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Acoustic signals are vital in animal communication,
and quantifying them is fundamental for understanding
animal behaviour and ecology. Vocalizations can be
classified into acoustically and functionally or contextually
distinct categories, but establishing these categories can be
challenging. Newly developed methods, such as machine
learning, can provide solutions for classification tasks. The
plains zebra is known for its loud and specific vocalizations,
yet limited knowledge exists on the structure and information
content of its vocalzations. In this study, we employed
both feature-based and spectrogram-based algorithms,
incorporating supervised and unsupervised machine learning
methods to enhance robustness in categorizing zebra
vocalization types. Additionally, we implemented a permuted
discriminant function analysis to examine the individual
identity information contained in the identified vocalization
types. The findings revealed at least four distinct vocalization
types—the ‘snort’, the ‘soft snort’, the ‘squeal’ and the ‘quagga
quagga’—with individual differences observed mostly in
snorts, and to a lesser extent in squeals. Analyses based on
acoustic features outperformed those based on spectrograms,
but each excelled in characterizing different vocalization
types. We thus recommend the combined use of these
two approaches. This study offers valuable insights into
plains zebra vocalization, with implications for future
comprehensive explorations in animal communication.
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1. Introduction
Acoustic communication plays an important role in various aspects of animals’ lives, including
courtship and mating, offspring care, territorial defence, predator defence, group cohesion, decision
making and emotion expression [1–9]. Quantifying and comparing species-specific vocalizations are
thus fundamental to understand animal behaviour, communication and ecology [10–13]. Acoustic
signals can be classified into different categories based on their acoustic structures and/or correspond-
ing function or context of emission. For example, at the species level, animals share a vocal repertoire
consisting of distinct types of vocalizations [14–16]. These distinct vocalizations will often serve specific
functions (e.g. contact and mating), and vary in both the amount and category of information that they
convey (i.e. their information content), such as static information (stable over time; e.g. individuality
[17,18] and sex [19]) and dynamic information (variable over time; e.g. emotion and motivation [20])
about the caller [21].

Vocal repertoires are notoriously difficult to establish, as variations in acoustic signals arise across
individuals and environments [22]. Additionally, vocalization types are often graded, and hence
may not fall into distinct categories [23]. Newly developed analysis tools provide researchers with
improved options for classifying tasks (i.e. acoustic signals) [24]. For example, machine learning offers
both supervised and unsupervised tools for classification, where supervised learning categorizes data
into predetermined classes, while unsupervised learning recognizes inherent patterns for grouping
clusters without prior class labels [25]. Moreover, short-time Fourier transform (STFT), convolutional
neural network (CNN) and spectrogram-based unsupervised learning expand applications for acoustic
signals, from extracted features to spectrogram, providing opportunities to classify or cluster vocaliza-
tions based on the whole structure [22,26–28].

Vocalizations can be particularly important in socially complex species, such as the plains zebra, a
species characterized by a complex multi-level social structure [29,30]. Understanding how members
of this near-threatened species use vocalizations in this complex system is essential for studying their
communication and social dynamics [31]. However, studies on plains zebra acoustic communication
are scarce, and the information content of their vocalizations has not been investigated yet. To our
knowledge, so far, only two studies have attempted to establish plains zebras’ vocal repertoire,
and detected 4–6 distinct vocalization types by subjectively describing vocalizations and contexts of
production [29,32]. This study aimed to re-visit the vocal repertoire of plains zebras using modern
methods of classifications, and to investigate the individuality content of the resulting vocalization
types. Based on previous literature and preliminary field observations, we hypothesized that zebras
use at least four distinct vocalization types. We also predicted that the individual distinctiveness would
differ between vocalization types, as found in other species (e.g. red-capped mangabeys (Cercocebus
torquatus) [33], zebra finches (Taeniopygia guttata) [34], southern white rhinoceros (Ceratotherium simum
simum) [35], concave-eared torrent frogs (Odorrana tormota) [36], and little auks (Alle alle) [37]).

