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Highlights: 13 
Nanofiltration using NF-270 has shown interesting removal for all parameters studied. 14 
Soil infiltration mainly retains or slow down positive compounds due to soil charge. 15 
Nanofiltration permeate was used for the first time coupling with soil infiltration. 16 
Contaminants of emerging concern are removed at 92% with coupling treatment. 17 
22 out of the 39 compounds found in effluent were not detected after coupling. 18 

 19 

Abstract:  20 

Management of water is evolving, due to water scarcity, and the reuse of wastewater 21 

treatment plant effluent is more and more investigated. New applications of the reuse such as 22 

the refilling of aquifer could be investigated. Soil aquifer treatment (SAT), sometimes used as 23 

natural advanced treatment, has shown some limitations for the removal of several 24 

contaminants of emerging concern (CECs). In this study, the investigation of a coupling 25 

advanced treatment process using nanofiltration followed by soil infiltration has been 26 

performed. The aim of the study was focused on the removal efficiency of the coupling 27 

treatment for 39 CECs. The CECs studied were detected in the wastewater treatment plant 28 

effluent and removal efficiencies were determined based on the natural concentrations of 29 

CECs without additional spiking. The coupling has shown interesting results allowing to 30 

increase the performances of the treatments used alone. While nanofiltration alone leads to 31 

a decrease of 80% of the total concentration of CECs adding soil infiltration increases the 32 

removal to 92%. 22 CECs out of the 39, detected in the effluent, are not detected after the 33 

coupling advanced treatment. However, few CECs such as carbamazepine, irbesartan or 34 

hydrochlorothiazide have shown limited removal despite the use of combined treatment. 35 

Keywords: Pharmaceutical, Advanced treatment process, Soil infiltration, Removal efficiency, 36 

Wastewater treatment plant effluent, LC-MS/MS. 37 
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1.INTRODUCTION: 45 

Water is a fundamental resource for human being and their development. Population growth 46 

and urbanisation tend to accelerate the consumption of water (Cazcaro et al., 2013; Tan et al., 47 

2021). Coupling with climate change, more and more countries have to face water scarcity 48 

(Gosling and Arnell, 2016; Schewe et al., 2014). Some countries or landscapes faced this 49 

problematic since several decades such as Israel, South of Spain, Australia, California, etc. Thus, 50 

management of water resource and particularly aquifers has become a hot button issue in the 51 

world. Natural infiltration does not provide enough water to counterbalance water withdrawal 52 

from the aquifers (Ousrhire and Gafiri, 2022). Such a situation can create a lack of water 53 

(Aidary and Kazemi, 2014) which might lead to the contamination of groundwater due to 54 

seawater intrusion in the aquifer if the level of groundwater becomes too low (Hajji et al., 55 

2022). This kind of contamination is difficult to overcome but can be avoided by a smart 56 

management (Al-Yaqoubi et al., 2021; Bachtouli and Comte, 2019). Different solutions could 57 

be used to control or limit groundwater uses. For instance, some countries use desalination in 58 

addition to groundwater input (Shahabi et al., 2017). The desalination is performed thanks to 59 

several techniques such as thermal, electrochemical, filtration or ion exchange (Subramani and 60 

Jacangelo, 2015). Depending on the country, each technique can be suitable for providing 61 

additional water after balancing advantages and drawbacks (Castro et al., 2020; Subramani 62 

and Jacangelo, 2015). Another important source of water come from reuse of wastewater 63 

treatment plants (WWTPs) effluents and can complete seawater and groundwater sources for 64 

some countries (Angelakis et al., 2018). Indeed, countries used to water depletion have already 65 

widely develop the reuse such as Israel (Friedler et al., 2006) while other countries are more 66 

and more interested by this source, supported by new legislations such as in Europe (Water 67 

reuse regulation (EU) 2020/741 and guidelines Minimum Requirements for water reuse, 68 
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2020). WWTPs effluents are of interest for several reasons: (i) its availability which is unlimited 69 

as long as WWTPs are operating, (ii) its spread over territories and (iii) its impact for some 70 

natural media which can be highly impacted by WWTPs effluents, particularly during dry 71 

period, in case of direct rejection (Lockmiller et al., 2019; Rabiet et al., 2005; Trommetter et 72 

al., 2022). However, the last consideration might also be a brake for the reuse as surface water 73 

can lack during dry period. Quality of effluents also needs to be improved for being used 74 

directly (golf irrigation, public landscape irrigation, etc) or indirectly (aquifer recharge). 75 

Moreover, increasing effluents quality could help for social acceptance which still has to be 76 

meliorated even if a change of mind occurs since the last decades (Garin et al., 2020; Rice et 77 

al., 2016; Verhoest et al., 2022). In case of wastewater reuse for potable use or irrigation of 78 

vegetables, one of the main fears of public opinion deals with the risk of contamination by 79 

some substances inducing a risk for health (Garin et al., 2020; Rice et al., 2016; Verhoest et al., 80 

2022). Such a fear can be explained by the low attenuation of contaminants of emerging 81 

concerns (CECs), which are mainly pharmaceutical compounds, by WWTPs (Alexa et al., 2022; 82 

Dolar et al., 2012; Gabrielli et al., 2023). However, CECs can be further eliminated with 83 

advanced treatments such as membrane filtration processes, advanced oxidation processes, 84 

granular activated carbon, ozonation, etc (Rizzo et al., 2019). Even if these treatments are 85 

efficient enough to allow the use of wastewater for some activities it is necessary to combined 86 

multiple treatments to reach a very high-quality water to recharge aquifer. Very high-quality 87 

water could be a source of potable water after infiltration. Some studies have already been 88 

performed showing a good efficiency of coupling treatments such as short-soil aquifer 89 

treatment/nanofiltration (Cikurel et al., 2006); O3/membrane filtration/biological methods (Qi 90 

et al., 2010) or biofiltration/O3/ short-soil aquifer treatment (Zucker et al., 2015). 91 
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In the present study, the coupling of nanofiltration followed by soil infiltration will be 92 

investigated for the first time to our knowledge with natural concentrations of CECs, from a 93 

few ng.L-1 to several µg.L-1, found in effluent from a WWTP equipped with a membrane 94 

bioreactor (MBR). Our investigation proceeded in steps. Firstly, the performances of each 95 

treatment separately have been determined to optimize its efficiency alone with the selected 96 

wastewater effluent. Then, coupling treatment using the same effluent has been performed. 97 

