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INVARIANTS OF PERSISTENCE MODULES DEFINED BY ORDER-EMBEDDINGS

CLAIRE AMIOT, THOMAS BRÜSTLE, ERIC J. HANSON

Abstract. One of the main objectives of topological data analysis is the study of discrete invariants for
persistence modules, in particular when dealing with multiparameter persistence modules. In many cases, the
invariants studied for these non-totally ordered posets P can be obtained from restricting a given module
to a subposet X of P that is totally ordered (or more generally, of finite representation type), and then
computing the barcode (or the general direct sum decomposition) over X .

We consider in this paper general order-preserving embeddings of representation-finite subposets X into
P and study systematically the invariants obtained by decomposing the restriction of a given P-module M

to X into its indecompsable summands. The restriction functor from modP to modX is well-studied, and it
is known to be exact and admits both left and right adjoint functors, known as induction and co-induction
functors. This allows us to obtain new homological insights, and also to re-interpret previous results. We use
this approach also to determine bases, thus generalizing the concept of signed barcodes which is considered
in the literature in relation to stability results.

It turns out that considering only order-embeddings of one fixed poset X into the poset P, and studying
the set of all indecomposables obtained from X introduces a lot of redundancy. We therefore also study iter-
ated embeddings of several posets of increasing sizes, while limiting attention to only some indecomposables
(that have not been obtained from embedding of smaller posets previously).
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1. Introduction

1.1. Setting. The study of discrete invariants for persistence modules is one of the main objectives of
topological data analysis (TDA). When a pointwise finite-dimensional persistence module M is defined over
a totally ordered poset P , it decomposes into a finite sum of intervals. This data is called the barcode
of M and completely describes the module up to isomorphism, see [BC-B20, Theorem 1.2] and [GR92,
Section 3.6]. However, when studying multiparameter persistence modules, the underlying poset P usually
has wild representation type, and thus does not admit such a complete discrete invariant. We refer to the
summary article [BL23] for an introduction to multiparameter persistence modules, and why it is relevant
in practice to study more general posets than totally ordered ones.

To address the need of TDA for discrete invariants even in the multiparameter case, several invariants have
been introduced and studied: the dimension vector dimP (aka Hilbert function), the rank invariant rkP ,
and a number of generalizations thereof, see [BL23, BOOS] for an overview of recently studied invariants.

It turns out that, in many cases, these invariants studied for non-totally ordered posets P can be obtained
from restricting a given module to a subposet X of P that is totally ordered (or more generally, of finite
representation type), and then computing the barcode (or the general direct sum decomposition) overX . This
approach has been described in e.g. [DKM24, AENY23b, HNOX] introducing certain subposets X having
the form of “zigzags” or “tours” and “courses”, all referring to a poset whose indecomposable representations
can be described via intervals.
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In this paper, we consider general embeddings of representation-finite subposets X into P and study
invariants obtained by decomposing the restriction of a given P-module M to X into its indecompsable
summands. The restriction functor modP → modX is well-studied, and it is known to be exact and admits
both left and right adjoint functors. This allows one to obtain new homological insights, and also to re-
interpret previous results. It also allows one to determine bases, thus generalizing the concept of signed
barcodes from [BOO].

To fix notation, consider an order-embedding f : X → P ; that is, a poset morphism that is an iso-
morphism onto its image. The restriction of a P-module M to f(X ) can be described completely by
counting the multiplicities of indecomposable direct summands. We assume X to be representation-finite,

and thus obtain a discrete invariant mult
f
X ,P of rank | IndX|, the number of indecomposable X -modules.

Repeating this process for all possible embeddings f : X → P and collecting the result into a vector in-
dexed over all embeddings, we obtain the invariant multX ,P describing all multiplicities of indecomposable
X -modules obtained from all possible ways to restrict the P-module M to a subposet of form X . One also
defines an equivalent invariant dimhX ,P by calculating the Hom-dimensions from the set of indecomposable
X -modules to the restrictions of the persistence module along all order embeddings. See Definition 3.3 and
Proposition 3.6 for details.

Consider for example the poset X1 with one element. Then X1 has only one indecomposable representation,
and its multiplicity in a general module is given by the dimension. Thus listing all possible embeddings of
X1 into P and counting multiplicities amounts to describing the dimension vector, so multX1,P = dimP .
Consider now the poset X2 = {1 → 2}. This poset is representation-finite, and the multiplicity of the
indecomposable representation given by the interval [1, 2] can be computed by calculating the rank of the
map M1 → M2. This allows one to show that the multiplicity invariant multX2,P is equivalent to the well-
studied rank invariant rkP , see Corollary 3.8. More generally, as discussed in Example 3.5, the “generalized
rank invariant” of [KM21] and the “compressed multiplicities” of [AENY23b] both record the multiplicity
of the sincere interval modules IX over certain subsets X ⊆ P .

1.2. Results. For several subposets X , we address the question of how the multiplicities in multX ,P can be
computed in terms of linear algebra. See Examples 3.7 and 3.14 and the calculations in Section 3. In each
case, the multiplicties of indecomposable summands of M can be obtained computing ranks or intersections
given by the structure maps of the module M . More generally, we show in Proposition 3.6 that the invariant
multX ,P can be obtained by calculating the Hom-dimensions from the set of indecomposable representations
to the given persistence module, thus reducing the problem to solving a system of linear equations.

Besides computability, the second and equally important quality of an invariant for persistence modules
is the stability. For the rank invariant, this question has been addressed in [BOO, BOOS]: they single out a
class of special persistence modules, the “hook modules”, which are defined as indicator modules of certain
shapes called hooks: For a < b in P , let [a, b[ = {c ∈ P | a ≤ c 6≥ b}. The interval module I[a,b[ is called
a hook module. Note that I[a,b[ is the cokernel of the natural map I[b,∞) → I[a,∞) between indecomposable
projective P-modules. It is shown in [BOO] that the hook modules play the role of projective objects in
a relative homology theory given by some exact structure E , thus every persistence module M admits a
resolution by hook modules. One can then show that these hooks form a basis for the (image of the) rank
invariant (see Definition 4.11), which in turn allows one to define a “signed barcode”, leading to a stability
result for the considered invariant [BOOS].

The viewpoint of relative homological algebra has further been extended in many recent works (see e.g.
[AENY23a, BBH24, BBH, BOO, BOOS, CGRST, OS]), but we are only now able to conceptually explain
the appearance and importance of hook modules and their generalizations: Studying embeddings f : X → P ,
the corresponding restriction functor modP → modX admits both a left adjoint f! : modX → modP and
a right adjoint f∗ : modX → modP . One can then use the adjunction formula to show that the set

H = {f!U | U indecomposable X -module and f : X → P an embedding}

forms exactly the indecomposable relative projective objects for the exact structure defined as the class E of
short exact sequences 0 → L → M → N → 0 in modP which have the property that

0 → f∗L → f∗M → f∗N → 0

splits for all embeddings f : X → P . See Proposition 4.8. Coming back to the rank invariant, we study
embeddings of the poset X2, and since every indecomposable X2-module is the cokernel of a map between
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indecomposable projectives, we see easily that the set H above is formed exactly by the hook modules in
this case.

Moving on to more general posets that detect other aspects of the persistence module M , we consider
X = X ′

3 or X ′′
3 :

X ′
3 = 1

2

3

X ′′
3 =

1

2

3

We notice that the corresponding generalized hook modules are not always given just by specifying a subposet
of P , but they are given by vector spaces of dimension two at some vertices, see Example 4.10. These can
be illustrated as follows:

f(1)

f(2)

f(3)

k

X = X ′
3

f(3)

f(2)

f(1)

k

k

k

k2

X = X ′′
3

Already in [BOO], they specified a second basis for the rank invariant, given by rectangle modules I[a,b]
(with support [a, b]), which are somewhat easier to deal with than the hook modules. We aim to generalise
this result here in terms of general embeddings: Given a poset embedding f : X → P and U ∈ modX , the
adjunction formulas yield a natural map θfU : f!U → f∗U . We denote ΘfU = Im(θfU). It is shown in
[AET] that the association U 7→ ΘfU extends to a functor modX → modP . One easily verifies that in case
X = X2, the set

R = {ΘfU | U indecomposable X -module and f : X → P an embedding }

coincides with the set of rectangle modules. However, before moving on to find bases in a more general
setting, we aim to reduce redundancy. Considering sets like

H = {f!U | U indecomposable X -module and f : X → P an embedding}

produces the same P-modules several times from different embeddings f and different indecomposables U .
It seems more efficient to first collect all simple P-modules via embeddings of the one-point poset X1, then
consider all P-modules obtained from the interval [1, 2] by embedding the poset X2 = {1 → 2} into P and
so on. In other words, instead of studying the set of all indecomposables obtained from embeddings of one
poset X , we study now embeddings of several posets of increasing sizes, but limit attention to only some
indecomposables (that have not been obtained from embedding of smaller posets previously). The setting
we consider here is where we fix a family of posets F = {Xi} together with certain embeddings into P ,
and then we define multF to count the multiplicity of the characteristic indecomposable module IXi

in the
restriction of M to Xi along the various embeddings. So only one indecomposable is considered for each poset
embedding. As discussed in Example 5.8, both the generalized rank invariant of [KM21] and the various
compressed multiplicities of [AENY23b] can be realized in the form multF .

