F21) develop layer-by-layer through back
and forth transverse propagation of Shockley partials;
the possibility of such nano-scale ‘zipping’ by moving
surface steps is well known, see for instance [123]. At
larger scale the transformation will appear as proceeding
through front propagation which leaves behind a pattern
of anti-parallel displacements disguised as a rigid rotation
of a perfect triangular lattice, see Fig. 7(b–e).

Using the constructed multi-well periodic potential
ϕ(C) we can now develop a coarse grained description
of the system. The simplest way to obtain a regularized
theory is to assume that such potential describes mechan-
ical response of elastic finite elements whose size intro-
duces a mesoscopic cut-off spatial scale [72, 73, 75, 121].
The piece-wise affine deformation of the elements can be
then presented in the form y(x) = yijNij(x), where yij

  

F21

1

-1

(a) (b) 
t = 400 dt

(c) 

(d) (e) 

t = 500 dt

t = 600 dt t = 1000 dt

F21

F21

x (Å) x (Å)

x (Å)x (Å)

FIG. 7. (a) Layer-by-layer propagation of the deformation
gradient (here only F21 component) during S-T transforma-
tion; (b-e) transient spatial configurations of the deformation
gradient showing the formation of an ideally periodic pattern.

is the deformation of the 2D network of discrete nodes
and Nij(x) are the linear shape functions. The problem
reduces to finite dimensional parametric minimization of
the energy functional W =

∫
Ω0

ϕ(C)dΩ0, where Ω0 is the

computational domain, see [80] for details. The outcome
of such mesoscopic modeling of the S-T transformation
process is illustrated in Fig. 8. As in our molecular simu-
lations we started with a perfect square lattice brought to
a marginally stable state. In the emerging polycrystalline
configuration, see Fig. 2, we again observe a texture of
triangular grains with mis-orientation of 60◦. The bound-
aries of the grains are similarly dislocation-rich even if
now the dislocation cores are blurred at the cut-off scale
of elastic finite elements. The transformation is again ad-
vancing along two concurrent rhombic (pure shear) paths
with eventual lock-in on the higher symmetry configu-
rations T1 and T2 [80]. In the final configuration, the
apparent rotations are again achieved through alternat-
ing crystallographically specific slips inside the adjacent
planes with the formation of the same two types of vari-
ant mixtures (T+

1 ,T
−
2 ) and (T−

1 ,T
+
2 ), see Fig. 8.

FIG. 8. Outcome of the coarse grained modeling of S-T tran-
sition: (a) The post-transformation polycrystalline texture;
(b-c) two fragments of mis-oriented triangular grains, with
(b) presenting (T+

1 ,T
−
2 ) variant mixture and (c) representing

(T−
1 ,T

+
2 ) variant mixture.

We can now try to draw some parallels between the
observed mechanism of the S-T transition in 2D and, for
instance, the mechanism of the reconstructive BCC-HCP
transition in 3D [85, 124]. While the latter involves vol-
ume preserving pure shear deformation in addition to
shuffling, those two phenomena appear to be well sepa-
rated in time and therefore can be decoupled [125]. We
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can then, following [18], neglect the Landau-type compo-
nent of the transformation by associating the primary or-
der parameter with the shuffle. Note that a shuffle would
have naturally emerged in S-T transition if in our recon-
struction of atomistic deformation gradients we had used
a double unit cell [126]. Usually the BCC-HCP shuffle is
perceived as proceeding via softening of an optical mode
with the formation of an intermediate orthorhombic con-
figuration with an idea that such lowering of symmetry is
maintained until the system locks-in in the higher sym-
metry configuration [127]. Our analysis suggests that
it can be viewed, in the first approximation, as a pat-
tern of anti-parallel shifts of consecutive planes inside
a single unit-cell (probably with some homogeneous ad-
justment layer-wise). The large transformation strain in
the lock-in conditions drives the scale of such apparent
micro-twinning to atomic dimensions.

The proposed analogy should be viewed with caution
as the BCC-HCP transition in 3D is still different from
the S-T transition in 2D. Thus, it is not clear whether
the experimentally confirmed path for BCC-HCP tran-
sition [17] can be decomposed into full plastic slips or
instead represented by alternating stacking faults result-
ing from the passage of only partial dislocations. Thus,
the reconstructive FCC-HCP transition appear to be an
example of the latter possibility as in this case the HCP
phase emerges from an anti-parallel coordinated gliding
of Shockley partials [38–40, 128, 129]. In the setting of
S-T transformation the implied nano-scale stacking fault
laminate [33, 48] would correspond to the layering of the
type T1- S -T2. Since in our case the S phase is unstable,
such ‘partially’ plastic laminates are not observed with
partials appearing only transiently as it is clear from our
Fig. 7(a).

