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21 Abstract

22 Surface runoff generation capacity can be modified by land use and climate changes. Annual 

23 runoff volumes have been evaluated in a small watershed of tropical forest (Brazil), using 

24 SWAT model. Firstly, the accuracy of SWAT in runoff predictions has been assessed by 

25 default input parameters and improved by automatic calibration, using 20-year observations. 

26 Then, the hydrological response under land uses (cropland, pasture and deforested soil) 

27 alternative to tropical forest, and climate change scenarios has been simulated. SWAT 

28 application has showed that, if forest was replaced by crops or pasture, the watershed's 

29 hydrological response would not significantly be affected. Conversely, a complete 

30 deforestation would slightly increase its runoff generation capacity. Under forecasted climate 

31 scenarios, the runoff generation capacity of the watershed will tend to decrease and will not be 

32 noticeably different among the representative concentration pathways. Pasture and bare soil 

33 will give the lowest and highest runoff coefficients, respectively. 

34 Keywords: surface runoff; hydrological model; cropland; pasture; deforestation; Global 

35 Circulation Model. 
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2

36

37 1. Introduction 

38

39 Tropical forests, the richest terrestrial ecosystems in biodiversity and structural complexity terms 

40 (Whitmore 1990), are essential for maintaining the ecological integrity of watersheds (Ataroff & 

41 Rada 2000; Neill et al. 2001). However, the negative effects of land use and climate changes 

42 threaten these delicate environments.

43 Land use is a critical issue that affects primarily the hydrological cycle and the water 

44 balance of an ecosystem (Sui 2005), since the land cover influences potential evapotranspiration, 

45 infiltration, surface runoff and sediment yield in a watershed (Durães et al. 2011). Land use is 

46 subject to changes at several spatial scales, which significantly affects ecological systems (Vitousek 

47 1994; Piniewski et al. 2014). For instance, a heavy decrease in land cover of tropical areas, such as 

48 deforestation of upstream watersheds and urbanization pressure, generally leads to more intense 

49 stormflow and erosion events with higher impacts on the water balance (de Paulo Rodrigues da 

50 Silva et al. 2018). In tropical conditions the effects of changes in land use and cover on the 

51 hydrological response of a watershed is still controversial (dos R. Pereira et al. 2016a); regarding 

52 deforestation risk, researches are not unanimous on how the lack of tree cover due to human actions 

53 impacts hydrology in tropical watersheds (Baker and Miller  2013; Chandler 2006). 

54 In addition, climate change, resulting from the increase in greenhouse gas emissions, 

55 determines modifications of the hydrologic response of a watershed, and these impacts on the water 

56 resources availability (Arnell 1999).Future climate trends on a planetary scale show a significant 

57 increase in the temperature and a reduction in annual rainfall (Estrela et al. 2012; Senent-Aparicio et 

58 al. 2017). The increase in global temperature, modifying the evapotranspiration rates (Paparrizos et 

59 al. 2016; Urrutia & Vuille 2009), will significantly change the frequency and magnitude of 

60 hydrological events (i.e., floods and droughts) and will heavily influence the hydrological processes 

61 at local and global scales. 

62 In general, the hydrological impacts of climate change have been widely investigated using General 

63 Circulation Models (GCMs), which provide information about historical, current and future climate 

64 (Gonzalez et al. 2010; Jing et al. 2015). The impacts of change impacts on hydrology are commonly 

65 evaluated using a pre-processed output from one or several GCMs as climatic input to hydrological 

66 models (Piniewski et al. 2013). Future precipitation and temperature data forecasted by GCMs give 

67 insights on future potential changes in the hydrological response of a large-scale territory (Hoomehr 

68 et al. 2016). Different greenhouse gases emissions (GHGs) scenarios can be projected, following 

69 the so-called Representative Concentration Pathways (RCPs) of the Intergovernmental Panel on 
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3

70 Climate Change 5th Assessment Report (IPCC 2014; Almagro et al. 2017). According to the latest 

71 IPCC report (IPCC 2014), the global mean surface temperature increased by 0.85 °C from 1880 to 

72 2012.

73 The simulation of watershed hydrology is perhaps the most important tool for water 

74 resource planning and management, since it helps to evaluate and predict by a quantitative approach 

75 the hydrological processes that control water movement at various time scales (Spruill et al. 2000). 

76 More specifically, watershed hydrology can be simulated to estimate freshwater availability and 

77 distribution (Piniewski et al 2017), to predict stream flows, and to evaluate the hydrological 

78 response due to changes in land use and cover (dos R. Pereira et al. 2016a), and also under 

79 simultaneous scenarios of climate change. Computer models are essential for simulating hydrologic 

80 processes and their responses to both natural and anthropogenic factors at watershed scale (Lironga 

81 & Jianyuna 2012) and for developing water management strategies (de Paulo Rodrigues da Silva et 

82 al. 2018). Hydrological computer models can be coupled to GCMs to produce potential scenarios of 

83 climate change effects on water resources. By this combination, the effects of climate change can be 

84 linked to the hydrological response of a watershed, estimating water runoff, sediment yield and 

85 impacts on water quality (Ficklin et al. 2009). 

