
HAL Id: hal-04716888
https://cnrs.hal.science/hal-04716888v1

Submitted on 1 Oct 2024

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Modelling built infrastructure heights to evaluate
common assumptions in aquatic conservation

Stephanie R. Januchowski-Hartley, Céline Jézéquel, Pablo A. Tedesco

To cite this version:
Stephanie R. Januchowski-Hartley, Céline Jézéquel, Pablo A. Tedesco. Modelling built infrastruc-
ture heights to evaluate common assumptions in aquatic conservation. Journal of Environmental
Management, 2019, 232, pp.131–137. �10.1016/j.jenvman.2018.11.040�. �hal-04716888�

https://cnrs.hal.science/hal-04716888v1
https://hal.archives-ouvertes.fr


 

Cronfa -  Swansea University Open Access Repository

   

_____________________________________________________________

   
This is an author produced version of a paper published in:

Journal of Environmental Management

                                                

   
Cronfa URL for this paper:

http://cronfa.swan.ac.uk/Record/cronfa48243

_____________________________________________________________

 
Paper:

Januchowski-Hartley, S., Jézéquel, C. & Tedesco, P. (2019).  Modelling built infrastructure heights to evaluate

common assumptions in aquatic conservation. Journal of Environmental Management, 232, 131-137.

http://dx.doi.org/10.1016/j.jenvman.2018.11.040

 

 

 

 

 

 

 

_____________________________________________________________
  
This item is brought to you by Swansea University. Any person downloading material is agreeing to abide by the terms

of the repository licence. Copies of full text items may be used or reproduced in any format or medium, without prior

permission for personal research or study, educational or non-commercial purposes only. The copyright for any work

remains with the original author unless otherwise specified. The full-text must not be sold in any format or medium

without the formal permission of the copyright holder.

 

Permission for multiple reproductions should be obtained from the original author.

 

Authors are personally responsible for adhering to copyright and publisher restrictions when uploading content to the

repository.

 

http://www.swansea.ac.uk/library/researchsupport/ris-support/ 

http://cronfa.swan.ac.uk/Record/cronfa48243
http://dx.doi.org/10.1016/j.jenvman.2018.11.040
http://www.swansea.ac.uk/library/researchsupport/ris-support/ 


 

Modelling built infrastructure heights to evaluate common assumptions in aquatic 

conservation 

 

Stephanie R Januchowski-Hartleya,b b and Pablo A Tedescob 

 

a Department of Biosciences, Swansea University, Swansea, United Kingdom SA2 8PP 

b 

Midi-

9, France  

 

Abstract 

 

Built infrastructure, such as dams and weirs, are some of the most impactful stressors 

affecting aquatic ecosystems. However, data on the distribution and characteristics of small 

built infrastructure that often restrict fish movement, impede flows, and retain sediments and 

materials, remain limited. Collection of this necessary information is challenged by the large 

number of built infrastructure with unknown dimensions (e.g., height), which means 

scientists and practitioners need to make assumptions about these characteristics in research 

and decision-making. Evaluating these common assumptions is essential for advancing 

conservation that is more effective. We use a statistical modelling approach to double the 

scenarios depicting common assumptions (all infrastructure without height data are 

impassable, or all are passable for all species) and one based on our modelled heights, we 

demonstrate how assumptions can influence our understanding of river fragmentation. 

Assuming all built infrastructure without height data are passable results in a 5-fold reduction 
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built 

infrastructure without height data are impassable results in a 7-fold increase in fragmentation 

compared to the scenario with modelled heights to attribute built infrastructure passability. 

Our findings suggest that modelled height data leads to better understanding of river 

fragmentation, and that knowledge of different fish species' abilities to pass a variety of built 

infrastructure is essential to guide more effective management strategies. Our modelling 

approach, and results, are of particular relevance to regions where efforts to both remediate 

and remove built infrastructure is occurring, but where gaps in data on characteristics of built 

infrastructure remain, and limit effective decision making. 



Highlights 

 ) built infrastructure with height values in 

France. 

 Common assumptions affect our understanding of river fragmentation. 

 Modelled height data leads to better understanding of river fragmentation.  

 We provide essential information for protocols evaluating river ecological continuity.  

