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Abstract: The appearance of an object triggers an orienting gaze movement toward its location. The 

movement consists of a rapid rotation of the eyes, the saccade, which is accompanied by a head 

rotation if the target eccentricity exceeds the oculomotor range, by a slow eye movement if the target 

moves. Completing a previous report, we explain the numerous points that lead to questioning the 

validity of a one-to-one correspondence relation between measured physical values of gaze or head 

orientation and neuronal activity. Comparing the sole kinematic (or dynamic) numerical values with 

neurophysiological recordings carries the risk of believing that the activity of central neurons directly 

encodes gaze or head physical orientation rather than mediating changes in extraocular and neck 

muscle contraction, not to mention possible changes happening elsewhere (in posture, in the 

autonomous nervous system and more centrally). Rather than reducing mismatches between extrinsic 

physical parameters (such as position or velocity errors), eye and head movements are behavioral 

expressions of intrinsic processes that restore a poly-equilibrium, i.e., balances of activities opposing 

antagonistic visuomotor channels. Past results obtained in the cat and monkey left a treasure of data 

allowing a synthesis, which illustrates the formidable complexity underlying the mere changes in the 

orientations of the eyes and head. The aim of this synthesis is to serve as a guide for further 

investigations or for comparison with other species. 
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1. Introduction 

Among the numerous relations that an entire animal establishes with its environment, the 

orienting movement was once proposed to underlie this interrogative process which "in Man has 

strongly developed in this highest form which is curiosity - the parent of that scientific method by which 

we hope one day to achieve a correct orientation in the knowledge of the world around us” [1]. This 

view remains popular in the domain of contemporary cognitive neuroscience wherein orienting is a 

module underlying exploratory behavior, gathering sensory signals, transforming them into 

information and storing them in some sort of internal copies of the external world. 

In this article, we shall take a different point of view, avoiding teleological and cognitivist 

arguments as much as possible. We shall focus on the orienting movements of the eyes and head 

toward the location of an object. We shall explain how these two movements are behavioral outcomes 

of intrinsic brain processes, which are blind to the physical and informational relations occurring at the 

macroscopic level, that is, between the animal organism and objects in the external world.  We shall 

start from the standpoint that the inner milieu consists of multiple equilibria maintaining some kind of 

stability. Whenever asymmetrical changes disrupt it, intrinsic processes restore the homeostasis. This 

restoration involves a coordinated set of reactions measurable at the musculoskeletal, vascular and 

vegetative levels. Orienting movements of gaze, head or body toward a target are the overt, externally 

visible consequences of activities traveling through the sensorimotor neural networks during such 

restorations. Other changes are less visible, such as transient pupillary dilation or cardio-vascular 

changes (bradycardia associated with peripheral vasoconstriction and cephalic vasodilation) [2-3], but 

also postural adjustments [4-6]. Synaptic changes and the persistent traces left by repetition are 

internal consequences that are indirectly visible by longitudinal investigations. In the same way as the 

sandy soil conforms to the current of a river while determining at the same time its flow, the 

sensorimotor neuronal channels assimilate to some extent the regularity of activity flows while 

constituting at the same time the set of constraints for the on-going flows. 

Before detailing the neurophysiological substrate of orienting eye and head movements, it is 

useful to recall that they do not constitute the only type of reaction to an external stimulus. Other 

types include distancing, avoidance and escape. Orienting differs from them by the radically opposite 

way in which it manifests spatially in relation to the stimulus. Contrary to them, it consists of directing 

the body segment that carries the teleceptive organs towards the location of the stimulus, be it 

detected or coveted. In this article, we shall focus on two physical characteristics of animal reactions 

toward a visual stimulus: their velocity and their accuracy. Indeed, the orienting response consists 

neither of a sliding movement nor of a sequence of small movements directed toward the location of 

a targeted object. For the vast majority of animals, it manifests itself rather by a sudden and extremely 

rapid movement of the mobile segment (body, head or eye) that carries the photosensitive epithelium. 

The movement (also called saccade) consists mostly in a rotation, the amplitude and direction of which 

are limited a range sufficient to symmetrize back the functional neuronal image of the stimulus within 

the sensorimotor networks. 

At the end of the orienting saccade, measuring the amplitude of the angular displacement 

performed by the mobile segment gives a set of numerical values that are compared to the target 

eccentricity. Figure 1 illustrates their relationship in a goldfish [7]. The amplitude of the body rotation 

is not constant; it increases with the angular eccentricity of the stimulus relative to the body, even in 

the absence of visual feedback. This relation has been documented in several other species: in frogs 

[8], salamanders [9], barn owls [10], cats [11], macaque monkeys [12-13] and human subjects [14-16]. 



Also observed in invertebrate animals such as insects (mantis: [17-18]; dragonfly: [19]) and crustaceans 

[20], it suggests that, beyond the diversity of photosensitive surfaces (retina or compound eyes), of 

muscle fibers, of their attachments - indirect or direct - to the mobile segment, the extension of 

physical space has somehow been embedded within the neural networks. 

 

Figure 1. Orienting movement of a goldfish toward a small pellet of food dropping in different sites of 

a square tank. The rightmost panel shows the angle of response as a function of the angular eccentricity 

of the stimulus for a representative animal. 

Modified from Torres et al. (2005) with the permission of the authors and Elsevier. 

In cats and monkeys, the relation is not a fixed mapping between the topology of the 

photosensitive surface and a set of specific temporal commands changing the orientation of eyes and 

head. Experiments in these animals showed that this behavioral invariant is robust to changes in 

saccade trajectory induced by a brief electrical stimulation in some territories in the brainstem (cat: 

[21-22]; monkey: [23-27]) or in the cerebral cortex (monkey: [28-29]). However, when the perturbation 

is applied in some sites of the pontine reticular formation [24] or in the medio-posterior cerebellum 

[30-31], the tested monkey orients its gaze toward a location that is shifted with respect to the target 

location. The saccade misses the target by an error equal to the stimulation-induced change in eye 

position. This targeting error indicates and confirms that extraocular muscle proprioception does not 

participate in guiding saccades toward their target [32-33]. 

2. Fundamental and epistemological issues 

In response to the same initial physical conditions, the amplitude of the response is not 

constant but variable within some limits. Beyond the multiplicity of channels by which retinal signals 

can reach the motor neurons, beyond also the time course of the persistence of signals, the amplitude 

variability is due to the facts that objects in the external world are not points and that visual fixation 

does not involve the projection of their image onto one single light sensing cell, but several ones. In 

some species, the photosensitive cells are grouped within the foveal pit. Whenever possible, we shall 

use the notion of “gaze” instead of the so-called “line” of sight (or visual “axis”) to denote the imaginary 

“tube” through which photons travel, from the fixated object in the external world to the foveal 

photoreceptors. 



Despite quasi-inevitable numerical differences, some degree of congruence must nevertheless 

be considered between the location of a visual stimulus and the zone toward which gaze is directed. 

As mentioned above, this overlap is preserved even when the functioning of some key sensorimotor 

regions is perturbed. Before reporting these findings and discussing their implications, we shall address 

a few epistemological issues related to the risk of importing, within the domain of neurophysiological 

knowledge, notions whose biological plausibility remains uncertain or dubious [see also 34]. 

2.1. Distinguishing the medium of cerebral activity from physical space 

The “binocular fixation point” is defined as the intersection between two imaginary lines that 

characterize the direction of each visual axis while the “vergence angle” is the angle made by these 

two lines [35]. When that angle decreases, the eyes are said to converge and one speaks of 

convergence. When it increases, they are said to diverge (divergence). In the subject with no 

strabismus, when a saccade shifts gaze between two targets located along an iso-vergence curve, the 

spatial trajectory of the binocular fixation point follows neither the shortest physical path between the 

targets (the straight line) nor a path along the iso-vergence curve. Relative to the frontal plane, the 

binocular fixation point takes a path away from the iso-vergence curve followed by a return to it: a 

transient divergence happens during the saccade. The path traveled by gaze lies in a “geodesics” that 

does not belong to the zero-curvature space of Euclidean geometry. There is no force field in the 

external world that constrains gaze to take such a path. The path is intrinsically determined, caused by 

the neuronal networks upstream of the extraocular muscles.  

As pointed out by Pellionisz and Llinas, “since within the brain there is no ‘instantaneous’ 

simultaneity agent comparable to the light, the classical usage of separate space and time coordinates 

is inapplicable in the case of describing the inner workings of the central nervous system” [36]. From a 

naive point of view, the timeless entity that geometers and physicists designate as “space”, the 

receptacle occupied by objects, might correspond to the medium within which flows of neuronal 

activity propagate, from the excitation of sensory cells by external objects to the time when the 

orienting reaction ends. However, the cerebral networks radically differ from the three-dimensional 

framework that assigns numerical values to positions and displacements of objects. They constitute a 

medium that is neither isotropic nor homogeneous, but composed of multiple and diverse channels. 

Each physical place captured by gaze is the outcome of multiple flows of activity through this medium. 

The divergence characterizing the afferent pathways first broadens the neural image of a small spot of 

light, an image then compressed by the convergence of activities towards the motor nerves. 

Transforming the recruitment of excitatory and inhibitory synapses and the firing rate of neurons to 

algebraic time functions engenders a continuum that is not in accordance with the remote and 

distributed conditions of action potential triggering [34]. 

The multiple sensorimotor channels cannot correspond to a neural representation (or 

correlate) of physical “space” for other reasons. The numerical values assigned to different physical 

target positions or movement endpoints are independent of each other. They are ordered and 

aggregate to each other within another continuum, which corresponds to an infinite number of 

simultaneous points (mathematical space). In the brain, there is no corresponding entity. The elements 

are neither compact nor rigid, and their number is much smaller than the number of objects present 

in the external environment of a subject. Activities in the brain corresponding to different physical 

locations are neither points nor lines. Those leading to the generation of movements towards nearby 

but different locations can involve common neurons. Indeed, neurons have extended and overlapping 



response fields [37]. The sharing of neuronal elements is such that two simultaneous visual targets can 

lead to a saccade (called averaging saccade), which directs gaze toward a location situated midway 

between the two targets or along the line connecting them [38-39].  

Moreover, measuring a series of motor responses to targets located at different places in the 

visual field is not equivalent to measuring the entire field. The measurement values obtain their status 

of simultaneity after their plotting on two- or three-dimensional graphs. Whatever corresponds to 

physical space or to objects in the brain, it is not permanent, but short-lived. Its persistence requires 

either the presence of objects in the external world or in working memory, which adds numerous 

contextual non-spatial values, past and present [40-41]. When we consider the accuracy and precision 

with which saccades indicate the location of a target, they depend considerably on its presence. When 

it is produced shortly after target appearance, the saccade is sufficiently accurate to confirm the 

presence of the object by a set of sensations, which are relatively always the same and characterize 

the foveation. Regarding the object location, the kind of “measurement” made by saccades is, so to 

speak, reliable. By contrast, when the saccade is made after a delay, even after a relatively short one, 

the “measurement” is no longer reliable [42-46]. Visual sensations can no longer confirm the presence 

of the object since it has disappeared while the change in saccade accuracy and precision make the 

movement-related sensations uncertain. Saccades are also strongly inaccurate (hypermetric) when 

they are made with the eyes closed [6, 47]. The persistence of visual signals in the brain requires the 

presence of objects to create a “space”, in which case its internal representation (or neuronal copy) is 

either rapidly unreliable or unnecessary since it is already out there [48]. 

