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ABSTRACT
Background. The red swamp crayfish, Procambarus clarkii (Girard, 1852), is one of
the most promising freshwater species for aquaculture in China. Understanding its
reproductive pattern and population dynamics is crucial for sustainable management,
but there is currently a lack of fundamental knowledge of commercial P. clarkii
populations. Therefore, the purpose of this study was to investigate the reproductive
pattern and population dynamics of commercial P. clarkii throughout the yearly cycle.
Methods. A total of 2,051 crayfish (1,012 females and 1,039 males) were collected from
March 2016 to February 2017 in the area of Selection and Reproduction Center of
Crayfish. The reproductive pattern was evaluated by the gonadosomatic index (GSI),
hepatosomatic index (HSI), ovarian development and fecundity. Growth, mortality
rates and exploitation rate were estimated by electronic length frequency analysis by R
package ‘‘TropFishR’’ based on data of cephalothorax length (CTL).
Results. Our results demonstrated that spawning activities of P. clarkii took place from
September to November, with a mean fecundity of 429 ± 9 eggs per female. There
were two recruitments yearly, a major one from October to November and a minor
one from March to May. With respect to population growth, five growth cohorts
were identified for both females and males. Crayfish grew faster but attained smaller
asymptotic maximum CTL as indicated by higher growth coefficient (K ), growth
parameter index (Ø′) and lower asymptotic CTL (Linf). The estimates of total mortality
rate (Z ), natural mortality rate (M ) and fishing mortality rate (F) were 1.93, 1.02, 0.91
year−1 for females and 2.32, 0.93, 1.39 year−1 formales, which showed that themortality
of male crayfish was mainly caused by fishing. The estimates of exploitation rate (E)
indicated that male crayfish were overexploited, with the values of 0.47 and 0.60 year−1

for females and males, respectively.
Discussion. P. clarkii spawned from September to November while two recruitments
were observed yearly. We inferred that some eggs, prevented from hatching by low
water temperature in winter, weremore likely to hatch in the next spring.Moreover, the
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fishing mortality rate was relatively high for males, whichmight be related to the males-
directed selection during the reproductive period. The higher values of exploitation rate
in our study confirmed that males P. clarkii were overexploited and were under high
fishing pressure. We thus suggest reducing fishing intensity on immature crayfish and
avoid sex selection during the reproductive period to improve the overall sustainability
of commercial P. clarkii populations.

Subjects Aquaculture, Fisheries and Fish Science, Ecology, Zoology, Freshwater Biology
Keywords Procambarus clarkii, Spawning period, Population growth, Mortality and exploitation
rates, Sustainable management

INTRODUCTION
Aquaculture has become a multinational industry over the last 30 years and is expected to
maintain an average annual growth rate of 44% over the period 2010–2030 (FAO, 2017).
Currently, it has been the fastest growing food-producing sector and has suppliedmore than
50% of global aquatic food consumption in the world (Wang et al., 2015). In 2016, global
aquaculture production reached approximately 80 million tons, corresponding to $232
billion in sales (FAO, 2018). Among commercially farmed species, the red swamp crayfish
Procambarus clarkii (Girard, 1852), was the second most produced species accounting
for 12% of total crustaceans aquaculture production (FAO Yearbook, 2018). China, the
top-ranking aquaculture country, has undergone remarkable development in its culture.
P. clarkii, originally distributed in northeasternMexico and the south-central United States,
has been introduced into Nanjing, China from Japan since the late 1930s (Henttonen &
Huner, 1999; Hobbs, Jass & Huner, 1989; Shu & Ye, 1989; Li et al., 2012). The crayfish
displays an r-strategy, exhibiting short life cycles and rapid growth, and they tolerate
poor environment conditions (Cruz & Rebelo, 2007). Now it can be found in various
freshwater habitats such as rivers, ponds, rice fields and ditches of most provinces in
China (Fisheries Department of the Chinese Ministry of Agriculture, 2017). Although its
fast spread was reported to reduce the diversity of plankton, invertebrates, and tadpoles
(Zhang et al., 2003;Wu et al., 2008; Zhang et al., 2014), the huge commercial values created
great incentives for farmers to the culture of P. clarkii. The production has achieved
852,300 tons in 2016 and represented 41.94% of China freshwater shrimp aquaculture
(Fisheries Department of the Chinese Ministry of Agriculture, 2017). However, the growing
demand intensifies immense fishing pressure on commercial populations, which results
in population depletion and slow recovery rates (Naylor et al., 2000; Tidwell & Allan,
2001). Therefore, effective fishery management efforts are now needed to alleviate fishery
crises and promote commercial P. clarkii populations’ sustainability. Correspondingly,
fisheries management should be based on a better understanding of population life-history
characteristics, which are supposed to induce changes in management policies.