Effluent was firstly treated by nanofiltration. Thus, the permeate recovered was used to feed 98 

a 30cm height saturated soil column for 24 days continuously. Performances of the different 99 

treatments were assessed by following some classical water parameters (chemical oxygen 100 

demand, physicochemical, ions) and by determining the concentration, along the treatments, 101 

of 39 CECs detected (out of 80 CECs quantifiable with an LC-MS/MS method previously 102 

developed (Sellier, 2023) in the WWTP effluent. Pristine concentrations of CECs were used for 103 

all experiments with no additional spiking. Finally, the results obtained for the coupling 104 

treatment will be discussed and compared with nanofiltration and soil infiltration alone and 105 

with other coupling treatments found in the literature to determine advantages and 106 

drawbacks of such a coupling.  107 
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2.Materials and method: 108 

2.1.Nanofiltration pilot: 109 

Nanofiltration was performed thanks to a pilot build by the European Institute for Membranes 110 

(Institut Européen des Membranes, Montpellier, France). The pilot is composed of 15L tank 111 

receiving the WWTP effluent, a nanofiltration module with a surface area of 144cm²; 2 112 

pressure sensors  to determine the pressure of the feeding and the retentate (STS 127795, 113 

range 0-20 bars); a cooler Julabo 601F to control the temperature of the experiment (Julabo 114 

France SAS, Colmar, France); a 2.2kW pump to recirculate the water in the pilot (Barthod 115 

Pompe, Meyzieux, France); a balance PCE-TB series to follow the permeate flow (PCE 116 

Instruments, Soultz-sous-Foret, France). Transmembrane pressure was adjusted between 0 117 

and 10 bars thanks to a GO regulator PR-1 series (Crane Instrumentation & Sampling PFT Corp., 118 

Spartanburg, SC, USA) 119 

The tangential velocity was fixed at 0.5m.s-1 thanks to an alternator and the temperature was 120 

fixed at 20±1°C (Azaïs et al., 2016). Two flat sheet membranes were used during the 121 

preliminary tests: NF-90, a « tight nanofiltration membrane », and NF-270 a « loose 122 

nanofiltration » membrane. Both FilmtecTM polyamide membranes were purchased from 123 

DuPont Water Solutions (Edina, MN, USA). Note that for the coupling experiment NF-270 was 124 

used. Before using, the membranes were soaked into ultrapure water for at least one night. 125 

Then a compacting was performed with a maximal pressure settled 2 bars above the working 126 

conditions. Pressure was increased by 2 bars increments (let 10 minutes for intermediate 127 

bearings and 1 hour for the maximal pressure). After each use, membranes were rinsed with 128 

ultrapure water and soaked into a 200mg.L-1 NaNO3 solution to prevent microbial 129 

development. 130 
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The pilot was cleaned with ultrapure water when performed in routine. Between two distinct 131 

experiments washing with 0.1M HCl solution (30 minutes at least), ultrapure water, 0.1M 132 

NaOH solution (30 minutes at least) and ultrapure water (until the conductivity was less than 133 

10µS.cm-1) was performed to avoid contamination. 134 

Pilot was operated with a recirculation of the retentate into the feeding tank. Permeate was 135 

either collected at 60% and 80% conversion for preliminary studies or collected until 80% 136 

conversion (2days) and 90% conversion (2days) for the coupling experiment. The 32L collected 137 

over 4 operating days (2*7.5L with 80% conversion and 2*8.5L with 90% conversion) were 138 

homogenised, divided into bottles and frozen until their use to minimize the variation of the 139 

feeding solution over time (24 days). A scheme of the experimental setup is available in 140 

Appendix (Figure A1) for more details. 141 

2.2.Column setup: 142 

The infiltration in the soil column was carried out after nanofiltration. The 30cm-high column 143 

was built thanks to borosilicated glass portions. Each portion has an internal diameter of 10cm 144 

and a height of 12cm. The portions can be assembled thanks to O-ring seals and clamp rings. 145 

To avoid the fine soil particles running out the column, a metal grid with 0.5cm holes was put 146 

at the bottom of the column. The grid was covered with glass wool and a cleaned sand quartz 147 

layer (around 0.5cm). After each experiment, the column was dismantled, and each portion 148 

was cleaned with ethanol or acetone followed by a water cleaning.  149 

The soil was collected in December 2022. Sampling site was located in Bezouce in France 150 

(X=819558; Y=6307953). Soil parameters are presented in Appendix (Table A1). Soil was 151 

compacted thanks to a 0.5kg mass launched from a 20cm height. The compacting was 152 

performed following ISO 21268-3:2019 recommendation (ISO 21268-3, 2019; Naka et al., 153 
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2016). Soil columns were saturated before the experiments thanks to upflow saturation. The 154 

water used for the saturation was ultrapure water equilibrated with soil for one day, filtered 155 

at 0.45µm and finally introduced in column to flush it with volume corresponding to 3 pore 156 

volumes. Soils were naturally dried and sieved at 1mm.  157 

Materials were chosen to minimize the loss of CECs by adsorption (glass, polypropylene or 158 

polytetrafluoroethylene (Demeau a)) .  159 

During the coupling experiment, the column of 30cm-high was continuously fed by 160 

nanofiltration permeate thanks to a peristaltic pump (BT100F-1, Lead Fluid) set at 1.1L per day 161 

flow for 24 days. The flow was controlled daily. Daily samples were taken at the outlet of the 162 

soil column as shown in Appendix (see Figure A1). 163 

2.3.Parameters studied: 164 

Different parameters were determined during the experiment. The measurement protocol for 165 

each parameter is described below: 166 

2.3.1.Physicochemical parameters: pH, electrical conductivity (EC), dissolved oxygen (O2 dis) 167 

and redox potential (eH) were measured during the experiment. Specific cells were built 168 

thanks to a 3D printer to fit with DO sensor and eH electrode. These cells allowed the 169 

measurement of both parameters without contact with the atmosphere. Multimeters were 170 

used for the measurements (WTW, Multi3620 IDS ; Swan, Chematest25 ; Consort, 171 

multiparameter analyser C533). Electrodes and sensors were weekly checked with calibration 172 

solutions (buffer 7 for pH, Hanna 240 or 470mV solution for eH, Hanna 1413 µS.cm-1 for EC). 173 