Finally, neural plasticity, the irreversibility of activities and their canalization argue for a 

fundamental difference between the cerebral medium and the Newtonian receptacle. Yet, the 

adaptation of movements to environmental constraints led some authors to propose that brain activity 

emulates internal models of the physical laws of motion. Unfortunately, they missed to explain how 

the diversity of animals and nervous systems is compatible with the three Newton’s laws of motion. 

Leaving aside the principle according to which rest corresponds to a balance of forces that cancel each 

other out, they did not explain either how brain activity could sustain at constant speed the motion of 

a body segment with muscles of finite length. If the laws of mechanics are conventions [49-50] used to 

quantify the movement of objects in space, then it draws into question whether it is reasonable to 

assume their applicability to the brain sciences. The consistency and viscosity of the cerebral medium 

in which activities propagate are not as homogeneous as those of the environments (water, ground 

and air) in which the animal body can evolve. As for the eye movements, their study in untrained 

monkeys shows a tracking that is not as smooth as the continuous and uniform motion of a visual 

target. The visual tracking is discontinuous and saltatory, interrupted by saccades [51-53] indicating 

that the streams of visuo-motor activity do not spontaneously mimic the constant motion of the target. 

The fact that repeated practice is required to perform spatially and temporally accurate movements 

does not imply cerebralization of physical laws. It merely illustrates the flexibility of the brain’s 

functioning to perform accurate movements, perhaps by eliminating irrelevant or distracting stimuli.  

Refusing to import notions pertaining to the kinematic or kinetic description of movements 

onto the activity of neurons does not lead the neurophysiology of eye-head movements to a dead end. 

We shall see that it actually offers the opportunity to make a fresh start and to investigate how the 

brain works differently from the way that has been promoted during the last decades. 



2.2. The spatiotemporal transformation 

A fundamental challenge in the brain sciences is to identify and extract processes from the 

complex networks of cells that are often polyvalent. Between the retinal ganglion cells and the 

extraocular and neck muscle fibers, the action potentials emitted by neurons are involved in multiple 

tasks, making the delineation of processes far from being a trivial task. The mere excitation of a small 

group of ganglion cells in the retina by a stimulus as simple as a brief spot of light is transmitted to a 

multitude of post-synaptic neurons in several deep cerebral nuclei (e.g., lateral geniculate nuclei, 

superior colliculi, nuclei of the optic tract). The action potentials emitted by these neurons are then 

transmitted to more numerous post-synaptic cells distributed in multiple areas of the cerebral cortex. 

The spot of light elicits a neural activation that spreads out within the brain’s networks. Its expansion 

is associated with a temporal persistence insofar as the duration of elicited activities outlasts that of 

the stimulus. This maintained activity is necessary for changing the firing rate of specific groups of 

motor neurons and for driving the contraction of extraocular and neck muscles until gaze is oriented 

toward the location of the spot of light, sometimes a long time after its disappearance. 

The process by which different loci and more distant stimuli in the visual field (i.e., more 

eccentric loci of retinal activity relative to the fovea) lead to different and longer motoneuronal 

discharges has been called “spatio-temporal transformation”. Such a transformation is not limited to 

orienting movements toward a visual target. It characterizes all movements directed toward events 

that are spatially delimited such as an object in the visual field or a point stimulation on the surface of 

the skin, as well as toward events whose physical location is more diffuse such as sounds or screams. 

In all cases, a premature arrest of motoneuronal activities will make the movement hypometric, i.e., 

falling short of the target location.  

Initially, the dysmetria of movements made by patients suffering from cerebellar dysfunction 

led to propose that the cerebellum performed this spatiotemporal transformation [54-55]. The 

afferent signals from retinotopically organized maps such as the one found in the superior colliculi 

were thought to be converted into a specific temporal pattern of motor activity (see Fig. 10 in [56]). 

However, the observation of accurate saccades in patients suffering from spinocerebellar 

degeneration, despite dramatic slowing and increased duration, led to abandon this hypothesis [57]. 

The conjecture was then proposed that saccade duration be determined by the work of a negative 

feedback loop [57-59]. The premotor neurons would be driven by a motor error command that results 

from the continuous comparison between two signals: a reference signal specifying the goal or desired 

state (desired eye orientation or desired change in eye orientation), and a feedback signal estimating 

the current state (current eye orientation or actual change in eye orientation). As long as a mismatch 

persists between these two signals, the motor error command drives the premotor neurons until the 

estimated current state matches the desired state. In this theoretical framework, there is no signal 

specifying the duration of saccades; it merely corresponds to the time taken by the feedback signal to 

zero out the motor error command. Saccade inaccuracy results either from an altered reference signal 

or from an impaired feedback signal. Transient changes in the trajectory of saccades does not affect 

their accuracy as long as it does not alter the signal that specifies the saccade goal, or the amplitude 

and direction required to foveate the target [20-28]. 

For several years, the negative feedback loop remained the simplest and widely shared 

hypothesis to account for the spatiotemporal transformation. The reference signal was proposed to 

be conveyed by the population of active neurons in the intermediate and deep layers of the superior 



colliculus [60-62] while the comparison with feedback signals took place downstream in the reticular 

formation, under the influence of neurons in the medio-posterior cerebellum [29]. 

Figure 2 illustrates how the direction (A) and amplitude (B) of saccades toward a visual target 

are preserved in spite of their dramatic slowing when the activity of some neurons in the deep superior 

colliculus is suppressed by local injection of a blocker of sodium channels [63]. After each injection of 

a small amount of lidocaine, the maximum velocity of saccades is considerably reduced (C) while their 

duration is lengthened (D) by an amount that appears proportional to the amount of velocity 

reduction. In this experiment, the injection did not silence all collicular neurons, but only those that 

fired maximally for saccades having a particular direction and amplitude. Saccades with amplitudes 

and directions that were close to this preferred vector were inaccurate [61]. In addition to 

demonstrating that saccade metrics was specified by the population of active neurons in the superior 

colliculus [60], this study brought evidence for a causal link between collicular activity and saccade 

velocity and for a feedback control of saccade amplitude and direction (see also [64]). 

 

Figure 2. Effects of suppressing the activity of a small set of collicular neurons on saccades toward a 

visual target. A small volume of lidocaine (100 nl) was injected two times inside the population of active 

neurons while a monkey made saccades toward a target. Immediately after each injection (blue arrow), 

the peak velocity of saccades was reduced (C) while their duration was lengthened (D). In comparison 

with these changes in velocity, the direction (A) and amplitude (B) of saccades were barely affected. 

Courtesy of Dr David L. Sparks, modified with his permission. 

Around the same time, works in head unrestrained cats led to propose that the comparison 

between the reference and feedback signals was performed within the superior colliculus itself, by a 

caudo-rostral migration of activity [65-66]. The change in the locus of collicular activity would switch 

from the recruitment of saccade-related neurons to the recruitment of fixation-related cells. The 

former neurons would be distributed across the entire extent of the SC whereas the latter would be 



concentrated in its rostral part. The saccade would stop as the “fixation” cells resume their sustained 

presaccadic firing rate, which in turn, would excite cells in the nucleus raphe interpositus (RIP) of the 

medial pontine reticular formation. Therein, neurons called omnidirectional pause neurons (OPNs) 

exhibit a sustained spontaneous firing rate and pause during each saccade, regardless of its amplitude 

and direction. Their sustained activity was proposed to inhibit premotor burst neurons and pause to 

trigger a saccade.   

However, subsequent studies disconfirmed the migration of activity across the SC during 

saccades [67-70, but see 71]. This lack of reproducibility led to abandon the conjecture (called “moving 

hill” hypothesis) of a caudo-rostral migration of collicular activity (exception in [72]). Later, confirming 

observations reported in an earlier study [73], neurons in the rostral SC were shown to emit a burst of 

action potentials during miniature saccades [74-75], extending the saccade-related function to this 

part of the SC, as a microstimulation study also suggested [25]. Indeed, contrary to electrical 

microstimulation of RIP, which only decelerates and interrupts visual saccades, microstimulation of the 

rostral SC deviates their trajectory toward the contralateral side. The absence of hypermetria after 

pharmacological inactivation of the rostral SC [76-77] further called into question its role in terminating 

saccades whereas the reduced rate of microsaccades during visual fixation [74, 77] confirmed its 

involvement in the generation of miniature saccades [78]. Finally, the lack of impairment in either the 

latency or the accuracy of saccades after RIP lesion [79-80] questioned the involvement of OPN in 

fixation and saccade termination. It also casted doubt on the idea that silencing the activity of OPNs 

disinhibit premotor burst neurons and allow their excitation by descending SC commands [81]. Indeed, 

the suggestions were also made i) that OPNs’ sustained activity prevents the visual response of SC 

neurons from driving premotor burst neurons and ii) that saccades with very short latencies (also called 

express saccades) were driven by that visual response [82-83]. However, the demonstration of a loose 

coupling between the saccade onset and the visual (rather than motor) responses of SC neurons [84-

85] contradicted these suggestions. As for saccades with regular latencies [86], the onset of express 

saccades is tightly coupled with the onset of motor burst of SC neurons [84]. The variability of saccade 

onsets likely depends upon the synchronies of action potentials impinging upon the premotor burst 

neurons: weaker synchrony yielding scattered and longer reaction times. As explained elsewhere [52], 

simultaneous excitatory action potentials from an assembly of neurons are more efficient in exciting 

their post-synaptic targets than temporally scattered action potentials. 

Altogether, these numerous studies and others led to realize that the spatiotemporal 

transformation is not explicitly performed by distinct groups of neurons, which neurophysiologists 

ought to search and identify within the brain. Instead, the transformation would be supported by 

activities of populations of neurons that are massively interconnected and distributed over several 

neural territories [87]. We shall see in the next section how this distributed character also holds for 

the cerebral control of gaze direction during visual fixation. 

2.3. Gaze direction as a poly-equilibrium 

Several lines of evidence led to propose an alternative hypothesis to the “fixation-saccade” 

dichotomy [88-91]. First, the absence of fixation instability during lesion or during pharmacological 

inactivation of RIP [70-71] questions the necessary involvement of OPNs in maintaining stable gaze. 