Reproduction, growth, and mortalities are the most important life-history parameters
for population maintenance, and studies on these parameters are thus crucial for fishery
management (Fatemi et al., 2009;He et al., 2011). Recently, efforts have beenmade to assess
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the status of reproduction and population dynamics of P. clarkii populations in wild, but
little information is available on population characteristics under commercially-cultured
conditions. Previous studies showed that P. clarkii displayed considerable plasticity and
variability in reproductive patterns in different regions of the world. For example, some
authors reported that the reproduction of P. clarkii had a clear annual periodicity, withmost
spawning events confined to autumn in different locations such as USA (Oluoch, 1990),
Germany (Chucholl, 2011), and Italy (Dörr et al., 2006). While others argued that there
existed two or more spawning periods yearly for P. clarkii in Portugal (Sousa et al., 2013),
Italy (Scalici & Gherardi, 2007), Kenya and Spain (Gutiérrez-Yurrita et al., 1999; Gutiérrez-
Yurrita & Montes, 1999). In China, authors also reported different results. For example, the
population was proved to spawn once yearly in Poyang lake (Jiangxi province, subtropical
climate with annual mean precipitation of 1996 mm and annual mean temperature of
18.9 ◦C, Xiao et al., 2011), Huangjin Lake (Wuhan, Hubei province, subtropical climate
with annual mean precipitation of 1,236 mm and annual mean temperature of 17.2 ◦C, Lv,
2006; Gong et al., 2008), and Xuyi (Jiangsu province, transitional zone between temperate
and subtropical climate with annual mean precipitation of 972 mm and annual mean
temperature of 15.3 ◦C, Xu et al., 2014) while twice a year in Wuhan (Hubei province, Dai
et al., 2008).

In fish or crayfish population dynamics studies, understanding of population parameters
such as growth (growth coefficient K and growth parameter index Ø′), mortalities (total
mortality rate Z, natural mortality rate M, and fishing mortality rate F) has important
implications for population assessment (Rochet et al., 2000). Estimates of these parameters
provide fundamental information for predicting population growth and developing
sustainable exploitation strategies (Nurul Amin, Zafar & Halim, 2008; Ochwada-Doyle
et al., 2014).

Usually, growth parameters such as K and Ø′ are used for evaluation of growth
performance under a variety of environmental stresses such as under aquaculture conditions
(Pauly, 1991; Živkov, Trichkova & Raikova-Petrova, 1999). Quantitative assessment of
mortality is also a significant step to improve our understanding of population dynamics.
M was defined as the mortality caused by all possible causes except fishing and it could
be obtained from the values of Z minus F (Pauly, 1980). M, Z, and F are thus crucial
parameters that are commonly used in fisheries assessment and management, but they are
poorly known for commercial P. clarkii populations (Kenchington, 2014;Nadon et al., 2015;
Williams et al., 2015). Moreover, for successful fisheries management, it will be necessary
to further examine the exploitation states for different populations. The previous studies
suggest that a value of 0.5 for E represents the optimum exploitation condition while a
value of E > 0.5 points toward over-fishing (Gulland, 1971; Clasing et al., 1994).

Up to date, characteristics of those population parameters have been extensively studied
on P. clarkii wild populations from Europe, with great emphasis on the prevention of
further invasions in Italy (Scalici & Gherardi, 2007; Scalici et al., 2010; Dörr & Scalici, 2013;
Maccarrone et al., 2016; Donato et al., 2018), France (Coignet, Pinet & Souty-Grosset, 2012;
Meineri et al., 2014), Germany (Chucholl, 2011), Portugal (Anastácio et al., 2009), and
Spain (Alcorlo, Geiger & Otero, 2008). Nevertheless, few studies have been conducted on
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commercially cultured P. clarkii populations. Despite its high commercial importance in
China, knowledge of reproduction and length-based population dynamics information,
including growth, mortalities and exploitation rate of commercially cultured populations
is generally limited. There is, thus, a need to target those biological characteristics of
commercial populations for successful aquaculture management.

The objective of the present study was to evaluate the reproduction, growth, mortalities
and exploitation rate of the commercial P. clarkii population in China. For this purpose,
we studied: (1) reproductive pattern of females by measuring the GSI, HSI, ovarian
development, and fecundity; and (2) population dynamics by estimating growth (K and
Ø′), mortality rates (Z,M, and F) and exploitation rate (E). Our workwill hopefully provide
background information to develop effective and sustainable management strategies of
P. clarkii commercial populations.

MATERIALS & METHODS
Study area
The study is carried out in the Selection and Reproduction Center of Crayfish (30.41◦N,
112.75◦E), Qianjiang, which is recognized as the land of red swamp crayfish in China by
the Ministry of Agriculture of the People’s Republic of China. This region extends over 200
ha and encloses many artificial ponds.