No shifts were observed during the experiments. 174 
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2.3.2.Chemical Oxygen Demand (COD): COD kits for low range (0-150 mg(O2).L-1) were 175 

purchased (LCI500, Hach Lange). 2mL of samples were added in each premade analysis vial. 176 

Vials were heated at 148°C for 2 hours. COD values were obtained by using a 177 

spectrophotometer (DR1900, Hach Lange).  COD was determined thanks to the reaction of 178 

Cr2O7
2- turning into Cr3+ by reaction with O2. Colour turned from orange to green. 179 

2.3.3.Pharmaceuticals and pesticides (CECs): A protocol of extraction was performed to 180 

preconcentrate 80 CECs compounds (Brice et al., 2022; Gros et al., 2006; Sellier, 2022). The list 181 

of the studied compounds associated to some of their properties and the limits of 182 

quantification of the method is shown in Appendix (Table A2). Samples of 25mL (WWTP, 183 

permeate, retentate) or 100 mL (WWTP, bottom of the soil column for the coupling 184 

experiment) were collected. These aliquots were spiked with surrogates to ensure the 185 

reliability of the extraction process. After spiking the surrogates, filtration thanks to PVDF 186 

hydrophobic filters with pore diameter of 0.45µm (Merck) were performed. The 25mL and 187 

100mL samples are diluted in 250mL with pure water. Thus, the 250mL were passed through 188 

SPE cartridges (Oasis HLB, 500mg, 6cc). Cartridges were conditioned before using. After the 189 

percolation of the 250mL, CECs were eluted with 3*3.4mL of methanol. Methanol was totally 190 

evaporated under nitrogen flow at 40°C.  Recoveries were performed with a solution 191 

containing internal standard (95% pure water and 5% methanol). 250µL of solution were used 192 

for each samples allowing preconcentration factor of 100 or 400 according to the initial volume 193 

(respectively 25 and 100mL). 194 

LC-MS/MS 8040 (Shimadzu) was used to evaluate the concentration of the CECs. Kinetex polar 195 

C18 column was used to separate along time the CECs. Methanol (with 0.1% of formic acid) 196 

and water (with 0.1% of formic acid) were used as solvents with an initial percentage of 5% 197 

and 95% respectively. Gradient was applying as shown in Appendix (Figure A2). Operating 198 
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conditions of the mass spectrometer was detailed in Appendix (Table A3). Fresh calibrating 199 

solutions, ranging from 0 to 200µg.L-1, were used for the quantification. Spectra were treated 200 

with Labsolutions Insights software. Quality controls were performed every 8 samples to 201 

detect potential concentration shifts. 202 

2.3.4.Anions and cations: Major cations and anions were quantified thanks to ion 203 

chromatography (Metrohm 930 Compact IC Flex, anion column: Metropes A supp 5 -250/4.0, 204 

cation column/ Metrosep C 6 – A150/4.0). Temperature was set at 35°C for anions and 30°C 205 

for cations. The quantification was performed with a flow rate of 0.7mL.min-1 for anions with 206 

a sodium bicarbonate and sodium carbonate eluent (3.2mM/1.0mM) respectively. For cations, 207 

the quantification was performed with a flow rate of 0.7mL.min-1 with a nitric acid and 208 

dipicolinic acid eluent (1.7mM/1.7mM) respectively. 209 

2.4.WWTP effluent: 210 

Effluents were collected in the Baillargues – Saint-Brès WWTP (20,000 inhabitant equivalent). 211 

The WWTP is equipped with a MBR allowing the direct use of the effluent for nanofiltration. 212 

Indeed, silt density index for this WWTP is below 3 (2.5) which allows its direct use for 213 

nanofiltration process (Mendret et al., 2019). Effluents were collected in January 2023. 214 

Effluents were stored at 4°C until use to limit change of composition of the effluent particularly 215 

for the CECs.  The physicochemical characteristics of WWTP effluent will be described in the 216 

next section. 217 

 218 

 219 

 220 
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3.Results and discussion: 221 

3.1.Nanofiltration performance: 222 

The performances of the two commercial membranes NF-90 and NF-270 were tested using 223 

the MBR effluent. The retention for each CEC, sorted from lower to higher Stokes radius, 224 

detected in the effluent is shown Figure 1. 225 

 226 

Figure 1. Comparison of NF-90 and NF-270 performances for the removal of CECs (8 bars, 20°C, 227 

80% conversion). 228 

The results agree with previous data found in the literature. NF-90 due to its lower pore radii 229 

is more efficient than NF-270 to remove CECs (Azaïs et al., 2014; AzaÏs et al., 2016; Wang et al., 230 

2021; Zhao et al., 2017). The NF-90 is also more efficient for the retention of monovalent ions 231 

and total organic carbon while the retention of total organic carbon and divalent ions are quite 232 

comparable for both membranes according to literature (AzaÏs, 2015; Bunani et al., 2013; 233 

Yabalak et al., 2021). As soil infiltration is expected to improve water quality NF-90 is too much 234 

efficient to be used for coupling treatment. NF-270 has shown interesting performances of 235 

retention for all the parameters studied. This membrane was thus chosen for performing 236 

coupling experiments due to its higher permeability and lower cost of operation and 237 
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maintenance in comparison with NF-90 (Azaïs, 2015; Mendret et al., 2019; Ramdani et al., 238 

2021). The influence of transmembrane pressure or conversion rate on the NF-270 removal 239 

efficiency for CECs was also investigated. Few effects on the retention have been observed as 240 

shown in Appendix (Figure A3). Indeed, these effects remain slight regarding the global 241 

retention of the CECs, modifying only the retention efficiency of some CECs, as already 242 

demonstrated in literature (Giacobbo et al., 2023; Gur-Reznik et al., 2023; Plantard et al., 243 