Second, numerous studies made in awake animals report cases in which the animal does not direct 

accurately its gaze toward a visual target during fixation, or does not correctly orient its head toward 

a food target. During unilateral inactivation of the caudal fastigial nucleus (cFN) with muscimol (Gaba-



A agonist), cats direct their gaze and mouth toward a location that is offset with respect to the physical 

target [10]. A comparable eccentric fixation happens in head restrained monkeys during unilateral 

pharmacological inactivation of cFN. Therein, the local and unilateral injection of muscimol leads to an 

ipsilesional fixation offset [92-95] whereas the injection of a Gaba-A antagonist (bicuculline) yields a 

contralesional offset [96]. The muscimol-induced fixation offset is not a defect in positioning the eyes 

in the orbit, but a gaze-related disorder because its size is quasi-identical when comparing cases in 

which visual fixation is made with the head restrained versus unrestrained [97]. Moreover, when the 

head is free to move, a large ipsilesional deviation affects its orientation and the deviation of the eyes 

in their orbit is contralesional [97]. Finally, a weakening of stability accompanies the fixation offset 

insofar as monkeys have difficulty to maintain their gaze near the central target when other 

behaviorally relevant targets appears in the peripheral visual field; the animals make irrepressible 

saccades toward their location during delayed oculomotor tasks (unpublished observations; see the 

increased rate of no-go errors in [98]).   

Anatomical studies report that cFN neurons project neither to the nucleus prepositus 

hypoglossi nor to the medial vestibular nucleus [99], nuclei in which tonic eye position neurons are 

located [100]. However, cFN neurons project to the rostral part of both superior colliculi [101]; an 

anatomical projection consistent with the gaze-related disorder during fixation after cFN inactivation. 

Thus, during unilateral pharmacological perturbation (inactivation or disinhibition), asymmetrical and 

sustained activities from neurons in the left and right cFNs would affect the balance of bilateral rostral 

SC activity whenever gaze is directed toward a target in the central visual field. This conjecture is 

confirmed by the consequence of unilaterally inactivating small sectors in the rostral SC. After local 

injection of small amounts of muscimol, monkeys exhibit an offset when they fixate a target, regardless 

of whether it is static [77] or moving [102]. They also make irrepressible saccades toward the 

peripheral target during a memory-guided saccade task [76]. Transmitted to pre-cerebellar pontine 

nuclei (dorsolateral pontine nucleus and nucleus reticularis tegmenti pontis) [99, 103-105], 

asymmetrical and sustained activities between the left and right cFNs and rostral SCs would cause 

eccentric fixation of a static [92-96] or moving [102, 106-107] target through a ponto-paraflocculo-

vestibular route [108]. Concerning the ipsilesional deviation of the head during unilateral cFN 

inactivation [10, 97], it may result from asymmetrical sustained input from fastigial nuclei to the group 

of reticulospinal neurons innervating the neck motor neurons [109-111]. 

Offsets while directing the eyes toward the location of a static visual target have also been 

reported in monkeys after unilateral lesion [112] of frontal eye fields or during unilateral inactivation 

of a small part of them [113]. By contrast, unilateral lesion of area LIP, another major source of cortical 

input to SC [114-115], does not lead to a fixation offset [116-118]. A spontaneous nystagmus in the 

dark has been reported during the first week after unilateral ablation of area 7 of parietal cortex [119]. 

Its slow eye movements are directed toward the contralesional side. Clinical studies of patients 

suffering from an acute hemisphere stroke report a conjugate deviation of the eyes [120-121] and 

head [122] toward the lesioned side, even when subjects explore a visual scene. However, to our 

knowledge, their fixational eye movements have not been studied. By contrast, an asymmetric 

distribution of fixational saccade amplitudes toward the blind visual field has been shown in patients 

suffering from homonymous hemianopia; some subjects also exhibit eccentric fixation [123]. 

Fixation offsets are not restricted to lesional cases. An upward offset is observed when 

macaque monkeys look at a small visual target in the dark [124-126]. Asymmetrical representations of 

the upper and lower visual fields in these primates [127-128] can account for the offset as well as for 

the upward bias of horizontal saccades [126]. While the population of active neurons is immune of this 



asymmetry in darkness, it may be different when a visual target is presented in an illuminated 

background. More cells sensitive to the lower visual field may indeed be recruited and counteract the 

upward bias caused by the asymmetrical representation of the upper and lower visual fields. In 

darkness, the absence of their recruitment would then account for the upward bias of horizontal 

saccades. Further investigations are still required to test whether bilateral activity from neurons in the 

cerebellar interpositus nuclei adjusts this asymmetry [126]. 

Altogether, these results led to revise the view of fixation as a process inhibiting the generation 

of saccades [76, 88-90] and to propose the conjecture of fixation as an equilibrium [77, 129-130], later 

revised a “poly-equilibrium” [131]. According to this theory (Figure 3), a saccade or a slow eye 

movement is not initiated as long as the visuo-oculomotor system is in a mode where opposing 

commands counterbalance each other. For generating saccadic and pursuit eye movements, symmetry 

breaking involves different groups of neurons in the left and right parts of the brainstem. Saccades 

involve the recruitment of premotor burst neurons located in the pontomedullary reticular formation 

whereas slow eye movements involve the recruitment of premotor neurons in the vestibular nuclei. 

Prior to generating a saccadic or slow eye movement, the target-related signals do not travel toward 

the motor neurons across a vacuous medium. They travel through a large network of cells that already 

evince a spontaneous sustained firing rate, which maintains the stationarity of the eyes and head. This 

set of tonic premotor activities, once called “neural integrator”, altogether forms an equilibrium of 

commands that counterbalance each other. Under normal conditions, gaze direction is relatively stable 

during visual fixation, occasionally interrupted by saccadic intrusions or by ocular drifts. 

The notion of poly-equilibrium is more appropriate for naming this balanced activity because 

multiple equilibria participate (Figure 3). It involves action potentials conveyed through i) the 

visuomotor channels that lead to the generation of saccades, ii) the visuo-motor channels that lead to 

the generation of slow eye movements, iii) those yielding the near response (accommodation and 

vergence) and iv) those holding the head upright [131]. The change in head orientation during 

unilateral lesion of the cFN [11, 97] or the SC [132] indicates that bilateral activity also contributes to 

the muscle tone that specifies the static orientation of the head in the earth horizontal (yaw) plane. 

Sustained activities are distributed within different groups of neurons in the left and right parts of the 

reticular formation (including pontine long-lead burst neurons and pursuit-related neurons), 

cerebellum, deep superior colliculi and cerebral cortex. Concerning the deep superior colliculi, the 

activity involves their rostral pole but it is not restricted to them. It extends more caudally, even during 

steady fixation. Indeed, during the gap interval, saccade-related neurons in both SC fire, even those 

located at sites that are sensitive to target eccentricities of 8 deg (see Fig. 4 in [84]). Any suppression 

of activities within the set of commands participating to this poly-equilibrium alters the direction of 

gaze while fixating a target if it is not counterbalanced. 



 

Figure 3. Poly-equilibrium hypothesis: A saccade or a slow eye movement is not initiated when the 

visuo-oculomotor system is at equilibrium, i.e., when opposing commands (issued for instance by the 

left and right superior colliculi or by the left and right nuclei of the optic tract) counter-balance each 

other. For generating saccadic and pursuit eye movements, symmetry breaking involves different 

groups of neurons. For saccades, premotor neurons are located in the pontomedullary reticular 

formation whereas for slow eye movements, they are located in the vestibular nuclei. Bilateral fastigial 

activity also contributes to neck muscle tone, which specifies the horizontal orientation (yaw) of the 

head through fastigio-reticular projections. Read text for explanations. 

2.4. Movement onset as a kind of symmetry breaking 
Considering static gaze direction as a poly-equilibrium leads to view unbalanced activities as 

the cause triggering eye movements, saccadic or slow. Unbalanced activities between the left and right 

superior colliculi promote the generation of saccades toward the side opposite to the most active SC. 

By contrast, unbalanced activities between the left and right nuclei of the optic tract promotes a slow 

eye movement toward the side to the most active nucleus (Figure 3). This laterality contrast is indicated 



by the contralateral direction of saccades evoked by electrical stimulation in the SC [133-136] and the 

ipsilateral direction of slow eye movements evoked by stimulation of the nucleus of the optic tract 

[137-138]. It is also indicated by unit recording studies. The firing rate of neurons in the nucleus of the 

optic tract increases during ipsilateral pursuit and decreases during contralateral movements [138-

140] whereas SC neurons burst during contralateral saccades [60, 133, 141]. 

Slow eye movements result from action potentials transmitted by neurons in the vestibular 

nuclei and prepositus hypoglossi to the motor neurons innervating the extraocular muscle fibers [142-

146]. In darkness or in some pathological cases, unbalanced inputs from the nuclei of the optic tract 

or from the floccular complex lead to a slow eye movement. The slow eye movement is then 

interrupted by a rapid eye movement in the opposite direction, as in patients suffering from downbeat 

nystagmus [147-148], after unilateral lesion or inactivation of NOT [129, 149-150], or after lesion of 

area 7 of the cerebral cortex [119]. The sequence of slow and rapid eye movements making the 

nystagmus illustrates the segregation between the pursuit-related and saccade-related circuits. Thus, 

in response to a small moving spot, the increased firing rate of neurons in the ipsilateral nucleus of the 

optic tract moves the eyes slowly (pursuit) whereas the burst of neurons in the contralateral SC drives 

catchup saccades. While tracking a target moving horizontally, interactions between the pursuit and 

saccade-related circuits take place in the prepositus hypoglossi and medial vestibular nuclei, toward 

which premotor burst neurons [151] and neurons of the nucleus of the optic tract project [152-153]. 

They can also take place in the SC through inhibitory input from NOT to SC [153-154]. We shall discuss 

the synergy of saccadic and slow eye movements in more detail in another paragraph. 

2.5. The wanderings of the “brain machine” 
At the time when bioengineering approaches started to guide the neurophysiological inquiry 

of eye movements with systems analysis techniques, David A. Robinson already warned that “block 

diagrams of oculomotor organization serve as a compact description of system behavior but seldom 

have much bearing on the way in which the real system, composed of nerve and muscle, actually 

operates. The models thus do not contribute much to the neurophysiology (or neurology) of eye 

movements and incur the danger of suggesting that there actually are segregated portions of the 

nervous system which perform the differentiation, integration and other operations indicated in the 

boxes of the diagrams” [155]. Although these concepts are useful to the search for “a continuous chain 

of intelligible causes and effects and for arriving at a holistic view of problems, they do not exist as 

separable entities in computational neural networks”, which are “a much closer analogue of biological 

networks than the classical cybernetic description” [156]. Neuroanatomical and neurophysiological 

studies reveal indeed functional properties and connectivity that are not visible in cybernetic diagrams. 

Establishing correspondences between cybernetic diagrams and the brain is analog to comparing an 

automaton to a living animal. For explaining variable sensorimotor performance, such a comparison 

led some authors to search for various sources of signal “noise” within the brain activity rather than 

for differences between brains and machines. Contrary to a machine, recruiting the same group of 

photosensitive cells does not lead to the same response, because of the multiplicity of visuomotor 

channels, because also of the different mode of signals transmission [34]. As explained above, between 

the sensory “device” and the motor “plant”, there is not a single transmission channel, but a plexus of 

multiple channels, which first diverge (from the optic nerves) and then converge (to the motor nerves). 