The studied area has a surface area of 33,350 m2, which is under good management and
is referred as the model of crayfish culture. In this area was planted Hydrilla verticillata,
preferred by P. clarkii and tolerant to high water temperatures in summer. This submerged
macrophyte can provide supplementary nourishment, refuge for crayfish and supports
maintaining suitable water quality. Quicklime (15–22.5 grams/m3) was used monthly to
prevent diseases and eradicate other unwanted aquatic organisms (e.g., silver carp, rice field
eel, gold fish, and loach). Crayfish stocking was from March to April, with individual sizes
ranging from 3 to 5 g. The stocking density was 15 individuals/m2. Two commercial diets
were commonly used as a main food source for crayfish during the study period and were
purchased from Charoen Pokphand Group (WHS001-2016, diet 1: 30.23% crude protein,
10.74% crude lipid, 10.18%moisture, and 8.70% ash; diet 2: 26.53% crude protein, 10.41%
crude lipid, 13.96% moisture, and 6.87% ash). From March until May crayfish were fed
with high protein level pellets (diet 1) in order to reach commercial sizes in a short period.
In the pond feeding rates differed in time, but were in general about 3% of the crayfish
biomass per day.

During the sampling period, the annual mean water temperature was 19.75 ◦C, ranging
from 8.65 ◦C in January to 31.25 ◦C in August. The water depth was 1–1.5 m. Other water
physical-chemical parameters were: pH 8.61–9.30; ammonia nitrogen 0.14–0.43 mg/L;
nitrite 0.15–0.25 mg/L; total nitrogen 1.06 ± 1.67 mg/L; total phosphorus 0.0445 ± 0.17
mg/L; chemical oxygen demand (to quantify the amount of oxidizable pollutants in
https://en.wikipedia.org/wiki/Water) 5.83–8.80 mg/L; and chlorophyll-a 14.55–31.67 µg/L.
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Crayfish sampling
Crayfish were collected monthly from March 2016 to February 2017 with 8 cylindrical
traps baited with fresh silver carp. The traps were 100 cm long with 5 mm mesh, 30 cm
cross-section, and two opposing funnels 10 cm in diameter. During each sampling event,
trapping was performed and retrieved in the afternoon. The periods of trapping were one
day from June to September; two days from March to May, and October; and three days
from November to February. The same sampling site order and timetable were followed
every month in order to minimize the bias in measurement. Catch per unit effort (CPUE)
was calculated for each sampling as the daily number of crayfish per trap.

Sampled crayfish were sorted by sex. Cephalothorax length (CTL, from the tip of the
rostrum to the cephalothorax posterior margin) was measured by a 0.01 mm precision
caliper. Crayfish weight was determined by a 0.01 g precision scale. All samples were
then transported to the laboratory to dissect. During the whole sampling period, water
temperature was recorded every two hours by a HOBO data-logger (UA-002-64, HOBO
Pendant temperature/light 64 K data logger Onset, Bourne, MA, USA).

Reproductive pattern analysis
After transporting to the lab, females were checked for attached eggs, if present, they were
counted to determine the fecundity. Then they were frozen to −20 degrees to dissect,
following the European Directive 2010/63/EU for animal experiments. The gonads and
hepatopancreas of females were weighted to calculate the gonadosomatic index (GSI)
(measuring the sexual maturity and relating to ovary development) and hepatosomatic
index (HSI) (indice of energy status):

GSI= 100×Wg/Wt

HSI= 100×Wh/Wt

Where Wg , Wh, and Wt are the gonad weight, hepatopancreas weight and body weight
of P. clarkii, respectively.

Dissected gonads were fixed for 24 h in Bouin’s solution (Wuhan Servicebio Technology
Company, Wuhan, China) for histological analysis. Samples were dehydrated in 50%,
70%, 85%, 90%, 95%, and 100% ethanol and embedded in paraffin block. Then they
were subjected to microtomy to obtain sections with 4 µm (Leica RM2016, USA). Slides
were deparaffinized (2 changes of xylene, 20 min each; 3 changes of 100% ethanol, 5 min
each), rinsed in distilled water. Then all the slides were stained with hematoxylin and eosin
(Kiernan, 1999; Suvarna, Layton & Bancroft, 2012). The histopathological analyses were
performed on micrographs under an Olympus BX53 microscope (Fig. S1 ). The ovarian
development was classified into seven stages: stage I, stage II, stage III, stage IV, stage V,
stage VI, stage VII, following the method described by the previous study (Kulkarni, Glade
& Fingerman, 1991).

Population dynamics parameters estimates
In order to estimate the population dynamics parameters (K, Linf , Ø′, Z, M, F, and E),
the CTL data for each sex was used because it was more reliable in contrast to the flexible
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abdominal joint of crayfish (Ghia et al., 2015). K is referred to a relative growth rate and
has dimensions of time−1 and Ø′ has a clear biological meaning (the intercept of logK and
log Linf regression) and it is used to compare seasonal estimates of growth parameters as
well as overall estimates by different fitting techniques (Al-Hosni & Siddeek, 1999).