To conclude, we showed that tracking the history of
atomic-scale metric tensors in MD simulations offers a
unique perspective on the intricate micro-pattern forma-
tion during reconstructive phase transitions. The pro-
posed interpretation of MD numerical experiments re-
veals previously hidden details of the deformation paths
allowing one to analyze systematically the underlying re-
lation between elastic and inelastic modes. The micro-
mechanism, shown to be operative during the prototypi-
cal S-T transition, contains some generic elements which
are expected to be common for most reconstructive tran-
sitions including the iconic BCC-HCP and FCC-HCP
transitions.
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Simulation details

MD simulations. We used Boyer potential presented
in the main paper with c1 = c2 = 2 and b1 = b2 = 8 as in
[1]. Then the choice r2/r1=1.425 ensures that a square
lattice with a lattice constant of 1.0659 Å is the ground
state. We simulated 104 atoms with periodic boundary
conditions (PBC) and used a cutoff distance rc = 2.5Å.
First the square crystal is equilibrated within NVT en-
semble which takes 105 time steps with the step size ∆t =
0.0001 ps. Then, the pressure control protocol is imple-
mented within isothermal-isobaric (NPT) ensemble. A
broad range of temperatures (10 K - 900 K) and pres-
sures (0.1 × 107 bar - 2.4 × 107 bar) was considered to
construct the T-P phase diagram presented in the main
text. We used velocity Verlet algorithm and performed
107 MD steps (= 1 ns) to study the S-T transition at T
= 10 K to avoid melting.

MS simulations. We used an athermal molecular
statics protocol which implies that the effects of fi-
nite temperature were negligible. PBC were maintained
throughout the simulation. Initially, a stable planar
square crystal was prepared with 104 atoms using the
same potential as in our MD simulations [1]. In order to
trigger S-T phase transformation we changed the ratio
r2/r1 in the Boyer potential to r2/r1 = 1.3 to stabilize
triangular phase and also introduced a small disturbance
by displacing all the atoms at random distances (about
0.9 % of the lattice parameter) along both x and y direc-
tions. The conjugate gradient algorithm was employed
to conduct energy minimization.

Mesoscopic simulations. Within the framework of
our mesoscopic tensorial model (MTM), the globally pe-
riodic Landau potential ϕ(C) was constructed using the
Cauchy-Born rule from the same interatomic potential as
in our MD and MS numerical experiments [1].

The energy was extended by symmetry beyond the
minimal periodicity domain. It implies the representa-
tion of an arbitrary metric tensor C in the form C̃ =
mTCm where m is a unimodular integer-valued matrix
and C̃ is an image of C inside the minimal periodicity
domain in the sense that ϕ(C̃) = ϕ(C).

We associated the elastic energy ϕ(C) with the node x
assuming that C = ∇yT∇y. The piecewise linear defor-
mation field y(x) was discretized using shape functions
as described in the main text which turned the problem
into finite dimensional, parameterized by displacements

of the 2D network of discrete nodes identified by their
integer-valued coordinates ij. Parametric minimization
of the discretized energy functional W =

∫
Ω0

ϕdΩ0 was
accomplished using a variant of conjugate gradient op-
timization known as the L-BFGS algorithm [2]. This
algorithm seeks solutions to the equilibrium equations
∂W/∂uij =

∫
Ω0

P∇NijdΩ0 = 0, where P = ∂ϕ/∂∇y,
uij denote the values of displacement at node ij, Nij is
the shape function at node ij and Ω0 is defined as the
computational domain. In our numerical experiments we
used (discretized) free boundary conditions P · N = 0,
where N is the normal to the surface at the reference
state. The S-T transformation was again initiated by in-
crementally changing the potential parameter r2/r1 from
the value 1 to the value 1.3. This ensured the eventual
shift in the nature of the ground state configuration from
square to triangular.

Atomistic strain tensor in MD

In Figure S1 we show the mapping which schematically
describes the deformation of an atomic neighborhood.

  

e1

e2

e1

e2

F

(a) (b)

FIG. S1. The schematic description of the deformation of the
chosen ‘atomic neighborhood’ ; (a), (b) show the reference
and the deformed states, respectively.