The variability of movements may not be caused by noisy signals in the brain; it may be the mere 

consequence of the epistemological fact that the complete set of causes is not known.  



In spite of evidence for reliable saccade motor commands [157], some authors posited their 

variability [158] and even imagined various kinds of signal noise (e.g., sensory noise, planning noise, 

premotor noise, motor noise …) to explain cerebellar control of saccade precision [159]. Between the 

retinal activity and the ultimate muscle fiber twitch, the distribution of action potentials within the 

brain is inevitably variable between movements made toward the same target. However, the search 

for noisy signals must not ignore the importance of starting eye position in determining the locus of 

activity on the retina and the possibility of different functional connectivity between different subjects. 

Moreover, even though two brief and spatially distinct spots of light excite different retinal regions, 

the resulting activity will likely involve common neuronal elements in the brain because of the 

divergent pattern of connectivity. Response fields of central neurons that overlap are the main 

evidence for the sharing of neuronal elements during visual stimulations that are spatially distinct. This 

situation does not lead to unreliable visuomotor transformation if “the precision or accuracy of a 

saccade results from the summation of the movement tendencies produced by the population of 

neurons rather than the discharge of a small number of finely tuned neurons” [60]. The effects of 

variable discharges of neurons is reduced by averaging the activity over a population of numerous 

neurons. Thus, multiple combinations of active neurons can lead to kinematically (or dynamically) 

identical eye movements, reducing further the strength of the correlation between the firing rate of 

single neuron and movement kinematics (or dynamics) [34]. While point values are assigned to the 

target location and the place to which gaze is directed, a geometric segment (called error) to their 

difference and a curve to the movement trajectory, their brain correlates, streams of action potentials, 

are unmatched and incomparable. 

3. Orienting gaze toward a moving target 

Many objects in the world are moving and orienting movements are also made toward them. 

In primates, their appearance in the peripheral visual field elicits a saccade that brings the target image 

onto the foveae. Then, the foveation is maintained by slow pursuit eye movements interrupted by 

catch-up saccades. Movement accuracy consists of directing gaze toward the location where the target 

is here and now, the target location at the saccade landing time. The temporal interval between the 

onset of retinal signals and the landing time led some authors to defend a view according to which the 

functioning brain would be endowed with so-called “predictive” capabilities. In this section, we shall 

explain that this inference is the consequence of conflating numerical values attributed to physical 

events with their physiological correspondence. 

3.1. The interceptive saccade 
Benefiting from high-resolution recording of eye movements, studies showed that human and 

non-human primates manage to direct their gaze toward the location of a small target moving at 

constant speed [160-163] with an accuracy that is quasi-similar to that of saccades toward a static 

target [164]. In monkeys, this ability to intercept with gaze a small moving target seems to depend 

neither upon prior experience [51] nor upon the occurrence frequency of path taken by the target 

[165]. It is preserved even when the saccade is perturbed prior to its onset by an unexpected change 

in eye position [166]. However, saccades toward a moving target are not always accurate. Accuracy is 

lost when the target does not move at constant speed: saccades to an accelerating target fall short of 

it whereas those to a decelerating target overshoot it [167]. 



The ability to bring the image of a moving target within the central visual field led some authors 

to suggest an ability to foresee (or “predict”) the location that the target will occupy at the time of 

saccade landing, i.e., in the near future. Indeed, because of the polysynaptic path between the retinal 

ganglion cells and the extraocular muscles, the signals that drive the firing rate of motoneurons cannot 

originate from the retinal site that the target is crossing presently. They originate from a site that was 

crossed several tens of milliseconds earlier. Accurate prediction would then require accurate estimate 

of the visuomotor transmission delay, which has no fixed value. It depends upon the number of active 

neurons, upon their firing rate and the simultaneity of presynaptic action potentials at the level of each 

relay [52]. As for saccades toward a static target [168-170], the latency of interceptive saccades may 

also depend upon the target contrast.  

 A study in non-human primates regarding saccades toward a transient target moving 

with a constant speed reports several saccades landing beyond the location where the target 

disappeared, but along the path that it would have taken if it had remained visible [167]. Because the 

monkeys had no prior experience with such visual targets (small and moving), the saccades cannot be 

guided by memory-related signals, but by signals that persist after target disappearance. The kinetic 

of the retinal streak (the time course of the target motion in the visual field) is taken into account 

because, for identical paths, the pattern of landing positions depends upon the rate of change in target 

speed. As mentioned earlier, saccades are accurate if the target moves at constant speed; they 

overshoot its current location if it decelerates and fall short if the target accelerates. It is not known 

whether accelerating and decelerating targets recruit different neuronal networks, or whether the 

different landing positions result from different spatiotemporal patterns of activity within the same 

plexus of neurons. As for curved saccades made in response to a target that steps from one location 

to another (double step saccades [171]), the recruitment of the same plexus for accelerating and 

decelerating targets would be another evidence for the importance of considering the distribution of 

activity within the neuronal networks for the causal determination of behavioral responses. Indeed, 

although important, the knowledge of anatomical connectivity is not sufficient to understand the 

neural control of movements. Lesion studies teach us that static and moving targets involve different 

sets of neurons: impairment of some brain regions can affect saccades toward a moving target without 

altering those toward a static target [172-174]. 

3.2. The post-saccadic slow eye movement (pursuit) 
A slow eye movement (called pursuit eye movement) follows the interceptive saccade toward 

a moving target. Studies in monkeys revealed that its speed does not spontaneously match with the 

target speed and that it increases with the animal’s training and prior experience [51-53]. Comparable 

observations were made in children [175-176]. In response to a continuous motion, naive monkeys 

and children track a target with a succession of catchup saccades interspersed by intervals during 

which gaze direction lags behind the target, with a gaze-target distance increasing until the next 

catchup saccade. 

Clinical studies in human subjects [177-181] and lesion studies in macaques [106, 182-185] 

indicate that saccadic and pursuit eye movements recruit different sets of neurons. Indeed, some 

lesions impair slow pursuit eye movements without altering saccades, and vice-versa. The segregation 

of saccade-related and pursuit-related networks is confirmed by: i) developmental studies reporting 

different maturation speeds of saccadic and pursuit performances [175, 186-189], ii) separate adaptive 

adjustments of saccadic and pursuit eye movements [190-192], iii) different consequences on postural 

stability [193], iv) imaging studies in healthy human subjects [194-195], and v) the electrophysiological 



identification of saccade-related and pursuit-related neurons in distinct regions of the pontine 

tegmentum [196-198] and cerebral cortex [199-205]. In the cerebral cortex, the saccade-related 

subregions are preferentially interconnected with each other, and likewise for the pursuit-related 

subregions [205]. In summary, from the cerebral cortex to the reticular formation, the networks 

involved in the generation of pursuit and saccadic eye movements are relatively independent and 

parallel.  

This parallelism contrasts with the claim that a “single sensorimotor process” drives the 

generation of both movement categories [206-207], a conjecture that is mostly based on behavioral 

observations and on a mistaken interpretation of neurophysiological observations. First, the fact that 

neurons in the rostral SC modulate their firing rate during both miniature saccades and pursuit [208-

211] is the neural substrate of looking straight ahead, i.e. moving gaze neither rightward nor leftward, 

neither upward nor downward, but promoting movements “in all directions at the same time” (Figure 

3). As explained above, bilateral rostral SC activity maintains the poly-equilibrium necessary to 

maintain the target image within the central visual field, regardless of whether it is static or moving, 

actual or virtual. Second, it is premature to conclude an involvement of OPNs in pursuit eye movements 

because their electrical microstimulation slows them [212-213]. The slowing could result from 

inhibiting motor neurons by the retrograde excitation of inhibitory burst neurons [91] if this connection 

is confirmed in monkeys (see [214] for lack of evidence). Third, the observation that subthreshold 

electrical microstimulation in vermal lobules VIc-VII perturbs both saccadic and pursuit eye movement 

[215] remains compatible with a segregation of saccade-related and pursuit-related neurons in the 

cerebellar vermis. Therein, Purkinje cells firing during both saccades and pursuit are not numerous 

(approximately 10% [216]). Based on a large sample of neurons, another study reported that only 4% 

of saccade-related Purkinje cells modulated their firing rate during pursuit [217]. More recently, the 

direction tuning of Purkinje cells was found to differ between saccadic and pursuit eye movements, 

suggesting an independent processing of their action potentials in the fastigial nuclei [218]. In the 

latter, approximately one third of the neurons emit a burst of action potentials during saccades and 

modulate their firing rate during pursuit eye movements [219]. However, emitting a burst of action 

potentials does not necessarily imply that a neuron and its post-synaptic target belong to the saccade 

premotor network. The burst of these presumed “saccade-pursuit” neurons may be transmitted to 

pre-cerebellar pursuit-related pontine nuclei and contribute to the post-saccadic enhancement of slow 

eye movements [220]. Finally, during unilateral inactivation of cFN, disorders in saccadic and pursuit 

eye movements are not correlated [106], whereas bilateral inactivation leads to bilateral hypermetria 

of saccades [92] while the gain of pursuit eye movements is either reduced [221] or unchanged [222].  

In conclusion, behavioral observations provide helpful information for guiding 

neurophysiological investigations when they take into account anatomo-physiological constraints. 

Before giving several examples illustrating this benefit, we shall discuss the capacity to foresee the 

invisible and to “predict the future”. 

3.3. About the “predictive” power of the brain 
Because they direct gaze toward locations that have not yet been crossed by the target, 

interceptive saccades have been called “predictive” and scenarios were proposed to explain this 

anticipation. For instance, the visuo-oculomotor system would be endowed with either a temporal 

countdown estimating “the time remaining until the collision of the target with the line of sight” [223] 

or a predictive clock announcing “the time at which the eye trajectory will cross the target” [224]. This 

conjecture led to imagine unrealistic options such as “a spatial lead of the gaze at the saccade end, 



instead of attempting a precise capture of the target” [223, 225]. Indeed, the overshoot of saccades is 

incompatible with most published data. The majority of studies report that interceptive saccades 

either fall short, or land approximately at the location where the target is at their landing time [160-

165, 226], even when their trajectory is perturbed by a change in eye position elicited by a brief 

electrical microstimulation in the SC [166]. Recent studies in monkeys showed that knowing the target 

path in advance does not lead to an overshoot of saccades either. Neither the accuracy nor the 

precision of saccades differ between blocks of trials in which the target path is always the same for 

one trial to the next and blocks in which the target path varies across the trials [165]. Saccades landing 

beyond the target location may occur in human subjects, but their occurrence is rare and conditioned 

by specific task instructions. They occasionally happen when the target moves at constant velocity on 

a periodic path. However, they are almost eliminated when the subject must accurately look at the 

target in order to detect a change in shape [227]. 