As explained in Section 5, there are examples of the invariants multX ,P which are equivalent to invariants
of the form multF . In such cases, the perspective of iterated embeddings is useful for removing some of the
redundant information stored in the invariant multX ,P . Aside from this decrease in redundancy, this change
in perspective also allows us to describe explicit bases of some of the invariants multX ,P . See Corollary 5.11.

With F := {X1,X2} for X1 and X2 the one- and two-point poset as before, we can recover the result that
the set R (the rectangles in this case) forms a basis for multF .

Corollary 1.1 (Corollary 5.15). Let P be a finite connected poset, and let X be one of the following posets
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X ′
3 = 1

2

3

X ′′
3 =

1

2

3

Assume that for any a < b in P there exists f ∈ EmbPX with {a, b} ∈ Im f , then the set

R = {Θf(U) | (f, U) ∈ EmbPX × IndX}

forms a basis of multX ,P .

•
f(1)

•
f(2)

•
f(3)

X = X ′
3

f(3)

f(2)

f(1)

•

•

•

X = X ′′
3
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2. Z-linear invariants

For a finite poset P , we study the category modP as the category of functors P → mod k for some
fixed field k. It is a k-linear abelian category with finite dimensional Hom-spaces which satisfies the Krull-
Schmidt property; that is, every object is isomorphic to a finite direct sum of indecomposable objects, and
this decomposition is unique up to permutation.

An object M ∈ modP is also called a P-module. We denote by Ma the vector space M(a), and by Ma→b

the element in Homk(Ma,Mb) given by the functor M applied to the pair a ≤ b ∈ P . We further denote
dima M := dimk Ma, and rka,b M := rkMa→b.

The split Grothendieck group Ksp
0 (P) of modP is the free abelian group generated by isoclasses [M ] of

objects M in modP modulo the relation [M ⊕N ] = [M ] + [N ] for any objects M,N in modP . Fixing a set
IndP of representatives of isoclasses of the indecomposable P-modules, the set {[U ] ∈ Ksp

0 (P) | U ∈ IndP}
forms a basis for Ksp

0 (P). In other words, decomposing M into indecomposable direct summands M ≃
⊕

U∈IndP UαU , the vector (αU )U∈IndP uniquely determines M up to isomorphism, by the Krull-Schmidt
property.

We say that a poset P is of finite representation type (or representation-finite) if IndP is finite. Therefore
the free abelian group Ksp

0 (P) is finitely generated if and only if P is of finite representation type.
Some indecomposable P-modules have been object of intense studies in the persistence theory literature.

One example of such modules are the rectangle modules I[a,b] (with support [a, b]), see e.g. [BLO22, KM21]:
Every pair a ≤ b in P yields an indecomposable P-module U = I[a,b] with Ux = k for all a ≤ x ≤ b in P and
Ux→y the identity map for all a ≤ x ≤ y ≤ b in P , while all other vector spaces and linear maps are zero.

More generally, a subset S ⊆ P is called an interval if S is order convex (in the sense that any a ≤ b ≤ c
in P with a, c ∈ S also has b ∈ S) and connected (in the sense that any a, b ∈ S are related by an alternating
chain a = s0 ≤ s1 ≥ · · · ≥ sk = b with each si ∈ S). Each interval determines an interval module1 IS
analogous to the rectangle module I[a,b]. Note that interval modules are always indecomposable, see e.g.

1Note that interval modules are also called “spread modules” in some works, e.g. [BBH24, CGRST].
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[BL18, Proposition 2.2]. These modules have featured prominently in many recent works, see e.g. Sections 9
and 10 of the survey article [BL23] and the references therein. We will consider the following special classes
of interval modules in this paper.

Example 2.1. (1) For a ∈ P , let [a,∞) = {b ∈ P | a ≤ b}. The interval module Pa := I[a,∞) is an
indecomposable projective, and all indecomposable projective P-modules have this form.

(2) For a ∈ P , let (−∞, a] = {b ∈ P | a ≥ b}. The interval module Ia := I(−∞,a] is an indecomposable
injective. Note also that all indecomposable injective P-modules have this form.

(3) For a ∈ P , the interval module Sa := I{a} (which is also a rectangle module since {a} = [a, a]) is the
simple top of Pa and the simple socle of Ia. Note that all simple P-modules have this form.

(4) For a < b, let [a, b[ = {c ∈ P | a ≤ c 6≥ b}. The interval module Ha,b := I[a,b[ is called a hook module,
see [BOO]. Note that Ha,b is the cokernel of the natural injective map Pb → Pa.

(5) For a < b, let ]a, b] = {c ∈ P | b ≥ c 6≤ a}. The interval module Ca,b := I]a,b] is called a cohook
module. Note that Ca,b is the kernel of the natural surjective map Ia → Ib.

(6) If P is connected, then it admits a unique sincere interval module IP . (Recall that sincere means
that (IP)a 6= 0 for all a ∈ P .)

2.1. Definitions and first examples.

Definition 2.2. A Z-invariant (or invariant for short) on modP is a Z-linear map Φ : Ksp
0 (P) −→ ZI

for some set I. In other words, Φ can be viewed as a map modP → ZI which is constant on isoclasses of
modules and such that Φ(M ⊕N) = Φ(M)+Φ(N). An invariant Φ is finite if its image is finitely generated.
We denote by rkΦ the rank of its image.

Example 2.3.

(1) Counting the multiplicities of all indecomposable direct summands yields an invariant multP :
Ksp

0 (P) → ZIndP of rank | IndP|. It is defined by multP(M)U = αU where M ≃
⊕

U∈IndP UαU is
the decomposition of M into indecomposable objects. If P is a poset of finite representation type,
then multP is a finite invariant. More generally, if U ⊆ IndP is a finite family of indecomposable
modules, we define multUP : Ksp

0 (P) → ZU by composing multP with the natural projection of
ZU → ZIndP .

For instance, if U = {I[a,b] | a ≤ b} is the set of all rectangle modules then a module M is called
rectangle-decomposable if multP(M)U = 0 for U 6∈ U , or equivalently when multP(M) is obtained

from multUP(M) by the natural inclusion of ZU → ZIndP .
(2) For a ∈ P , dima : Ksp

0 (P) → Z is an invariant of rank 1 given by dima(M) = dimk Ma. The map
dimP :=

⊕

a∈P dima is an invariant of rank |P|. This invariant is often known as the dimension
vector or Hilbert function.

(3) Denote the set of ordered pairs in P by

{≤P} := {(a, b) ∈ P2 | a ≤ b}.

For (a, b) ∈ {≤P}, the map rka,b : K
sp
0 (P) → Z given by rka,b(M) = rkMa→b is an invariant of rank

1. The map rkP :=
⊕

(a,b)∈{≤P} rka,b is an invariant of rank |{≤P}| called the rank invariant (see

[CZ09, BOO]).

(4) For any finite family U ⊆ IndP , the map dimh
U
P : Ksp

0 (P) → ZU defined by
(

dimh
U
P(M)

)

U
:=

dimk HomP(U,M) for U ∈ U is an invariant of rank |U|. Following [BBH24], we call this kind of
invariant a dim-Hom invariant.

2.2. Comparing invariants. Of course, a finite invariant can only be complete when the poset P is
representation-finite. One goal of persistence theory is to extract useful information from M ∈ modP
by some finite invariants even when the poset P is representation-finite. The following definitions provide
tools to compare different invariants.

Definition 2.4. Two invariants Φ1,Φ2 on modP are equivalent (in symbols Φ1 ≃ Φ2) if there exists an
isomorphism ϕ : ImΦ1 → ImΦ2 such that ϕ ◦ Φ1 = Φ2.