To estimate these parameters, we used the electronic length frequency analysis
(ELEFAN), a system of fishery assessment procedures that is commonly employed to
estimate population parameters based on length-frequency data (Pauly & David, 1980;
Taylor & Mildenberger, 2017). The FISAT software has been the most frequently used for
estimating population parameters. However, it is limited in importing data and performing
automated analyses (Mildenberger, Taylor & Wolff, 2017). The R package ‘‘TropFishR’’
remedies these shortcomings and uniquely adds the further data-limited method capacity
by including traditional and updated ELEFAN method (two optimization approaches:
generalized simulated annealing ELEFAN_SA, and genetic algorithm ELEFAN_GA) for
growth curves fitting and parameters estimates (Mildenberger, Taylor & Wolff, 2017; Taylor
& Mildenberger, 2017). So in this study, the frequency distributions were analyzed and
fitted with growth curves by the ELEFAN of R package ‘‘TropFishR’’.

The parameters were calculated as follows:
Ø′ = logK + 2log Linf (Pauly & Munro, 1984);
The expected longevity (tmax): tmax = 3/K + t0 (Huang et al., 2012);
The Z and M were obtained through the Powell-Wetherall method (Wetherall, 1986).

The F is obtained by subtractingM from Z. The E is defined as E = F /Z.
Where Linf is the asymptotic CTL (calculated as Lmax /0.95, where Lmax is the maximum

recorded CTL); K is the growth coefficient; t 0 is the initial condition parameter (when
crayfish have CTL = 0, although biologically meaningless, it represents an important
component of curve) and can be calculated as ln(−t0)=−0.3922–0.2752lnLinf −1.308lnK .

Statistical analyses
Because normality and homogeneity of variance assumptions were not satisfied, we used
non-parametric Kruskal–Wallis test followed by pairwise Wilcoxon Rank Sum test (post
hoc test) to detect the differences in GSI, HSI, CPUE, and the estimated population
dynamics parameters. Student’s t -test was used to compare the differences of CPUE
between females and males. The relationships between CPUE and temperature, and GSI
andHSI were analyzed by Pearson’s product-moment correlation test. Chi-squared test was
used to access the sex ratio balance among different months. Generalized additive model
(GAM) was used to illustrate the relationships between weight, CTL, and cephalothorax
width and fecundity. Statistical differences were set to 0.05 and all statistical analyses were
performed in the software R version 3.3.2 (R Core Team, 2017).

RESULTS
Sampling features
A total of 2,051 individuals (1,012 females and 1,039 males) were captured in the studied
area from March 2016 to February 2017. During the entire sampling period, the sex ratio
(females/males, Fig. 1) did not differ significantly from expected 1:1 sex ratio (chi-square
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Figure 1 Frequency histogram for females andmales of Procambarus clarkii throughout the year. Sig-
nificant differences from expected 1:1 ratio between sexes are shown by asterisks (* P < 0.05 and ** P <
0.001).

Full-size DOI: 10.7717/peerj.6214/fig-1

test: χ2 = 0.36, P = 0.55). However, they showed significant differences from 1:1 from
August to December except September, with females abundant in August, and the situation
reversed from October to December (chi-square test: August, χ2

= 10.38, P = 0.001;
September, χ2

= 3.13, P = 0.080; October, χ2
= 44.18, P < 0.001; November, χ2

= 8.91,
P = 0.003; December, χ2

= 9.29, P = 0.002).

Catch per unit effort (CPUE)
The temperature and CPUE of female and male crayfish are shown in Fig. 2. The CPUE
were significantly different across months both for females and males (Kruskal–Wallis test,
females: χ2

= 91.34, P < 0.001; males: χ2
= 89.04, P < 0.001). Post hoc analyses showed

that the CPUE of females in June, July, and August were significantly higher than other
months, while for males, July was significantly higher than other months except for June
(pairwise Wilcoxon Rank Sum test, females: June-March: P = 0.002, June–September:
P = 0.004, others: P < 0.001; males: July–June: P = 0.395, others: P < 0.05). There were
no significant differences observed between the CPUE of females and males (Students’
t -test, t = 1.97, P = 0.052). We further found that there were strong correlations between
temperature and CPUE for females and males (Pearson correlation test, females: r = 0.93,
t = 8.25, P <0.001; males: r = 0.81, t = 4.41, P = 0.001).

Reproductive pattern analysis
The monthly variations of GSI and HSI for females are shown in Fig. 3. There were
significant differences in GSI throughout months. The GSI in August, September, and
October were significantly higher than other months by Kruskal-Wallis and pairwise
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Figure 2 Variation of temperature and catch per unit effort (CPUE) for females andmales of Procam-
barus clarkii throughout the year. Box-plot representation: the horizontal line inside the box represents
the median, and the lower and upper borders of the box represent the 25th and 75th percentiles, respec-
tively. The upper and lower whiskers indicate the maximum and minimum range of the data excluding
outliers. Temperature values are shown as mean± SE.