*Highlights (for review)
Click here to view linked References



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65

1 

1. Introduction 

 

Scientists and practitioners require information on the characteristics of built infrastructure, 

such as dams and weirs, to better understand associated impacts, costs, and benefits, in 

relation to ecological processes, services, and human values (Poff & Hart, 2002; 

Januchowski-Hartley et al., 2013; Major et al., 2017). Characteristics of larger built 

infrastructure are increasingly well understood, because of improved identification via 

remotely sensed imagery (Mantel et al., 2017), and superior record keeping due to the 

importance of size and water holding capacity for monitoring energy production and water 

storage (e.g., Carvajal et al., 2017). Despite likely impacts from small built infrastructure 

which often restrict fish movement (i.e., being impassable), impede river flows, and retain 

sediments and materials, data on their distribution and characteristics remain limited 

(Januchowski-Hartley et al., 2013; Couto & Olden, 2018). Collection of this necessary 

information is challenged by the large number of built infrastructure with unknown 

dimensions (e.g., height), which means that assumptions are often necessary in research and 

decision making (e.g., assume binary passability or impassability of built infrastructure) when 

height data are unmeasured (Cote et al., 2009; Perkin & Gido, 2012; Radinger et al., 2017). 

This raises the question of how common assumptions about characteristics of built 

infrastructure affect estimates of habitat fragmentation, and the potential implications of this 

for fishes with different abilities to pass over infrastructure.   

Here, we investigate existing data and data gaps for built infrastructure (Fig. 1a), and 

evaluate how these influence measures of river fragmentation when considering passability 

(the ability of a fish species to pass built infrastructure in an upstream direction) for native 

fishes in France. We do this by bringing together a database of built infrastructure, and 

associated environmental data to model and predict heights to fill data gaps for small built 

*Manuscript
Click here to view linked References
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infras  1b). We then develop three alternative scenarios with the 

first two representing common assumptions used when height data are unmeasured: 1) all 

built infrastructure without height data are impassable, 2) all built infrastructure without 

height data are passable, and 3) all built infrastructure without height data are allocated 

median height prediction from our model. We evaluate differences between these three 

scenarios when quantifying two catchment-level metrics of river fragmentation (percentage 

of and distance between impassable built infrastructure) for fish species when built 

1.0, 1.5, or 2.0 m (our three passability thresholds) are 

impassable. Our three passability thresholds are based on the ecological continuity protocol 

established by the French National Agency for Water and Aquatic Environments (Baudoin et 

al., 2014). 

passability for fish species, and knowledge of the heights of different built infrastructure are 

both a major consideration in evaluation and a critical data gap in implementing the protocol 

at a national scale. We discuss the implications of common assumptions made about built 

infrastructure, and our modelling technique, for determining the effects of built infrastructure 

on aquatic ecosystems, and our ability to address impacts more effectively.   

 

2. Methods 

 

2.1. Built infrastructure and environmental data  

 

We analyzed publicly available data for 76,292 built infrastructure from the French National 

Agency for Water and Aquatic Environments (http://www.onema.fr/le-roe). We excluded any 

records listed as destroyed, planned, under construction, invalid, or duplicated in the 

database. After these exclusions we had a total of 19,302 records with height data (Fig. 1a). A 
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further 882 built infrastructure had available height data, but were without values for 

environmental data, and so were not included in our modelling of height, but retained for our 

assessment of infrastructure passability. For subsequent modelling we created a training 

dataset based on built infrastructure 5 m in height. We did this because < 1% (461) of built 

infrastructure with height and environmental data were greater than 5 m. Given the common 

dependence by humans on larger built infrastructure, we assumed that height values for these 

structures were well documented, and not likely unmeasured in our database. We retained 

these larger built infrastructure to include in our estimations of passability and calculations of 

catchment-level fragmentation.  

The starting point for our model training dataset was 17,959 built infrastructure with 

heights  and environmental variable data attributed to stream reaches available from the 

French Theoretical Hydrographic Network (Pella et al., 2012). There were an additional 

20,077 built infrastructure without height values, but with environmental variable values, and 

we used our models to predict their heights (Fig. 1a). Environmental data were not available 

for all stream reaches with built infrastructure in place, but we initially considered 11 

variables available for all stream reaches and included the percentage of land cover that was 

urban or agriculture within a 1 km circular buffer around each structure for initial 

consideration in our modelling (Table 1). We included agriculture and urban cover to account 

for landscape factors that can influence the distribution of infrastructure. Smaller and more 

frequent infrastructure, such as weirs, tend to occur in agriculture-dominated landscapes, and 

higher and less frequent infrastructure tend to occur in steeper landscapes with less human 

modification.  