Definition 2.5. Let Φ1,Φ2 be two invariants on modP . We say that Φ1 is finer than Φ2, and denote it
by Φ1 ≥ Φ2, if there exists a Z-linear map ϕ : ImΦ1 → ImΦ2 such that ϕ ◦ Φ1 = Φ2 (in particular, ϕ is
surjective). This defines a partial order on the equivalence classes of invariants on modP .
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Example 2.6.

(1) The diagonal inclusion P → {≤P} induces an injective map ϕ : ZP → Z{≤P} whose transpose
ϕT : Z{≤P} → ZP is surjective and satisfies ϕT ◦ rkP = dimP , hence rkP ≥ dimP . In general,
the rank invariant is strictly finer than the dimension vector, in fact for a connected poset P the
rank invariant is equivalent to the dimension vector if and only if |P| = 1. It is a classical result in
representation theory that the rank invariant rkP is complete for a totally ordered poset P .

(2) Let Proj P ⊆ IndP the subset of indecomposable projective modules (see Example 2.1(1)). It is

classical that dimP = dimh
ProjP
P , so these invariants are equivalent. See [BBH24, Proposition 5.1].

(3) Let H ⊂ IndP be the subset formed by the hook modules and the projective indecomposable

modules (see Example 2.1). It is shown in [BOO] and [BBH24] that the invariants rkP and dimh
H
P

are equivalent.

Proposition 2.7. Let P be a poset of finite representation type. Then the invariants multP and dimhIndP
P

are equivalent.

Proof. Denote by {U1, . . . , Uℓ} = IndP . For 1 ≤ i, j ≤ ℓ we have multUi
(Uj) = δi,j and dimhUi

(Uj) =
dimk HomP(Ui, Uj). Hence if we denote by Φ ∈ Matℓ(Z) the matrix defined by Φi,j := dimk HomP(Ui, Uj),

we have that Φ ◦multP = dimhIndP
P showing that multP ≥ dimhIndP

P .
Since P is representation-finite, it is representation directed by [Si10, Theorem 1.4]. This means that the

transitive closure of the relation Ui ≤ Uj whenever Hom(Ui, Uj) 6= 0 is a partial order on IndP . It also
implies that every indecomposable module is a brick; that is, that EndP(Ui) ∼= k for all Ui ∈ IndP . We
conclude that Φ is an isomorphism using the following lemma with Y = IndP and ϕi(j) = Φi,j . �

Lemma 2.8. Let Y be a finite poset. For each y ∈ Y assume that we have ϕy ∈ ZY satisfying

• ϕy(y) = 1
• ϕy(x) 6= 0 ⇒ y ≥ x

Then the family (ϕy, y ∈ Y ) is a basis of the abelian group ZY .

Proof. The proof is classical, but since we use this result in several places in the paper, we give here a proof
for the convenience of the reader. We first show that the family (ϕy)y∈Y generates the free abelian group
ZY . For Ψ ∈ ZY , denote

SΨ := {y ∈ Y | ∃y′ ≥ y with Ψ(y′) 6= 0}.

We show by induction on |SΨ| that Ψ is a linear combination of the ϕy with y ∈ SΨ. If SΨ = ∅ then
Ψ = 0 and there is nothing to show. Assume now that SΨ 6= ∅ and let y ∈ SΨ be a maximal element, hence
Ψ(y) 6= 0. Define Ψ′ := Ψ−Ψ(y)ϕy. We will show that SΨ′ ⊆ SΨ. Let z be in SΨ′ . Then there exists y′ ≥ z
such that Ψ′(y′) 6= 0. That is Ψ(y′) 6= Ψ(y)ϕy(y

′). If Ψ(y′) 6= 0 then z ∈ SΨ. If Ψ(y′) = 0, then ϕy(y
′) 6= 0

which implies by hypothesis that y ≥ y′. Hence we have y ≥ z with Ψ(y) 6= 0, that is z ∈ SΨ. Hence we
have SΨ′ ⊆ SΨ. Moreover y ∈ SΨ but y /∈ SΨ′ . Thus we know by induction that Ψ′ is a linear combination
of the ϕy with y ∈ S ′

Ψ, and so Ψ = Ψ′ +Ψ(y)ϕy is a linear combination of the ϕy with y ∈ SΨ.
Let

∑

y∈Y αyϕy = 0 be a linear combination. Assume that {y ∈ Y | αy 6= 0} is non empty and let z be

a maximal element in this set. Then we obtain −αz =
∑

y 6=z αyϕy(z) 6= 0. Therefore there exists y with

αy 6= 0 and ϕy(z) 6= 0 which implies z ≤ y and contradicts the maximality of z. Hence the family is linearly
independent. �

3. Invariants defined by order-embeddings

Definition 3.1. Let X and P be finite posets. A map f : X → P is an order-embedding if x ≤ x′ precisely
when f(x) ≤ f(x′), for any x, x′ ∈ X . Denote by EmbPX the set of all order-embeddings of X into P up to
automorphism of X .

Remark 3.2. To avoid redundancy, we chose to consider the set EmbPX of order-embeddings up to auto-
morphism. For instance, if the posets X and P are given by

P = a

b

c

dX = 1

2

3

then |EmbPX | = 1, even if there exist two different order-embeddings of X into P .
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Any f ∈ EmbPX induces a restriction functor f∗ : modP → modX which is exact. It is also dense since
order-embeddings are injective. Therefore f∗ induces a surjective Z-linear map Ksp

0 (P) → Ksp
0 (X ).

Definition 3.3. Let X be a poset of finite representation type, P be a finite poset and, E be a subset of
EmbPX . We denote by I := IndX .

We define multEX ,P : Ksp
0 (P) → ZE×I by

(

multEX ,P(M)
)

(f,U)
:= multX (U, f∗M) for (f, U) ∈ E× I.

We define dimhE
X ,P : Ksp

0 (P) → ZE×I by
(

dimhE
X ,P(M)

)

(f,U)
:= dimHomX (U, f∗M) for (f, U) ∈ E× I.

When E = EmbPX we write multX ,P and dimhX ,P instead of mult
E
X ,P and dimh

E
X ,P .

Remark 3.4. See Remark 4.9 for a discussion of how to realize the invariant dimhE
X ,P as a dim-Hom

invariant (as defined in Example 2.3(4)).

We show in Proposition 3.6 that the invariants multEX ,P and dimhE
X ,P are equivalent. The aim of this

paper is to study these (equivalent) invariants. We first review a pair of examples which have appeared
recently in the literature.

Example 3.5. (1) Consider the poset

X = a

b

c

d

This poset has 10 indecomposable modules, all of which are interval modules. Of these, there are
two which are not rectangle modules, namely I{a,b,c} and I{b,c,d}. For P a product of two totally
ordered sets, it is shown in [BLO22] that a P-module M is rectangle decomposable if and only if it
satisfies

(

mult
EmbP

X

X ,P (M)

)

(f,U)

= 0 for all (f, U) ∈ EmbPX × {I{a,b,c}, I{b,c,d}}.

Note that the authors of [BLO22] do not assume P to be finite.
(2) The “generalized rank invariant” of [KM21] and the “compressed multiplicities” of [AENY23b] both

record the multiplicity of the sincere interval modules IX over certain subsets X ⊆ P . (The authors
of [AENY23b] assume that P is a product of two finite totally ordered sets and the authors of [KM21]
work over an arbitrary locally finite poset.) See [BBH24, Section 3.2] for a summary of these and
related results. In Section 5, we will similarly examine situations where we allow the poset X to vary
and record only the multiplicity of the sincere interval modules.

Proposition 3.6. Let X be a representation-finite poset and P be a finite poset. Then for any E ⊆ EmbPX
the invariants multEX ,P and dimhE

X ,P are equivalent.

Proof. By Proposition 2.7, there is an invertible map Φ : ZI → ZI such that Φ ◦multX = dimhI
X . We then

obtain the following commutative diagram

Ksp
0 (P)

mult
E
X,P

// ZE×I

ΦE

��
Ksp

0 (P)
dimh

E
X,P

// ZE×I

where ΦE is an isomorphism. �

Example 3.7. (1) Let X1 be the poset with one element. Then EmbPX1
is naturally in bijection with

P , and I = IndX has one element. For a ∈ P , one immediately checks that multX1,P = dimP =
dimhX1,P .
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(2) Let X2 be the poset {1 → 2}. It is well-known that the poset X2 is of representation-finite type,
with I = IndX2 = {P1 = I{1,2}, P2 = I{2}, H1,2 = I{1}}.