86 A number of watershed-scale models able to simulate surface runoff, soil erosion and 

87 sediment/pollutant transport have been developed in the last decades. These models vary in 

88 complexity and data input requirements (Borah & Bera 2004). Among the available models, SWAT 

89 is one of the most used to determine streamflow response to changes in land cover conditions, 

90 agricultural operations, and natural rainfall trends. However, in spite of its great potential as 

91 powerful tool for analyses about watershed hydrology, SWAT remains yet to be fully exploited for 

92 hydrological and predictions in tropical regions (de Paulo Rodrigues da Silva et al. 2018). 

93 Therefore, in order to consolidate its use in delicate and complex environments, SWAT still 

94 requires implementation in watersheds with climate and soil typical of tropical conditions (dos R. 

95 Pereira et al. 2016b). Previous applications in these environmental contexts have shown that, after 

96 calibration and validation, SWAT provides satisfactory performances in simulating annual and 

97 monthly stream flows (Dourado-Hernandes et al. 2018). These results make the model an effective 

98 means for hydrological predictions of water yields at the watershed scale (Douglas-Mankin et al. 

99 2010; Gassman et al. 2007). 

100 However, although  research has mainly focused on streamflow using the SWAT model for 

101 temperate zones, less attention has been paid to evaluations of watershed hydrology under land 

102 cover and climate change scenarios in Brazil (de Paulo Rodrigues da Silva et al. 2018). Only limited 

103 applications of hydrological models to assess the effects of climate and land use changes on the 
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104 hydrological response of a tropical areas are available (e.g., dos R. Pereira et al. 2016a; Almagro et 

105 al. 2017; Dourado Hernandes et al. 2018; de Paulo Rodrigues da Silva et al. 2018). This is 

106 especially important in watersheds with low availability of environmental data (Fukunaga et al. 

107 2015; Zema et al. 2018). These applications are instead important for a region where hydrology has 

108 a high level of complexity, sourcing from both natural variability and human influences (de Paulo 

109 Rodrigues da Silva et al. 2018). This is the case of the Atlantic forest, the most threatened biome in 

110 Brazil, where the hydrological functions in forest ecosystems have had little attention by researchers 

111 (Zema et al. 2018), also because of the scarcity of hydrological observations (De Mello et al. 2016; 

112 Marmontel et al. 2018). The basic hypothesis of this study is that the hydrological response of a 

113 tropical watershed, as modified by land use and climate changes at basin scale, can be simulated 

114 and predicted by the SWAT model. To address this hypothesis, this paper has evaluated the SWAT 

115 accuracy in simulating the surface runoff in a watershed of South-East Brazil, which is 

116 representative of the very small and numerous watersheds of Mata Atlantica tropical forest. A large 

117 temporal scale was adopted to evaluate the watershed's runoff generation capacity, simulated by the 

118 model at the daily scale, under changed climate and land use in successive dry and wet years. First, 

119 the applicability and reliability of SWAT have been verified using a 20-year (1993-2014) database 

120 of observations. Then, the model has been used at the annual scale to simulate the watershed 

121 hydrological response under land uses (cropland, pasture and deforested soil) alternative to tropical 

122 forest and climate change scenarios. These latter have been predicted using an ensemble of three 

123 GCMs (MIROC5, GISS-E2-H and MRI-CGCM3). By this modelling exercise, indications about 

124 the most sustainable land use for water resource protection in this delicate ecosystem on the long 

125 term and under climate change forecasts can be given to land planners.

126

127 2. Materials and methods 

128

129 2.1 Study area 

130

131 The “A” micro-watershed (Figure 1) is located in the Parque Estadual da Serra do Mar (Cunha 

132 Municipality, Sao Paulo State, Brazil). It is a headwater, which is a tributary of the Paraibuna river, 

133 which, in turn, flows into the main Paraíba do Sul river (East Atlantic region).The region is covered 

134 with the Mata Atlantica rainforest, which is ecologically important for the conservation of 

135 biodiversity and endemic species disappearance (Galindo-Leal and Câmara 2005).

136 The studied area consists of a mountain plateau at an altitude of 1000-1200 m. The 

137 examined micro-watershed covers an area of 0.38 km2, characterized by steep hillslopes (mean 
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5

138 slope of 22%). The main channel (whose mean slope is 12%) rises at 1171 metres a.s.l. and flows 

139 after 930 metres into the Paraibuna river (outlet coordinates 23°15'28"S, 45°2'26"W) at a height of 

140 1062 m (Figure 1). According to Kirpich (1940), the concentration time of the watershed (that is, 

141 the time required by runoff to reach the closure section from the farthest hydraulically distant point, 

142 Chow et al., 1964) is estimated in 0.14 hours. The climate of the area is “Cwa”, humid subtropical 

143 climate (Köppen classification). Precipitation is well distributed throughout the year (on the average 

144 2200-2300 mm/year), and the maximum occurs in summer, while winters are dry. The average 

145 annual temperature is 19.1 ºC, while the evapotranspiration is 682 mm/year (National Institute of 

146 Meteorology of Brazil, INMET). The latter is mainly due plant transpiration, since water 

147 evaporation from soil is quite negligible in Mata Atlantica (Fujieda et al. 1997). 

148 Except on the case of very intense storms, the water course shows a constant hydrological 

149 regime, which is typical of tropical streams.