2018). 244 

3.2.Soil infiltration performance: 245 

A preliminary, non-quantitative experiment, using the same soil and the same column (30cm-246 

high) has been performed with the effluent to determine the time necessary to detect CECs at 247 

the outlet. The experiment confirmed some patterns observed in the literature. Indeed, it has 248 

been generally described in literature that positively charged compounds are not detected 249 

after soil column infiltration or with a high retardation compared with negatively and neutral 250 

charged compounds (Demeau b; Hermes et al., 2019; Schaffer and Licha, 2015; Schaffer et al., 251 

2015). The same patterns have been observed during our experiments.  For the negative and 252 

neutral compounds some of them could be observed at the outlet of the column 253 

(epoxycarbamazepine or carbamazepine for instance) while other compounds were totally 254 

removed such as valsartan. Moreover, breakthrough curves could be delayed according to the 255 

characteristics of the compounds. Soil infiltration has been investigating more carefully during 256 

the coupling treatment. 257 

  258 
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3.3.Coupling experiments: 259 

Physicochemical parameters, major ions, COD and CECs have been determined during the 24 260 

days infiltration experiment. The results obtained for these parameters and discussion about 261 

their evolution are presented below. 262 

3.3.1.Physicochemical parameters variations: 263 

These parameters regroup pH, redox potential (eH), electrical conductivity (EC) and dissolved 264 

oxygen (O2 dis). The mean values found initially in the effluent of WWTP and after each 265 

treatment step are summarized in Table 1. 266 

Table 1. Physicochemical characteristics of WWTP effluent, permeate (column feeding) and 267 

the outlet of the soil column. 268 

Parameters WWTP effluent (n=3) Column feeding (n=6) After soil column (n=8) 

pH 7.8 ± 0.1 7.5 ± 0.3 7.9 ± 0.2 

EC (µS.cm-1) 1410 ± 10 920 ± 30 1017 ± 14 

O2 dis (%) 100 ± 5 100 ± 5 8 ± 4 

eH (mV) 170 ± 20 200 ± 30 146 ± 14 

 269 

Few pH differences were observed during the experiment likely due to the pH of the 270 

soil (Table 1).  271 

Concerning dissolved oxygen, nanofiltration did not affect the percentage of dissolved 272 

oxygen. Water after the soil column was depleted in oxygen as already observed in literature 273 

for saturated columns, inducing anoxic conditions (Farnsworth et al., 2012; Horner et al., 2007; 274 

Pan et al., 2017). 275 

Nanofiltration did not seem to induce a huge change in eH as already reported in 276 

literature (Jährig et al., 2018). However, during soil infiltration, eH seemed to decrease 277 
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gradually until reaching a plateau around 140-150mV. The decrease observed could be due to 278 

several reasons (i) either the way of the infiltration of the feeding solution (Miele et al., 2023; 279 

Rodriguez-Escales et al., 2020) or (ii) the removal of some bacteria by nanofiltration (Oliveira 280 

et al., 2022)  which can be responsible of reductive phenomena (Couture et al., 2015). 281 

Finally electrical conductivity was reduced thanks to nanofiltration after the first 282 

treatment likely due to the anions and cations retention. However, after soil infiltration a slight 283 

increase was observed for the electrical conductivity. To have a better understanding of the 284 

phenomena involved during nanofiltration and soil infiltration it is interesting to focus on 285 

major ions which are mainly responsible of the electrical conductivity value. 286 

3.3.2.Major ions variation: 287 

Only the ions with concentrations above 1mg.L-1 will be presented in this part. Measurements 288 

for anions or cations with concentrations below 1mg.L-1 were stable during the whole 289 

experiment. The concentrations found in the effluent and after each treatment are 290 

summarized in Table 2. 291 

Table 2. Concentrations of ions in effluent and after each treatment (mg.L-1). 292 

Ions Cl- NO3
- SO4

2- Ca2+ K+ Mg2+ Na+ 

Effluent 231 2.6 86 118 18.7 6.2 152 

After NF 217 3.2 3.7 40 14.3 3.2 124 

After soil 218 3.2 3.9 76 0.97 3.4 118 

 293 

 294 

Nanofiltration was particularly efficient for removing divalent ions as already described in 295 

literature (Azaïs, 2015; Bunani et al., 2013) with removal rates ranging from 48 to 96% for 296 
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divalent ions while monovalent ion retentions range from 6% to 24%. For nitrate ion no 297 

removal was observed but its concentration (Mendret et al., 2019). 298 

Generally, for negative ions no further removal was performed by the soil infiltration. This lack 299 

of removal for anions could be problematic for chloride ions. Indeed, even if no guideline value 300 

is proposed by the WHO (Guidelines for drinking-water quality) some national legislations limit 301 

the value of chloride in water used in purpose of drinking use at 200mg.L-1 and lower 250mg.L-302 

1 in drinking water (Arrêté du 11 janvier 2017; Informe, 2019). This result confirms that anions 303 

could be good tracer for soil infiltration. In some studies, bromide ions are sometimes used as 304 

tracer (Kiecak et al., 2020; Rauch-Williams et al., 2010). However, in our study the level of such 305 

ions is too low, and no additional element was added to maintain natural equilibrium. In this 306 

study, chloride ions can be used as tracer (Guillemoto et al., 2022), to compare breakthrough 307 

speed, as sulfate ions have shown a slight retardation compared with chloride ions. 308 

For cations some changes clearly occurred in soil at the start of the infiltration. Excess of 309 

magnesium and calcium ions were observed in solutions during the first pore volumes as 310 

shown Figure 2. 311 

 312 

Figure 2. Evolution of cations concentrations in soil (Q = 1.1L.day-1, T ≈ 10-12°C, 24 days, pH ≈ 313 

7.8-8). 314 

While potassium ions tended to be adsorbed by soil during infiltration, magnesium and 315 

calcium breakthrough curve were fast responsive after the introduction of the effluent. When 316 
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sodium ions started to breakthrough both magnesium and calcium ions concentrations started 317 

to decrease. Cation exchanges clearly seemed to be involved when nanofiltration permeate 318 

was infiltrated in soil. The soil composition tended to evolve with an adsorption of sodium and 319 

potassium ions and a release of calcium and magnesium ions until it reached an equilibrium. 320 