2. Method
2.1. Data collection and sampling
We collected data in three locations, in Denmark and South Africa: (i) 10 months between December
2020 and July 2021 and between September and December 2021, at Pilanesberg National Park (PNP),
South Africa, covering both dry season (i.e. May–September) and wet season (i.e. October–April) [38];
(ii) 16 days between May and June 2019, and 33 days between February and May 2022, at Knuthenborg
Safari Park (KSP), Denmark, covering periods both before the park’s opening for tourists (i.e. Novem-
ber–March) and after (i.e. April–October); and (iii) 4 days in August 2019 at Givskud Zoo (GKZ),
Denmark.

For all places and periods, three types of data were collected as follows: (i) pictures were taken
for each individual from both sides using a camera (Nikon COOLPIX P950); (ii) contexts of vocal
production were recorded through either notes (in the first period of KSP and in GKZ) or videos (in the
second period of KSP and in PNP) filmed by a video camera recorder (Sony HDRPJ410 HD); (iii) audio
recordings were collected using a directional microphone (Sennheiser MKH-70 P48, with a frequency
response of 50–20 000 Hz (±2.5 dB)) linked to an audio recorder (Marantz PMD661 MKIII).

Six zebras housed in GKZ were recorded while being separated from one another into three
enclosures (the stable, the small enclosure and the savannah) manually by the zookeeper for
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management purpose, which triggered vocalizations. These vocalizations, along with other types of
data, were recorded at distances of 5–30 m.

In KSP, 15–18 zebras (population changed owing to newborns, deaths or removal of adult males)
were living with other herbivores in a 0.14 km2 savannah. There, we approached the zebras by
driving down the road until approximately 7–40 m, at which point spontaneous vocalizations and
other information were collected. This distance allowed us to collect good-quality recordings without
eliciting any obvious reactions from the zebras to our presence.

Finally, PNP is a 580 km2 national park, with approximately 800–2000 zebras [39]. In this park,
we drove on the road and parked at distances of 10–80 m when encountering zebras, where all data,
including spontaneous vocalizations, were recorded.

2.2. Data processing
Individual zebras were manually identified based on the pictures collected from KSP and GKZ (15–
18 and 6 zebras, respectively). In PNP, the animals present in the pictures were individually identi-
fied using WildMe (https://zebra.wildme.org/), a Web-based machine learning platform facilitating
individual recognition. All zebra pictures were uploaded to the platform for a full comparison through
the algorithm. The resulting matching candidates were then determined by manually reviewing the
output.

Audio files (sampling rate: 44 100 Hz) were saved at 16-bit amplitude resolution in WAV format.
We annotated zebra vocalizations, along with the context of production and individuals emitting the
vocalizations, using Audacity software (v. 3.3.3) [40]. Vocalizations were first subjectively labelled as
five vocalization types based on both audio and spectrogram examinations (i.e. visual inspection)
(table 1 and figure 1). Among these types, the ‘squeal-snort’ was excluded from further analysis, as the
focus of this study was on individual vocalization types instead of combinations.

2.3. Acoustic analysis
We extracted vocalizations of good quality, defined as vocalizations with clear spectrograms, low
background noise and no overlap with other sounds, and saved them as distinct audio files. For the
individual distinctiveness analysis, we excluded individuals with fewer than five vocalizations of each
type, to avoid strong imbalance, resulting in 359 snorts from 28 individuals and 138 squeals from 14
individuals (electronic supplementary material, tables S3 and S4) [35,41]. The individuality content
of quagga quagga and soft snorts could not be explored, owing to insufficient individual data. For
vocal repertoire analysis, we excluded vocalizations longer than 1.25 s to improve spectrogram-based
analysis, following Thomas et al. [28]. In total, we gathered 678 vocalizations for the spectrogram-based
vocal repertoire analysis, including 117 quagga quagga, 204 snorts, 161 squeals and 196 soft snorts
(electronic supplementary material, table S2). Among these vocalizations, six squeals were excluded
in the acoustic feature-based vocal repertoire analysis, owing to missing data for one of the features
(amplitude modulation extent).

All calls were first high-passed filtered above 30 Hz for snorts and soft snorts, above 500 Hz for
squeals and above 600 Hz for quagga quagga (i.e. above the average minimum fundamental frequency
of these vocalizations; electronic supplementary material, table S1). We then extracted 12 acoustic
features from vocalizations for the individual distinctiveness analysis (table 2), using a custom script
[42–45] in Praat software [46]. Eight of these features were also extracted for the vocal repertoire
analysis (i.e. all features except those related to the fundamental frequency, which were not available
for soft snorts that are not tonal). Additionally, to explore the vocal repertoire, mel-spectrograms were
generated from audio files using STFT, following Thomas et al. [28]. Spectrograms were padded with
zeros according to the length of the longest audio file to ensure uniform length for all files, and
time-shift adjustments were implemented to align the starting points of vocalizations [28].