 

2.2. Modelling and predicting built infrastructure heights 
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We used Boosted Regression Trees (BRT; Elith et al., 2008) to model and predict 

infrastructure heights using the dismo package 2.1 (Hijmans et al., 2016) in R Statistical 

Package 3.2.2 (http://www.R-project.org/). We briefly describe BRT models; technical 

details and applications of these models have been widely presented in environmental and 

ecological science literature (e.g., Elith et al., 2008; Bhatt et al., 2013; Soykan et al., 2014; 

Hain et al., 2017). BRTs are part of the classification and regression tree family; techniques 

used to advance single classification or regression trees by averaging the results for each 

binary split from numerous trees or forests. Boosted tree models retain the positive aspects of 

single trees seen in classification and regression tree models, but provide improved predictive 

performance, nonlinearities and interactions are easily assessed, and the models can provide 

an ordered list of the importance of the explanatory variables (Elith et al. 2008; De'ath 2007).  

For our BRT models, height values were rounded to the nearest half-meter for modelling 

(e.g., 0-0.24m = 0 m; 0.25-0.74m = 0.5m; 0.75-1.24m = 1.0m, etc), because there were likely 

moderate levels of uncertainty around the estimated heights supplied in the original database, 

and preliminary modelling demonstrated improved model performance when using rounded 

height values. Training our models with all 17,959 built infrastructure was impractical 

because of the computation time required, and previous work by Elith et al. (2008) 

demonstrated trade-offs with sample size and computing time, where modelling with a sub-

sample of 6,000 sites showed high predictive performance and moderate computation time. 

Therefore, we randomly selected three sub-samples consisting of 5,000 built infrastructure 

records, and used these as our training datasets for subsequent modelling. With the three 

training data sub-samples, we fitted three BRT models, assuming the response followed a 

Gaussian distribution. We tested combinations of tree complexity (tc) (10-15), learning rate 

(lr) (0.001, 0.005) and bag fraction (bf) (0.5, 0.75). The learning rate determines the 

contribution of each tree to the growing model. Tree complexity controls whether interactions 
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are fitted in the model: a tree complexity of one fits an additive model, a tree complexity of 

two fits a model with up to two-way interactions, and so on. Introducing some randomness 

into a boosted model can improve accuracy and speed and reduce over-fitting (Elith et al. 

2008), but this can also introduce variance in fitted values and predictions between runs. The 

bag fraction controls stochasticity in the model, specifying the proportion of data to be used 

at each step; a bf of 0.75 means that 75% of the data are randomly drawn from the full model 

training dataset without replacement (Elith et al. 2008). We determined that for all three of 

our BRT models the following parameters returned highest model performance: tc = 15; lr = 

0.005; bf = 0.75. We predicted height values for the 20,077 built infrastructure without 

values, giving three height predictions for each. For each of the three BRT models, we used a 

tenfold cross-validation (CV; Elith et al. 2008), evaluating model CV correlation (where 

higher values indicate a better model) and standard error, to assess model predictive 

performance to withheld portions of data (Elith et al. 2008).  

We initially considered 11 environmental variables in each of the three BRT models 

(Table 1), and the importance of each environmental variable in each of the three models was 

evaluated based on its contribution to model fit. Strahler stream order and percentage urban 

cover were dropped from final models, leaving nine environmental variables, because they 

contributed <2% to each model, and model performance was the same without their 

inclusion. 

 

2.3. Built infrastructure passability and catchment-level fragmentation  

 

Applying the assumptions of our three scenarios for built infrastructure without heights, we 

determined if each of the 39,379 built infrastructure with known or predicted heights were 

passable or impassable for fish species unable to pass 1.0, 1.5, or 2.0 m heights. Our three 
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built infrastructure passability thresholds (1.0, 1.5, and 2.0 m) were based on the most 

conservative estimates of fish species swimming and jumping capacities (i.e., their ability to 

pass built infrastructure or not) determined by Baudoin et al. (2014) for fishes moving in an 

upstream direction in favourable hydrologic conditions. We chose infrastructure height as an 

indicator of a fish species ability to pass over built infrastructure or not because: 1) we had 

access to height information in our database, and 2) Baudoin et al. (2014) established that for 

vertical, sub-vertical or inclined dams and weirs (those built infrastructure considered in our 

analysis), an extreme height value is the first element that determines whether or not a 

structure is likely to be passable for a particular fish species. Baudoin et al. (2014) 

determined built infrastructure passability thresholds for fish species in France that are unable 

, and we present 30 of the native species for which these 

thresholds are applicable in Table 2. For example, built infrastructure at 1 m or more are 

impassable for fish species such as Three-spined Stickleback (Gasterosteus gymnurus), those 

at 1.5 m or more are impassable for species like Burbot (Lota lota), and those at 2 m or more 

are impassable for species like Twait Shad (Alosa fallax).  