This kind of exchange has already been reported in previous study using WWTP effluent as 321 

feeding solution (Goren et al., 2011; Guillemoto et al., 2022). The exchange occurred quickly 322 

in the first 10 pore volumes before slowing down while concentrations approaching their 323 

plateau values. The exchanges are dependant of the initial concentrations in soil, the cation 324 

capacity exchange, and the effluent as Na+ is sometimes released and Ca2+ adsorbed as shown 325 

in literature (Bekir et al., 2022; Garcia-Menéndez et al., 2021). 326 

3.3.3.COD variation: 327 

COD is often followed in soil aquifer treatment experiments and is a good indicator of water 328 

quality (Shu et al.,2019). Initial values of COD (close to 20mg(O2).L-1) in treated effluent were 329 

already low in comparison to conventional wastewater effluent due to the MBR used at 330 

Baillargues-St-Brès. After the nanofiltration treatment, the concentrations of COD ranged from 331 

3 to 5mg(O2).L-1 showing a good efficiency of nanofiltration membrane to decrease the COD 332 

value. Finally in soil, an increase of COD values was observed, reaching concentrations 333 

between 10 to 20 mg(O2).L-1. Species accounting for COD concentrations were likely present 334 

in soil as an initial value around 50 to 80 mg(O2).L-1 has been observed for all the experiment. 335 

At the start of the experiment, water present in the column has been in contact with the soil 336 

for at least 3 days (due to the saturation of the soil column) which could be an explanation for 337 

higher initial values quantified. Usually, soil infiltration allows to decrease the value of COD 338 

(Coutinho et al., 2018; Pan et al., 2017). However, in literature the value of COD is higher than 339 
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those applied in the infiltration of nanofiltration permeate in soil which could explain the 340 

increase of COD in this study. 341 

3.3.4.CECs variation: 342 

Finally, concentrations of 39 CECs have been followed in the treated effluent and during the 343 

different treatment steps to assess the combined removal efficiency of nanofiltration and soil 344 

column infiltration but also the individual removal efficiency for nanofiltration. The removal 345 

efficiency was calculated thanks to the removal rate Equation 1: 346 

𝑅𝑒𝑚𝑜𝑣𝑎𝑙ሺ%ሻ =
𝐶𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡−𝐶𝑝𝑒𝑟𝑚𝑒𝑎𝑡𝑒

𝐶𝑒𝑓𝑓𝑙𝑢𝑒𝑛𝑡
∗ 100 (Eq.1) 347 

With Ceffluent corresponding to the concentration of CECs in the wastewater treatment plant 348 

effluent and Cpermeate the concentration of the feeding solution after mixing 15L and 17L 349 

permeate solutions corresponding to two days at 80% conversion and 2 days at 90% 350 

conversion with nanofiltration performed at 5 bars and 20°C. The concentrations of CECs in 351 

the feeding solution were determined regularly during the 24 days. No decrease was observed. 352 

Nanofiltration shown an overall good removal efficiency with 27 compounds for which 353 

removal reached more than 70% including 5 compounds which were not detected anymore. 7 354 

compounds were partially removed between 30% and 70% by NF and finally 4 compounds; 355 

saccharine, simazine, metformin and thiabendazole; were hardly removed by nanofiltration 356 

process. These compounds have small Stokes radii (see Table A2) which can partly explained 357 

why their removal are lower than other molecules. As shown Figure 1, generally for molecules 358 

with a Stokes radius above 4.84Å (lidocaine) more than 90% removal was observed with few 359 

exceptions. Molecules with small Stokes radii are not removed by steric exclusion. Other 360 

parameters could also be taken into consideration such as the charge or the hydrophobicity of 361 
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the compounds (Azaïs et al., 2016; Taheran et al., 2016; Wang et al., 2021). Then, soil 362 

infiltration allowed a good increase of the removal for many compounds. Only three 363 

compounds had total removal below 70% after this step (saccharine, hydrochlorothiazide, and 364 

simazine) and 32 compounds out of 39 were removed more than 90% including 22 compounds 365 

which were not detected at the end of soil column after 24 days. Mainly positive compounds 366 

were removed, or at least highly retarded during soil infiltration, likely due to the negative net 367 

charge of the soil as already described in literature (Hermes et al., 2019; Schaffer et al., 2015). 368 

Moreover, some other compounds such as valsartan or oxazepam were not find at the end of 369 

the column despite their neutral or negative charge. However, these compounds have already 370 

shown a good or moderate removal in previous studies (Hermes et al., 2019; Muntau et al., 371 

2017; Sallwey et al., 2020; Schaffer et al., 2015). Finally, some compounds such as sotalol and 372 

lamotrigine were still in the process of breaking through soil column and their final 373 

concentration could be higher than those after 24 days. Figure 3 depicted the influence of each 374 

treatment on the total removal to determine which compounds are recalcitrant to each 375 

method of degradation/retention. Table 3 summarizes the initial concentrations and after each 376 

treatment but also the removal efficiency of the CECs. 377 

 378 

Figure 3. Removal rate (%) associated to each treatment steps; NF performed at 5 bars, 20°C, 80% and 379 
90% of conversion; soil infiltration performed for 24 days with concentrations of CECs averaged on the 380 
last 7 days or when the plateau is reached.381 
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 382 

Table 3. Concentrations of the CECs in WWTP effluent and after each treatment. The number under bracket corresponds to the removal in 383 

comparison with WWTP effluent concentrations. Under parenthesis the main charge of the compounds is indicated (+) for positive, (0) for 384 

neutral and (-) for negative at pH =7.9. 385 

 Compounds C eff (ng.L-1) C NF (ng.L-1) C Soil (ng.L-1)  Compounds C eff (ng.L-1) C NF (ng.L-1) C Soil (ng.L-1) 

Pa
rti

al
ly

 r
em

o
ve

d
 b

y 
th

e 

so
il 

co
lu

m
n

 

Acetaminophen (0) 68 ± 60 10 ± 6 (85) 2 ± 2 (97) 

N
o

t 
d

et
ec

te
d

 a
ft

er
 t

h
e 

so
il 

co
lu

m
n

 

Acebutolol (+) 71 ± 3 16 ± 4 (77) <5 (>93) 

Carbamazepine (0) 2570 ± 240 1090 ± 200 (58) 686 ± 52 (73) Atenolol (+) 26 ± 3 14 ± 2 (46) <1 (>96) 

