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conservation
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® Laboratoire Evolution et Diversité Biologique (EDB UMR 5174), Université de Toulouse
Midi-Pyrénées, CNRS, IRD, UPS, 118 route de Narbonne, Bat 4R1, 31062 Toulouse Cedex

9, France

Abstract

Built infrastructure, such as dams and weirs, are some of the most impactful stressors
affecting aquatic ecosystems. However, data on the distribution and characteristics of small
built infrastructure that often restrict fish movement, impede flows, and retain sediments and
materials, remain limited. Collection of this necessary information is challenged by the large
number of built infrastructure with unknown dimensions (e.g., height), which means
scientists and practitioners need to make assumptions about these characteristics in research
and decision-making. Evaluating these common assumptions is essential for advancing
conservation that is more effective. We use a statistical modelling approach to double the
number of small (<5 m high) built infrastructure with height values in France. Using two
scenarios depicting common assumptions (all infrastructure without height data are
impassable, or all are passable for all species) and one based on our modelled heights, we
demonstrate how assumptions can influence our understanding of river fragmentation.

Assuming all built infrastructure without height data are passable results in a 5-fold reduction



in estimated river fragmentation for fish species that cannot pass built infrastructure >1.0 m.
The opposite is true for fish species that cannot pass >2.0 m, where assuming all built
infrastructure without height data are impassable results in a 7-fold increase in fragmentation
compared to the scenario with modelled heights to attribute built infrastructure passability.
Our findings suggest that modelled height data leads to better understanding of river
fragmentation, and that knowledge of different fish species' abilities to pass a variety of built
infrastructure is essential to guide more effective management strategies. Our modelling
approach, and results, are of particular relevance to regions where efforts to both remediate
and remove built infrastructure is occurring, but where gaps in data on characteristics of built

infrastructure remain, and limit effective decision making.
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Highlights
e We double the number of small (<5 m) built infrastructure with height values in
France.
e Common assumptions affect our understanding of river fragmentation.
e Modelled height data leads to better understanding of river fragmentation.

e We provide essential information for protocols evaluating river ecological continuity.
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1. Introduction

Scientists and practitioners require information on the characteristics of built infrastructure,
such as dams and weirs, to better understand associated impacts, costs, and benefits, in
relation to ecological processes, services, and human values (Poff & Hart, 2002;
Januchowski-Hartley et al.,, 2013; Major et al., 2017). Characteristics of larger built
infrastructure are increasingly well understood, because of improved identification via
remotely sensed imagery (Mantel et al., 2017), and superior record keeping due to the
importance of size and water holding capacity for monitoring energy production and water
storage (e.g., Carvajal et al., 2017). Despite likely impacts from small built infrastructure
which often restrict fish movement (i.e., being impassable), impede river flows, and retain
sediments and materials, data on their distribution and characteristics remain limited
(Januchowski-Hartley et al., 2013; Couto & Olden, 2018). Collection of this necessary
information is challenged by the large number of built infrastructure with unknown
dimensions (e.g., height), which means that assumptions are often necessary in research and
decision making (e.g., assume binary passability or impassability of built infrastructure) when
height data are unmeasured (Cote et al., 2009; Perkin & Gido, 2012; Radinger et al., 2017).
This raises the question of how common assumptions about characteristics of built
infrastructure affect estimates of habitat fragmentation, and the potential implications of this
for fishes with different abilities to pass over infrastructure.

Here, we investigate existing data and data gaps for built infrastructure (Fig. 1a), and
evaluate how these influence measures of river fragmentation when considering passability
(the ability of a fish species to pass built infrastructure in an upstream direction) for native
fishes in France. We do this by bringing together a database of built infrastructure, and

associated environmental data to model and predict heights to fill data gaps for small built



O Joy U WM

DO TGO OTOTOTE D DB BB DDEDAEDWWWWWWWWWWNNNRNNNNNONNNN R R RRRFRR PR,
R WNROWOVWO-JOTRWNROW®JIAOAUBRWNROWGWOWJANIEWNRFROWOW®OW-JANTEWNRLOWOW®O-TOUONWNR O W