150 The area of the watershed is totally covered by tropical rain forest, an evergreen cover with 

151 a uniform canopy 20-m high, but some trees can reach 40 m (according to surveys by the Brazilian 

152 Institute of Geography and Statistics, IBGE) (Table 1). Since forest has been subjected to logging 

153 for more than 50 years, secondary vegetation is now recovering (Aguiar et al. 2001). 

154 According to the taxonomic classification of the IBGE, the soil of the watershed is CX3 type 

155 (CX Tb Dystrophic + LVA Dystrophic), , which corresponds to the  Ferralic Cambisol and Rhodic 

156 Ferralsol classes of the FAO classification (Klam and Van Reeuwijk, 2000). Its texture is sandy 

157 loam (54% of sand, 16% of silt and 30% of clay, with 3.4% of organic matter) in the upper layer 

158 (350 mm) and clay (40% of sand, 7% of silt and 53% of clay, with 0.6% of organic matter) in the 

159 lower layer (350 to 1850 mm). The saturated hydraulic conductivity is 2 mm/h for both layers and 

160 the soil's hydrological group is "C" according the USDA-SCS classification (1986). 

161

162 2.2 The hydrological database

163

164 Meteorological data were recorded by a weather station (Meteodata model) located at the watershed 

165 outlet. The station consisted of a rain gauge, a hygrothermograph, a pyranometer, a weather vane 

166 and an anemometer (Table 1).

167 Precipitation and runoff volumes were measured in 22 years (January 1993 to December 

168 2014). Precipitation data was recorded at the daily scale, while discharge data were continuously 

169 measured at the watershed outlet by an ultrasonic flow meter (WR-11Z model, NAKAASA 

170 corporation, precision 0.5 cm) (Table 1). The measured flow depths were converted into water 
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6

171 discharge by a regression equation, as detailed in the studies of Cicco et al. (1987) and Zema et al. 

172 (2018). Finally, the daily runoff volume was estimated from the discharge.

173 Observations of precipitation and runoff daily data simulated by SWAT were aggregated at 

174 the annual scale for modelling purposes. The hydrological response of the watershed was quantified 

175 by the annual runoff coefficient (hereinafter "RC"), equal to the ratio between the runoff volume 

176 and the cumulative precipitation of the same year.

177

178 2.3 Hydrological modelling

179

180 2.3.1 The SWAT model 

181

182 SWAT is a time-continuous, long-term, distributed-parameter, process-based hydrological model 

183 that was developed to simulate surface and subsurface flow, soil erosion as well as sediment and 

184 nutrient movement through a watershed (Arnold et al. 1998). Although SWAT has been mainly 

185 used to study the hydrology of medium to large watershed (Piniewski et al. 2013), several 

186 applications are found also in small watersheds (e.g., Meaurio et al. 2015; Qiu et al. 2012; Kang et 

187 al. 2006; Licciardello et al. 2011).

188 In the SWAT model, a watershed is delineated into multiple sub-watersheds topologically 

189 connected by stream networks (Strauch & Volk 2013). Each sub-watershed is further divided into 

190 lumped hydrologic response units (HRUs). The HRUs are formed by overlaying maps of land use, 

191 soil type, and topography (Neitsch et al. 2010), each one resulting of unique combination of these 

192 features (De Mello et al. 2017).

193 The model simulates the hydrologic cycle separately for the "land phase" and "channel" or 

194 "routing phase" processes (Strauch et al. 2013). The land phase, including water flow, nutrient 

195 transport, and vegetation growth, is simulated at the HRU level (Strauch & Volk, 2013). Water, 

196 sediments and nutrients are summed for all HRUs of a sub-watershed and the resulting flows are 

197 then conveyed in the channel phase routing through channels, ponds, and reservoirs to the 

198 watershed outlet (Ficklin et al. 2009). Therefore, land phase and channel processes are integrated by 

199 SWAT at the sub-watershed level (Strauch & Volk, 2013).

200 In each HRU, SWAT estimates the components of the hydrological cycle (such as surface 

201 runoff, baseflow, evapotranspiration, infiltration, and soil moisture change, Lironga & Jianyuna, 

202 2012) using the following water balance equation (de Paulo Rodrigues da Silva et al. 2018):

203
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204  (1)



T

1t
fan0t RWETSRSWSW

205 where:

206

207 SWt = final soil water content on day t (mm)

208 SWo = initial soil water content on day i (mm)

209 T = time (days)

210 R = precipitation depth on day i (mm)

211 Sn= surface runoff volume on day i (mm)

212 ET = evapotranspiration depth on day i (mm)

213 Wa = amount of water entering the vadose zone from the soil profile on day i 

214 Rf = amount of return flow on day i. 

215

216 To estimate the components of the hydrological cycle, SWAT requires as input the daily 

217 data of precipitation, maximum and minimum temperature, solar radiation, relative humidity, and 

218 wind speed (de Paulo Rodrigues da Silva et al. 2018). Each hydrological component is estimated 

219 through SWAT sub-models related to climate, hydrology, erosion, land cover and plant growth, 

220 nutrients, pesticides, and land management (Neitsch et al. 2005). Surface runoff and infiltration 

221 volumes are simulated from daily precipitation using the Soil Conservation Service (SCS) Curve 

222 Number (CN) method (SCS, 1972). 

223  

224 2.3.2 Model implementation, calibration and validation

225

226 SWAT was implemented in the “A” micro-watershed, based on morphometry, climate, soil and 

227 land use input data, and evaluated across a period of 22 years (1993 to 2014). 