At the neuronal level, when a saccade is made toward a target moving at constant speed, 

saccade-related neurons in the deep SC emit a burst of action potentials as during saccades toward a 

static target. However, the population of active neurons does not contain commands related to future 

locations of a moving target. No action potentials are emitted by cells whose response field correspond 

to upcoming saccadic vectors [228]. The active population consists of a continuum of cells ranging from 

neurons issuing commands related to past locations of the target to neurons issuing commands related 

to the current target location. Tus, the topography of active neurons does not change as fast as the 

target in the visual field because residual activities related to recently traveled locations persist.  

The same conclusion holds for the results obtained in a preliminary study [229]. When 

comparing the response fields during saccades toward a static versus a moving target, a shift was found 

in the amplitude associated with the maximum firing rate. Cells exhibited a maximum discharge during 

saccades of larger amplitude when they were made toward a centrifugal target [see also 228]. 

However, in that study, the target moved so fast (60°/s) that it was possible that gaze did not capture 

it, unless the saccade was anticipatory. Indeed, a target that moves away from the central visual field 

with a speed of 60°/s after an initial jump of 2-6° reaches an eccentricity of 14-18° two hundred 

milliseconds later (approximate duration of response time). Since most measurements illustrated in 

this study’s representative figure [229] correspond to saccades smaller than 14 degrees, these could 

have been anticipatory, or their amplitude was strongly hypometric. If they were hypometric, then we 

do not understand why the putative additional command failed to compensate for the saccade 

undershoot. If the saccades were neither hypometric nor anticipatory, then the recorded bursts ought 

to correspond to that elicited by a past position of the target. Thus, the size of the shift in maximum 

firing rate between saccades to static and moving targets should be larger as the activity corresponds 

to positions further in the past. Current knowledge does not allow determining whether a horizontal 

diffusion of activity happens at the level of the SC or at the level of afferent input from structures of 

the cerebral cortex, such as area LIP [230-231] or FEF [232-233]. 

4. Neurophysiological explanations 
Conflating kinematic (or dynamic) numerical values with neurophysiological recordings carries 

the risk of believing that central neuron activity directly encodes gaze or head orientation rather than 

mediating changes in the contraction of extraocular and neck muscle fibers. Some studies examined 

how the firing rate of some central neurons could be accounted for by a combination of kinematic 

parameters such as current position, velocity and acceleration of the eyes [234-237], sometimes 

without separating the cells whose firing rate precedes the combination from those whose firing rate 



follows it [238-239]. Given i) the spatial and temporal transformations that a brief spot of retinal 

excitation undergoes on its way to the motor neurons, ii) the temporal overlap of activities 

corresponding to successive target positions, iii) the multiple possible patterns of muscle contraction 

specifying any static orientation of gaze, and iv) the multiplicity of possible neuronal drives, identifying 

a neurophysiological correspondence of notions such as dynamic position error, velocity error or even 

velocity becomes challenging, otherwise vain (see also [34]).  

Physical parameters are certainly convenient for interpreting and comparing the activity of 

neurons, sorting them in different groups and promoting scientific debates. However, the reservations 

made earlier about the block diagrams of oculomotor organization should not be restricted to the 

operations (differentiation, integration, gain …) performed by the blocks [155-156]. They also concern 

the signals proposed to be “encoded” in the firing rate of neurons such as instantaneous motor error, 

velocity error or even velocity. The motor error command that feeds the premotor neurons during 

saccades toward a static target [208, 240-241] might be less problematic because it is an oculocentric 

command [242] that can result from the preserved retinotopic arrangement of fibers connecting 

different neuronal assemblies.  

To sum up, questioning the validity of a one-to-one correspondence relation between the 

sequence of values measured at the macroscopic level and the activity of microscopic neuronal 

elements does not lead the neurophysiology of gaze orientation to an epistemological dead end where 

the advancement of knowledge becomes vain or impossible. An alternative approach remains possible. 

Rather than reducing mismatches between extrinsic physical parameters (such as position error or 

velocity error), eye and head movements can be viewed as the behavioral expression of intrinsic 

processes that restore balances of activities opposing antagonistic visuomotor channels.  

Interpreting the firing rate of neurons with notions belonging to the physical description of the 

movement of a body segment should be completed by the identification of muscle groups and 

neuronal networks involved. Comparative studies of the consequences of their functional 

perturbation, clinical and neuroanatomical studies should remain a privileged guide for interpreting 

neuronal activities and understanding their contribution to behavioral performances [243-244]. 

Building upon the knowledge gathered during the last decades [245-254], the following sections 

explain how the poly-equilibrium is restored during eye saccades and during combined eye-head 

movements, while demonstrating the possibility of accounting for the neuronal basis of gaze visual 

orientation, without resorting to kinematic (or dynamic) notions. 

4.1. Extraocular muscles 
Each eye movement involves synergies between anatomo-physiological elements that are 

invisible to investigations limited to behavioral analyses. However, the latter are helpful for discovering 

constraints in the contraction changes of the six muscles attached to the surface of each ocular globe 

(Figure 4). Combined with the relaxation of the medial rectus (MR) muscle fibers, the contraction of 

the lateral rectus (LR) muscle fibers of the same eye turns the eyeball toward the temporal side. 

Conversely, the contraction of MR combined with the relaxation of LR rotates the opposite eye toward 

the nasal side. In both cases, the eye rotates within the plane passing through the two muscles (toward 

the right in Fig. 4A). These muscles are antagonist to each other because their insertions are 

symmetrically positioned on opposite sides of the globe [255]. 

When the head is upright, the eye movement is horizontal provided that no change happens 

in the balances made by the contraction level of the other four extraocular muscles, i.e., between, on 

the one hand, the pair composed of superior rectus (SR) and inferior oblique (IO) muscles, and on the 



other hand, the pair composed of the inferior rectus (IR) and superior oblique (SO) muscles (Fig. 4A). 

Any change in the balance of forces exerted by these two pairs will add a vertical component to the 

horizontal eye movement. Horizontal movements will exhibit a downward deflection if changes 

happen in the contraction of IR and SO muscle fibers (promoting depression) without concurrent 

changes in the contraction of SR and IO muscle fibers (promoting elevation). Reciprocally, horizontal 

movements will exhibit an upward deflection if changes happen in the contraction of SR and IO with 

no changes in the contraction of IR and SO muscle fibers. 

 

Figure 4. Schematic representation of extraocular muscles. LR: lateral rectus, MR: medial rectus, SR: 

superior rectus, IR: inferior rectus, SO: superior oblique, IO: inferior oblique, tr: trochlea. The muscles 

whose contraction rotates the eyes toward the right (A), upward (B) or downward (C) are colored in 

red. The muscles colored in pink are those that relax during the same rotations, respectively. The 

muscles outlined by a dashed black line sustain the same contraction level. Note that the SR and IR 

muscles are not positioned in planes running parallel to the midsagittal plane, as reported in [360-363]. 

Anatomo-physiological studies indicated that for each eye, distinct motor and premotor cells 

innervate these different muscles while behavioral studies report horizontal and vertical movements 

of both eyes with trajectories that are quasi-rectilinear (not curved) and torsionless. Visible to the 

external observer only (i.e., at the macroscopic level), such trajectories imply the existence of synergies 

in the recruitment of extraocular muscles, synergies that the sole anatomical survey cannot deduce 

easily. 



4.2. Binocular synergy 

Orienting movements of gaze toward a visual target involve both eyeballs. The rotation of the 

left eye results from changes in the contraction of the fibers of its extraocular muscles, which are 

innervated by motor neurons that are distinct from the cells innervating the muscles of the right eye. 

A synergy is thus required between the groups of premotor neurons for moving both eyes quasi-

simultaneously. We shall see below the neural substrate of Hering’s law of equal innervation. 

4.2.1. Horizontal eye movements 

Figure 5 illustrates the network responsible for leftward rotations of both eyeballs, i.e., for the 

contraction of the left eye’s LR muscle and the right eye’s MR, combined with the relaxation of 

antagonist muscles (left eye’s MR muscle and right eye’s LR). As explained above, the contraction of 

the other four extraocular muscles (SO and IR against IO and SR) is maintained if the movement is 

straight horizontal (Fig. 5A).  

The degree of contraction of an extraocular muscle depends on the frequency of action 

potentials emitted by motor neurons innervating its fibers. For a horizontal eye movement, the motor 

cells innervating the LR muscle are grouped in the ipsilateral abducens nucleus whereas those 

innervating the MR muscle are in the ipsilateral oculomotor nucleus. The abducens nuclei are located 

in the pontine reticular formation and the oculomotor nuclei in the midbrain (Fig. 5B).  

The contraction of agonist muscles is caused by an increase in the firing rate of motor neurons 

(MNs) in the abducens nucleus for the LR muscle and in the oculomotor nucleus for the MR muscle 

(Fig. 5C). During saccades, the muscle contraction is brisk not only be-cause of the contractile 

properties of extraocular muscles [247, 249, 255], but also because the incoming input comes in a 

burst of action potentials with short interspike intervals [256-262]. In the abducens nucleus, 

internuclear neurons (AINs) relay to the motor neurons that innervate the MR muscle (synapse b) the 

excitation they receive at the same time as MN from excitatory burst neurons (EBNs, synapses a) 

located in the paramedian pontine reticular formation (ppRF) [151, 263].In human patients [177-178] 

and monkeys [264], a ppRF lesion eliminates the possibility of producing ipsilesional saccades 

(ipsilateral gaze palsy) whereas the generation of slow eye movements (during the vestibular ocular 

reflex or pursuit) remains possible. Electrical microstimulation applied to the ppRF evokes an ipsilateral 

movement of both eyes, which does not resemble a saccade. Its speed is most often constant and 

depends on the stimulation frequency [265-266]. The electrically-evoked movement is not saccade-

like for two reasons at least. First, the stimulation parameters (constant current and frequency of 

pulses) do not replicate the complete population burst that usually precedes each saccade. Indeed, a 

limitation of the electrical stimulation technique is that its strength cannot be enhanced without 

exciting unrelated fibers of passage and eliciting reactions other than oculomotor. Second, the 

antagonist muscles are not relaxed as they usually are during saccades. Their relaxation results from a 

pause in the firing rate of motor neurons, which is caused by action potentials emitted by inhibitory 

burst neurons (IBNs) located in the contralateral dorsal paragigantocellularis reticular formation 

(dPGRF) [214, 267-269].  

The consequences of dPGRF lesion have not yet been studied. However, because of the 

inhibition they exert on the motor neurons innervating the antagonist muscles (synapse d), the 

suppression of their burst is expected to hinder ipsilateral saccades and reduce their speed and 

amplitude. By disinhibiting IBNs located in the opposite side (synapse d), the unilateral suppression of 

IBNs’ activity is also expected to decrease the agonist drive during ipsilesional saccades (synapses f). 



By contrast, by disinhibiting EBNs and MNs in the opposite side (synapses d), the unilateral suppression 

of IBNs’ activity is also expected to increase the agonist drive during contralesional saccades and 

render them hypermetric. Recordings in monkeys reveal that approximately half of IBNs in the side 

opposite to the recruited EBN emit action potentials during contralateral saccades. These action 

potentials combine with those emitted by EBNs (synapses a and f) to compose the agonist oculomotor 

command [94, 107, 262, 270-271]. 