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

infrastructure (<5 m in height; Fig. 1b). We then develop three alternative scenarios with the
first two representing common assumptions used when height data are unmeasured: 1) all
built infrastructure without height data are impassable, 2) all built infrastructure without
height data are passable, and 3) all built infrastructure without height data are allocated
median height prediction from our model. We evaluate differences between these three
scenarios when quantifying two catchment-level metrics of river fragmentation (percentage
of and distance between impassable built infrastructure) for fish species when built
infrastructure with heights >1.0, 1.5, or 2.0 m (our three passability thresholds) are
impassable. Our three passability thresholds are based on the ecological continuity protocol
established by the French National Agency for Water and Aquatic Environments (Baudoin et
al., 2014). France’s ecological continuity protocol is aimed at evaluating built infrastructure
passability for fish species, and knowledge of the heights of different built infrastructure are
both a major consideration in evaluation and a critical data gap in implementing the protocol
at a national scale. We discuss the implications of common assumptions made about built
infrastructure, and our modelling technique, for determining the effects of built infrastructure

on aquatic ecosystems, and our ability to address impacts more effectively.

2. Methods

2.1. Built infrastructure and environmental data

We analyzed publicly available data for 76,292 built infrastructure from the French National

Agency for Water and Aquatic Environments (http://www.onema.ftr/le-roe). We excluded any

records listed as destroyed, planned, under construction, invalid, or duplicated in the

database. After these exclusions we had a total of 19,302 records with height data (Fig. 1a). A
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further 882 built infrastructure had available height data, but were without values for
environmental data, and so were not included in our modelling of height, but retained for our
assessment of infrastructure passability. For subsequent modelling we created a training
dataset based on built infrastructure <5 m in height. We did this because < 1% (461) of built
infrastructure with height and environmental data were greater than 5 m. Given the common
dependence by humans on larger built infrastructure, we assumed that height values for these
structures were well documented, and not likely unmeasured in our database. We retained
these larger built infrastructure to include in our estimations of passability and calculations of
catchment-level fragmentation.

The starting point for our model training dataset was 17,959 built infrastructure with
heights <5 m and environmental variable data attributed to stream reaches available from the
French Theoretical Hydrographic Network (Pella et al., 2012). There were an additional
20,077 built infrastructure without height values, but with environmental variable values, and
we used our models to predict their heights (Fig. 1a). Environmental data were not available
for all stream reaches with built infrastructure in place, but we initially considered 11
variables available for all stream reaches and included the percentage of land cover that was
urban or agriculture within a 1 km circular buffer around each structure for initial
consideration in our modelling (Table 1). We included agriculture and urban cover to account
for landscape factors that can influence the distribution of infrastructure. Smaller and more
frequent infrastructure, such as weirs, tend to occur in agriculture-dominated landscapes, and
higher and less frequent infrastructure tend to occur in steeper landscapes with less human

modification.

2.2. Modelling and predicting built infrastructure heights
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We used Boosted Regression Trees (BRT; Elith et al., 2008) to model and predict
infrastructure heights using the dismo package 2.1 (Hijmans et al., 2016) in R Statistical

Package 3.2.2 (http://www.R-project.org/). We briefly describe BRT models; technical

details and applications of these models have been widely presented in environmental and
ecological science literature (e.g., Elith et al., 2008; Bhatt et al., 2013; Soykan et al., 2014;
Hain et al., 2017). BRTs are part of the classification and regression tree family; techniques
used to advance single classification or regression trees by averaging the results for each
binary split from numerous trees or forests. Boosted tree models retain the positive aspects of
single trees seen in classification and regression tree models, but provide improved predictive
performance, nonlinearities and interactions are easily assessed, and the models can provide
an ordered list of the importance of the explanatory variables (Elith et al. 2008; De'ath 2007).
For our BRT models, height values were rounded to the nearest half-meter for modelling
(e.g., 0-0.24m = 0 m; 0.25-0.74m = 0.5m; 0.75-1.24m = 1.0m, etc), because there were likely
moderate levels of uncertainty around the estimated heights supplied in the original database,
and preliminary modelling demonstrated improved model performance when using rounded
height values. Training our models with all 17,959 built infrastructure was impractical
because of the computation time required, and previous work by Elith et al. (2008)
demonstrated trade-offs with sample size and computing time, where modelling with a sub-
sample of 6,000 sites showed high predictive performance and moderate computation time.
Therefore, we randomly selected three sub-samples consisting of 5,000 built infrastructure
records, and used these as our training datasets for subsequent modelling. With the three
training data sub-samples, we fitted three BRT models, assuming the response followed a
Gaussian distribution. We tested combinations of tree complexity (tc) (10-15), learning rate
(Ir) (0.001, 0.005) and bag fraction (bf) (0.5, 0.75). The learning rate determines the

contribution of each tree to the growing model. Tree complexity controls whether interactions