Diclofenac (-) 1760 ± 110 250 ± 100 (86) 18 ± 33 (99) Cetirizine (+/0) 256 ± 53 22 ± 2 (91) <5 (>98) 

Furosemide (-) 375 ± 280 150 ± 40 (60) 1.7 ± 1.5 (100) Diphenhydramine (+) 13 ± 4 1 ± 1 (92) <0.1 (>99) 

Lamotrigine (0) 5455 ± 2420 2010 ± 428 (63) 256 ± 90 (95) Escitalopram (+) 28 ± 6 3,2 ± 1,4 (89) <0.3 (>99) 

Lidocaine (0/+) 404 ± 37 63 ± 13 (84) 23 ± 5 (94) Fenofibric ac. (0) 113 ± 50 1,5 ± 2,6 (99) <0.3 (100) 

Mefenamic ac. (-) 40 ± 31 4.7 ± 2.5 (88) 2.7 ± 1.3 (93) Linuron (0) 76 ± 7 9.4 ± 2.2 (88) 0.4 ± 0.3 (100) 

Saccharine (-) 63 ± 28 67 ± 74 (-6) 32 ± 38 (49) Metformin (++) 2,2 ± 0,9 2,2 ± 0,9 (0) <0.2 (>91) 

Sotalol (+) 1290 ± 70 543 ± 109 (58) 8.8 ± 2.2 (99) Metoprolol (+) 6,5 ± 0,6 1,3 ± 1,3 (80) <0,1 (>98) 

N
o

t 
re

m
o

ve
d

 b
y 

so
il 

co
lu

m
n

 

  

Epoxycarbamazepine (0) 128 ± 6 32 ± 3 (75) 37 ± 3 (71) Metronidazole (0) 22 ± 2 15 ± 2 (32) <2 (>91) 

Fluconazole (0) 176 ±15 24 ± 3 (86) 20 ± 3 (89) Oxazepam (0) 1660 ± 250 640 ± 54 (61) 2,2 ± 1,6 (100) 

Hydrochlorothiazide 2940 ± 530 1770 ± 210 (40) 1630 ± 240 (45) Propranolol (+) 66 ± 17 7 ± 13 (89) <0.2 (100) 

Irbesartan (-) 11900 ± 4300 292 ± 80 (98) 277 ± 124 (98) Sulfapyridine (-) 24 ± 3 5,5 ± 1,0 (77) <1 (>96) 

Simazine (0) 3.6 ± 0.8 3.3 ± 0.3 (8) 2.9 ± 0.6 (19) Telmisartan (-) 1130 ± 100 20 ± 4 (98) <0.5 (100) 

Sulfamethoxazole (-) 155 ± 61 8.9 ± 1.5 (94) 6.0 ± 0.5 (96) Thiabendazole (0) 2,1 ± 1,9 4,2 ± 1,1 (-100) <0.2 (>90) 

R
em

o
ve

d
 b

y 
N

F Erythromycin (+) 9.2 ± 3.2 <1 (>90) / Tramadol (+) 2140 ± 40 216 ± 50 (90) <10 (100) 

Gemfibrozil (-) 62 ± 37 <0.5 (100) / Trimethoprim (+/0) 10,7 ± 1,6 3,9 ± 0,3 (62) <1 (>91) 

Ofloxacin (0/-) 245 ± 36 <1 (100) / Valsartan (--) 1130 ± 450 13 ± 4 (99) <0.2 (100) 

Spyramycin (++) 104 ± 24 <0.5 (100) / Venlafaxine (+) 690 ± 90 86 ± 7 (88) <5 (100) 

Verapamil (+) 15 ± 6 <0.3 (>98) /  

NF: 5 bars, 20°C, homogenised solution of permeate at 80% conversion (15L) and 90% conversion (17L).  386 

Soil infiltration: Q = 1.1L.day-1, T ≈ 10-12°C, 24 days. 387 

.388 
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Soil infiltration appears to be a good complementary treatment after nanofiltration performed 389 

with the NF-270 membrane. If the membrane was responsible of 80% (Arola et al., 2017) of 390 

the total removal when the concentrations of all CECs are summed in this study, close to 391 

percentage found in previous study. The soil infiltration allowed to raise this percentage up to 392 

92% showing a very efficient coupling advanced treatment. For trimethoprim, oxazepam 393 

metronidazole, furosemide, atenolol, and sotalol the removal, for both techniques, was similar 394 

and the final removal was close to 100%. For simazine, nanofiltration and soil infiltration have 395 

shown limitations with a removal of only 20% at the coupling treatment. Simazine in soils has 396 

already been described as a persistent compound (Trussell et al., 2018) but its recalcitrant 397 

behaviour with NF-270 membrane has not been reported yet. Even if simazine had 70% 398 

removal rate with NF-270 at 80% of conversion, this removal dropped at 35% when the 399 

conversion rate was increased at 90%. It explains the high concentration of simazine in the 400 

permeate. Metformin was the only compound for which nanofiltration was not efficient at all 401 

with no change of concentration between the effluent of the WWTP and the permeate. In this 402 

case, soil infiltration was very efficient for eliminated the metformin as already observed 403 

elsewhere (Hellauer et al., 2018). Thiabendazole was also not removed by nanofiltration and 404 

even more concentrated in the permeate than in the concentrate. It is the first time to our 405 

knowledge that thiabendazole recalcitrant behaviour is shown for nanofiltration. However, 406 

thiabendazole concentration was low and the molecule was removed by soil. 407 

3.3.5.Removal of CECs in coupling experiments in the literature: 408 

In literature some articles have already investigated the efficiency of coupling some advanced 409 

treatments on the removal of CECs. For instance, Shafdan site, in Israel, have already 410 

performed SAT coupling with membrane process (Cikurel et al., 2006) or ozonation (Zucker et 411 
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al., 2015; Lakretz et al., 2017). Indeed, coupling of UF and short SAT or short SAT and NF-270 412 

have been performed (Cikurel et al., 2006). In both case the removal obtained for the 413 

compounds are higher than those traditionally observed with conventional SAT applied on site. 414 

In comparison with our experiment only sulfamethoxazole and trimethoprim are initially 415 

observed in the effluent likely due to the MBR treatment applied by the Baillargues-St-Brès 416 

WWTP in comparison with the conventional activated sludge used in Shafdan (Hermes et al., 417 