Let f : X2 → P be an order-embedding. Then one easily checks that for any M ∈ modP

multX2,P(M)(f,U) =







dimMf1 − rkMf1→f2 if U = I{1}
rkMf1→f2 if U = I{1,2}
dimMf2 − rkMf1→f2 if U = I{2}

And we have

dimhX2,P(M)(f,U) =







dimMf1 − rkMf1→f2 if U = I{1}
dimMf1 if U = I{1,2}
dimMf2 if U = I{2}

The isomorphism Φ which yields the equivalence between mult
f
X2,P

and dimh
f
X2,P

is triangular with
diagonal entries 1 as constructed in Lemma 2.8:

Φ =





1 1 0
0 1 1
0 0 1



 .

From this example we deduce the following

Corollary 3.8. Let P be a finite connected poset with at least 2 elements. Then the invariants rkP and
multX2,P are equivalent.

Proof. Let E = EmbPX2
and consider the map p : E× I → {≤P} defined by

p(f, U) =







(f1, f2) if U = I{1,2}
(f1, f1) if U = I{1}
(f2, f2) if U = I{2}

Since the poset P is connected and has at least two elements, this map is surjective and induces an injective
morphism Z{≤P} → ZE×I. Let Φ : ZE×I → ZE×I defined by

Φf :=





0 1 −1
0 0 1
1 0 −1



 for any f ∈ E.

Then we have Φ ◦ p∗ ◦ rkP = multX2,P . Moreover since rkP is surjective, and since Φ ◦ p∗ is injective, we

obtain that Φ ◦ p∗ is an isomorphism from Z{≤P} to the image of multX2,P . �

Remark 3.9. Note that the set E = EmbPX2
has cardinality 3 · |{<P}|, where {<P} := {(a, b) ∈ P2|a < b}.

This is in general strictly greater than |{≤P}| = |{<P}|+ |P|, so the invariant multX2,P is not surjective.
We will see in Section 5 a way to reduce this redundant information.

Proposition 3.10. Let P be a connected poset such that every element lies in a chain of length ≥ 3. Let
X3 be the poset {1 → 2 → 3}. Then the invariants rkP and multX3,P are equivalent.

Proof. There are 6 indecomposable objects in modX3 which are

I =
{

H1,2 = I{1}, H2,3 = I{2}, P3 = I{3}, H1,3 = I{1,2}, P2 = I{2,3}, P3 = I{1,2,3}
}

.

Then one computes

(

multX3,P(M)
)

(f,U)
=































dimMf1 − rkMf1→f2 if U = I{1}
dimMf2 − rkMf1→f2 − rkMf2→f3 + rkMf1→f3 if U = I{2}
dimMf3 − rkMf2→f3 if U = I{3}
rkMf1→f2 − rkMf1→f3 if U = I{1,2}
rkMf2→f3 − rkMf1→f3 if U = I{2,3}
rkMf1→f3 if U = I{1,2,3}

Now for a < b in P , by hypothesis there exists c ∈ P with either c < a or with b < c. Therefore, there
exists f ∈ EmbPX3

such that f(1) = a and f(2) = b, or such that f(2) = a and f(3) = b. Using this
embedding f , one can easily check the equivalence. �
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Remark 3.11. Note that here again, in general, the cardinality of EmbPX3
× I is strictly greater than the

cardinality of {≤P}. Therefore the invariant multX3,P is not surjective. For example, if P is as follows

P = a b

c

d

one has |EmbPX3
| = 2, so |EmbPX3

× I| = 12. However the rank of the invariant is 9 = |{≤P}|. One can check
the following 3 relations

mult(I{b,c,d})−mult(I{b,c})−mult(I{b,d}) +mult(I{b}) = 0;

mult(I{a,b,c,d})−mult(I{a,b,c})−mult(I{a,b,d}) +mult(I{a,b}) = 0;

mult(M)−mult(I{a,b})−mult(I{b,c})−mult(I{b,d}) +mult(I{b}) = 0,

where M denotes the indecomposable P-module with dimension vector (1, 2, 1, 1).

Proposition 3.12. Let X ′
3 and X ′′

3 be the following posets

X ′
3 = 1

2

3

X ′′
3 =

1

2

3

Let P be a connected poset such that any pair a < b ∈ P is in the image of an order-embedding X ′
3 → P

(resp. of an order embedding X ′′
3 → P), then the invariant multX ′

3
,P (resp. multX ′′

3
,P) is strictly finer than

the rank invariant rkP .

Proof. The indecomposable X ′
3-modules are

IndX ′
3 =

{

S1 = I{1}, P2 = I{2}, P3 = I{3}, H1,3 = I{1,2}, H1,2 = I{1,3}, P1 = I{1,2,3}
}

.

Now for f ∈ EmbPX ′
3
, denote by rkMf1→f2⊕f3 the rank of the map Mf1 → Mf2 ⊕Mf3 induced by Mf1→f2

and Mf1→f3.
Then one computes that

(

multX ′
3,P

(M)
)

(f,U)
=































dimMf1 − rkMf1→f2 − rkMf1→f3 + rkMf1→f2⊕f3 if U = I{1}
dimMf2 − rkMf1→f2 if U = I{2}
dimMf3 − rkMf1→f3 if U = I{3}
rkMf1,f2 − rkMf1→f2⊕f3 if U = I{1,2}
rkMf1→f3 − rkMf1→f2⊕f3 if U = I{1,3}
rkMf1→f2⊕f3 if U = I{1,2,3}

Let a < b be in P . Then by hypothesis, there exists an embedding f : X ′
3 → P with f(1) = a and

f(2) = b. Then we have
(

rkP(M)
)

(a,b)
=

(

multX ′
3,P

(M)
)

(f,I{1,2})
−
(

multX ′
3,P

(M)
)

(f,I{1,2,3})
.

For a ∈ P , by convexity, there exists f ∈ EmbPX ′
3
with either f(1) = a or with f(2) = a.

If f(1) = a, we check that
(

rkP(M)
)

(a,a)
is in the free abelian group generated by

{

δ(f,I{1}), δ(f,I{1,2}), δ(f,I{1,3}), δ(f,I{1,2,3})

}

,

where
{

δ(f,U) | (f, U) ∈ E× I
}

denotes the canonical dual basis in ZE×I.

If f(2) = a, one can also check that
(

rkP(M)
)

(a,a)
is in the free abelian group generated by

{

δ(f,I{2}), δ(f,I{1,2}), δ(f,I{1,2,3})

}

.

Therefore we have rkP ≤ multX ′
3,P

.
To prove that the invariant multX ′

3
,P is strictly finer than rkP consider the case P = X ′

3. The rank of
rkP is the cardinal of {≤P} which is 5, while the rank of multX ′

3
is 6 since there are 6 indecomposable

modules in modX ′
3.

The proof is completely similar for X ′′
3 . �
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Remark 3.13. (1) Note that here again, the cardinality of EmbPX ′
3
is strictly greater than the rank of

the invariant mult := multX ′
3,P

. For instance if P is the poset

P = a b

c

d

then |EmbPX ′
3
| = 2 so |EmbPX ′

3
× I| = 12, but one can check that the rank of mult is 10. We have the

relations
mult(I{a}) +mult(I{b}) = mult(I{a,b}),

mult(M)−mult(I{a,b,c,d}) +mult(I{b,c,d})−mult(I{b,c})−mult(I{b,d}) = 0,

where M is the indecomposable P module with dimension vector (1, 2, 1, 1).
(2) The hypothesis on P in Proposition 3.12 implies the weaker property that

⋃

f∈EmbP
X′
3

Im f = P .

We note that this weaker property is not sufficient in order to deduce the fact that multX ′
3,P

is
strictly finer than rkP . Indeed consider the case where P is given as above. This poset satisfies
the weaker property above, but there is no embedding f : X ′

3 → P with f(1) = a and f(2) = b.

As mentioned above, the family
{

mult(I{a}),mult(I{b}),mult(I{a,b})
}

is not free, but one easily

checks that the family
{

rkP(I{a}), rkP(I{b}), rkP (I{a,b})
}

is free. Thus the invariants multX ′
3
,P and

rkP cannot be compared in this case. Similar examples occur when X ′
3 is replaced with X ′′

3 .
(3) The condition on P in Proposition 3.12 may seem strong. For instance, it is not satisfied for P being

an n×m grid. However, one can enlarge the poset P in order to get the condition, and then restrict
to modules with support in P .

Example 3.14. Consider the poset X4 of type D4

X4 = a b

c

d

Then X4 has two sincere indecomposable representations, one being the characteristic representation IX4
,

the other one is given by three one-dimensional subspaces in general position, placed at vertices a, c, d, of a
two-dimensional vector space at vertex b. Still, their multiplicities can be described in terms of the linear
maps of the P-module M restricted to X4, for example the multiplicity of IX4

is given by

multX4,P(IX4
) = dim(ImMfa→fb ∩ ImMfc→fb ∩ ImMfd→fb).