Suppose that in a two-dimensional lattice a reference
point is represented by a vector X = {X1, X2} while its
deformed position is represented by the vector x = {x1,
x2}. Then, the deformation gradient is FiI = ∂xi/∂XI ,
where the indexes i, I refer to deformed and reference
coordinate systems, respectively. If Rαβ and rαβ are
the vectors connecting atom α with its neighbors (β or
β1, β2,.., βn for n neighbors) in the reference and in the
actual configurations respectively, the approximate de-
formation gradient obtained by minimizing mean-square
difference between the actual displacements of the neigh-
boring atoms relative to the chosen central atom and
the relative displacements, that they would have had if
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they were in a region of uniform strain, can be writ-
ten as Fα

iI = ωα
iM (ηαIM )

−1
, where ωα

iM ≡ ∑n
β=1 r

αβ
i Rαβ

M

and ηαIM ≡ ∑n
β=1 R

αβ
I Rαβ

M [3]. As a representative
atomic neighborhood we found sufficient to choose two
non collinear nearest neighbors and one of the second
nearest neighbors as the averaging domain, see Fig. S1.
In other words, the chosen atomic neighborhood of a par-
ticle is made of two complementary triangular domains.
Atomistic strain tensor C is recovered from the deforma-
tion gradient via the formula C = FTF.

Visualization of the configurational space

The 3D space of symmetric metric tensors with co-
ordinates (C11, C22, C12) contains a subspace describ-
ing isochoric deformations and selected by the condi-
tion C11C22 − C2

12 = 1. This is our 2D configurational
space. The action of the infinite discrete symmetry group
GL(2,Z) naturally tessellates the configurational space
into periodicity domains. A convenient approach to vi-
sualize globally the subspace of metric tensors C with
det(C) = 1 is to use a stereographic projection of the
corresponding hyperbolic surface in the (C11, C22, C12)
space onto a unit disk, which is known as the Poincaré
disk, see Fig. S2.

The geometrically minimal periodicity domain in the
configurational space, known as the fundamental domain
is D = {2C12 ≤ min(C11, C22)}, see for instance a dark
gray triangular area in Fig. 3(a) in the main text; it
corresponds to the ‘minimal’ choice for the lattice vectors
ẽ1, ẽ2, selected by the Lagrange reduction algorithm [4–
11]. The three boundaries of the fundamental domain D
can be presented explicitly in the parameteric form:

C =

(
α2 0
0 1

α2

)
, 0 < α ≤ 1, (1)

C =

(
α2/4 + 1/α2 −α2/4 + 1/α2

−α2/4 + 1/α2 α2/4 + 1/α2

)
, 0 < α ≤

√
2

(2)
and

C =

(
α2 α2/2
α2/2 α2/4 + 1/α2

)
, 0 < α ≤ γ. (3)

The GL(2,Z) copies (replicas) of these boundaries, con-
stitute the tessellation of the configurational space, rep-
resented in Fig. S2 by the thin black lines which are
divided (artificially) into solid and dashed ones for eas-
ier identification. To construct such copies one needs
to apply to (1-3) the group action C̃ = mTCm, where
{m, mIJ ∈ Z, det(m) = ±1}.

The elastic domain, which would describe fully the
elastic response of a single-well material as well as the
behavior of a solid undergoing Landau type structural

phase transition, is also known in the literature as the
maximal Ericksen-Pitteri neighborhood [4, 8, 9]. It can
be obtained from D by applying discrete transformations
forming the crystallographic point group P (eI), which
contains only rigid rotations and is used to characterize
material symmetries within classical continuum elasticity
[4, 9].

  

(b)(a)

x

y

A
B

A1 B1

FIG. S2. (a) Three dimensional hyperbolic surface C11C22 −
C2

12 = 1 in the configurational space of metric tensors
C11, C22, C12 projected onto a Poincaré disk: the points A,
B on such a surface are mapped to the points A1, B1 on the
disk. (b) Poincaré disk: thin lines indicate the boundaries
of minimal periodicity domains; points on the disk describing
equivalent square and triangular lattices are marked by black
squares and red triangles, respectively.