228 A 30-m resolution Digital Elevation Model (produced by a Shuttle Radar Topography 

229 Mission) was used to generate the topography (Table 1). Thus, the watershed was discretised in 

230 SWAT into HRUs and its stream network was segmented into channels. 

231 Climate data were provided by the meteorological station (Table 1) and input into the 

232 SWAT climate subroutines. Following Chow et al. (1964), surface runoff was separated from 

233 baseflow by the linear method applied to the observed streamflow records. 

234 Soil parameters were derived from the Brazilian soil map prepared by IBGE in 2001 (Table 

235 1). Two different soils (prevalently, sandy loam from surface to 350 mm, and clay from 350 mm to 

236 1850 mm) were assumed. The land use was tropical rain forest.
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8

237 The hydrological SWAT sub-model was run at the daily scale and its hydrological 

238 predictions evaluated at the annual scale by temporal aggregation.  The default soil parameters were 

239 initially given to the model (Table 2). A default value of CN (equal to 70) of forest was first 

240 assumed, according to the standard procedure set by USDA (1972). The years of 1993 and 1994 

241 were appended before the simulation period and used to warm up the model, in order to setup the 

242 soil’s water content (Licciardello et al. 2007; von Stackelberg et al. 2007; Zhang et al. 2007; dos R. 

243 Pereira et al. 2016).

244 The model was calibrated and validated using the split-sample technique (Klemes 1986), 

245 applying the input parameters previously calibrated for a given period (calibration period, 1993-

246 2004) to another period (validation period, 2005-2014) (dos R. Pereira et al. 2018). Prior to the 

247 calibration and validation process, the most sensitive parameters of the SWAT model for estimating 

248 surface runoff were identified by a sensitivity analysis, using SWAT-CUP (Calibration and 

249 Uncertainty Programs, Abbaspour 2007). 

250 According the SWAT-CUP user's manual, the most sensitive parameters were identified 

251 using the "p-value" of a t-Student distribution, which tests the null hypothesis that each input 

252 parameter has not any effects on the model's output. A low p-value (p = 0.05 is the generally 

253 accepted threshold) indicates that this null hypothesis can be rejected. Therefore, if p < 0.05, the 

254 changes in the parameter are associated with changes in the surface runoff and that parameter is 

255 very sensitive.

256 SWAT-CUP was also used for the automated calibration of the model, adjusting the most 

257 influential parameters for streamflow simulation, as identified in the previous steps. More 

258 specifically, the automatic calibration was carried out (Fukunaga et al. 2015; Abbaspour 2007) as 

259 follows: (1) a threshold of the Nash & Sutcliffe coefficient (E, see below) higher than 0.4 was 

260 adopted as objective function; (2) physically meaningful absolute minimum and maximum ranges 

261 for the parameters being optimised were assumed using the values suggested in SWAT and SWAT-

262 CUP guidelines; (3) one parameter at a time, all the parameters were varied between the minimum 

263 and maximum values until the highest value of E was achieved. 

264

265 2.3.3 Evaluation of the runoff prediction capacity of the model in current conditions

266

267 Both for calibration and validation processes, the runoff prediction capability of SWAT was 

268 evaluated on the annual scale, due to the need of long-term (i.e., decadal) predictions required by 

269 this study. 
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9

270 SWAT performance was evaluated by (i) visually comparing the observed and simulated 

271 values of runoff volumes in scatterplots; and (ii) adopting a set of quantitative criteria, commonly 

272 used in hydrological modelling:

273  the main statistics (i.e. the maximum, minimum, mean and standard deviation of both the 

274 observed and simulated values)

275  the coefficient of determination (r2)

276  the coefficient of efficiency of Nash & Sutcliffe (1970, E)

277  the Coefficient of Residual Mass (CRM, also reported as "percent bias", PBIAS). 

278 The equations for their calculations are reported in the works of Moriasi et al. (2007), Zema 

279 et al. (2016), and Van Liew & Garbrecht (2003). The optimal values of these criteria are 

280 summarised as follows:

281  the closer the statistics, the more accurate the model predictions;

282  r2 ranges from 0 (no agreement between model and data variance) to 1 (perfect agreement); 

283 values over 0.5 are acceptable (Santhi et al. 2001; Van Liew et al. 2003; Vieira et al. 2018); 

284  E, the most common measure of model accuracy, varies from −∞ to 1; the model accuracy is 

285 "good" if E ≥ 0.75, "satisfactory" if 0.36 ≤ E ≤ 0.75 and "unsatisfactory" if E ≤ 0.36 (Van 

286 Liew & Garbrecht 2003); 

287  CRM (or PBIAS), if positive, indicates model underestimation, whereas, if negative, 

288 overestimation (Gupta et al. 1999); an absolute value below 25% is considered fair (Moriasi 

289 et al. 2007). 