4. Invariants and exact structures

4.1. Exact structures and relative projectives. Exact structures have been introduced in [Qu72] as
an axiomatic framework allowing to use methods from homological algebra relative to a fixed class of short
exact sequences. Besides this axiomatic approach, there are a number of ways to describe an exact structure
E , such as by certain subfunctors E of the bifunctor Ext1P , or by specifying what are the projective objects
relative to E , or by the Auslander-Reiten sequences belonging to E .

Let E be a class of short exact sequences in modP . We assume that E is closed under isomorphisms. If

a short exact sequence η = (0 → A
f
−→ E

g
−→ B → 0) belongs to E , we say that η is an (E-)admissible short

exact sequence, and also that f is an (E-)admissible monomorphism and g is an (E-)admissible epimorphism.
The closure under isomorphisms then implies that the classes of admissible short exact sequences, admissible
monomorphisms, and admissible epimorphisms uniquely determine one another. Quillen’s definition can
then be rephrased as follows:

Definition 4.1. A class E of short exact sequences in modP is said to be an exact structure on modP if
all of the following hold:
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(E0) E contains all split exact sequences.
(E1) E is closed under compositions of admissible monomorphisms, that is, if f : X → Y and g : Y → Z

are admissible monomorphisms, then g ◦ f : X → Z is also an admissibe monomorphism. Likewise,
E is closed under compositions of admissible epimorphisms.

(E2) E is closed under pushouts: If f : X → Y is an admissible monomorphism, and X
h
−→ W is any

morphism in A, then the pushout of f along h yields a short exact sequence in E . Likewise, E is
closed under pullbacks.

The two extreme examples of exact structures are the split exact structure Esp, which contains only the
split short exact sequences and corresponds to the subfunctor 0 of Ext1P , and the exact structure Eall, which
contains all short exact sequences and corresponds to Ext1P as a subfunctor of itself.

Proposition 4.2. Let P and X be finite posets. Let E be an exact structure on modX and let E ⊆ EmbPX .
Let ΨE(E) denote the class of short exact sequences

0 → L → M → N → 0

in modP which have the property that

0 → f∗L → f∗M → f∗N → 0

is E-exact for all f ∈ E. Then ΨE(E) is an exact structure on modP.

Proof. We verify the three points from definition 4.1 for all f ∈ E, using that the restriction functor f∗ :
modP → modX is additive and exact.

(E0) A split exact sequence is sent by f∗ to a split exact sequence, which belongs necessarily to E , therefore
Ψ(E) contains all split exact sequences.

(E1) This is clear from the definition of Ψ(E) and the fact that (E1) holds for E .
(E2) Follows from the fact that (E2) holds for E and that f∗ preserves pushouts since it is an exact

functor. �

Definition 4.3. Let E be an exact structure on modP . We denote by K0(E) the quotient of Ksp
0 (P) by the

relations

[L] + [N ]− [M ] for any short exact sequence (0 → L → M → N → 0) in E .

The following is then immediate.

Proposition 4.4. Let X be a representation-finite poset and P be a finite poset. Recall that I = IndX and
fix E ⊆ EmbPX . Then denote by EE

P := ΨE(E
sp
X ), where Esp

X is the split exact structure on modX . Then we
have a factorization

Ksp
0 (P)

mult
E
X,P

//

$$ $$❏
❏❏

❏❏
❏❏

❏❏
ZE×I

∼

��

K0(EE
P)

;;✈✈✈✈✈✈✈✈✈✈

##❍
❍❍

❍❍
❍❍

❍❍

Ksp
0 (P)

dimh
E
X,P

//

:: ::ttttttttt
ZE×I

4.2. Relative projectives. The projective objects (relative to E) are then described as follows:

Definition 4.5. Let E be an exact structure on modP .

(1) We say an object P ∈ modP is E-projective, in symbols P ∈ Proj(E), if g∗ = HomP(P, g) is an
epimorphism for all Y, Z ∈ modP and for all admissible epimorphisms g : Y → Z. Equivalently,
P ∈ Proj(E) if and only if HomA(P,−) sends admissible exact sequences to exact sequences.

(2) We say an object I ∈ modP is E-injective, in symbols I ∈ inj(E), if f∗ = HomP(f, I) is an epi-
morphism for all X,Y ∈ modP and for all admissible monomorphisms f : X → Y . Equivalently,
I ∈ inj(E) if and only if HomP(−, I) sends admissible exact sequences to exact sequences.
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The following is a classical result of [AS93, DRSS99]. See [BBH24, Section 4] for a summary tailored
towards persistence theory.

Proposition 4.6. Let U ⊆ IndP. Denote by

EU :=
{

(0 → M → N
g
→ L → 0) | ∀U ∈ U , HomP(U, g) is surjective.

}

Then EU is an exact structure on modP, and we have

Proj(EU ) = U ∪ Proj(P).

The following is classical, see [ASS06, Theorem I.6.8].

Proposition 4.7. Let f : X → P be an order embedding. Then the restriction functor f∗ : modP → modX
is exact and has a left adjoint f! : modX → modP and a right adjoint f∗ : modX → modP. Moreover we
have f∗f! = IdmodX = f∗f∗.

The functors f∗ and f! are sometimes referred to as the induction and coinduction functors, respectively.
The induction functor preserves projective presentations and the coinduction functor preserves injective
copresentations.

Proposition 4.8. Let X be a representation-finite poset and P be a finite poset. Recall that I = IndX and
fix E a subset of EmbPX . Assume that P =

⋃

f∈E Im f . Define

HE := {f!U | (f, U) ∈ E× I}.

Then the set HE is a subset of IndP that contains the indecomposable projective modules. And we have

EE
P = EHE and Proj(EE

P) = HE.

Proof. First note that since P =
⋃

f∈E Im f , for any p ∈ P there exists x ∈ X such that f(x) = p. Since

the functor f! sends projectives to projectives, we have that f!(Px) = Pp, that is the projective Pp is in HE.
Moreover by the adjunction formula we have for any U ∈ IndX

EndP(f!U) ≃ HomX (U, f∗f!U) = EndX (U)

which is local since U ∈ IndX . Note that since X is representation-finite, the module U and hence the
module f!U is even a brick.

Let

ǫ = (0 // L // M // N // 0)

be a short exact sequence of modP . Then by definition ǫ belongs to EE
P if and only if for any f ∈ E the

short exact sequence in modX

0 // f∗L // f∗M // f∗N // 0

splits. This is equivalent to the fact that for any U ∈ IndX this exact sequence yields a short exact sequence
in mod k

0 // HomX (U, f∗L) // HomX (U, f∗M) // HomX (U, f∗N) // 0.

By adjunction it is equivalent that for any (f, U) ∈ E×I the short exact sequence ǫ induces an exact sequence

0 // HomP(f!U,L) // HomP(f!U,M) // HomP(f!U,N) // 0,

which is equivalent to the fact that ǫ ∈ EHE . The fact that Proj(EHE) = HE is now a direct consequence of
Proposition 4.6. �

Remark 4.9. Consider the setup of Proposition 4.8. It is an immediate consequence of the adjunction

formula that the invariants dimhE
X ,P and dimhHE

P are equivalent. In particular, dimhE
X ,P (and thus also

multEX ,P by Proposition 3.6) is a dim-Hom invariant in the sense of Example 2.3(4). In order to prove the
stronger property these invariants are homological (in the sense of [BBH24, Defintion 4.12]), one we need an
argument showing that the exact structure EE

P = EHE has finite global dimension.
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From this proposition we can deduce the following commutative diagram.

Ksp
0 (P)

mult
E
X,P

//

$$ $$❏
❏❏

❏❏
❏❏

❏❏
ZE×I

Φ

��

K0(EE
P)

// ZE×I/∼!

,

�

::✈✈✈✈✈✈✈✈✈✈

Ksp
0 (P)

dimh
E
X,P

//

:: ::ttttttttt
ZE×I

where the equivalence relation ∼! on E× I is defined by

(f, U) ∼! (g, V ) ⇔ f!U ≃ g!V.

Note that, a priori, it is not clear that there exists an equivalence relation ∼ on E × I such that Φ induces
an isomorphism ZE×I/∼! → ZE×I/∼.