O Joy U WM

DO TGO OTOTOTE D DB BB DDEDAEDWWWWWWWWWWNNNRNNNNNONNNN R R RRRFRR PR,
R WNROWOVWO-JOTRWNROW®JIAOAUBRWNROWGWOWJANIEWNRFROWOW®OW-JANTEWNRLOWOW®O-TOUONWNR O W

101

102

103

104

105

106

107

108

109

110

111

112

113

114

115

116

117

118

119

120

121

122

123

124

125

are fitted in the model: a tree complexity of one fits an additive model, a tree complexity of
two fits a model with up to two-way interactions, and so on. Introducing some randomness
into a boosted model can improve accuracy and speed and reduce over-fitting (Elith et al.
2008), but this can also introduce variance in fitted values and predictions between runs. The
bag fraction controls stochasticity in the model, specifying the proportion of data to be used
at each step; a bf of 0.75 means that 75% of the data are randomly drawn from the full model
training dataset without replacement (Elith et al. 2008). We determined that for all three of
our BRT models the following parameters returned highest model performance: tc = 15; Ir =
0.005; bf = 0.75. We predicted height values for the 20,077 built infrastructure without
values, giving three height predictions for each. For each of the three BRT models, we used a
tenfold cross-validation (CV; Elith et al. 2008), evaluating model CV correlation (where
higher values indicate a better model) and standard error, to assess model predictive
performance to withheld portions of data (Elith et al. 2008).

We initially considered 11 environmental variables in each of the three BRT models
(Table 1), and the importance of each environmental variable in each of the three models was
evaluated based on its contribution to model fit. Strahler stream order and percentage urban
cover were dropped from final models, leaving nine environmental variables, because they
contributed <2% to each model, and model performance was the same without their

inclusion.

2.3. Built infrastructure passability and catchment-level fragmentation

Applying the assumptions of our three scenarios for built infrastructure without heights, we

determined if each of the 39,379 built infrastructure with known or predicted heights were

passable or impassable for fish species unable to pass >1.0, 1.5, or 2.0 m heights. Our three
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built infrastructure passability thresholds (1.0, 1.5, and 2.0 m) were based on the most
conservative estimates of fish species swimming and jumping capacities (i.e., their ability to
pass built infrastructure or not) determined by Baudoin et al. (2014) for fishes moving in an
upstream direction in favourable hydrologic conditions. We chose infrastructure height as an
indicator of a fish species ability to pass over built infrastructure or not because: 1) we had
access to height information in our database, and 2) Baudoin et al. (2014) established that for
vertical, sub-vertical or inclined dams and weirs (those built infrastructure considered in our
analysis), an extreme height value is the first element that determines whether or not a
structure is likely to be passable for a particular fish species. Baudoin et al. (2014)
determined built infrastructure passability thresholds for fish species in France that are unable
to pass >1.0, 1.5, or 2.0 m heights, and we present 30 of the native species for which these
thresholds are applicable in Table 2. For example, built infrastructure at I m or more are
impassable for fish species such as Three-spined Stickleback (Gasterosteus gymnurus), those
at 1.5 m or more are impassable for species like Burbot (Lota lota), and those at 2 m or more
are impassable for species like Twait Shad (4losa fallax).

Using our built infrastructure data, and the French hydrographical network
(https://www.data.gouv.fr/fr/datasets/bd-carthage-onm) to represent rivers, we then
determined and compared river fragmentation across 26 major catchments based on two
metrics: the percentage of impassable built infrastructure and average distance (km) between
impassable built infrastructure. We evaluated differences in the resulting values for each
fragmentation metric when applying our three scenarios and the built infrastructure
passability thresholds (1.0, 1.5, and 2.0 m). We used analysis of covariance (ANCOVA) to
investigate catchment-level differences for both of our river fragmentation metrics,
comparing between scenarios for each of the passability thresholds, and with river length

within each catchment as a co-variate. ANCOVA was conducted for both fragmentation
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metrics using the function /m from the base package, and Tukey’s post-hoc tests using the
glht function from the multcomp (Hothorn 2008) package in R Statistical Software (version

3.2.2) (http://www.R-project.org/). It was necessary to log transform average distance

between impassable built infrastructure for each catchment to meet assumptions of normality

and homogeneity.