290

291 2.3.4 Analysis of the watershed's hydrological response to land use and climate changes 

292

293 Regarding land use changes, four scenarios were evaluated under the current weather conditions to 

294 assess the effect of land cover change on the hydrological response of the watershed. The 

295 differences of surface runoff generated by these scenarios in the period 1993-2014 were compared 

296 to the current landscape. In more detail, we simulated the hydrological effects of the replacement of 

297 native tropical forests (baseline scenario) with: (a) pasture (tropical herbaceous species); (b) crop 

298 cultivation (corn species); (3) bare soil (which is the effect of the total deforestation of the 

299 watershed) (Table 3). The choice of these scenarios is justified by the fact that areas previously 

300 covered by natural vegetation have been replaced by pasture or agriculture in most of the tropical 

301 semiarid regions of the world, resulting in a substantial increase in degraded or intensively 

302 cultivated areas. Hence, the scenarios analysed by the SWAT model can be helpful to identify 

303 conservation measures of natural resources and to recover degraded areas in Brazil and in tropical 
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304 regions (de Paulo Rodrigues da Silva et al. 2018). The hydrological effects of these land use 

305 changes were input in SWAT by modifying the initial CNs. The values related to the land uses 

306 alternative to forest were derived from the USDA-SCS guidelines for the soil hydrological group 

307 "C".

308 Regarding the future weather projections, the climate changes forecasted for the next 80 years 

309 were estimated by an ensemble of three Global Circulation Models (GCMs), which mathematically 

310 represents the general circulation of a planetary atmosphere or ocean (Zhang et al. 2016). The GCM 

311 numerical structure is based on integration of many equations describing fluid dynamics and 

312 chemical processes (Krisanova et al. 2016). In this study, we used the following GCMs:

313  MIROC5 (Atmosphere and Ocean Research Institute, University of Tokyo, National Institute 

314 for Environmental Studies, and Japan Agency for Marine‐Earth Science and Technology, 

315 Japan)

316  GISS-E2-H (NASA Goddard Institute for Space Sciences, USA) 

317  MRI-CGCM3 (Meteorological Research Institute, Tsukuba, Japan).

318 Since GCMs usually provide global data at a rather coarse resolution (grid size about 100-200 

319 km), GCM simulations were downscaled at a finer resolution suitable for regional or sub-regional 

320 hydrological modelling (25-50 km). Following Zhang et al. (2016), the Statistical Downscaling 

321 Method (SDSM), developed by Wilby et al. (2002), was applied to downscale the results for each 

322 GCM in terms of regional climate forcing, i.e., the SWAT model input data over the watershed. 

323 SDSM application consisted of five steps: 1) predictant (observed data) and predictor (large-scale 

324 atmospheric variable) selection; 2) model calibration; 3) weather generator; 4) model validation; 

325 and 5) future climate scenario generator.

326 Future monthly values were simulated and then transformed into daily values using the 

327 weather generator of SWAT. The use of the internal weather generator of SWAT, instead of the 

328 climate model outputs at the daily scale, allowed by-passing the not ease availability of data at the 

329 lowest time scales of GCMs. 

330 GCMs are driven by atmospheric GHG concentrations. As GHG emission scenarios, the so-

331 called Representative Concentration Pathways (RCPs 2.6, 4.5, 6.0 and 8.5) were adopted (IPCC, 

332 2013; Krisanova et al. 2016). The radiative forcing level in 2100 of RCP8.5 is the highest while that 

333 of RCP2.6 is the lowest (Li and Fang, 2016).

334 From each GCM and RCP, the monthly precipitation and maximum and minimum 

335 temperatures for four 20-year periods (2020-2039, 2040-2059, 2060-2079 and 2080-2099) were 

336 forecasted, in order to simulate surface runoff for the experimental watershed under the current 

337 tropical forest or the other simulated land uses (pasture, cropland and bare soil) (Table 3). 
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11

338 Henceforth, these two conditions (actual precipitation, 1993-2014, and current land use, tropical 

339 forest) will be indicated as "baseline" scenarios.

340 The baseline scenario (1993-2014) with the observed data may not agree with the same 

341 period projected by the GCMs. If so, adjustments must be considered in the simulations of future 

342 climate change scenarios, with data corrections to minimize the existing bias. These corrections are 

343 based on the differences between observed and historical simulated values (Lenderink et al., 2007; 

344 Santos et al., 2019). Therefore, the surface runoff was simulated by the calibrated SWAT model, 

345 using the historical precipitation data of the three GCMs (available for the period 1993-2005). 

346 These runoff simulations were finally compared to the corresponding values, simulated using the 

347 historical data of observed precipitation for the same baseline period.

348

349 2.3.4 Statistical analysis

350  

351 The statistical analysis was carried out using ANOVA. One-way ANOVA was applied to evaluate 

352 the significance of differences: (i) in precipitation among the RCP scenarios of future climate 

353 change; and (ii) in runoff volume and coefficient predicted by SWAT among the land uses. Then, 

354 using two-way ANOVA and pairwise comparison by Tukey’s test (at p < 0.05), we evaluated 

355 whether the mean runoff volumes and coefficients (response variables) predicted by the model were 

356 different among land use and climate change scenarios (independent factors). In order to satisfy the 

357 assumptions of the statistical tests (equality of variance and normal distribution), the data were 

358 subjected to normality test or were square root-transformed whenever necessary. All the statistical 

359 tests were carried out by XLSTAT software.
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361 3. Results 

362

363 3.1 Evaluation of the runoff prediction capacity of SWAT model in current conditions

364

365 The values of the statistics and indexes used to assess the SWAT model performance in predicting 

366 the surface runoff in the "A" micro-watershed are reported in Table 4. Although r2 (equal to 0.82) 

367 and CRM (0.15) were acceptable (> 0.50 and < 0.25, respectively) when model run with default 

368 input parameters, the E value was unsatisfactory (= 0.35, thus < 0.36). The positive CRM indicates 

369 that the model tends to underestimate the observed annual runoff. Comparing the statistics of 

370 predicted and observed runoff volumes, the errors were -15.4% and -35.5% for the average and 

371 maximum values, respectively (Figure 2a).  