Full-size DOI: 10.7717/peerj.6214/fig-2

Wilcoxon Rank Sum test (χ2
= 369.84, September–January: P = 0.003, October–January:

P = 0.02, others: P < 0.001). It increased remarkably from August to September. Although
there was slight increase in February, no significant differences were observed, when
compared with January,March, November andDecember (χ2

= 369.84, January: P = 0.70;
March: P = 0.06; November: P = 0.78; December: P = 0.80).

The HSI decreased progressively from September to October. Comparisons among
different months by Kruskal-Wallis and pairwise Wilcoxon Rank Sum test showed that
April, May, June, and July had significantly higher HSI values than that of other months
(χ2
= 266.99, all P < 0.05). Furthermore, we found that GSI was negatively correlated with

HSI (Pearson correlation test r =−0.38, t =−10.79, P < 0.001).
The proportions of different ovarian stages across the year are shown in Fig. 4. In

February, ovaries with stage I were present at maximum abundance, and ovaries with stage
II increased until May. In June, the percentage of ovaries with stage III was the highest. In
July, although ovaries with stage IV increased, the proportion showed only a slight increase
due to more juveniles with stage I occurrence. The proportion of ovaries with stage V
peaked in August. Most female crayfish ovaries developed to stage VI from August to
October, with a peak in September. In November, the proportion decreased dramatically
and ovaries with stage II dominated. From December to January, most ovaries developed
to stage VII after spawning.

Fecundity was only assessed from September to December. The relationships of weight,
CTL, cephalothorax width and fecundity explained by the GAM model are shown in
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Figure 3 Box-plot of gonadosomatic index (GSI) and hepatosomatic index (HSI) for females of Pro-
cambarus clarkii during the sampling period. Box-plot representation: the horizontal line inside the
box represents the median, and the lower and upper borders of the box represent the 25th and 75th per-
centiles, respectively. The upper and lower whiskers indicate the maximum and minimum range of the
data excluding outliers.

Full-size DOI: 10.7717/peerj.6214/fig-3

Fig. 5. The model explained the 76.6% of total deviance, with a high value of R2
= 0.745.

The relationship between weight and fecundity was approximately linear, indicating the
fecundity increased with increasing weight (F = 36.72, P < 0.001). Although increased with
cephalothorax width at the beginning, the fecundity was at the onset of decrease after 23
mm of the cephalothorax width (F = 3.80, P = 0.006). The fitted curve for CTL was slightly
concave based on the interpretation of the GAM plots, however, there was no evidence of
interactions observed (F = 1.97, P = 0.16). The average number of eggs berried per female
crayfish was 429± 9, with the minimum and maximum value of 290 and 610, respectively.

Population dynamics parameters estimates
The frequency distributions of monthly CTL (distinguished by sexes) and the growth
curves, fitted by ELEFAN using ‘‘TropFishR’’ package, are presented in Figs. 6A, 6B and
7A, 7B. The CTL data of collected crayfish was classified into 17 size classes of 4 mm interval
size classes. From the analysis of the CTL frequency distributions, five growth cohorts were
observed for both females and males, each cohort corresponding to 1 size class.

For females, the growth curves highlighted five cohorts (Fig. 6B). In the first cohort,
offspring released fromMay 2016 had about 25 mm CTL in February 2017. For the second
and third cohorts, individuals had about 28 mm and 43 mm CTL in March 2016 and
reached the CTL of about 42 mm and 49 mm in February 2017. For the fourth and fifth
cohorts, crayfish did not show obvious growth during the whole sampling period.
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Figure 4 Heatmap of gonad stages of female Procambarus clarkii in different months. As shown in
color key, white color represents absent and purple represents the highest occurrences. Samples were eight
for January, 48 for February, 156 for March, 94 for April, 118 for May, 127 for June, 147 for July, 106 for
August, 81 for September, 78 for October, 30 for November, and 19 for December, respectively.

Full-size DOI: 10.7717/peerj.6214/fig-4

Figure 5 Generalized additive model (GAM) explaining the relationship between weight, cephalotho-
rax length, cephalothorax width and fecundity of Procambarus clarkii. Solid lines represent the esti-
mated smooth function and the grey areas represent the 95% confidence interval.

Full-size DOI: 10.7717/peerj.6214/fig-5

For males, there were also five growing cohorts and showed similar growth patterns with
females (Fig. 7B). In the first cohort, offspring from May 2016 had about 28 mm CTL in
February 2017. For the second and third cohort, individuals had about 29 mm and 45 mm
CTL in March 2016 and reached the CTL of about 42 mm and 52 mm in February 2017.
Crayfish composed of the fourth and fifth cohorts also did not show obvious growth.
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Figure 6 Cephalothorax length (CTL) frequency distribution and growth curves of female
Procambarus clarkii during sampling time. CTL frequency data visualized in terms of catches (A)
and restructured data (B) with a moving average setting of MA= 5. Graphical fit of estimated and true
growth curves plotted through the CTL frequency data. The growth curves with the true values are
displayed in red, while the blue and green curves represent the curves of ELEFAN_SA (Electronical length
frequency analysis-simulated annealing, estimate growth paramaters with simulated annealing) and
ELEFAN_GA (estimate growth paramaters with genetic algorithm), respectively. Positive (black) and
negative (white) scored bins are indicated by the histogram direction.