 

Figure 5. Neuronal network involved in the generation of leftward saccades. A: The thickness of arrows 

attached to the eyeballs schematizes the strength of muscle contraction. LR: lateral rectus, MR: medial 

rectus, SR: superior rectus, IR: inferior rectus, SO: superior oblique, IO: inferior oblique. B: parasagittal 

section of the brainstem and cerebellum showing the approximate locations of the oculomotor nucleus 

(OMN), paramedian pontine reticular formation (ppRF), abducens nucleus (ABD), dorsal 

paragigantocellularis reticular formation (dPGRF), caudal Fastigial Nucleus (cFN) and superior 

colliculus (SC). C: Connecting lines ended by an arrow indicate excitatory connections; those ended by 

a circle indicate inhibitory synaptic connections. The thickness of connecting lines schematizes the 

strength with which the neurons fire. SRBNs: saccade-related burst neurons, OPNs: omnipause neurons, 

EBNs: excitatory burst neurons, IBNs: inhibitory burst neurons, ABDs: abducens nucleus, MNs: 

motoneurons, AINs: abducens internuclear neurons. Read text for explanations. 

Excitatory and inhibitory burst neurons receive descending inputs from saccade related 

neurons in the contralateral SC (synapses g and h) and cFN (synapses i and j). The collicular input is 

monosynaptic in cats [272] but disynaptic in monkeys [273]. This difference between feline and 

primate species also concerns the fastigio-collicular projections. In monkeys, they are concentrated in 

the rostral part of both SCs [101] whereas they target more caudal regions in cats [274].  



Finally, although premotor burst neurons receive lateralized input from the contralateral SC 

and cFN, the premotor control of saccades should be considered as bilateral [94, 107, 262, 270-271] 

because of the omnidirectional bursts of saccade-related fastigial neurons. Indeed, for each horizontal 

saccade, a burst is emitted by neurons not only in the contralateral, but also in the ipsilateral cFN [275-

278]. The contralateral burst was proposed to accelerate the saccade by exciting the agonist drive from 

EBNs (synapses i and j) whereas the ipsilateral burst was supposed to decelerate or brake the saccade 

by recruiting IBNs in the opposite side (synapse k).  

Several facts led to revise this sequential activation and “biphasic” view of the fastigial control 

of saccade acceleration and deceleration [279] and to propose bilateral fastigial control of saccades 

[94, 107, 270-271]. First, the biphasic hypothesis is not applicable to the generation of vertical saccades 

[94, 107]. Second, all IBNs do not fire during the late part of contralateral saccades; some of them burst 

at saccade onset [268-269], as EBNs do. The same remark holds for the burst of saccade related fastigial 

neurons during ipsiversive saccades [278]. Moreover, the idea that the contralateral burst contributes 

to the acceleration of saccades is refuted by its later occurrence with larger amplitude of contralateral 

gaze shifts [280]. Yet, the maximum velocity of contralateral gaze shifts is significantly reduced during 

unilateral cFN inactivation [281]. Finally, still after unilateral cFN inactivation, ipsilateral saccades 

exhibit increased maximum velocity and enhanced displacement during the accelerating epoch, 

regardless of whether they are associated with a head movement or not [281]. Altogether, these 

observations are not compatible with the biphasic hypothesis, but corroborate the bilateral 

hypothesis.  

4.2.2. Vertical eye movements 

Contrary to the unilateral origin of the excitatory drive of binocular horizontal saccades, the 

excitatory phasic drive is bilateral for saccades directed upward or downward. An upward saccade 

involves the contraction of SR and IO muscle fibers of both eyes combined with the relaxation of IR 

and SO muscle fibers, while the contraction of adductive and abductive muscles (LR and MR) does not 

change (Fig. 6A). 

The contraction of agonist muscles is driven by a burst of action potentials emitted by motor 

neurons located in the ipsilateral and contralateral oculomotor nuclei (for the IO and SR muscle fibers, 

respectively) [282-283]. The relaxation of antagonist muscles results from a pause in the firing rate of 

motor neurons located in the ipsilateral oculomotor nucleus (for the IR muscles) and the contralateral 

trochlear nucleus (for the SO muscles) (Fig. 6B). The agonist motor neurons receive a bilateral burst 

command from uEBNs located in both (left and right) rostral interstitial nuclei of the medial 

longitudinal fasciculus (riMLF; synapses a and b in Fig. 6C) [284-286]. Likewise, the inhibition of 

antagonist motor neurons is bilateral and driven by uEBNs (synapses c). It originates from uIBNs 

located in the contralateral interstitial nuclei of Cajal (iNC; synapses d and e). 

The generation of downward saccade involves the contraction of IR and SO muscle fibers of 

both eyes combined with the binocular relaxation of SR and IO muscle fibers (Fig. 7A). The contraction 

of agonist muscles is driven by a burst of action potentials emitted by motor neurons located in the 

ipsilateral oculomotor nucleus (for the IR muscles) and the contralateral trochlear nucleus (for the SO 

muscles) [287]. The relaxation of antagonist muscles results from a pause in the firing rate of motor 

neurons located in the ipsilateral oculomotor nucleus (for the IO muscles) and the contralateral one 

(for the SR muscles). 



 

Figure 6: Network involved in the generation of upward saccades. A: The thickness of arrows attached 

to the eyeballs schematizes the strength of muscle contraction. LR: lateral rectus, MR: medial rectus, 

SR: superior rectus, IR: inferior rectus, SO: superior oblique, IO: inferior oblique. B: parasagittal section 

of the brainstem and cerebellum showing the approximate locations of the oculomotor nucleus (OMN), 

rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF), interstitial nucleus of Cajal (iNC), 

trochlear nucleus (TRO) and superior colliculus (SC). C: Connecting lines ended by an arrow indicate 

excitatory connections; those ended by a circle indicate inhibitory synaptic connections. The thickness 

of connecting lines schematizes the strength with which the neurons fire. Note the crossing axons of 

motor neurons innervating the SO and SR muscles. uEBNs: upward excitatory burst neurons, dEBNs: 

downward excitatory burst neurons, uIBNs: upward inhibitory burst neurons, MNs: motoneurons, SC: 

Superior Colliculus. Read text for explanations. 

Contrary to the bilateral origin of the excitatory premotor drive of upward saccades, it seems 

to be unilateral for downward saccades [288], originating from dEBNs located in the ipsilateral riMLF 

(synapses a and b). The origin of the inhibition of antagonist motor neurons has not yet been identified 

[289]. The asymmetry of the excitatory input is consistent with the effects of unilateral lesion of riMLF 

since downward saccades are more impaired than upward ones [290]. 

It is worth reminding that i) the contraction of SR and IO muscle fibers does not only elevate 

(supraduct) the eye during upward saccades and that ii) the contraction of IR and SO muscle fibers 

does not only depress (infraduct) the eye during downward saccades. The contraction of SR and SO 

muscle fibers also causes intorsion (also called incycloduction) of the globe while the contraction of IO 

and IR muscle fibers causes extorsion (also called excycloduction). Thus, during upward saccades, the 

intorsion caused by the motor commands sent to the SR combines with the extorsion caused by the 

commands to the IO, whereas during downward saccades, the extorsion caused by activation of the IR 

muscle combines with the intorsion caused by activation of the SO muscle. Behavioral measurements 



made in healthy subjects reveal negligible torsional component during vertical saccades [291], 

indicating that the intorsion and the extorsion cancel each other out. 

 

Figure 7: Network involved in the generation of downward saccades. A: The thickness of arrows 

attached to the eyeballs schematizes the strength of muscle contraction. LR: lateral rectus, MR: medial 

rectus, SR: superior rectus, IR: inferior rectus, SO: superior oblique, IO: inferior oblique. B: para-sagittal 

section of the brainstem and cerebellum showing the approximate locations of the oculomotor nucleus 

(OMN), rostral interstitial nucleus of the medial longitudinal fasciculus (riMLF), interstitial nucleus of 

Cajal (iNC), trochlear nucleus (TRO) and superior colliculus (SC). C: Connecting lines ended by an arrow 

indicate excitatory connections; those ended by a circle indicate inhibitory synaptic connections. The 

thickness of connecting lines schematizes the strength with which the neurons fire. Note the crossing 

axons of motor neurons innervating the SO and SR muscles. uEBNs: upward excitatory burst neurons, 

dEBNs: downward excitatory burst neurons, uIBNs: upward inhibitory burst neurons, MNs: 

motoneurons, SC: Superior Colliculus. Read text for explanations. 

During upward saccades, such a balance must result from bilateral activity in the midbrain 

because for each eye, the motor neurons innervating the SR muscle are located in the contralateral 

OMN whereas the motor neurons innervating the IO muscle are located in the ipsilateral OMN (Fig. 

6C). Likewise, during downward saccades, the balance must also result from bilateral activity in the 

midbrain. The motor neurons innervating the IR muscle are located in the ipsilateral OMN whereas the 

motor neurons innervating the SO muscle are located in the contralateral trochlear nucleus (Fig. 7C).  

Thus, the generation of vertical saccades that are straight and torsionless rests upon adjusted 

bilateral motor activation, which must take into account both the structural (neurons and their 

connectivity) and functional (firing properties, secondary and tertiary consequences of muscle 

contractions) asymmetries existing between oculomotor territories distributed on either side of the 



brain stem. In monkeys, stimulation of the right riMLF produces a conjugate clockwise rotation of both 

eyes, whereas left riMLF stimulation produces counter clockwise rotation [292].  

Since the generation of vertical saccades is bilateral, a torsional component should appear in 

vertical saccades after unilateral lesion of riMLF with a direction that depends upon the side of the 

lesion. When dEBNs in the right riMLF are lesioned, activity in the opposite (unimpaired) riMLF should 

provoke a binocular counter clockwise torsion, i.e., an intorsion of the right eye (caused by SO 

contraction) associated with an excyclotorsion of the left eye (caused by IR contraction). Clinical 

observations made in a patient suffering from a unilateral midbrain lesion affecting the right riMLF 

confirm this oculomotor disorder. A counter clockwise torsional eye rotation accompanies each 

voluntary vertical saccades, downward and upward [293]. The fact that the patient’s upward saccades 

exhibited a counter clockwise torsion means that the saccade of the right eye (caused by SR 

contraction) was associated with an intorsion while the saccade of the left eye (caused by IO 

contraction) was associated with an extorsion.  

These clinical observations are important because they suggest that the ipsilateral projection 

of uEBNs toward the oculomotor nucleus is stronger than the contralateral projection. Otherwise, 

during upward saccades, the counter clockwise torsion would have been counterbalanced by the 

clockwise torsion (resulting from the IO contraction in the right eye and from the SR contraction in the 

left eye) promoted by the crossed projections from uEBNs to the right OMN. More fundamentally, 

such inferences illustrate the mutual benefit of combining neurophysiological and neuroanatomical 

studies in non-human primates with clinical studies in patients for advancing our understanding of 

oculomotor disorders as well as normal physiology. 