3. Results

3.1. Modelling and predicting built infrastructure heights

Our three BRT models showed similar and reasonable discrimination and predictive

performances for small built infrastructure in France (Table 3). The final predicted heights for

built infrastructure ranged from 0 to 4 m across France (all modelled data available at:

https://figshare.com/s/617347a78cc27t419023). Regardless of the model considered, we

found that four of the nine environmental variables had at least 12% relative influence on
infrastructure height (Fig. 2; Table 4). Higher infrastructure tended to occur on shorter stream
reaches (19% relative influence on average between the three models), at lower (<500 m) and
higher elevation (>1000 m) (14% on average), and on stream reaches with higher gradient
(change in elevation per reach length; 13% on average) (Fig. 2; Table 4). Infrastructure height
also rapidly increased with increasing average annual flow and tended to level off at flows
above 100 m’/s (12% on average) (Fig. 2; Table 4). Median height values across our three
models were consistent, with half the predicted values having zero standard deviation, and
the majority (18,105; 90%) of built infrastructure had median predicted height values of 1.0
(n = 10,749) or 1.5 meters (n = 7,356). Our full database of built infrastructure, including

known heights, predicted height values for built infrastructure from all three models,
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modelled median height values for built infrastructure, and model deviation are available at:

https://figshare.com/s/617347a78cc271419023.

3.2. Built infrastructure passability and catchment-level fragmentation

We found significant differences in catchment-level fragmentation between our three
scenarios, the pattern of which varied with passability threshold (Fig. 3a-c; Table S1). For a
passability threshold of 1.0 m, on average 85% =+ 2 (SE) of built infrastructure were
impassable under scenarios 1 and 3 across catchments (see Table S1), and distance between
impassable structures also did not differ (18.0 km + 2.8 on average), whereas significantly
fewer built infrastructure were impassable under scenario 2 (29% + 3.0 on average; see Table
S1) (ANCOVA: Fi74 = 214.53, p < 0.001), and the distance between impassable built
infrastructure (106 km + 41.3 on average) was significantly greater (ANCOVA: F, 74 = 18.7,
p <0.001) than under scenarios 1 and 3 (Fig. 3a). We found that for a passability threshold of
1.5 m all three scenarios differed significantly both in terms of percentage (scenario 1: 74% +
3.0; scenario 2: 18% =+ 2.0; scenario 3: 41% + 3.0 on average; Table S1) (ANCOVA: F, 74 =
123.25, p < 0.001) and distance (scenario 1: 20.7 km + 2.9; scenario 2: 143 km + 42.0;
scenario 3: 46.5 km + 11.1 on average) between impassable infrastructure across catchments
(ANCOVA: F,74=23.0, p < 0.001) (Fig. 3b). For a passability threshold of 2.0 m, scenarios
2 and 3 showed no difference on average across catchments either in terms of percentage
(scenario 1: 11% =+ 1.0; scenario 2: 17% =+ 2.0 on average; Table S1) or distance between
(197.0 km + 60.6, and 160.9 km £ 61.9 on average; Fig. 3¢) impassable built infrastructure,
but both the percentage (67% =+ 4.0 on average) and distance between impassable built
infrastructure (23.3 km =+ 3.2 on average) were significantly different for scenario 1

(ANCOVA: Fy74=148.2 and F,74 = 37.9, p < 0.001; see Table S1; Fig. 3c). We found no
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effect of river length (km) on catchment-level river fragmentation regardless of fragmentation

metric or the passability threshold.

4. Discussion

Drawing on remotely collected data we modelled and predicted built infrastructure height
with reasonable certainty, doubling the number with height values across France. We further
demonstrated that common assumptions made about built infrastructure when data gaps exist
can result in significantly different estimates of river fragmentation for fish species with
varied abilities to pass built infrastructure.