Using our built infrastructure data, and the French hydrographical network 

(https://www.data.gouv.fr/fr/datasets/bd-carthage-onm) to represent rivers, we then 

determined and compared river fragmentation across 26 major catchments based on two 

metrics: the percentage of impassable built infrastructure and average distance (km) between 

impassable built infrastructure. We evaluated differences in the resulting values for each 

fragmentation metric when applying our three scenarios and the built infrastructure 

passability thresholds (1.0, 1.5, and 2.0 m). We used analysis of covariance (ANCOVA) to 

investigate catchment-level differences for both of our river fragmentation metrics, 

comparing between scenarios for each of the passability thresholds, and with river length 

within each catchment as a co-variate. ANCOVA was conducted for both fragmentation 
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metrics using the function lm from the base -hoc tests using the 

glht function from the multcomp (Hothorn 2008) package in R Statistical Software (version 

3.2.2) (http://www.R-project.org/). It was necessary to log transform average distance 

between impassable built infrastructure for each catchment to meet assumptions of normality 

and homogeneity.  

 

3. Results 

 

3.1. Modelling and predicting built infrastructure heights 

 

Our three BRT models showed similar and reasonable discrimination and predictive 

performances for small built infrastructure in France (Table 3). The final predicted heights for 

built infrastructure ranged from 0 to 4 m across France (all modelled data available at: 

https://figshare.com/s/617347a78cc27f419023). Regardless of the model considered, we 

found that four of the nine environmental variables had at least 12% relative influence on 

infrastructure height (Fig. 2; Table 4). Higher infrastructure tended to occur on shorter stream 

reaches (19% relative influence on average between the three models), at lower (<500 m) and 

higher elevation (>1000 m) (14% on average), and on stream reaches with higher gradient 

(change in elevation per reach length; 13% on average) (Fig. 2; Table 4). Infrastructure height 

also rapidly increased with increasing average annual flow and tended to level off at flows 

above 100 m3/s (12% on average) (Fig. 2; Table 4). Median height values across our three 

models were consistent, with half the predicted values having zero standard deviation, and 

the majority (18,105; 90%) of built infrastructure had median predicted height values of 1.0 

(n = 10,749) or 1.5 meters (n = 7,356). Our full database of built infrastructure, including 

known heights, predicted height values for built infrastructure from all three models, 
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modelled median height values for built infrastructure, and model deviation are available at: 

https://figshare.com/s/617347a78cc27f419023. 

 

3.2. Built infrastructure passability and catchment-level fragmentation  

 

We found significant differences in catchment-level fragmentation between our three 

scenarios, the pattern of which varied with passability threshold (Fig. 3a-c; Table S1). For a 

passability threshold of 1.0 m, on average (SE) of built infrastructure were 

impassable under scenarios 1 and 3 across catchments (see Table S1), and distance between 

impassable structures also did not differ on average), whereas significantly 

fewer built infrastructure were impassable under scenario 2 ( .0 on average; see Table 

S1) (ANCOVA: F2,74 = 214.53, p < 0.001), and the distance between impassable built 

infrastructure  on average) was significantly greater (ANCOVA: F2,74 = 18.7, 

p < 0.001) than under scenarios 1 and 3 (Fig. 3a). We found that for a passability threshold of 

1.5 m all three scenarios differed significantly both in terms of percentage (

3.0 .0 .0 on average; Table S1) (ANCOVA: F2,74 = 

123.25, p < 0.001) and distance 

 on average) between impassable infrastructure across catchments 

(ANCOVA: F2,74 = 23.0, p < 0.001) (Fig. 3b). For a passability threshold of 2.0 m, scenarios 

2 and 3 showed no difference on average across catchments either in terms of percentage 

.0 .0 on average; Table S1) or distance between 

(197.0 , 9 on average; Fig. 3c) impassable built infrastructure, 

but both the percentage .0 on average) and distance between impassable built 

infrastructure  on average) were significantly different for scenario 1 

(ANCOVA: F2,74 = 148.2 and F2,74 = 37.9, p < 0.001; see Table S1; Fig. 3c). We found no 
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effect of river length (km) on catchment-level river fragmentation regardless of fragmentation 

metric or the passability threshold.  