Finally, bilateral control of vertical saccades likely involves the two superior colliculi, with both 

medial halves driving upward saccades (Fig. 6C) and both lateral halves driving downward saccades 

(Fig. 7C). As mentioned earlier with the bilateral hypothesis, saccade-related neurons in the midline 

cerebellum may be involved in compensating for asymmetries and regulating the bilateral balance of 

activity between the left and right parts of the brainstem. Indeed, most neurons in the caudal fastigial 

nuclei [275-276] and in the vermis [294-295] emit a burst of action potentials during vertical saccades. 

The paucity of fastigial projections to the midbrain [296] and the observation that asymmetrical 

functional perturbation of the medio-posterior cerebellum primarily impairs the horizontal component 

of saccades [94] suggest a weak involvement in the generation of vertical and torsional components 

of saccades. Vertical saccades exhibit a deflection of their trajectory toward the side of caudal fastigial 

inactivation [94, 107, 297-298] or toward the opposite side when the vermis is asymmetrically lesioned 

[299-300].  

However, further neuroanatomical studies should investigate the cerebellar connectivity with 

the midbrain because another clinical study reported a transient counter clockwise torsion during 

horizontal saccades in a patient suffering from a lesion involving the left deep cerebellar nuclei and the 

left lateral medulla oblongata [301]. Furthermore, future clinical studies should test whether bilaterally 

balanced lesions account for the rare changes in Listing’s law in patients suffering from cerebellar 

ataxia [302]. 

4.2.3. Synergy of horizontal and vertical saccades 

The burst neurons involved in the generation of horizontal and vertical saccades are located in 

the pontomedullary reticular formation and the midbrain, respectively. Since the pontomedullary 

reticular formation is located more caudally than the midbrain, the distance “traveled” by a collicular 

action potential to post-synaptic premotor burst neurons differs between horizontal or vertical 



saccades. Yet, when we examine the velocity profiles of the horizontal and vertical components of 

oblique saccades, we see that the two components start at the same time. This synchrony may result 

from releasing the premotor burst neurons from the inhibition exerted by omnipause neurons [303-

304]. Simultaneously released from their tonic inhibition (synapse l in Fig. 5), premotor burst neurons 

then can emit their burst of action potentials synchronously. Accordingly, lesion of RIP should 

desynchronize the onset of horizontal and vertical components during oblique saccades. No 

experiment has yet investigated this prediction. 

Another coupling exists between the networks generating the horizontal and vertical 

components of oblique saccades. Its neurophysiological substrate has not been identified either. When 

the speed of one component diminishes, the other component is also slowed down. The duration of 

both component is lengthened during oblique saccades. When one compares cardinal and oblique 

saccades having equal horizontal displacement amplitudes, the horizontal component is slower during 

oblique saccades. Thus, the two components are not executed independently of each other. Their 

interaction, called component stretching, does not seem to originate only from the density of post-

synaptic inputs from different collicular sectors to the populations of burst neurons in the ppRF and 

the midbrain [305]. A component stretching even occurs in oblique saccades evoked by an electrical 

microstimulation of the same collicular site, when the amplitude of one component is artificially varied 

by triggering the electrically-evoked saccade at different times after a visual saccade [306]. 

The most spectacular demonstration of component stretching was brought after transient 

inactivation of neurons in the ppRF [307-308]. Therein, local injection of lidocaine reduced both 

horizontal and vertical components of oblique saccades. In some experiments, the inactivation was 

subtle enough to slow down the saccades without altering their accuracy. Consistent with the 

hypothesis of negative feedback control of saccade amplitude, the reported results also indicate that 

the elements that have been inactivated do not participate in the feedback that updates the residual 

motor error. They are also compatible with the hypothesis of poly-equilibrium insofar as saccade 

duration is pro-longed if the activity of some neurons participating in its restoration is suppressed. 

4.3. The synergy of eye and head movements 
Orienting gaze toward the location of a stimulus often involves combined movements of the 

eyes and head. A change in the orientation of the trunk may also accompany the head movement [13]. 

When the body is at rest, a head movement carrying the eyeballs, gaze movement amplitude 

corresponds to the sum of the amplitudes of the eyes and head movements. Most of the time, gaze 

captures the target (i.e., its image is focused on the fovea) before the head stops moving because the 

saccadic eye movement is much faster than the head movement. Then, while the head continues to 

move, the eyes rotate in the opposite direction. The interval during which the eyes rotate in the 

direction opposite to the head movement is called vestibulo-ocular reflex. A slow counter-rotation of 

the eyes in their orbit can also occur before the saccade, the head rotation preceding that of the eyes 

as during orienting toward an expected target location [309]. Thus, depending upon the amount of 

head rotation, the eye saccade will be of greater or lesser amplitude. The amplitude also depends on 

the orbital deviation of the eyeballs. If the eyes are deviated in the direction opposite to the direction 

of the impending saccade, the saccade amplitude is greater [12, 310-312]; the eyes having a wider 

range of mobility before reaching the maximum deviation imposed by the oculomotor range. 

Consequently, the contribution of the head to the gaze displacement amplitude is smaller than during 

gaze movements initiated when the deviation of the eyes is closer to the limits of the oculomotor 

range. In the latter case, the head will start moving sooner. Thus, the contribution of the head to the 



gaze displacement amplitude depends also upon its onset relative to saccade onset. Regardless of 

whether the head moves or not, small gaze movements are equally accurate [312-313]. However, for 

eccentric targets requiring large gaze shifts, the accuracy is improved when a head movement 

accompanies the eye saccade [312]. 

In macaques, changing the orientation of the head involves at least twenty muscles [314]. 

Three groups can be distinguished: i) the groups of muscles whose contraction changes the orientation 

of the head with respect to the trunk, ii) the “orthogonal” groups of muscles whose contraction 

stabilizes the atlas while it rotates under the influence of the first group, and iii) the group of muscles 

that do no change their contraction level [315-316]. For instance, the co-contraction of the two recti 

capitis posterior minor (RCPm) muscles stabilizes the atlas while the contraction of each rectus capitis 

posterior major (RCPM) and obliquus capitis inferior (OCI) muscles produces ipsilateral horizontal 

rotation. The contralateral RCPM and OCI muscles, however, show no change in electromyographic 

(EMG) activity. This lack of change in the activity of antagonist muscles indicates that stopping the head 

rotation does not involve their contraction. For movements of amplitude greater than 20 degrees, the 

contraction of the splenius capitis muscle completes the contraction of RCPM and OCI muscles. The 

co-contraction of the RCPm, RCPM, OCI and obliquus capitis superior (OCS) muscles stabilizes the head 

at the end of its change in orientation. 

In summary, when a head movement is involved, gaze orienting response mobilizes several 

muscles, the synergy of which results from an activity involving a complex set of motor and premotor 

neurons, in the reticular formation, the vestibular nuclei and the spinal cord. In the continuation of 

studies performed in cats, neurophysiological investigations of eye-head movements in monkeys 

boomed in the 1990s and the beginning of the 21st century. They were dominated by the assumption 

that gaze direction was an intrinsic cerebral command involving saccade-related neurons in SC [88-89, 

136, 317-320] and FEF [321]. This command would subsequently be fractionated into separate eye and 

head premotor commands, downstream of the SC (for an alternative views see [322-323]).  

Three major obstacles hampered the development of neurophysiological investigations on 

eye-head movements. The first one was the technical difficulty of carrying out experiments with 

monkeys whose head is free to move. Added to this was the challenge posed by the necessity to merge 

new data collected in non-human primates with the considerable body of knowledge that had been 

obtained during prior experiments with cats. When differences between the feline and primate species 

were noticed (some of which have been reported in the text above), the relevance of data collected in 

non-primate animals to understand the physiology of the human brain was questioned. Third, the 

attractiveness of this developing research field in macaque monkeys was diminished by socio-political 

factors that promoted fast publishing research works as well as the development of brain imaging and 

computer modeling studies. Faced with a migration of young investigators towards scientific fields in 

which the work was less risky, the neurophysiological study of eye-head movements in monkeys 

declined. Societal changes in European countries also complicated and rendered socially thankless the 

use of macaque monkeys for the advancement of scientific and neurological knowledge, discouraging 

the few researchers who remained engaged. 

Fortunately, past results mostly obtained in cats left a treasure trove of data that allows a 

synthesis, which, although incomplete, illustrates the tremendous complexity that underlies the 

orienting movements of the eyes and head. The following text completes a recent report [131] with 

more detailed explanations and relevant references. It will serve as a guide for further investigations 

with marmosets or for comparison with other species. 



4.3.1. Reticulo-vestibulo-reticular synergies 

In cats, the recruitment of neck muscles during horizontal head movements exhibits some 

peculiarities. Although some muscles are systematically recruited, either phasically (splenius muscles, 

OCI, levator scapulae and complexus) or tonically (biventer cervicis), the recruitment of other muscles 

(semispinalis cervicis, longissimus, levator scapulae, scalenus anterior and OCS) depends on the 

orientation of the head relative to the trunk [324]. At the neurophysiological level, the motor network 

responsible for horizontal movements can be divided into three groups: an excitatory medial 

reticulospinal system and two medial vestibulospinal subsystems, a contralateral excitatory subsystem 

and an ipsilateral inhibitory subsystem. Contrary to macaques, almost every vestibulospinal neuron 

projects to the ocular motor nuclei in cats. In monkeys, the relative absence of cells carrying the same 

signals to motor neurons innervating the extraocular and neck muscles accounts for the dominance of 

the vestibulo-ocular reflex over the vestibulo-collic reflex [325]. 

4.3.1.1. The reticulospinal channel 

Motor neurons innervating the agonist muscles receive signals from neurons located 

ipsilaterally in the rostrodorsal portion of the nucleus reticularis gigantocellularis (NRGC), the nucleus 

reticularis pontis caudalis (NRPC), and the dorsal portion of the nucleus reticularis gigantocellularis 

[326]. The combined lesion of the NRPC and NRGC abolishes the generation of ipsilateral head 

movements almost completely [327]. Ipsilesional saccadic eye movements are then also absent. 

However, contralateral saccades and vertical movements of the eyes and head do not seem to be 

affected. The slow compensatory movements of the vestibulo-ocular and vestibulo-collic reflexes are 

also spared.  

The firing properties and connectivity of reticulospinal neurons are compatible with their 

involvement in the generation of combined ipsilateral eye and head movements [328]. Indeed, eye-

neck reticulospinal neurons (EN-RSNs) emit bursts of action potentials during ipsilateral eye saccades 

associated with ipsilateral EMG activity of neck muscles. When the eyes are deviated toward the 

contralateral side and the ipsilateral neck muscles relaxed, the neurons are silent. Action potentials 

are emitted only when the saccade leads the eyes beyond the orbital sagittal plane. None is emitted 

when the saccade is made in the contralateral orbital hemifield. This sensitivity to the orbital eye 

deviation, which appears neither in tecto-reticulo-spinal neurons [329-330] nor in cortico-reticulo-

spinal neurons [331], may result from afferents from neurons in the nucleus prepositus hypoglossi 

(NPH). Therein, neurons display a sustained firing rate that increases with ipsilateral deviation of the 

eyes in the orbit. When the eyes are deviated toward the contralateral side, they are silent [332]. Thus, 

NPH neurons may account for silencing the EN-RSNs because their projection are primarily 

contralateral and inhibitory. 