2.4. Statistical analyses

2.4.1. Vocal repertoire

We applied both supervised and unsupervised machine learning to both acoustic features and
spectrograms using Python (v. 3.9.7) [47].
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2.4.1.1. Supervised method

To define the vocal repertoire through an acoustic feature-based approach, we deployed feature
importance analysis by SHapley Additive exPlanation (SHAP) [48], using the shap library (v. 0.40.0)
[49]. Six features with SHAP value >1 were selected (electronic supplementary material, figure S1).
We split the selected features with vocalization type labels into a training dataset (70%) and a testing
dataset (30%) using the Scikit-learn library (function: train_test_split, v. 0.24.2) [50]. Subsequently, we
employed a supervised approach, the eXtreme Gradient Boosting (XGBoost) classifier in xgboost library
(v. 1.6.0) [51] to train the model. Three hyperparameters were tuned on the training dataset to reach
maximum accuracy using optuna library (direction = minimize, n_trials = 200, v. 2.10.0) [52], incorporat-
ing cross-validation (five folds), which resulted in the best model (electronic supplementary material,
table S5).

To define the vocal repertoire through a spectrogram-based approach, we split the dataset into a
training set (49%), a validation set (21%) and a test set (30%), using the Scikit-learn library (function:
train_test_split, v. 0.24.2) [50]. We implemented a CNN architecture using the tensorflow library (v.
2.8.0) [53]. The architecture was constructed (electronic supplementary material, table S6) and seven
hyperparameters were tuned to reach maximum accuracy on the training and validation dataset using
the optuna library (direction = minimize, n_trials = 50, v. 2.10.0) [52], which resulted in the best model
(electronic supplementary material, table S6).

snort
(a)

8000 Hz

0 Hz
0 s 0.84 s

quagga quagga
(d)

8000 Hz

0 Hz

0 s 6.24 s

soft snort
(b)

0 s 0.65 s

squeal
(c)

0 s 0.82 s

squeal snort
(e)

0 s 0.72 s

Figure 1. Example spectrograms for each manually labelled vocalization type: (a) ‘snort’; (b) ‘soft snort’; (c) ‘squeal’; (d) ‘quagga
quagga’; and (e) ‘squeal-snort’. Spectrogram settings: number of time steps = 1000, number of frequency steps = 250 and window
shape = Gaussian. Corresponding audio files are included in the electronic supplementary material (supplementary audio).

Table 1. Subjectively labelled vocalization types.

vocalization type description context

snort (figure 1a) a nasal-clearing sound with vibration
pulses visible on the spectrogram

appearing in diverse contexts, including
grazing, moving, standing and lying

soft snort (figure 1b) a soft exhalation of air resembling white
noise on the spectrogram appearing in similar contexts as the ‘snort’

squeal (figure 1c) a relatively short and high-fundamental-
frequency vocalization mainly emitted during social interactions

quagga quagga (figure 1d) a long series of inhalations and exhalations
(‘a-ha’) mainly uttered during separation

squeal-snort (figure 1e) a temporal combination of a squeal and a
snort appearing in similar contexts as the ‘snort’
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We evaluated model performance for both feature-based and spectrogram-based classification
models through predictions on each test dataset, including the test accuracy across all call types
(number of correct predictions/total number of predictions), and three metrics for each call type:
precision (true positives/(true positives + false positives)), recall (true positives/(true positives + false
negatives)) and the harmonic mean of precision and recall—f1-score (2 × (precision × recall)/(precision
+ recall)) [54]. We also plotted the confusion matrix between true classes and predicted classes.