 

4. Discussion 

 

Drawing on remotely collected data we modelled and predicted built infrastructure height 

with reasonable certainty, doubling the number with height values across France. We further 

demonstrated that common assumptions made about built infrastructure when data gaps exist 

can result in significantly different estimates of river fragmentation for fish species with 

varied abilities to pass built infrastructure.  

 When large numbers of built infrastructure have unknown dimensions, such as height, 

we can be forced to make assumptions; either that all built infrastructure are passable, or 

impassable (e.g., Radinger et al., 2017). Our results suggest that these assumptions can result 

in opposite outcomes for measures of river fragmentation for fish species with varied abilities 

to pass built infrastructure. For example, assuming that all built infrastructure without height 

data were passable resulted in a 5-fold reduction in river fragmentation for species such as the 

Three-spined Stickleback (passability threshold compared to using our predicted 

height values to measure distance between impassable built infrastructure. We found the 

opposite was true for species like the Twait Shad (passability threshold , where 

assuming all built infrastructure without height data were impassable resulted in a 7-fold 

increase in river fragmentation compared to using our predicted height values to measure 

distance between impassable built infrastructure. Our findings suggest that inclusion of built 

infrastructure height, and modelling height where necessary, can help to refine estimates of 

river fragmentation for fish species with varied abilities to pass built infrastructure. With an 

increased interest in modelling fish species' dispersal abilities (Radinger et al., 2017), and 
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continued efforts to prioritize removal projects using indicators of built infrastructure 

passability (Neeson et al., 2015), our approach can be used to improve understanding of built 

infrastructure impact and inform the identification of priorities for restoring river connectivity 

to benefit different species.  

Our results demonstrate a first step toward more explicit accountancy of built 

infrastructure impact on aquatic biodiversity. For example, our approach builds on earlier 

work by Perkin & Gido (2012) who noted that infrastructure passability for different fish 

species could be a function of both structure height and local hydrological regimes but did 

not explicitly account for such factors and instead assumed partial passability for all 

infrastructure. Refinements to our modelling approach that explicitly consider species' 

biological characteristics, which can influence their ability to pass built infrastructure, would 

likely further improve estimates of river fragmentation for individual species, but such data 

are not broadly available. We were able to account for a coarse estimation of river hydrology 

in our catchment-level fragmentation calculations, because hydrologic variability was 

integrated in the passability thresholds established by Baudoin et al. (2014). Finer-scale data 

on river discharge at individual infrastructure is currently not available, but explicit 

consideration of this factor would be useful in future iterations of this work. We emphasize 

that our models specifically address a need for overcoming gaps in knowledge about built 

infrastructure height, and additional considerations such as discharge and 

biological characteristics will only help to refine our modelling and findings. Further, 

mismatches in existing spatial data products did not allow us to predict height values for all 

built infrastructure in France, and factors such as fish passage facilities that we were unable 

to account for in our assessment, could influence whether or not these are passable for 

different fish species. Uncertainty in infrastructure status and presence of fish passage 

facilities could be validated using a combination of finer-scale spatial data and field surveys. 
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Currently field surveys are being carried out across France, but the number of built 

infrastructure prevents assessments being completed in short time periods (e.g., 1 or 2 years). 

Coupling on ground work with acquisition of fine-scale spatial data could facilitate rapid, and 

cost-effective validation procedures, while our results could be used to systematically target 

potential problem areas.  

Globally, built infrastructure removal and installation is occurring simultaneously 

(Hydropower Status Report 2017; Dam Removal Europe 2016) and methods similar to what 

we present here offer a starting point for improving our ability to quantify costs and benefits 

associated with these processes. Our results (i.e., known and predicted height values) could 

be integrated in conservation planning exercises, along with other ecological and socio-

economic considerations, as a relative indicator of cost to remove built infrastructure. Built 

infrastructure height can also be used as an indicator of environmental benefit, such as 

downstream response to removal, where higher dams have been shown to have longer-lasting 

and more wide-spread downstream effects than shorter dams (Major et al., 2017). These 

examples demonstrate the wide-applicability of our approach and results to informing 

conservation decisions with broader considerations than fishes. Further, our approach could 

be used to inform future scenarios that consider how built infrastructure change over time 

with respect to removal, installation and other environmental and socio-political factors, such 

as changing climate and flows, and placement of fish passage facilities to reduce impact. We 

see particular relevance of our approach to other areas in Europe as well as North America 

where efforts to both remediate (in the form of including fish passage facilities) and remove 

built infrastructure is rapidly occurring (Foley et al., 2017; Dam Removal Europe 2016) but 

where gaps in data on characteristics of built infrastructure remain (e.g., Radinger et al., 