2019). For both compounds removals are in the same order between our experiment and 418 

Shafdan experiment with almost 100% of removal for trimethoprim and >90% for 419 

sulfamethoxazole. Concentrations ranged from 173 to 657ng.L-1 for sulfamethoxazole (like our 420 

study) and 62 to 349ng.L-1 for trimethoprim (above the concentration of this study). 421 

Combination of ozonation and short SAT has also been investigated in Shafdan. For diclofenac 422 

and sulfamethoxazole, their removal is almost complete. Removal of metoprolol and 423 

venlafaxine respectively reaches around 90% and 80 to 97% respectively slightly lower than 424 

those obtained with our coupling. Finally, carbamazepine tends to be totally removed by 425 

ozonation, but retardation of carbamazepine can induce high concentration during several 426 

weeks before reaching concentrations below limit of quantification (Lakretz et al., 2017;  427 

Zucker et al., 2015).  428 

In general, ozonation has shown very promising results when coupled with other techniques 429 

(Hellauer et al., 2017; Kim et al., 2019; Lakretz et al., 2017; Real et al., 2012; Sharma et al., 430 

2017; Zucker et al., 2015). Dose of ozone used ranged from 0.6mgO3/mg(DOC) (Hellauer et al., 431 

2017) to 1-1.2 mgO3/mg(DOC) (Kim et al., 2019; Lakretz et al., 2017; Sharma et al., 2017; Zucker 432 

et al., 2015). For carbamazepine, with concentration close to our study from 700 to 1000ng.L-433 

1, the removal is higher than those obtained with nanofiltration as carbamazepine is totally 434 
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degraded by ozonation. These studies (Hellauer et al., , 2017; Lakretz et al., 2016 ; Zucker et 435 

al., 2015) confirm removal of venlafaxine (250-750ng.L-1), is good with ozonation (at least 80-436 

90%) with similar concentrations than our study. The removal is sometimes not total, but its 437 

concentration is often under limit of quantification (20ng.L-1). For diclofenac (300-1300ng.L-1), 438 

the removal is complete like in this study (99%). Metoprolol (300-1000ng.L-1), totally removed 439 

in our study but with a much lower initial concentration (6ng.L-1), can show different 440 

behaviours as it is sometimes almost removed (>98%) (Hellauer et al., , 2017; Zucker et al., 441 

2015), sometimes poorly removed when oxidation treatment is used before NF (O3 + NF and 442 

O3/H2O2 + NF) and totally removed with nanofiltration followed by ozonation79. Finally, 443 

hydrochlorothiazide which have shown a recalcitrant behaviour in our experiment with 45% 444 

removal, with initial concentration around 3µg.L-1 in this study, is totally removed when 445 

applying UV treatment and nanofiltration but also poorly removed with other combination 446 

such as NF and ozonation or chlorination with respectively 55% and 65% of removal but with 447 

concentration close to 0.3mg.L-1 (1µM) (Real et al., 2012) . H2O2 is sometimes used to boost 448 

performances of the oxidation such as ozonation, Fenton-like reaction or UV irradiation in 449 

addition of coupling with other advanced treatment (Kim et al., 2019; Usman et al., 2018; 450 

Wünsch et al., 2019). However, the increase of performance is generally slight. 451 

Finally, some soil aquifer treatments, corresponding to the infiltration of treated wastewater 452 

through the surface and vadose zone followed by a slow transport in the aquifer, are somehow 453 

enhanced with reactive layer or a better optimisation of the process (Hernandez Garcia et al., 454 

2014; Lakretz et al., 2017; Liu et al., 2020 Schaffer et al., 2015; Trussell et al., 2018; Valhondo 455 

et al., 2020). Even if these experiments are not exactly “coupling process” because the 456 

mechanisms of removal are close, the addition of reactive layer or a constructed wetland can 457 
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improve the performance of removal for some compounds such as benzotriazole, 458 

epoxycarbamazepine, gemfibrozil or sulfamethoxazole. 459 

4.Conclusions: 460 

The efficiency of a novel combination of advanced treatments applied on MBR effluent of 461 

WWTP has been investigated through different parameters such as physicochemical 462 

parameters or concentrations of CECs, particularly problematic in the last decades. Few 463 

changes have been observed concerning physicochemical parameters with only a slight 464 

decrease of electrical conductivity due to nanofiltration process. The introduction in the soil 465 

column of the permeate, collected thanks to the nanofiltration of the MBR effluent, induces a 466 

cationic exchange which can potentially modified the adsorption properties of the soil 467 

regarding CECs. Nanofiltration with NF-270 membrane provides good removal efficiency with 468 

80% of retention of the summed concentration of CECs. Molecules with diameter above pore 469 

radii of the membrane are, with few exceptions, totally removed by steric exclusion while 470 

molecules with lower Stokes radii than the membrane pore radii have removal percentage 471 

depending on other parameters (charge, log KOC). Coupling nanofiltration and soil infiltration 472 

has shown a very good efficiency with a reduction of 92% of the overall CECs concentration 473 

allowing an important increase of the removal in comparison with nanofiltration used alone. 474 

This reduction is comparable or even better than some coupling treatments already 475 

investigated in literature such as oxidation process. Furthermore, 22 CECs out of the 39 found 476 

in the effluent are not detected anymore after the coupling and only 4 compounds have 477 

concentration above 100ng.L-1 (versus 20 initially) at the end of the treatment.  This innovating 478 

study validates the use of nanofiltration and soil infiltration as a promising advanced treatment 479 

coupling according to the results obtained. Improvements of the coupling can still be achieved 480 
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by adding reactive layer to soil infiltration or optimising the parameters of nanofiltration for 481 

instance. Investigations with longer column feeding should be performed to validate the 482 

preliminary results obtained in this study and observed if soil acclimatisation to permeate 483 

infiltration can further reduce the concentrations of some recalcitrant species due to microbial 484 

population changes. 485 

 486 

Appendix: Scheme of the experimental setup, properties of CECs and soil, conditions of LC-487 

MS/MS quantification and   additional experimental results (Word). 488 
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Appendix 890 

 891 

 892 

 893 

Figure A1. Scheme of the experimental set-up. 894 

 895 

Table A1. Soil composition and column characteristics. 896 

 897 

Soil composition Clay silty loam (clay 36%; loam 37%; sand 27%) 