372 The comparison of surface runoff values observed at the watershed outlet and predicted by 

373 SWAT showed that, when the model run with default input parameters, its runoff prediction 

374 capability was at the limit of acceptance. Using the SWAT-CUP procedure for SWAT calibration, 

375 the model's performance noticeably improved. The good model performance given by the 

376 calibration process was confirmed in the validation period. SWAT-CUP identified ten input 

377 parameters, to which the model showed the highest sensitivity (Table 2 and Figure 3). After 

378 calibration, the tendency to runoff underestimation was reduced, as shown by the CRM decreased to 

379 a value close to zero). The changes in the input parameters let runoff predictions be closer to the 

380 corresponding observations (Figures 2a and 4). More specifically, the mean, minimum and 

381 maximum runoff volumes came very close to the corresponding observations and the differences 

382 were lower than 3.5%. The E index (equal to 0.83) became good and the appreciable value of r2, 

383 achieved in model's runs with default parameters, increased to 0.86 (Table 4). 

384 In the validation period, the degree of correlation between runoff observations and 

385 predictions (r2 = 0.70) decreased compared to the calibration period. The model's tendency to 

386 underestimate the runoff in the calibration period turned to overestimation (CRM < 0) for the 

387 validation period. The model efficiency, lower than in the calibration phase, remained however 

388 satisfactory (E = 0.70). The predicted mean and maximum runoff volumes were practically equal to 

389 the observations (differences of 1.7% and 2.8%, respectively). The prediction error increased only 

390 for the minimum values (about 10%) (Table 4 and Figure 2b). 

391 The difference between the precipitation, and runoff volume and coefficient simulated by 

392 the SWAT model with the observed data and the corresponding simulations using the three GCMs 

393 for the baseline period (1993-2005) was always lower than 1% and not statistically significant (at p 
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394 < 0.05)  (Table 5). Therefore, no adjustments were considered in the simulations of future climate 

395 change scenarios.

396

397 3.2 Evaluation of the watershed hydrological response to land use and climate changes 

398

399 3.2.1 Land use changes in the baseline period (1993-2014)

400

401 Compared to the baseline value (1321 mm/yr, years 1993-2014), when the forest was the actual soil 

402 cover, and under the same rainfall input (on the average 1847 mm/yr), land use change to pasture 

403 would give the lowest surface runoff (on the average 1290 mm/yr, -2.32%), while the worst 

404 hydrological response (that is, higher runoff) would be produced by a soil left bare due  to total 

405 deforestation (1437 mm/yr, +8.81%). Replacing the forest cover by agricultural activities, the 

406 runoff would undergo a very slight change (1329 mm/yr, +0.63%) (Table 6).

407

408 3.2.2 Climate and land use changes in the future (2020-2099)

409

410 Under the mean values of future climate projections, averaged among the adopted GCMs, and 

411 assuming as baseline the actual land use (tropical forest, 1402 mm/yr of surface runoff), if the 

412 hydrological variables are averaged among all the simulated climate change scenarios, crop cover 

413 and soil left bare would increase of the surface runoff (1486 mm/yr, +6.0%, and 1562 mm/yr, 

414 +11.4%), while pasture would slightly reduce runoff volume (1486 mm/yr, -1.6%) (Table 6). 

415 Almagro et al. (2017) report that South-East Brazil (where the studied watershed is located) will be 

416 one of the most greatly affected regions in terms of rainfall erosion, since a decrease (−5% to −41%, 

417 depending on the GCM adopted) in mean rainfall erosivity is forecasted.

418 Referring to the different RCPs, RCP 4.5 is expected to give the highest precipitation 

419 (averaging the three GCMs adopted, 1976 mm/yr, +7.0% compared the average value of the 

420 baseline period, 1847 mm/yr, years 2003-2014), while RCP 8.5 will provide the lowest precipitation 

421 input (1936 mm/yr, +4.8%). Under the other RCPs, the precipitation increase will be lower (1945, 

422 RCP 2.6 and 1944, RCP 6.0, mm/yr) (Table 6 and Figures 5a to d). Compared to the baseline value 

423 (on the average 1321 mm/yr), RCP 4.5 will presumably produce the highest runoff volumes in the 

424 80-year period (on the average 1478 mm/yr, +11.9%). Conversely, the minimum surface runoff will 

425 be achieved under RCP 2.6 and RCP 8.5 (1449 mm/yr, +9.7%, for both RCPs) (Table 6 and Figures 

426 5a to d).