2017; Januchowski-Hartley et al., 2013) and limit our ability to make effective decisions. We 

see further applicability of our modelling approach and results to other parts of the world as a 
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global proliferation of smaller infrastructure continues with limited consideration or 

documentation of characteristics like height (Couto & Olden, 2018). Ultimately, as global 

change continues, approaches like ours will become increasingly important for guiding more 

proactive and effective strategies for built infrastructure management.  
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Figure captions 

 

Figure 1. Data on characteristics of (a) small 

limited, resulting in scientists and practitioners needing to make assumptions about related 

impact on species like fishes. In France, (b) slightly more than half of the documented built 

infrastructure are without height data. 

 

Figure 2. Partial dependency plots for environmental variables contributing >12% in three 

models (a-c) for small . Rug plots inside the top of 

each plot show the distribution of observations across the range of that variable, in deciles.  

 

Figure 3. Catchment-level average distances between impassable (in an upstream direction) 

built infrastructure under three scenarios depicting common assumptions (Scenario 1 = all 

built infrastructure without height data assumed impassable; Scenario 2 = all built 

infrastructure without height data assumed passable), and Scenario 3 using median modelled 

height data from three Boosted Regression Tree models, compared for three passability 

thresholds: (a) 1.0 m, (b) 1.5 m, and (c) 2.0 m. For each passability threshold, boxplots show 

the median and 50% quartiles, whiskers are 1.5 times interquartile range, for log transformed 

average distance between impassable built infrastructure (km) under each scenario. Outlying 

values are not shown. Images of (a) Gasterosteus gymnurus, (b) Lota lota, and (c) Alosa 

fallax above boxplots depict the types of fish species for which passability thresholds are 

applicable. The Gasterosteus gymnurus image was created by Milton Tan, was unchanged, 

and is used under creative commons license (https://creativecommons.org/licenses/by-nc-

sa/3.0/). The Gasterosteus gymnurus and Lota lota images were sourced from PhyloPic 

(phylopic.org).  
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Table 2. Fish species native to France that are unable to pass (in an upstream direction) built 

 

Species 
1.0 m 

threshold 
1.5 m 

threshold 
2.0 m 

threshold 

Anguilla anguilla 1 
Rhodeus amarus 1 
Gasterosteus gymnurus 1 
Pungitius laevis 1 
Cobitis taenia 1 
Barbatula barbatula 1 
Lampetra planeri 1 
Zingel asper 1 
Parachondrostoma toxostoma 1 
Scardinius erythrophthalmus 1 
Rutilus rutilus 1 
Carassius gibelio 1 
Carassius carassius 1 
Telestes souffia 1 
Barbus meridionalis 1 
Alburnoides bipunctatus 1 
Alburnus alburnus 1 
Tinca tinca 1 
Perca fluviatilis 1 
Lota lota 1 
Blicca bjoerkna 1 
Abramis brama 1 
Lampetra fluviatilis 1 
Squalius cephalus 1 
Barbus barbus 1 
Thymallus thymallus 1 
Aspius aspius 1 
Esox lucius 1 
Petromyzon marinus 1 
Alosa fallax 1 
Total 17 9 4 

Table 2
Click here to download Table: Table_2.docx
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Table 4. Environmental variable contributions to three Boosted Regression Tree models of 

built infrastructure heights.  

Environmental variable 
Model 

1 
Model 

2 
Model 

3 
Model 

average 
Stream reach length (km) 18% 19% 19% 19% 
Stream reach average elevation (m) 14% 15% 14% 14% 
Stream reach gradient (m m -1) 12% 12% 14% 13% 
Average annual flow (m3/s) 12% 12% 12% 12% 
Percentage agriculture cover (%) 10% 10% 10% 10% 
Stream reach drainage area (km2) 10% 9% 9% 9% 
Average monthly minimum flow (m3/s ) 9% 9% 9% 9% 
Stream reach upstream drainage area (km2) 8% 7% 7% 7% 
Distance to source (km) 7% 7% 6% 7% 

Table 4
Click here to download Table: Table_4.docx
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