Full-size DOI: 10.7717/peerj.6214/fig-6

The estimated population dynamics parameters (Linf , K, t 0, and tmax , Z, M, F, and E)
for both females and males during the sampling period are shown in Table 1. Although
females had higher values of K andM, results of pairwise Wilcox test showed no significant
differences in those parameters between sexes (P = 0.19).

DISCUSSION
The present study was based on a large sample size (2051 crayfish), aiming to improve the
knowledge of reproduction and population dynamics of commercial P. clarkii population.

Sex ratio
The overall sex ratio was near 1:1, but it varied throughout sampling months. In August
and September, females were abundant and the situation was reversed from October to
December, as reported by previous studies (Dörr et al., 2006; Mueller, 2007; Alcorlo, Geiger
& Otero, 2008; Peruzza et al., 2015). This discrepancy in the sex ratio observed in our study
was probably due to the reproductive activities of females, which tended to stay in burrows
for parental care to their offspring and could be less easily trapped (Gherardi & Barbaresi,
2000; Thiel, 2000; Dörr et al., 2006; Donato et al., 2018). In addition, we also recorded an
interesting phenomenon regarding the increase in proportion of males being observed
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Table 1 Von Bertalanffys parameters of the studied Procambarus clarkii population and others from Europe reported in previous studies.

Sex K (year−1) Linf (mm) t 0 (year) tmax (year) Ø′ (year−1) Z (year−1) M (year−1) F (year−1) E References

Male 0.81 60.93 −0.29 3.41 8.01 2.32 0.93 1.39 0.60 Present study
Female 0.86 58.12 −0.27 3.22 7.97 1.93 1.02 0.91 0.47
Male 0.340 68.25 −0.110 8.71 3.19 3.43 1.14 2.29 0.67
Female 0.350 67.20 −0.260 8.31 3.19 3.83 1.16 2.67 0.70

Maccarrone et al. (2016)

Male 0.59 69.35 −0.09 5.08 5.50 2.83 2.67 0.49
Female 0.58 73.71 −0.14 5.17 5.10 2.77 2.33 0.46

Dörr & Scalici (2013)

Male 0.49 74.60 −0.022 6.1 3.44 2.26 2.26 0.00 0.00
Female 0.45 79.80 −0.027 6.6 3.46 2.79 2.55 0.24 0.09

Chucholl (2011)

Male 0.33 68.3 −0.37 8.73 2.88 1.63 1.25 0.43
Female 0.32 74.6 −0.43 8.95 3.11 1.77 1.34 0.43

Scalici et al. (2010)

Male 0.69 62.71 −0.1 4.25 3.43 2.99
Female 0.68 65.52 −0.1 4.31 3.47 4.71

Scalici & Gherardi (2007)

Notes.
Linf , asymptotic cephalothorax length (CTL); K , growth coefficient; t0, initial condition parameter (when crayfish have CTL= 0, although biologically meaningless, it represents an important component
of curve); tmax , expected longevity; Ø′, growth parameter index; Z , total mortality rate;M , natural mortality rate; F , fishing mortality rate; E , exploitation rate.
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Figure 7 Cephalothorax length (CTL) frequency distribution and growth curves of male Procam-
barus clarkii during sampling time. CTL frequency data visualized in terms of catches (A) and restruc-
tured data (B) with a moving average setting of MA= 5. The graphical fit of estimated and true growth
curves plotted through the CTL frequency data. The growth curves with the true values are displayed in
red, while the blue and green curves represent the curves of ELEFAN_SA (Electronical length frequency
analysis-simulated annealing, estimate growth parameters with simulated annealing) and ELEFAN_GA
(estimate growth parameters with genetic algorithm), respectively. Positive (black) and negative (white)
scored bins are indicated by the histogram direction.

Full-size DOI: 10.7717/peerj.6214/fig-7

during the reproductive period (September to December), likely due to the search for a
mate (Peruzza et al., 2015).

In order to maximize short-term catch rates and profitability, farmers intentionally
target particular sizes or sex of crayfish during catching periods (Zhou et al., 2010). For
example, due to the low catch rates and reproductive activities of females, more male
crayfish are selectively harvested during the reproductive period. This males-directed
selectivity may impose adverse effects on reproductive output since it causes difficulties in
females finding mates. Similar cases were also found in crabs (Gray & Powell, 1966; Smith
& Jamieson, 1991). Thus, in fishery management, the possible side effects of sex selection
on reproductive success of the population should be considered (Zhou et al., 2010).