427
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428 4. Discussions 

429

430 4.1 Evaluation of the runoff prediction capacity of SWAT model

431

432 The automated calibration procedure has demonstrated the importance of the tree canopy 

433 interception ("CANMX.hru" parameter) in tropical forests, whose value was increased during 

434 calibration. Shares of tree canopy interception close to 15-20% has been quantified by several 

435 studies in tropical forests (e.g., Franken et al. 1982a; 1982b; Zema et al. 2018). Also Strauch et al. 

436 (2012, in Brazil) as well as Zhang et al. (2016, in China) and Raneesh & Thampi Santosh (2011, in 

437 India) found that SWAT is strongly sensitive to this input parameter. 

438 Also water infiltration in the soil was modified, decreasing the available water capacity of 

439 the soil ("SOL_AWC().sol") and increasing the fraction of the infiltrating water into the deep 

440 aquifer percolation fraction ("RCHRG_DP.gw") as well as the soil evaporation compensation factor 

441 ("ESCO.hru") (Table 2). The increase of the latter parameter allowed the model to reduce the 

442 evaporative demand from lower soil levels, when it accounts for the effect of the capillary action, 

443 crusting and cracks. "SOL_AWC().sol" and "ESCO.hru" were among the most sensitive parameters 

444 in SWAT model applications in the same environmental contexts (Strauch et al. 2012; De Mello et 

445 al. 2016) and in other climate conditions (e.g., Tan et al. 2017, in Malaysia; Zhang et al. 2016, in 

446 China; Raneesh et al. 2011, in India; Senent-Aparicio et al. 2017, in Spain). The initial CN for 

447 antecedent moisture condition II ("CN2.mgt"), a basic parameter for accurate surface runoff 

448 prediction for almost all the prediction models using the SCS-CN hydrological component 

449 (Licciardello et al. 2007; Strauch et al. 2013; Zema et al. 2017), was increased from the default 

450 value of 70 to 77.3. This change increased the soil's aptitude to produce surface runoff and thus 

451 reduced the model's tendency to its underestimation (Table 4). A similar increase was needed in the 

452 study of Strauch & Volk (2013), in order to reach a better fit to peak flows observed in a watershed 

453 under the same environmental conditions (Cerrado bioma, Brazil). Conversely, Strauch et al. (2012; 

454 2013) reported the need to decrease CN2 parameter in Brazilian basins, since the soil physical 

455 properties and practices (such as the infiltration capacity and management activities) were not 

456 properly reflected in initial CN2 and the initially assumed reference values were too high (Fukunaga 

457 et al. 2015). Also De Mello et al. (2016) and Strauch et al. (2012) found a high sensitivity of SWAT 

458 model to "CN2.mgt" parameter under the same environmental conditions as those of this study. 

459 Other minor changes needed by SWAT-CUP to improve runoff prediction capacity of 

460 SWAT were applied to the moist bulk density ("SOL_BD().sol"), effective hydraulic conductivity 

461 in tributary channel alluvium ("CH_K1.sub"), lateral flow travel time ("LAT_TTIME.hru"), 
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462 Manning's coefficient "n" value for overland flow ("OV_N.hru") and saturated hydraulic 

463 conductivity ("SOL_K().sol"). All these parameters were noticeably increased, since under default 

464 simulations many of these were assumed as null (Table 2). It is interesting to highlight that the 

465 calibrated value of the saturated hydraulic conductivity set by SWAT-CUP may be unrealistic, but 

466 it must be also noted that: (i) the model's sensitivity to this input parameter was quite limited; and 

467 (ii) the calibrated value came from a mathematical optimisation rather than a physically-based 

468 optimisation.

469 It should be also evidenced that other input parameters that were identified by SWAT-CUP 

470 as the most influential in SWAT applications of other studies (for instance, "ALPHA_BF" = 

471 Baseflow recession constant, "GW_DELAY" = Groundwater delay time, "GWQMN" = Water 

472 depth in shallow aquifer for return flow, "CH_N2" = Manning's "n" value for the main channel, 

473 "RCHRG_DP" = Deep aquifer percolation fraction) (De Mello et al. 2016; Strauch et al. 2012; Tan 

474 et al. 2017; Zhang et al. 2016; Raneesh et al. 2011; Senent-Aparicio et al. 2017) were not 

475 considered as sensitive parameters in this study (Figure 3). The low sensitivity of SWAT to these 

476 parameters is quite surprising, since the hydrological processes which many of these factors govern 

477 (for instance, deep percolation, sub-surface flow, filtration in deeper layers of soil) have a large 

478 importance in the hydrological cycle of small forest watersheds under tropical conditions (Fujieda 

479 et al. 1997; Zema et al. 2018). This indicates that autocalibration should be done within relatively 

480 strict parameter ranges set after manual calibration or using additional hydrological observations 

481 such as evapotranspiration or soil moisture. Moreover, this confirms again that SWAT-CUP 

482 calibration often lacks realistic links to the physical processes.