Example 4.10. (1) Consider X = X2 as in Example 3.7(2). Then the indecomposable X2-modules are
P1 = I{1,2}, P2 = I{2} and H1,2 = I{1}. The first two modules are projective, and the second is a
hook (and is the cokernel of the natural map P2 → P1). Since f! is right exact and sends projectives
to projectives, one obtains

⋃

f∈EmbP
X2

{f!U | U ∈ modX2} = {Pf1, Pf2Hf1,f2 | f ∈ EmbPX2
}.

This recovers the result in [BOO].

(2) Consider X = X ′
3 as in Proposition 3.12. Then for f ∈ EmbPX2

we have

{f!U | U ∈ I} =
{

Pf1, Pf2, Pf3, Hf1,f2, Hf1,f3,M := Coker(Pf2 ⊕ Pf3 → Pf1)
}

.

Note that each of these is an interval module. The modules Hf1,f2 and Hf1,f3 are hooks, while the
module M = Coker(Pf2 ⊕ Pf3 → Pf1) satisfies

dimMx =

{

k if f(1) ≤ x and (x � f(2) or x � f(3))
0 else.

f(1)

f(2)

f(3)

k

(3) The situation is surprisingly different for X = X ′′
3 as in Proposition 3.12.

Here we have an X ′′
3 -module IX ′′

3
= Coker(P3 → P1 ⊕ P2). The corresponding P-modules M =

f!IX ′′
3
= Coker(Pf3 → Pf1 ⊕ Pf2) satisfy

dimMx =























k if x ≥ f(1)
k if x ≥ f(2) and x � f(3)
k if x ≥ f(3) and x � f(2)
k2 if x ≥ f(2), x ≥ f(3) and x � f(1)
0 else,
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and hence are not interval modules.

f(3)

f(2)

f(1)

k

k

k

k2

4.3. Bases for invariants and relative projectives.

Definition 4.11. Let Ψ : Ksp
0 (P) → ZN be a finite invariant. A basis of Ψ is a set B of indecomposable

P-modules such that Ψ induces an isomorphism of abelian group

〈[U ], U ∈ B〉 −→ ImΨ,

where 〈[U ], U ∈ B〉 is the free abelian subgroup of Ksp
0 (P) generated by the [U ] for U ∈ B.

As a consequence, if B is a Ψ-basis, then for any module M ∈ modP there exist unique integers (αU )U∈B

such that

Ψ(M) = Ψ





⊕

U,αU>0

UαU



−Ψ





⊕

U,αU<0

U−αU



 .

Following the terminology of [BOO], we will refer to the pair
(

⊕

U,αU>0 U
αU ,

⊕

U,αU<0 U
−αU

)

as theminimal

Ψ-decomposition of M with respect to B.

Example 4.12. (1) The simple P-modules form a basis of dimP . Moreover, since modP has finite
global dimension, the indecomposable projective P-modules also form a integer basis of dimP .

(2) Let H ⊆ IndP denote the union of the set of hook modules and the set of indecomposable projectives
(see Example 2.1). Then it is shown in [BBH24, BOO] that H is a rk-basis.

(3) It is shown in [BOO] that the rectangle modules form another rk-basis.

For use in Propositions 4.14 and 4.15 below, we recall the following well-known fact. This can also be
taken as the definition of the Gabriel quiver containing no oriented cycles.

Lemma 4.13. Let P be a finite poset and let U a finite set of pairwise non-isomorphic indecomposable
P-modules. Then the following are equivalent.

(1) If there are nonzero morphisms

X1
f1
−→ X2

f2
−→ · · ·

fn−1

−−−→ Xn
fn
−→ X1

with each Xi ∈ U , then fj is an isomorphism for all j = 1, . . . , n.
(2) The Gabriel quiver of the algebra EndP(

⊕

U∈U U) contains no oriented cycles.

Proposition 4.14. Let X be a representation-finite poset and P be a finite poset. Recall that I = IndX
and fix E a subset of EmbPX . Assume that

⋃

f∈E Im f = P and that the Gabriel quiver of the endomorphism

algebra EndP(
⊕

(f,U)∈E×I/∼!
f!U) has no oriented cycle. Then the set HE := {f!U | (f, U) ∈ E× I/∼!} is a

dimhE
X ,P-basis (and hence a multEX ,P-basis).

Proof. The proof is a consequence of Theorem 4.22 in [BBH24]. We give an alternative proof here for the
convenience of the reader. For (f, U) and (g, V ) in E× I/ ∼! :

(

dimhE
X ,P(f!U)

)

(g,V )
= dimHomP(g!V, f!U).

Hence we have
(

dimh
E
X ,P(f!U)

)

(f,U)
= 1 and

(

dimh
E
X ,P(f!U)

)

(g,V )
6= 0 implies (g, V ) ≤ (f, U) in the

partial order given by the Gabriel quiver of EndP(
⊕

(f,U)∈E×I/∼!
f!U). We conclude using Lemma 2.8. �
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Proposition 4.15. Let P be a connected poset, and X be one of the following posets

X ′
3 = 1

2

3

X ′′
3 =

1

2

3

Let E be a subset of EmbPX such that
⋃

f∈E Im f = P. Then the set HE = {f!U | (f, U) ∈ E× I/ ∼!} forms

a dimhE
X ,P-basis, and hence also a multEX ,P-basis.

Proof. For X = X ′
3 we can use Proposition 5.2 of [BBH24] to see that the objects f!U are “single-source

spreads” since they have an indecomposable projective cover. Then it follows from Lemma 5.9 in [BBH24]
that there is no oriented cycle in the Gabriel quiver of EndP(

⊕

(f,U)∈E×I/∼!
f!U).

For X = X ′′
3 , we prove directly that there are no cycle in the quiver of EndP(

⊕

(f,U)∈E×I/∼!
f!U). We

show that if there are nonzero morphisms

X1 → X2 → · · · → Xn → X1

with Xi of the form f!U for (f, U) ∈ E × I then Xj ≃ X1 for any j = 1, . . . , n. Since the modules f!U are
bricks this ends the proof. There are three types of modules of the form f!U : the projective, the hooks and
the modules of the form Coker(Pa → Pb⊕Pc) with b and c incomparable and b, c < a that we call generalized
hooks. First note that there is no nonzero morphism from a hook or a generalized hook to a projective.
Since we already know the claim holds if each Xi is projective, we may therefore assume that the Xi are
either hooks or generalized hooks. We assume here that all the modules Xi = Coker(Pai

→ Pbi ⊕ Pci) are
generalized hooks, the proof easily generalizes when some of them are hooks.

A nonzero morphism Xi → Xi+1 induces a commutative square

Pai
//

��

Pbi ⊕ Pci

��
Pai+1

// Pbi+1
⊕ Pci+1

The second vertical map is nonzero, hence we may assume bi ≥ bi+1. Then we obtain a ≥ bi+1 and by
composing this map with the projection Pbi+1

⊕ Pci+1
→ Pbi+1 we obtain that the map Pai

→ Pai+1
is

nonzero which implies that ai ≥ ai+1. Therefore we have ai = a1 for all i = 1, . . . , n. Now we obtain nonzero
morphisms

Pb1 ⊕ Pc1 → Pb2 ⊕ Pc2 → . . . → Pbn ⊕ Pcn → Pb1 ⊕ Pc1 .

This composition is nonzero since the composition of these maps with Pa1
→ Pb1 ⊕Pc1 is nonzero. Therefore

we have a chain α1 ≥ α2 ≥ . . . ≥ αn ≥ α1 with αi = bi or αi = ci. Furthermore in the commutative square
above, it is easy to see that if ai = ai+1 and bi = bi+1, then we should have ci ≥ ci+1, since bi and ci are
incomparable by hypothesis. Hence we deduce for each i = 1, . . . , n we have {bi, ci} = {b1, c1}. Thus all the
Xi’s are isomorphic. This ends the proof. �

5. Interval bases via families of embeddings

5.1. Interval modules and the Θ-functor. We highlight that Example 4.12 gives two distinct bases for
the invariants dim and rk. In each case, one basis comes directly from the interpretation of the relevant
invariant as a dim-hom invariant, while the other is somewhat less clear from a homological perspective. In
this case, we use poset embeddings to give a unified homological interpretation of the fact that the simple
modules form a basis of dim and the fact that the rectangle modules form a basis of rk. In doing so, we
also uncover new bases of several other invariants.