2.4.1.2. Unsupervised method

For both acoustic feature-based and spectrogram-based analyses, we applied uniform manifold
approximation and projection (UMAP) in the umap library (function: umap.UMAP, n_neighbors = 200
and local_connectivity = 150 for acoustic feature-based analysis and metric = calc_timeshift_pad and
min_dist = 0 for spectrogram-based analysis, v. 0.1.1) [55], to reduce variables into a two-dimensional
(2D) latent space. We also implemented k-means clustering algorithm for both analyses from the
Scikit-learn library (function: kmeans.fit, v. 0.24.2) [50], to identify distinct clusters using the elbow
method [56]. The acoustic feature-based analysis followed the same feature importance selection result
as in the feature-based supervised method (six features), while the spectrogram was analysed using
scripts provided by Thomas et al. [28]. We drew the 2D latent space and clusters using matplotlib library
(v. 3.4.3) [57]. We also plotted the confusion matrix between true classes and predicted clusters using
the seaborn library (v. 0.11.2) [58]. Finally, we plotted the pairwise distances within a vocalization type
against between vocalization types using the script provided by Thomas et al. [28].

2.4.2. Vocal Individuality

We assessed the individual distinctiveness of vocalization types using R studio (v. 2022.02.1 with R v.
4.2.2) [59,60].

We performed a Kaiser–Meyer–Olkin test on the 12 acoustic features to measure the suitability
of those features for factor analysis, using the psych package (KMO function, v. 2.4.2 [61]). Variables
with measure of sampling adequacy (MSA) equal to or greater than 0.5 (electronic supplementary
material, table S7) [62] were selected, and subsequently input into a principal component analysis
(PCA) using the stats package (prcomp function, v. 4.2.2), to reduce correlation and multicollinearity
[63]. PC loadings with eigenvalues >1 (electronic supplementary material, table S9) were then first
input into a discriminant function analysis (DFA) with individual identity as the grouping factor, using
the MASS package (Ida function, v. 7.3–58.2) [64], to visualize the feature (PC) loadings responsible
for individuality. They were then additionally input into a permuted discriminant function analysis
(pDFA), to assess individual distinctiveness using functions developed by Mundry & Sommer [65],
which are based on the MASS package [64]. We ran a first nested pDFA with sex as a restriction factor,

Table 2. Vocal features extracted from zebra vocalizations.

feature description

mean F0 (Hz) mean value of the fundamental frequency, i.e. lowest frequency of the sound

max F0 (Hz) maximum value of the fundamental frequency

min F0 (Hz) minimum value of the fundamental frequency

range F0 (Hz) max F0–min F0

Q25% (Hz) frequency below which 25% of the energy is contained

Q50% (Hz) frequency below which 50% of the energy is contained

Q75% (Hz) frequency below which 75% of the energy is contained

peak frequency (Hz) frequency of maximum amplitude

duration (s) total duration of a vocalization

amplitude variation (dB s−1) cumulative variation in amplitude divided by the total vocalization duration

amplitude modulation rate (s−1) ratio of complete amplitude cycles to the total duration of the vocalization

amplitude modulation extent (dB) mean peak-to-peak variation of each amplitude modulation

5
royalsocietypublishing.org/journal/rsos 

R. Soc. Open Sci. 11: 240477

 D
ow

nl
oa

de
d 

fr
om

 h
ttp

s:
//r

oy
al

so
ci

et
yp

ub
lis

hi
ng

.o
rg

/ o
n 

23
 S

ep
te

m
be

r 
20

24
 



and a second nested pDFA with location as a restriction factor [65]. Both pDFAs included individual
identity as the test factor.

3. Results
3.1. Vocal repertoire
The feature-based supervised classification achieved a 91% test accuracy across the four vocalization
types identified manually during labelling. The quagga quagga and the squeal revealed the highest
f1-score at 93% and 94%, respectively, followed by the soft snort (89%) and snort (90%) (figure 2a).

In comparison, the spectrogram-based supervised classification yielded a lower test accuracy of
78%. The quagga quagga had the lowest f1-score at 67%, while the snort, soft snort and squeal had
relatively higher f1-scores at 80%, 81% and 78%, respectively (figure 2b). Misclassifications primarily
involved quagga quagga and soft snorts being categorized as snorts, while most misclassified squeals
were classified as soft snorts (figure 2b).