When large numbers of built infrastructure have unknown dimensions, such as height,
we can be forced to make assumptions; either that all built infrastructure are passable, or
impassable (e.g., Radinger et al., 2017). Our results suggest that these assumptions can result
in opposite outcomes for measures of river fragmentation for fish species with varied abilities
to pass built infrastructure. For example, assuming that all built infrastructure without height
data were passable resulted in a 5-fold reduction in river fragmentation for species such as the
Three-spined Stickleback (passability threshold >1.0 m) compared to using our predicted
height values to measure distance between impassable built infrastructure. We found the
opposite was true for species like the Twait Shad (passability threshold >2.0 m), where
assuming all built infrastructure without height data were impassable resulted in a 7-fold
increase in river fragmentation compared to using our predicted height values to measure
distance between impassable built infrastructure. Our findings suggest that inclusion of built
infrastructure height, and modelling height where necessary, can help to refine estimates of
river fragmentation for fish species with varied abilities to pass built infrastructure. With an

increased interest in modelling fish species' dispersal abilities (Radinger et al., 2017), and
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continued efforts to prioritize removal projects using indicators of built infrastructure
passability (Neeson et al., 2015), our approach can be used to improve understanding of built
infrastructure impact and inform the identification of priorities for restoring river connectivity
to benefit different species.

Our results demonstrate a first step toward more explicit accountancy of built
infrastructure impact on aquatic biodiversity. For example, our approach builds on earlier
work by Perkin & Gido (2012) who noted that infrastructure passability for different fish
species could be a function of both structure height and local hydrological regimes but did
not explicitly account for such factors and instead assumed partial passability for all
infrastructure. Refinements to our modelling approach that explicitly consider species'
biological characteristics, which can influence their ability to pass built infrastructure, would
likely further improve estimates of river fragmentation for individual species, but such data
are not broadly available. We were able to account for a coarse estimation of river hydrology
in our catchment-level fragmentation calculations, because hydrologic variability was
integrated in the passability thresholds established by Baudoin et al. (2014). Finer-scale data
on river discharge at individual infrastructure is currently not available, but explicit
consideration of this factor would be useful in future iterations of this work. We emphasize
that our models specifically address a need for overcoming gaps in knowledge about built
infrastructure height, and additional considerations such as discharge and fish species’
biological characteristics will only help to refine our modelling and findings. Further,
mismatches in existing spatial data products did not allow us to predict height values for all
built infrastructure in France, and factors such as fish passage facilities that we were unable
to account for in our assessment, could influence whether or not these are passable for
different fish species. Uncertainty in infrastructure status and presence of fish passage

facilities could be validated using a combination of finer-scale spatial data and field surveys.

10
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Currently field surveys are being carried out across France, but the number of built
infrastructure prevents assessments being completed in short time periods (e.g., 1 or 2 years).
Coupling on ground work with acquisition of fine-scale spatial data could facilitate rapid, and
cost-effective validation procedures, while our results could be used to systematically target
potential problem areas.

Globally, built infrastructure removal and installation is occurring simultaneously
(Hydropower Status Report 2017; Dam Removal Europe 2016) and methods similar to what
we present here offer a starting point for improving our ability to quantify costs and benefits
associated with these processes. Our results (i.e., known and predicted height values) could
be integrated in conservation planning exercises, along with other ecological and socio-
economic considerations, as a relative indicator of cost to remove built infrastructure. Built
infrastructure height can also be used as an indicator of environmental benefit, such as
downstream response to removal, where higher dams have been shown to have longer-lasting
and more wide-spread downstream effects than shorter dams (Major et al., 2017). These
examples demonstrate the wide-applicability of our approach and results to informing
conservation decisions with broader considerations than fishes. Further, our approach could
be used to inform future scenarios that consider how built infrastructure change over time
with respect to removal, installation and other environmental and socio-political factors, such
as changing climate and flows, and placement of fish passage facilities to reduce impact. We
see particular relevance of our approach to other areas in Europe as well as North America
where efforts to both remediate (in the form of including fish passage facilities) and remove
built infrastructure is rapidly occurring (Foley et al., 2017; Dam Removal Europe 2016) but
where gaps in data on characteristics of built infrastructure remain (e.g., Radinger et al.,
2017; Januchowski-Hartley et al., 2013) and limit our ability to make effective decisions. We

see further applicability of our modelling approach and results to other parts of the world as a
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global proliferation of smaller infrastructure continues with limited consideration or
documentation of characteristics like height (Couto & Olden, 2018). Ultimately, as global
change continues, approaches like ours will become increasingly important for guiding more

proactive and effective strategies for built infrastructure management.
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Figure captions

Figure 1. Data on characteristics of (a) small (<5 m in height) built infrastructure are often
limited, resulting in scientists and practitioners needing to make assumptions about related
impact on species like fishes. In France, (b) slightly more than half of the documented built

infrastructure are without height data.