We begin with an example illustrating that the induction and coinduction functors generally do not send
interval modules to interval modules.
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Example 5.1. Consider the posets

(3, 1) (3, 2) (3, 3) c

(2, 1) (2, 2) (2, 3) a d

(1, 1) (1, 2) (1, 3) b

P X

Let f : X → P be the poset embedding given by fa = (2, 1), fb = (1, 2), fc = (3, 2), and fd = (2, 3).
Consider the sincere interval module I[X ] ∈ modX . Since the induction functor f! preserves projective
presentations and the coinduction functor f∗ preserves injective copresentations, we then have

K K 0 K K 0

K K2 K K K2 K

0 K K 0 K K

f!I[X ] f∗I[X ]

1 1

ι1

1

∇

∇ 1

∆ pr1

pr2

1

ι2 1 ∆

1

1

where ιi denotes the i-th inclusion map, pri denotes the i-th projection map, and ∆ and ∇ denote the
diagonal and co-diagonal maps, respectively. We note that both f!I[X ] and f∗I[X ] are indecomposable but
are not interval modules. Moreover, we have that HomP(f!I[X ], f∗I[X ]) ∼= K and that the image of any
nonzero map f!I[X ] → f∗I[X ] is precisely IS for S = {(i, j) ∈ P | 3 ≤ i+ j ≤ 5}.

It is shown in [AET, Proposition 4.17] that the final observation in Example 5.1 is not a coincidence. In
order to state the general result from [AET], we need the following definitions.

Definition 5.2. Let S ⊆ P . The convex hull of P is the set

S = {x ∈ P | ∃y, z ∈ S | y ≤ x ≤ z}.

Definition 5.3. Let f : X → P be a poset embedding and let U ∈ modX . By adjunction and the fact that
f∗f∗ = Id, there is a natural isomorphism HomP(f!U, f∗U) ∼= EndX (U). Let θfU : f!U → f∗U denote the
image of the identity map 1U ∈ EndX (U) under this isomorphism. We denote ΘfU = Im(θfU).

Remark 5.4. (1) It is shown in [AET] that the association Θf extends to a functor modX → modP .
We will not use the functoriality of Θf in this paper.

(2) Suppose that U ∈ modX is an interval module. Then dimK EndX (U) ∼= K by [DX18, Proposition 14]
or [BBH24, Proposition 5.5]. Thus every morphism f!U → f∗U is a scalar multiple of θfU in this
case.

We now recall the following, which shows that the functor Θf preserves interval modules.

Proposition 5.5. [AET, Proposition 4.17] Let f : X → P be a poset embedding and IS ∈ modX an interval
module. Then Θf(IS) ∼= IfS.

The next example uses Proposition 5.5 to explain the relationship between the hook modules and rectangle
modules in studying the rank invariant.

Example 5.6. (1) Let X2 = {1 → 2}. We recall from Example 3.7 that the three indecomposable

X2-modules are I{1,2} = P1 = I2, I{1} = H1,2 = Ia, and I{2} = P2 = C1,2. For f ∈ EmbPX , we then
compute
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f!I{1} = Hf1,f2,

f∗I{1} = If1,

Θf I{1} = I{f1},

f!I{2} = Pf2,

f∗I{2} = Cf1,f2,

Θf I{2} = I{f2},

f!I{1,2} = Pf1,

f∗I{1,2} = If2,

Θf I{1,2} = I[f1,f2].

In particular, we have that {ΘfU | f ∈ EmbPX , U ∈ IndX} is the set of rectangle modules. Note
that there is some redundancy in this collection: for x ∈ P we obtain the (simple) rectangle module
I{x} once for every embedding f : X2 → P with either x = f(1) or x = f(2).

It follows from [BOO, Corollary 2.7] that {ΘfU | f ∈ EmbPX , U ∈ IndX} is a rkP -basis, hence
also a multX2,P and dimhX2,P-basis. It is, however, difficult to reprove it directly without a concrete
description of the image of the invariant multX2,P .

Note that we can define an equivalence relation ∼Θ on E× I by setting

(f, U) ∼Θ (g, V ) ⇔ Θf (U) = Θg(V ),

but the invariant multX2,P does not factor through ZE×I/∼Θ . For example, if P = {a → b → c},
then we have Θf I{1} = I{a} = ΘgI{1} for Im f = {a, b} and Im g = {a, c}. However, we have for any
P-module M such that rkMa→b 6= rkMa→c that

multX2,P(M)(f,I{1}) = dimMa − rkMa→b 6= dimMa − rkMa→c = multX2,P(M)(g,I{1}).

(2) Consider X = X ′
3 or X ′′

3 as follows

X ′
3 = 1

2

3

X ′′
3 =

1

2

3

We recall the description of the indecomposable X ′
3- and X ′′

3 -modules from the proof of Proposi-
tion 3.12and Example 4.10. Then the modules Θf(U) are either simples, rectangles, or interval
modules with support of the following form:

•
f(1)

•
f(2)

•
f(3)

X = X ′
3

f(3)

f(2)

f(1)

•

•

•

X = X ′′
3

5.2. Families of embeddings. In the preceding sections, we mainly considered order-embeddings of one
fixed poset X into the poset P , and studied the set of all indecomposables obtained from X . That turns out
to introduce a lot of redundancy and some difficulty to describe the image of the invariant. Hence we study
now embeddings of several posets of increasing sizes, but limit attention to only some indecomposables (that
have not been obtained from embedding of smaller posets previously). One of the advantage here is that we
do not need to assume X to be of finite representation type.

Definition 5.7. Let P be a poset. A family of P-order embeddings is a finite set F := {(Xi,Ei)}i of with each

Xi a finite poset (not necessarily representation finite) and each Ei a subset of EmbPXi
. For F = {(Xi,Ei)}i

a family of P-order embeddings, we denote by E :=
⊔

i Ei and we define an invariant multF : Ksp
0 (P) → ZE

by

for f ∈ Ei

(

multF(M)
)

f
:= mult(IXi

, f∗(M)).

Example 5.8. (1) Let F := {(X1,EmbPX1
), (X2,EmbPX2

)} for X1 and X2 as in Example 3.7. Then

E = EmbPX1
⊔EmbPX2

is in natural bijection with {≤P} and via this bijection we have multF = rkP .
(2) The generalized rank invariant of [KM21] and the various compressed multiplicities of [AENY23b]

can both be realized in the form multF . More precisely:
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(a) Let I be the set of posets which embed into P as intervals, and for each Xi ∈ I let Ei ⊆ EmbPXi

be the set of embeddings with interval image. Then, as a result of [CL18, Lemma 3.1], the
generalized rank invariant of [KM21] is equal to multF for F = {(Xi,Ei) | Xi ∈ I}.

(b) Suppose that P is the product of two (finite) totally ordered sets. Let J be the set of connected
posets which do not contain any chains of length ≥ 3 and can be embedded into P . If one
computes the “sink-source compression factor” of [AENY23b] with respect to every interval

subset of P , the result is precisely multF for F = {(Xi,EmbPXi
) | Xi ∈ J}. A similar result like-

wise holds for the “corner-complete compression factors”, while the “total compression factors”
coincide with the generalized rank invariant.

See also [BBH24, Section 3.2] and [AENY23b, Example 4.14] for additional discussion.

Proposition 5.9. Let P be a finite poset and F := {(Xi,Ei)}i be a family of P-order embeddings. We define

an equivalence relation on E =
⊔

i Ei by f ∼ g if Im f = Im g. Then the invariant multF : Ksp
0 (P) → ZE

induces an isomorphism of abelian groups

〈[IIm f ], f ∈ E〉
∼
−→ ZE/∼.

Proof. For f ∈ Ei and g ∈ Ej , we have
(

multF (IIm f )
)

g
= multXj

(IXj
, g∗IIm f ).

The Xj-modules IXj
and g∗IIm f = Ig−1(Im f) are both interval modules hence indecomposable. Therefore we

obtain
(

multF (IIm f )
)

g
is 0 or 1 and

(

multF (IIm f )
)

g
= 1 ⇔ Xj = g−1(Im f)

⇔ Xj ⊆ g−1(Im f)

⇔ Im g ⊆ Im f

⇔ Im g ⊆ Im f.

Then by defining an order relation ≤ on E/ ∼ by

g ≤ f ⇔ Im g ⊆ Im f,

we conclude using Lemma 2.8. �

It is not clear in general that the invariant multF factors through the injection ZE/∼ → ZE. However, it
can be shown in some cases.

Example 5.10. (1) Consider the setup of Example 5.8(1). Then {IIm f | f ∈ E} is the set of rectangle

modules. As previously mentioned, it is shown in [BOO, Corollary 2.7] that this forms a basis of
multF .