Feature-based unsupervised clustering resulted in four clusters based on the elbow method, with a
clear separation between tonal vocalizations (the quagga quagga and the squeal) and non-tonal ones
(the snort and the soft snort) (figure 3a1,a2). The quagga quagga had the most distinct cluster among all
types, with 99% of vocalizations classifying into one cluster (figure 3a3), along with the most obvious
separations of within–between density distributions (figure 3a4). The squeal showed a clear separation
of within–between density distributions (figure 3a4), but only 65% of squeals fell into one cluster, while
the others were clustered as quagga quagga (figure 3a3). The snort and the soft snort showed less clear
separations of within–between density compared with the other two vocalization types, while reaching
a high proportion of vocalizations categorizing as one cluster (88% for the snort and 82% for the soft
snort).

Spectrogram-based unsupervised clustering displayed four clusters based on the elbow method
(figure 3b1,b2), which revealed the clearest cluster for quagga quagga (89% quagga quagga were
classified into one cluster), while the other three types showed less clarity (figure 3b1,b3,b4). The squeal
and soft snort exhibited a moderate level of clustering, with more than half of the calls falling into one
cluster (soft snorts: 55%, squeals: 54%; figure 3b1,b3), and strong overlapped within–between density
distributions for both types (figure 3b4). The snort displayed the least clear cluster, distributed evenly
across four clusters (17–32%; figure 3b1,b3,b4).

Combining results from supervised and unsupervised machine learning algorithms across vocal
features and spectrograms, our findings suggest that plains zebras exhibit at least four distinct
vocalization types: snorts, soft snorts, squeals, and quagga quagga.

3.2. Vocal individuality
Snorts were classified to the correct individual (n = 18) significantly above chance level when con-
trolling for both sex (correctly cross-classified percentage, chance level: 13.32%, 4.69%) and location
(13.56%, 6.28%; p = 0.001 for both; table 3). In contrast, among 12 individuals, the percentage of
correctly cross-classified squeals was significantly above chance level only when controlling for sex
(correctly cross-classified percentage, chance level: 15.02%, 7.47%, p = 0.022), while location-controlled
results did not differ from chance (14.08%, 11.06%; p = 0.216; table 3).

For snorts, DF1 and DF2 accounted for 88.02% of the variance (electronic supplementary material,
table S8). DF1 was highly correlated (|r|≥0.5) with scores from PC1 and PC2 (electronic supplemen-
tary material, table S8), which represented F0-related features, energy distribution (Q25%, Q50% and
Q75%), as well as duration and amplitude modulation (AM)-related features (electronic supplemen-
tary material, table S9). DF2 had a strong correlation (|r| ≥ 0.5) with scores from PC1 and PC3
(electronic supplementary material, table S8), which were correlated with F0-related features, duration
and AM-related features (electronic supplementary material, table S9).

For squeals, DF1 and DF2 contributed 68.72% of the variance (electronic supplementary material,
table S8). DF1 was strongly correlated (|r| ≥ 0.5) with PC2 scores (electronic supplementary material,
table S8), which included F0-related features, duration and amplitude variation (electronic supple-
mentary material, table S9). DF2 was strongly correlated (|r| ≥ 0.5) with scores from PC3 and PC4
(electronic supplementary material, table S8), which represented peak frequency, Q75% and AM-rela-
ted features (electronic supplementary material, table S9).
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Overall, our result suggests that plains zebra snorts, and to a lesser extent squeals, contain
information about individual identity.

4. Discussion
The plains zebra is renowned for its loud and specific vocalizations, but investigations into its
vocal repertoire and individuality have been limited. We employed feature-based and spectrogram-
based machine learning for supervised classifications and unsupervised clustering to identify distinct
vocalization types. Our findings revealed at least four vocalization types: the ‘snort’, the ‘soft snort’,
the ‘squeal’ and the ‘quagga quagga’. We also analysed the vocal distinctiveness of two identified
vocalization types, and found that snorts displayed significant differences between individuals, while
squeals showed comparatively less individuality. This study uses state-of-the-art tools to estimate the
repertoire size of this species, and hence could inspire future comprehensive explorations in a wider
range of taxa and animal communication systems.