In the main paper we presented a structure of the
GL(2,Z) tessellation of the Poincaré disk in the two cases:
when the reference state corresponds to a square lattice
S or to a triangular lattice T1.
To obtain such a representation in the case when the

reference state is a square lattice, we first define the
corresponding reference basis e1 = {1, 0}, e2 = {0, 1}.
The deformed basis is then fi = Fei, where i = 1, 2
and F is the deformation gradient. Under the assump-
tion that detF = 1 we can introduce metric tensors
C = FTF describing different states in our configura-
tional space. These metric tensors are then projected
onto the Poincaré disk using the rectangular coordinates
on the disk: x = t(C11 − C22)/2, y = tC12, where
t = 2(2 + C11 + C22)

−1, see Fig. S2.
To obtain such a similar representation in the case

when the reference state is a triangular lattice, we first
write the basis vectors of the triangular lattice T1 in the
coordinates of the basis of the square lattice S: h1 =
{γ, 0} and h2 = {γ/2, γ

√
3/2}, where γ = (4/3)1/4. We

then introduce a matrix H whose columns are the vec-
tors h1,2. Since hj = Hei the metric tensor in this new
(triangular lattice) basis takes the form C′ = H−TCH−1

where C is the metric tensor in the old (square lattice)
basis. Now the components of the tensor C′ can be stere-
ographically projected into the Poincaré disk using the
same mapping as before which gives rise to a tessellation
presented in Fig. 3(b) in the main text. While in both
cases the fundamental domains D have the same triangu-
lar shape, the elastic domains are different as the point
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group involves four rotations when the reference lattice
is square and six rotations when it is triangular, see the
light gray areas in Fig. 3(a,b) in the main text.
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FIG. S3. The S-T transition in theC-space. (a) 3D histogram
representation of the strain distribution in triangular phase.
(b) 2D histogram representation of the same strain distribu-
tions shown against the corresponding energy landscape. (c)
A highly deformed atomic fragment around the grain bound-
ary; both deformation gradient distribution and the deformed
triangulation network are shown in the two insets. (d) The
distribution of detC in the initial square (red) and the final
triangular lattices (blue).

S -T transformation in MD

In MD simulations the distribution of the values of
C over the atoms representing individual neighborhoods
evolves during the S-T transition. The transformation
starts when the values of C in all nodes are the same
which means that the distribution is fully localized at
the origin representing unstressed square lattice S. At the
end of the transformation when the T phase is nominally
reached, the configurational points spread in theC-space.

Our Fig. S3 illustrates the final strain distribution
projected on detC =1 surface. The three dimensional
histogram representation of the strain distribution, see
Fig. S3(a), indicates that most of the elements are in
either T1 or T2 energy wells. This is also seen in 2D his-
togram of the same atomistic strains shown in the Fig.
S3(b). Note however, that in addition to the most popu-
lated T1 and T2 triangular configurations, several other
locations outside the T1 and T2 energy wells within the
C-space are also occupied. Some of them correspond to
grain boundaries like the one in the fragment shown in
Fig. S3(c). In Fig. S3(d) we illustrate the fact that the
S-T transformation is accompanied by a volumetric con-
traction. Specifically, the original S phase with det C =
1 transforms into the final T phase with det C = 0.55.

S -T transformation in MS

Simulations of S-T transition using athermal molecu-
lar statics (MS) exhibited all the main ingredients of the
transformation mechanism observed in MD experiments.
In particular, our Fig. S4(a–h) shows that the lattice
scale alternate plastic slips involving both, atomic rows
and atomic columns, are recovered. Thus, we observe in
neighboring grains the same alternating mixtures of con-
figurations T+

1 , T
−
2 (realized via alternating F±

12) and of
configurations T−

1 , T
+
2 (realized via alternating F±

21), see
Fig. S4(g,h). The evolution of the strain populations in-
side the C-space indicates the same mechanism involving
concurrent symmetric pure shears. Specifically, our Fig.
S4(i–k) shows that the atomic strains spread via rhombic
valleys towards the triangular energy minima T1 and T2.
A minor difference is that in our MS experiments the S-T
transformation proceeded in almost isochoric conditions.
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FIG. S4. (a), (d) The distribution of deformation gradient
components F12 and F21 in the transformed triangular phase
obtained in MS simulations. (i)–(k) Evolution of the atomistic
strain distribution in the C-space.

S -T transformation in mesoscopic model

The finite element simulation of the S-T transition
started again with a finite element configuration describ-
ing a marginally stable phase S. The mechanism of the
transformation into a T phase followed closely what we
have already seen in our MD and MS simulations. For ex-
ample, in Fig. S5 we show two snapshots of the distribu-
tion of MTM strains in C-space. Similar to what we have
seen in our atomistic simulations, the transformed trian-
gular lattice evolves as a mixture of two triangular con-
figurations T1 and T2. Thus, we again observed alternat-
ing layer-wise propagation (both horizontal and vertical)
of triangular phase. These results show that within the
coarse-grained description the front-propagation-based
mechanism of S-T reconstructive transition producing
micro-plastically deformed triangular phase is preserved.
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stages of S-T transition; (c) the histogram showing the distri-
bution of the values of C in the final state.
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