Soil pH 8.2 

TOC  1.2% 

Cation exchange capacity Metson 213 me.kg-1 

Water retention 60% 

Pore volume 860mL 

Maximal infiltration flowrate 280mL.h-1 

Working flowrate 46mL.h-1 

 898 

 899 

 900 

Table A2. Contaminants of emerging concern sorted by molecular weight and their 901 

characteristics.902 
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 Log P 
Log D 

7.4 
Log D 

8 
Charge 

(7,4) 
Charge 

(8) 
M molaire (g.mol-

1) 
Stokes r 

(A°) 
Min radius 

(A°) 
Max radius 

(A°) 
Dipole moment 

(D) 
LOQ (ng.L-

1) 

Metformin 
-

0,92 
-5,62 -5,37 2 1,99 129,167 2,90 3,42 4,92 2,97 0.2 

Acetaminophen 0,91 0,9 0,89 -0,01 -0,03 151,17 3,22 3,49 5,67 2,77 0.3 

Metronidazole 
-

0,46 
-0,46 -0,46 0 0 171,15 3,17 4,68 4,75 3,88 2 

Saccharine 0,45 -0,49 -0,49 -1 -1 183,2 3,18 3,88 4,62 4,36 10 

Thiabendazole 2,33 2,33 2,33 0 -0,01 201,25 3,58 4,01 6,16 2,7 0.2 

Simazine 1,78 1,78 1,78 0 0 201,66 3,72 4,9 6,28 5,85 0.1 

Carbamazepine 2,95 2,95 2,95 0 0 236,27 4,20 4,48 5,76 3,72 1 

Mefenamic acid 4,4 2,29 2,02 -0,98 -1 241,29 4,38 4,92 6,43 1,93 1 

Linuron 2,68 2,68 2,68 0 0 249,1 4,18 4,08 6,49 4,99 0.2 

Sulfapyridine 1,01 0,24 0,12 -0,94 -0,98 249,29 4,02 4,54 5,89 9,93 1 

Gemfibrozil 4,39 1,51 1,14 -1 -1 250,33 4,88 4,99 7,43 2,08 0.5 

Epoxycarbamazepin
e 

2,58 2,58 2,58 0 0 252,27     0.1 

Sulfamethoxazole 0,79 -0,07 -0,13 -0,97 -0,99 253,28 4,01 5,4 5,88 8,28 0.5 

Diphenhydramine 3,65 2,17 2,63 0,97 0,88 255,361 4,99 5,73 6,79 0,99 0.1 

Lamotrigine 1,93 1,91 1,92 0,23 0,07 256,09 3,87 3,99 6,1 4,11 30 

Propranolol 2,58 0,73 1,3 0,99 0,95 259,35 4,84 4,66 7,41 2,16 0.2 

Tramadol 2,45 0,48 1,05 0,99 0,96 263,381 5,02 4,75 7,3 2,88 10 
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Atenolol 0,43 -1,43 -0,86 0,99 0,95 266,34 4,84 4,19 9,12 6,13 1 

Sotalol 
-

0,84 
-1,98 -1,45 0,95 0,82 272,363 4,63 4,21 7,94 5,98 1 

Venlafaxine 2,74 1,37 1,91 0,96 0,85 277,408 5,14 5,37 6,79 1,15 5 

Oxazepam 2,92 2,92 2,92 0 -0,02 286,72 4,40 5,41 5,76 3,81 0.4 

Trimethoprim 1,28 1,1 1,23 0,85 0,59 290,32 4,64 4,97 6,95 4,24 1 

Diclofenac 4,26 1,1 0,86 -1 -1 296,15 4,46 4,62 6,34 2,65 0.4 

Hydrochlorothiazide 
-

0,58 
-0,58 -0,61 -0,03 -0,1 297,74 4,05 4,13 5,67 8,83 50 

Fluconazole 0,56 0,56 0,56 0 0 306,27 4,44 5,1 5,88 3,99 1 

Fenofibric acid 5,28 5,28 5,28 0 0 318,75 4,97 4,33 9,72 7,5 0.3 

Escitalopram 3,76 1,41 1,98 1 0,98 324,399 5,27 5,76 8,04 3,68 0.3 

Furosemide 1,75 -1,63 -1,74 -1 -1,01 330,74 4,45 4,77 7,31 5,96 0.2 

Acebutolol 1,53 -0,31 0,26 0,99 0,95 336,432 5,59 4,77 10,69 7,11 5 

Ofloxacin 
-

1,06 
-1,08 -1,17 -0,08 -0,29 361,37 4,93 5,27 8,2 9,9 1 

Cetirizine 0,86 0,78 0,61 0,78 0,61 388,892 5,74 6,19 9,18 3,81 5 

Irbesartan 5,39 4,23 4,04 -0,97 -0,99 428,53 5,89 5,86 9,33 1,87 10 

Valsartan 5,27 1,08 0,5 -1,97 -1,99 435,52 6,21 5,7 8,66 10,74 0.2 

Verapamil 5,04 3,22 3,79 0,99 0,94 454,611 6,92 6,63 8,28 10,05 0.3 

Telmisartan 6,13 4,86 4,52 -0,97 -0,99 514,62 6,78 7,85 8,9 7,62 0.5 
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Metoprolol 1,76 -0,1 0,47 0,99 0,95 534,738 5,10 4,39 10,07 5,53 0.1 

Erythromycin 2,6 0,99 1,55 0,98 0,91 733,93 9,06 6,83 9,32 3,31 1 

Spiramycin 2,5 -0,5 0,59 1,9 1,68 843,06 9,22 7,5 12,42 10,22 0.5 
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Figure A2. Gradient of eluting solution used during liquid chromatography in % of methanol 913 

+ 0.1% formic acid = f(t) in minute 914 

 915 

Table A3. Operating conditions of mass spectrophotometer 916 

Nebulizing gas flow 2L.min-1 

DL Temperature 150°C 

Heat block temperature 400°C 

Drying gas flow 5L.min-1 
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 938 

Figure A3.  Influence of the retention of NF-270 of CECs for different transmembrane 939 

pressure (top) and different conversion rate (bottom) 940 

 941 

 942 