In order to reduce subjective biases, we investigated vocalization types present in plains zebra
repertoire using both supervised and unsupervised machine learning algorithms. Our study improves
the robustness of identifying distinct vocalization types compared with prior subjective descriptions
[29,32]. Three of the four vocalization types that we found align with previous literature [29,32]:
the ‘quagga quagga’ (corresponding to the previously described ‘bark’, or ‘i-ha’, used as a contact
call for long-distance communication), the ‘snort’ (previously described as the ‘loud snort’, produced
when moving into potentially dangerous cover, and the ‘long drawn-out snort’, the ‘whuffle’, the
‘blow’ or the ‘long snort’, emitted in contexts previously described as ‘contentment’) and the ‘squeal’
(previously described as the ‘chirp’, appearing during aggression or conflict, but also greeting and
play). The ‘snort’ merges the previously described ‘short snort’ and ‘long snort’ [29,32]. Classification
from both acoustic features and spectrogram, together with clustering results for acoustic features,
supported this conclusion. However, spectrogram clustering may imply potential subdivisions within
the ‘snort’. Notably, the ‘long drawn-out wail’ (previously recorded when a foal is in distress) and the
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‘two-syllable alarm’ (previously described as emitted when zebras sight predators) mentioned in one
of the previous studies [29] were not identified in our study. Further research across zebra subspecies
is recommended for a comprehensive understanding of their vocal repertoire. Moreover, our data did
not contain samples of all vocalization types at all locations, so we could not include location as a factor
in the analyses of the vocal repertoire. We recommend that future studies examine this effect using a
more balanced dataset.

The overall accuracy of both supervised and unsupervised classification analyses was much higher
for the acoustic feature-based analysis than the spectrogram-based one. This difference between
analysis types can be explained by the representativeness of the extracted acoustic features, which
describe key attributes of each vocalization type, while spectrograms may capture excessive details
that are not relevant for distinguishing vocalization types, or alternatively too insufficient details.
This is supported by the fact that, in CNN analysis, local features are more important than global
features [66]. Nevertheless, regarding specific vocalization types, divergent outcomes emerged from
distinct analyses. For example, the acoustic feature-based classifier yielded higher f1-scores for tonal
vocalizations (93% for the quagga quagga and 94% for the squeal) compared with non-tonal ones (90%
for the snort and 89% for the soft snort), while the spectrogram-based classifier resulted in a much
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lower f1-score for the quagga quagga (67%) compared with the other three types (80% for the snort,
81% for the soft snort and 78% for the squeal). As another example, in clustering analyses, the acoustic
feature-based analysis showed that squeals displayed the least clear cluster among the four types,
while the spectrogram-based analysis revealed that snorts had the least clear cluster.

Our results revealed that the acoustic structure of snorts displays significant differences between
individuals, when controlling for variation linked to both sex and location. This finding aligns with
a similar study on southern white rhinoceros (C. simum simum), where snorts also showed individual
distinctiveness, although less than other vocalization types [35]. Zebras emit snorts during various
context (i.e. grazing and moving), suggesting the potential use of snorts to convey individual informa-
tion and recognize group members. In addition, we would recommended future studies to investigate
other factors influencing vocalizations, such as sex, age and emotions [67].

Our findings for squeals showed that this vocalization type displayed significant individual
differences only when controlling for sex, but not for location. Squeals are primarily emitted during
close social interactions, where visual or tactical signals are available. This may contribute to their
limited individual distinctiveness, as zebras may use alternative modalities for individual recognition
in this context. However, sex and location were confounded (two males from PNP, five and seven
females from GKZ and KSP, respectively), preventing us from adequately controlling for one factor
independently of the other. This imbalance in the data should thus be taken into consideration.
Overall, the higher individuality in snorts compared with squeals supports the ‘distance communica-
tion hypothesis’, as snorts, being louder (B.X. 2021, personal observation) with a lower fundamental
frequency (electronic supplementary material, table S1), probably propagate over longer distances than
squeals that are rather quiet in plains zebras, thus conveying more information on individuality owing
to the lack of available visual cues over long distances [68].

In conclusion, our exploration of the vocal repertoire of plains zebras suggests at least four distinct
vocalization types: the ‘snort’, the ‘soft snort’, the ‘squeal’ and the ‘quagga quagga’. We also found
that snorts are more individually distinct than squeals. We recommend the combined use of supervised
and unsupervised learning, on both acoustic features and spectrogram in future studies investigating
vocal repertoires. We also recommend further explorations into the vocal repertoire of zebras across
subspecies, and investigations of the individual distinctiveness of more vocalization types (e.g. quagga
quagga and soft snort).
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