(2) Consider the setup of Example 5.8(2a) or (2b). In both cases, {IIm f | f ∈ E} is the set of interval
modules. Both papers show that these form a basis for the corresponding invariant multF using
Möbius inversion arguments. (This is also established for the “corner-complete compression factors”
in [AENY23b].)

Generalizing the phenomenon observed for the rank invariant and sink-source compression factors, we
have the following.

Corollary 5.11. Let P be a finite poset, and F = {(Xi,Ei)} be a family of P-order embeddings such that
there is no chain of length ≥ 3 in Xi for each i. Denote E =

⊔

i Ei. Then the family

RE := {IIm f | f ∈ E} ⊆ Ksp
0 (P)

forms a basis of multF .

Proof. We show that in this case the equivalence relation on E is trivial and conclude by the previous
proposition. Indeed let f ∈ Ei and g ∈ Ej such that f ∼ g, that is Im f = Im g. Then let x ∈ Xi. By

hypothesis x is either minimal or maximal. Assume first it is minimal. Then f(x) ∈ Im f ⊆ Im f = Im g,
so there exists y, y′ ∈ Xj with g(y) ≤ f(x) ≤ g(y′). Since g(y) is in Im g, it is in the convex hull of Im f ,
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but since x is minimal we have f(x) = g(y). By a similar argument, if x is maximal, then f(x) is in Im g.
Therefore we obtain Im f ⊆ Im g, and by symmetry we get Im f = Im g, that is f = g. �

Remark 5.12. It is an interesting problem to find a representation-theoretic argument generalizing the
basis result for the generalized rank invariant established using Möbius inversion in [KM21]. In particular,
note that the “zigzags” used in [DKM24] to compute the generalized rank invariant admit injective poset
morphisms into P , but that these morphisms are generally not full as functors between poset categories, and
thus not embeddings. It would be interesting to determine the extent to which the theory developed in this
paper could be adapted to such a setting.

5.3. Comparing mult-invariants. Let P be a finite poset, X be a representation-finite poset and E be a
subset of EmbPX . Let FP = {(Xi,Ei)}i be a family of P-order embeddings. The aim is here to compare the

invariants mult
E
X ,P and multFP . We denote by FX = {(Xi,EmbXXi

)}i the family of X -order embeddings
of the posets Xi. The next proposition says that it is enough to compare the invariant multX with the
invariant multFX .

Proposition 5.13. (1) If for any (Xi,Ei) ∈ F the composition map EmbXXi
×EmbPX → EmbPXi

restricts

to a map EmbXXi
× E → Ei, then

multFX ≥ multX ⇒ multFP ≥ multEX ,P .

(2) If moreover the restriction EmbXXi
× E → Ei is surjective, then

multFX ≃ multX ⇒ multFP ≃ mult
E
X ,P .

Proof. (1) By hypothesis there exist integers α(g,U) for any g ∈
⊔

i EmbXXi
and U ∈ Ind(X ) such that for any

M ∈ modX
(

multX (M)
)

U
=

∑

g∈
⊔

i
EmbX

Xi

α(g,U)

(

multFX (M)
)

g
,

that is

multX (U,M) =
∑

g∈
⊔

i
EmbX

Xi

α(g,U)multXi
(IXi

, g∗M).

Now for (f, U) ∈ E× Ind(X ), and M ∈ modP we have
(

multEX ,P(M)
)

(f,U)
= multX (U, f∗M)

=
∑

g∈
⊔

i
EmbX

Xi

α(g,U)multXi
(IXi

, g∗(f∗M))

=
∑

g∈
⊔

i EmbX
Xi

α(g,U)multXi
(IXi

, (f ◦ g)∗M))

=
∑

h∈
⊔

i
Ei

β(h,f,U)

(

multFP (M)
)

h

where β(h,f,U) = α(g,U) as soon as h = f ◦ g. Since f is an embedding the value of β(h,f,U) is well-defined.

(2) Now assume that there exist integers α′
(g,U) for g ∈

⊔

i EmbXXi
and U ∈ IndX such that for any

M ∈ modX
(

multFX (M)
)

g
=

∑

U∈IndX

(

multX (M)
)

U
,

that is

multXi
(IXi

, g∗M) =
∑

U∈Ind(X )

α′
(g,U)multX (U,M).

Now for h ∈ Ei fix h1 ∈ EmbXXi
and h2 ∈ E such that h = h2 ◦ h1. Then we have

(

multFP (M)
)

h
= multXi

(IXi
, h∗M)

= multXi
(IXi

, h∗
1(h

∗
2M))

=
∑

U∈IndX α′
(h1,U)multX (U, h∗

2M)

=
∑

f∈E

∑

U∈IndX β′
(h,f,U)

(

multEX ,P(M)
)

(f,U)

where β′
(h,f,U) = α′

(h1,U) as soon as f = h2. �
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Example 5.14. (1) Let F = {(X1,EmbPX1
), (X2,EmbPX2

)} given as follows.

X1 = 1 X2 = 1 2

Let X = X2. Then we have two embeddings of X1 in X and one of X2 to X . Moreover we have for
M in modX

(

multFX (M)
)

f
=

{

dimMx if f ∈ EmbX2

X1
with Im f = {x}

rkM1→2 if f ∈ EmbX2

X2

Then we immediately obtain

multX ∼ multFX .

It is clear in this case that the composition map EmbX2

Xi
× EmbPX2

is surjective if P is connected,
hence we obtain once again that

multX2,P ≃ multF = rkP .

(2) Let F be the following family of posets :

X1 = 1 X2 = 1 2 X ′
3 = 1

2

3

Set X = X ′
3.

Then we have

EmbXX1
= {f1, f2, f3}, EmbXX2

= {f12, f13}, and EmbXX ′
3
= {id}.

Then one easily checks that we have

multFX = Φ ◦multX

with

Φ =

















1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 1 1 0 0
1 1 1 0 1 0
1 1 1 1 1 1

















in the basis IndX = (I{1}, I{2}, I{3}, I[1,2]], I[1,3], IX ′
3
).

(3) Let X be the poset given by

a

b

c

d

And let F be the family

X1 = 1 X2 = 1 2 X ′
3 = 1

2

3

X ′′
3 =

1

2

3

Then one can check that

|EmbXX1
| = 4, |EmbXX2

| = 5, |EmbXX ′
3
| = 1, |EmbXX ′′

3
| = 1.

The rank of the invariant multX is also 11 since there are 11 indecomposable X modules. In a
similar fashion, one can check that

multX ∼ multFX .

Using Corollary 5.11 we obtain a basis of the invariant multX ,P .
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(4) Let F be the family of posets

X1 = 1 X2 = 1 2 X ′
3 = 1

2

3

X4 = 1 2

3

4

and let X := X4. Then one can check

|EmbXX1
| = 4, |EmbXX2

| = 5, |EmbXX ′
3
| = 2, |EmbXX4

| = 1.

The rank of the invariant multX is 12, and we also have an equivalence

multX ∼ multFX .

(5) Let F be the following family of posets, and X = X ′
4.

X1 = 1 X2 = 1 2 X ′
3 = 1

2

3

X ′
4 = a

b

c

d

Then one can check that

|EmbXX1
| = 4, |EmbXX2

| = 3, |EmbXX ′
3
| = 3, |EmbXX ′

4
| = 1.

Here the invariant multX is strictly finer than the invariant multFX .

As a corollary of Example (2) we obtain the following

Corollary 5.15. Let P be a finite connected poset, and let X be one of the following posets

X ′
3 = 1

2

3

X ′′
3 =

1

2

3

Let E = EmbPX and recall that I = IndX . Assume the following

(∗) for any a < b in P there exists f ∈ E with {a, b} ∈ Im f

then the set RE = {Θf(U) | (f, U) ∈ E× I} forms a basis of multX ,P .

Proof. We consider the family of embeddings F :=
{

(X1,EmbPX1
), (X2,EmbPX2

), (X3,EmbPX3
)
}

where

X1 = 1 X2 = 1 2

and X3 = X . Because of condition (∗), the composition map EmbXX2
× EmbPX → EmbPX2

is surjective. By

condition (∗) and since P is connected, the composition map EmbXX1
× EmbPX → EmbPX1

is also surjective.
Then we can deduce from Example 2.6(2) that multX ,P is equivalent to multF . From Corollary 5.11, we
deduce that there there is a basis of the form

{IIm f | f ∈ EmbPXi
, i = 1, 2, 3}.

This basis contains all simples, all rectangles, and all generalized rectangles as described in Example 5.6 (2).
One easily check that the set RE contains exactly the simples, the rectangles and the generalized rectangles.
The fact that it contains all the rectangles comes from condition (∗). �
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