A projection of OPNs onto the EN-RSNs has been interpreted as evidence for an involvement 

of OPNs not only in the generation of eye saccades but also in eye-head gaze saccades [333]. This idea 

is compatible with a correlation between the duration of their pause and gaze saccade duration 

stronger than the correlation between the pause duration and the duration of eye saccades [334]. It is 

also compatible with the slowing of head movement when a short electrical microstimulation is 

applied in the RIP nucleus [334]. However, the alternative interpretation that OPNs remain primarily 

involved in the generation of ocular saccades cannot be rejected. The fact that the eye saccade 

duration is shorter than the gaze saccade duration does not necessarily imply that the burst duration 

of premotor neurons is also shorter. The shorter duration of eye saccades may result from the action 

of the vestibulo-ocular reflex downstream, at the level of motor neurons. Thus, the correlation 



between the pause duration of OPNs and the duration of eye saccades would be less strong than the 

correlation with the duration of gaze saccades. The slowing of head movement by electrical 

microstimulation of RIP may result from a transient reactivation of the vestibulo-collic and vestibulo-

ocular reflexes because of the inhibition that OPNs exert upon excitatory and inhibitory burst neurons 

[91, 303] (synapses l in Fig. 5). Finally, it is worth signaling that in monkeys, i) a slowing of head 

movement is rarely observed when RIP is stimulated [27] and ii) the end of the OPN’s pause is better 

correlated with the eye saccade end than with the gaze shift end [335]. 

4.3.1.2. The vestibulospinal channels 

The medial vestibulospinal tract (MVST) is the major pathway by which afferent signals from 

the horizontal semicircular canals influence the axial musculature of a cat’s body. A trisynaptic pathway 

connects the labyrinth to the motor neurons innervating the neck muscles [336-337]. The neurons at 

the origin of the vestibulo-nucal pathway are secondary vestibular neurons located in the medial 

vestibular nucleus (MVN). Activated by ipsilateral vestibular afferents, the firing rate of these neurons 

increases during an ipsilateral rotation of the head and decreases during a contralateral rotation, a 

response pattern called of type I [338-339]. The post-synaptic influence of the MVST onto the motor 

neurons of the contralateral cervical cord is excitatory. An inhibitory monosynaptic projection from 

the MVN to ipsilateral neck motoneurons has also been shown [337-338, 342]. The fact that a 

stimulation of the horizontal canal evokes a head movement directed towards the contralateral side 

[341] is compatible with this organization. Many neurons of the MVST, which are mainly located in the 

rostral MVN, emit a collateral towards the contralateral abducens nucleus [342-344]. This double 

connection with the extraocular and head motor neurons demonstrates their involvement in 

combined eye-head movements. 

Electrophysiological studies report high sustained activity of Eye-Neck Vestibular neurons 

when the eyes are centered in the orbit [345]. This tonic firing rate results either from an intrinsic 

property of neurons or from their sustained excitation by primary vestibular neurons [346]. In some 

vestibular neurons, a sensitivity to the deviation of the head relative to the trunk suggests an influence 

also from neck proprioceptive signals [347]. 

During the passive rotation of the head, the vestibular signals inhibit the motor neurons 

innervating the ipsilateral extraocular and neck muscles while facilitating the activity of those 

innervating the contralateral muscles. Thus, the rotation of the head promotes the emission of 

vestibular signals, which leads to the counter-rotation of the eyes (vestibulo-ocular reflex) and of the 

head (vestibulo-collic reflex) in the direction opposite to the head rotation. These reflex movements 

also oppose active rotations of the head. We shall now examine how saccade-related commands 

remove this opposition. 

4.3.2. Inhibition of vestibulo-ocular and vestibulo-collic reflexes 

In addition to excitatory inputs from EBNs and EN-RSNs (synapses b in Figure 8), the motor 

neurons innervating the agonist eye and neck muscles (E-MNs and N-MNs, respectively) also receive 

inhibitory afferents from the IVNs-1 located in the ipsilateral MVN (synapses c) and excitatory afferents 

from the EVNs-1 in the contralateral MVN (synapses d). The inhibition of agonist motor neurons (by 

IVNs-1, synapse c) is prevented by action potentials emitted by IVNs-2 (synapse e), which are recruited 

by EN-RSNs and EBNs (synapses a) and by action potentials emitted by EVNs-1 located in the 

contralateral MVN (synapses f). These contralateral EVNs-1 are indeed released from the inhibition of 

IVNs-2 (synapse g) by the burst of action potentials emitted by IBNs (synapse h), which are recruited 



by agonist premotor neurons (synapses i). Thus, a disinhibition facilitates the recruitment of agonist 

muscles while the relaxation of antagonist muscles is promoted by the inhibition that IBNs exert on 

IVNs-2 in the contralateral MVN (synapse h) and on antagonist ocular premotor and motor neurons 

(synapses j). 

During a combined horizontal movement of the eyes and head, the eyes do not counter-rotate 

in their orbit (vestibulo-ocular reflex) because the motor and internuclear neurons (E-MNs) in the 

contralateral abducens nucleus are inhibited by IBNs (synapse j). By exciting the IVNs-2 (synapses a), 

the bursts emitted by RSNs and EBNs prevent the ipsilateral IVNs-1 from thwarting the recruitment of 

agonist motor neurons (synapses c). The counter-rotation of the eyes restarts as the firing rate of 

ipsilateral EBNs and IBNs diminishes. The declining firing rate of EBNs removes the inhibition that 

ipsilateral IVNs-2 exert upon IVNs-1 and EVNs-1 (synapses e and l) while the declining firing rate of 

IBNs disinhibits IVNs-2 in the contralateral side (synapse h), which start inhibiting the EVNs-1 and IVNs-

2 (synapses g and m). The ipsilateral MNs are inhibited by the IVNs-1 (synapse c) while the contralateral 

MNs can emit again action potentials in proportion to the excitation they receive from the 

contralateral EVNs-1 (synapses n) while the head movement terminates. Since this excitation recruits 

the antagonist neck muscles, it may contribute to stopping the head movement [348-349]. However, 

it is worth reminding that in monkeys, this co-contraction has been questioned by EMG studies [315-

316].  

 

Figure 8: Neuronal network involved for combined horizontal eye and head movements. Connecting 

lines ended by an arrow indicate excitatory connections; those ended by a circle indicate inhibitory 

synaptic connections. Blue color indicates the agonist neuronal oculomotor elements, red color the 

antagonist ones. Green color indicates the cephalomotor elements. The thickness of connecting lines 

schematizes the strength with which the neurons fire. EN-RSNs: eye-neck reticulospinal neurons, EBNs: 

excitatory burst neurons, IBNs: inhibitory burst neurons, E-MNs: abducens motor and internuclear 

neurons, N-MNs: neck motoneurons, PVNs: primary vestibular neurons, IVNs: inhibitory vestibular 

neurons, EVNs: excitatory vestibular neurons, VIII: eight cranial nerve. Read text for explanations. 

In summary, the firing rate reduction of IVNs-2 contributes to end the ipsilateral orienting gaze 

shift by two parallel processes. The first process is the consequence of the gradual decline of excitation 

from EBNs and EN-RSNs, while the second process results from an inhibition by IBNs in the 



contralateral side. In monkeys, the decline of EBNs and EN-RSNs firing rate might not result from a 

reduced drive from collicular neurons because the latter often continue to fire after saccade end [66, 

350-354]. Instead of a reduced drive, a desynchronization of presynaptic input to premotor neurons 

may happen. As explained repeatedly in the text above and elsewhere [52], temporally scattered pre-

synaptic input are less efficient than simultaneous ones for exciting post-synaptic neurons. The decline 

of EBNs and EN-RSNs activity may result from the inhibitory input from IBNs in the contralateral side. 

Thus, action potentials emitted by IBNs during contralateral saccades would participate in the 

inhibition of contralateral IVNs-2 and promote the counter-rotation of the eyes. This cascade of events 

could account for the hypometria of contralesional saccades and the “premature” triggering of 

vestibulo-ocular reflex, making gaze shifts hypometric after unilateral inactivation of cFN in monkeys 

[281]. 

5. Conclusions 
Orienting gaze movements enable an animal to localize and capture an object in its physical 

environment. They are convenient means for investigating how networks of neurons govern 

oculomotor behavior [355] and underlie behavioral performances, notably when neurological damage 

alters their normal functioning [243-244]. During the last decades, following the steps of predecessors 

who conducted their research in feline species, neurophysiologists and neuroanatomists gathered 

considerable knowledge in monkeys that contributed to identify the core networks involved in the 

generation of eye and head movements and to understand the oculomotor disorders of human 

patients. 

Technological advancements brought the possibility to measure precisely the time course of 

eye and head movements and to study correlations between the firing rate of neurons and various 

kinematic and dynamic parameters (amplitude, velocity and acceleration) or the angular distance 

between gaze and target directions. Analytical habits, which became conventions, resulted and 

gradually led some neuroscientists to assume a one-to-one correspondence relation between 

neuronal activity and measured physical values of gaze or head orientation. From there, the search for 

neurophysiological evidence supporting their theoretical diagram was promoted.  

However, comparing kinematic or dynamic numerical values with neurophysiological 

recordings carries the risk of believing that central neuron activity directly encodes gaze or head 

orientation rather than mediating changes in extraocular and neck muscle contraction, in posture, in 

the autonomous nervous system and more centrally. Neuroanatomical and neurophysiological studies 

indeed reveal functional properties and connectivity that are not visible in cybernetic diagrams. The 

comparison between a diagram and the brain is analog to that between an automaton and a living 

animal.  

Complementing a previous synthesis [131], this review article is enriched by epistemological 

comments on the notion of “space” in the brain and by numerous additional precisions and references. 

It also provides the solid ground of evidence for a new departure in the neurophysiological study of 

orienting movements by considering static gaze orientation as poly-equilibrium, i.e., multiple balances 

of neuronal activities opposing mutually antagonistic channels. A saccade or a slow eye movement is 

not initiated as long as the visuo-oculomotor system is within in a mode where opposing commands 

counterbalance each other. For generating saccadic and pursuit eye movements, the symmetry 

breaking involves different groups of neurons in the left and right parts of the brainstem. Thus, rather 

than reducing position or error signals - which are numerical values belonging to the physical domain 

of kinematics -, orienting movements of the eyes and head are the behavioral expressions of intrinsic 



neuronal processes restoring the poly-equilibrium. Further investigations will connect them with 

processes involved in postural adjustments as well as with those that do not belong to classical 

visuomotor functions, but to autonomous functions [356-357] and alertness [358-359].  
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NPH     nucleus prepositus hypoglossi 
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