Reproductive pattern analysis
In the present study, spawning activities of female P. clarkii mostly took place from
September to November. However, several ovigerous females were also caught fromMarch
to May, which suggested the possibility of two recruitment phases yearly (March to May
and October to November). This was also confirmed by the characteristics of the samples
collected in spring, where the release of larvae frequently took place. We inferred that those
females had most likely laid eggs at the end of the previous autumn. This was because eggs
development was strongly linked to water temperature and previous studies showed that
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it would take up to 130 days until eggs hatching at the temperature below 10 ◦C (Suko,
1954; Suko, 1956). During our study, the mean temperature was 13.58 ◦C and 10.03 ◦C
for November and December, which suggested that eggs in late autumn were probably
prevented from hatching by low water temperature. Those eggs, having survived the harsh
winter conditions, would be more likely to hatch in the next spring when the environment
is favorable. Accordingly, we found crayfish larvae in spring. Thus, delaying hatching could
be an adaptive strategy of P. clarkii for unfavorable environmental conditions such as low
water temperature in winter (Lass et al., 2005).

In this study GSI increased rapidly from July reaching its peak in September and
then diminished from October, and was near to the lowest value in November. This
indicated that crayfish spawning initiated in September and was achieved in November.
Although February encountered a slight increase in GSI values, we speculated that it
might be attributed to the small sampling sizes since most crayfish slowed down their
activities and were hard to catch due to low water temperature (Rodríguez, Bécares &
Fernández-Aláez, 2003).

In some places, different recruitment events were found per year. For instance, there were
two-yearly distinct recruitments in Italy (Scalici & Gherardi, 2007;Maccarrone et al., 2016),
southern Portugal (Adao & Marques, 1993), Spain (Cano & Ocete, 1997; Alcorlo, Geiger &
Otero, 2008), America (Sommer, 1984) and Japan (Suko, 1958), while onemain recruitment
occurred in central Portugal (Anastácio & Marques, 1995) and Germany (Chucholl, 2011).
The differences in plastic recruitment patterns were difficult to explain, because gonad
development and eggs incubation depended on different environmental features, such as
water temperature, habitat uses, and food resources (Sastry, 1983; Harlioğlu & Farhadi,
2017). In our study, the single spawning peak with two recruitment patterns is most likely
driven by the low water temperature, but further studies are still needed to test it.

Generally, the fecundity of crustaceans is correlated with females’ body sizes or weight,
and it shows variability in different populations (Harlioğlu et al., 2004; Nakata & Goshima,
2004). Our study accords with those findings. The strong linear relationship between weight
and fecundity indicated that heavier females tended to produce more eggs. Similar results
have been reported for other crustaceans such as Cherax quadricarinatus (Öndes, Kaiser &
Murray, 2017) and Oziothelphusa senex senex (Swetha, Girish & Reddy, 2015). Moreover,
it was noteworthy that fecundity started to decrease when cephalothorax width was over
23 mm. Actually, this result was in contrast from what were reported in several previous
studies, which showed fecundity always increased with the increasing cephalothorax width
(Lizarraga-Cubedo et al., 2003; Hamasaki, Fukunaga & Kitada, 2006; González-Pisani &
Greco, 2014). We inferred that the declined fecundity was mostly due to the onset of
senescence of larger females, and thus resulting in lower relative reproductive output
(Sudha & Anilkumar, 1996). Furthermore, the average fecundity of P. clarkii in the current
study was much higher than those in Germany (Chucholl, 2011) and its native range (Penn,
1943), but similar to that in Kenya (Oluoch, 1990). Such differences in fecundity could be
explained by the different female sizes or the temporal variations in food availability for
different populations (Beyers & Goosen, 1987). In our study, favorable environment such
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as abundant food resources (e.g., artificial diet) could result in large young females and
thus higher reproductive output (Alcorlo, Geiger & Otero, 2008).

Population dynamics parameters estimates
Length-frequency analysis showed the structure of commercial P. clarkii population
constituted of five cohorts for both females and males. The second and third cohorts were
constituted of abundant younger crayfish, which were fast-growing individuals. Actually,
cohorts of P. clarkii varied considerably in numbers across populations. For example, there
were five cohorts in Portugal (Anastácio et al., 2009), six in Italy (Dörr & Scalici, 2013),
seven in China (Huang et al., 2012), and eight and nine for males and females in Germany
(Chucholl, 2011). It was easy to observe differences in CTL sizes of P. clarkii among those
studies. We inferred that the differences were mainly attributed to trapping activities. In
our study, only crayfish with a CTL higher than 15.20 mm were captured, which could be
caused by the selectivity of sampling traps used in studies. Therefore, it was possible that
the CTL frequency analysis only partially described the real population structure.