Figure 2. Partial dependency plots for environmental variables contributing >12% in three
models (a-c) for small (<5 m high) built infrastructure heights. Rug plots inside the top of

each plot show the distribution of observations across the range of that variable, in deciles.

Figure 3. Catchment-level average distances between impassable (in an upstream direction)
built infrastructure under three scenarios depicting common assumptions (Scenario 1 = all
built infrastructure without height data assumed impassable; Scenario 2 = all built
infrastructure without height data assumed passable), and Scenario 3 using median modelled
height data from three Boosted Regression Tree models, compared for three passability
thresholds: (a) 1.0 m, (b) 1.5 m, and (c) 2.0 m. For each passability threshold, boxplots show
the median and 50% quartiles, whiskers are 1.5 times interquartile range, for log transformed
average distance between impassable built infrastructure (km) under each scenario. Outlying
values are not shown. Images of (a) Gasterosteus gymnurus, (b) Lota lota, and (c) Alosa
fallax above boxplots depict the types of fish species for which passability thresholds are
applicable. The Gasterosteus gymnurus image was created by Milton Tan, was unchanged,

and is used under creative commons license (https://creativecommons.org/licenses/by-nc-

sa/3.0/). The Gasterosteus gymnurus and Lota lota images were sourced from PhyloPic

(phylopic.org).
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Table 2
Click here to download Table: Table_2.docx

Table 2. Fish species native to France that are unable to pass (in an upstream direction) built

infrastructure > 1.0, 1.5 or 2.0 m in height.

1.0 m 1.5m 2.0 m
Species threshold threshold threshold

Anguilla anguilla

Rhodeus amarus
Gasterosteus gymnurus
Pungitius laevis

Cobitis taenia

Barbatula barbatula
Lampetra planeri

Zingel asper
Parachondrostoma toxostoma
Scardinius erythrophthalmus
Rutilus rutilus

Carassius gibelio

Carassius carassius

Telestes souffia

Barbus meridionalis
Alburnoides bipunctatus

et ek e e ek e e e e ek e ek e e ek e

Alburnus alburnus
Tinca tinca

Perca fluviatilis
Lota lota

Blicca bjoerkna
Abramis brama
Lampetra fluviatilis
Squalius cephalus
Barbus barbus
Thymallus thymallus
Aspius aspius

Esox lucius

et ek ek e ek e ek ek

Petromyzon marinus
Alosa fallax
Total 17 9

D— — = =




08¢¢ <00 LEO €L’o 6 0008 ¢ [SPON

0S6¢ 10°0 Seo SLO 6 000¢ C I°POIN
0SLE 10°0 0¥°0 6L°0 6 0008 [ [9POIN
$99.) 10119 pIepue)s UONERII0) (s9318 (000S U0 paseq) so[qeLIeA SPI02d.1

Jo JdquinN uonepIfeA $S0.1)) UOI)EPI[BA $§S01))  UONE[ILIO) B)ep SUIUIBI],  [CJUSWUOIIAUF  JO JdqUInN [PPOIA

"SIYSIOY QINJONIISBIJUI J[INQ JO S[OPOW 91, UOISSAIZIY PI}s00g 21y} 10J ddueurioprod pue siojowered ¢ dqe L

X20p-g~9|ge] :3|ge] peojumop 0} aiay 321D
g o|qel



Table 4
Click here to download Table: Table_4.docx

Table 4. Environmental variable contributions to three Boosted Regression Tree models of

built infrastructure heights.

Model Model Model Model

Environmental variable 1 2 3 average
Stream reach length (km) 18% 19% 19% 19%
Stream reach average elevation (m) 14% 15% 14% 14%
Stream reach gradient (m m ) 12% 12% 14% 13%
Average annual flow (m’/s) 12% 12% 12% 12%
Percentage agriculture cover (%) 10% 10% 10% 10%
Stream reach drainage area (km?) 10% 9% 9% 9%
Average monthly minimum flow (m*/s ) 9% 9% 9% 9%
Stream reach upstream drainage area (km?) 8% 7% 7% 7%

Distance to source (km) 7% 7% 6% 7%
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