Comparing with previous studies on Von Bertalanffy’s growth parameters of P. clarkii
showed that the Linf in our study was smaller than others (Table 1, Scalici et al., 2010;
Chucholl, 2011; Dörr & Scalici, 2013; Maccarrone et al., 2016). We speculated that it could
be related to density-dependent growth. Generally, higher density leads to a decline in
resources availability, which consequently could result in a decrease in Linf (Svedäng &
Hornborg, 2014). The K and Ø′ obtained for females and males in our study were higher,
which suggested that the P. clarkii in our studied area maintained a relatively high growth
rate. The variability in growth rates of P. clarkii may relate to several ecological factors,
especially temperature and nutrition (Dörr & Scalici, 2013). The optimal temperature
for P. clarkii growth is approximately 23 ◦C and low temperatures at higher latitudes
in the previous studies probably lead to slow growth rates (Espina & Herrera, 1993).
Crayfish growth is highly correlated with nutrition, and the high food availability and
nutrition-sufficiency of artificial diet in our study could guarantee P. clarkii better growing
conditions than the wild ones.

Our findings showed that fishing mortality rate F of male P. clarkii was higher than
females, which indicated that males were under high fishing pressure (0.91 and 1.39 year−1

for females and males, accounting for 47% and 60% of Z, respectively). We inferred that
this was related to the males-directed fishing selection during the reproductive period.
In our study, high proportions of males were captured during reproduction. This fishing
selection generally causes damage and stress to males, which has negative effects on their
growth and survival (Chopin & Arimoto, 1995). Even though some crayfish escape from
fishing, they may be injured and die later due to physical damage, which might account
for the elevated mortality in our study. M is related to many factors except fishing, such
as predation and starvation. For the aquaculture practice, sufficient nutrition supplies and
farmers’ efforts to eradication other unwanted fish or crayfish guarantee crayfish under
very low starvation and predation pressure in our study, which could explain why M is
lower than that of wild populations (Table 1). Generally, M has been widely used as the
upper limit of F for sustainable fishing, which suggests that E should be less than 0.5 to
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prevent populations from overfishing (Gulland, 1971; Gulland, 1983;MacCall, 2009; Froese
et al., 2016). The estimated E of 0.60 for males in our study was higher, indicating that the
male P. clarkii was overexploited and under high fishing pressure. In such a situation, the
fishing activities should be well monitored to protect the commercial P. clarkii population
from further depletion.

Implications for aquaculture management
In recent years, P. clarkii has become one of the most important freshwater products
in China, and the market demands greatly exceed aquaculture supplies. As the males P.
clarkii have been overexploited, efforts to improve productivity and sustainability of the
crayfish population are crucial for the aquaculture management. Therefore, balanced
exploitation should be encouraged to alleviate fishing mortality arising from unsustainably
fishing activities and increase the overall sustainability of P. clarkii populations (Svedäng
& Hornborg, 2014). Based on the results of our study, we suggest reducing fishing pressure
for commercial P. clarkii population through the following two parts.

First, we suggest reducing the fishing intensity on immature crayfish before they reach
maximum sizes. In our study, the second and third growth cohorts were made of abundant
fast-growing individuals while crayfish of the fourth and fifth growth cohorts showed
extremely slow growth. For sustainable exploitation scenario, reducing fishing on younger
crayfish and selectively catching old crayfish with slow growth or small sizes will help to
promote large-sized individuals and render crayfish culture more profitable. These old
crayfish can be distinguished byCTL sizes (more than 50mm, Figs. 6B and 7B) andmaturity
(Penn, 1943; Cang, Miltner & Avault, 1982; Jarboe & Romaire, 1995; Taketomi, Murata &
Miyawaki, 1990; Taketomi, Nishikawa & Koga, 1996). This would also offer more access
to environmental resources (e.g., food availability) for juveniles and then may increase
growth rates.

We also suggest reducing the fishing intensity and avoiding sex selection during the
reproductive phase of P. clarkii. Trapping is a widespread method for management and
is considered to be highly efficient especially for higher crayfish sizes. However, this high
efficiency is achieved only when the trapping activity is conducted for a proper period
of time. The high fishing pressure during the reproductive season could have negative
effects on reproductive potentials, and then influence long-term stock productivity (Van
Overzee & Rijnsdorp, 2015). Furthermore, fishing may also cause the death of offspring.
Thus, restricting fishing pressure on spawning crayfish would be an effective measure to
enhance reproductive output and promote population productivity. In our study, more
male crayfish were harvested during the reproductive period, which may cause difficulties
in females finding mates, and thus affect reproductive success. Based on our findings that
the spawning activities and the main recruitment occurred from October to November,
we suggest reducing fishing pressure and avoid male selection during this period.

CONCLUSIONS
This study was conducted to determine the reproductive pattern and population dynamics
of commercial P. clarkii population. The spawning activities of female P. clarkii took place
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from September to November. There were two recruitments yearly, with a major one
from October to November and the minor one from March to May. There were five
growth cohorts for females and males, with higher growth rates than previous studies.
Males P. clarkii were overexploited and under high fishing pressure, as evidenced by
a high exploitation rate of 0.60 for males. Our findings thus suggest reducing fishing
intensity on immature crayfish and avoid male selection during the reproductive phase
to improve aquaculture sustainability. With this study, we hope to encourage further
works on commercial crayfish stock assessment and management to promote population
productivity and sustainable fisheries.
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