483 Overall, the evaluation over the entire period of more than 20 years (1993-2014) showed 

484 that, provided that the model is calibrated: (i) SWAT slightly underestimates the observed runoff 

485 volumes (CRM = 0.01); (ii) the model is able to give very accurate annual predictions of surface 

486 runoff, as shown by r2 and E, both close to 0.82; (iii) the differences between the observed and 

487 predicted means are negligible (lower than 2-3%) (Table 4). As the results of calibration and 

488 validation procedures have demonstrated, the predicted runoff volumes on the annual scale were 

489 very close to the observations, approaching to the identity line of the scatter plot, with very few 

490 exceptions (Figure 4). Model performance was more satisfactory in the calibration period than for 

491 validation, as shown by the higher values of the evaluation criteria adopted in this study. This is due 

492 to the fact that the parameter values are specifically optimised for the calibration period and thus the 

493 validation period may have different conditions that cause the calibrated parameters to be less than 

494 optimal (Fukunaga et al. 2015).
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495 Almost all the previous evaluations of SWAT model in the same climatic and 

496 geomorphological conditions were carried out by comparing the observed and predicted daily and  

497 monthly stream flows rather than the annual values as in this study. SWAT prediction capacity of 

498 runoff at the daily scale, beyond the aims of this study, was not satisfactory in the experimental 

499 watershed, as highlighted by the large difference in the majority of the evaluation criteria (mean, E 

500 and CRM, data not shown) adopted for model's performance evaluations (under the acceptance 

501 limits suggested by literature). The values of the Nash and Sutcliffe coefficient were in the range 

502 0.41 (Strauch et al. 2013) to 0.82 (Dourado-Hernandes et al. 2018), while the maximum absolute 

503 value of PBIAS (5.9) was found by Strauch & Volk (2013). All the authors reported that SWAT 

504 model predicted high stream flows better than low flow conditions (de Paulo Rodrigues da Silva et 

505 al. 2018). Regarding the only model's application at the annual scale at the authors' knowledge, De 

506 Mello et al. (2017) found r2 of 0.82, E of 0.71 and PBIAS of -12.1 in the calibration period, and r2 

507 of 0.76, E of 0.37 and PBIAS of -16.7 in the validation period in SWAT implementation in Sarapuí 

508 River watershed (southeast Brazil) for water quality predictions.

509

510 4.2 Evaluation of the watershed hydrological response to land use and climate changes

511

512 The hydrological response of the watershed to land use and climate changes were quantified in this 

513 study by adopting the annual runoff coefficients of each land use and climate scenario. This allows 

514 the assessment of the water resource dynamics, which is governed by the succession of wet and dry 

515 years, in the natural and delicate ecosystem of the studied watershed. The analysis of a multidecadal 

516 scale is in accordance to Krysanova et al. (2016), who suggests comparisons of outputs of 

517 hydrological models, driven by climate model data, for the reference and future scenario periods, 

518 using 30-year average annual and monthly outputs.

519

520 4.2.1 Land use changes in the baseline period (1993-2014)

521

522 The actual forest cover of the watershed determined a runoff coefficient, averaged in the period 

523 1993-2014, of 0.71. This value is about 9% lower (and significant at p < 0.05) than for bare soil 

524 (RC = 0.78), which simulates a complete deforestation of the watershed. This increase shows the 

525 role of vegetation cover in the influence of the hydrological balance of the watershed. As a matter 

526 of fact, the presence of tropical forest increases water losses, providing greater water infiltration and 

527 storage in soil, replenishing groundwater and improving flow regularity (Zema et al. 2018). More 

528 generally, forests increase canopy interception, transpiration of plant tissues, evaporation from soil 
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529 and water infiltration; thus, the share of precipitation that turns to surface runoff is reduced. 

530 Furthermore, forest vegetation and in particular riparian complexes play positive effects for 

531 conservation of water quality in tropical headwater watersheds, where, instead, agriculture and 

532 pasture may represent a threat against natural resource preservation (Marmontel et al. 2018).

533 A conversion of the current land use (forest) to cropland or pasture would determine a slight 

534 increase (RC = 0.72, +0.63%) or decrease (RC = 0.70, -2.32%), respectively, of the runoff 

535 coefficients; these variations were not significant at p < 0.05. This means that the experimental 

536 tropical watershed does not show a so high sensitivity to land use, regardless of the type of the 

537 change introduced. In other words, a slight decrease of water losses, expected under pasture and 

538 agricultural activities, would not significantly affect the water balance of the watershed.

539 The lower runoff generation capacity of pasture compared to the other land uses is in 

540 accordance with findings of de Paulo Rodrigues da Silva et al. (2018), who applied SWAT in a 

541 tropical river basin of Eastern Brazil. These authors showed that: (i) the smallest runoff was 

542 generated in areas with pasture cover; (ii) its replacement by maize cultivation increased the surface 

543 volume drained to the regions; and (iii) the runoff increased by 70% in areas with bare soil. These 

544 results indicated an increasing trend in runoff from pasture to cropland and areas without vegetation 

545 cover. Conversely, Dourado-Hernandes et al. (2018) found that a limited expansion of cropland 

546 (namely sugarcane) should have no effect on stream flows generated in a watershed of Cerrado 

547 biome (same tropical conditions), also under climate change scenarios (until 2030). The slightly 

548 higher runoff generation capacity simulated by SWAT in tropical forest in comparison with pasture 

549 cover may be quite surprising and however would deserve deeper investigations. A possible 

550 explanation has been found here by an analysis of the different components of the hydrological 

551 cycle simulated by SWAT. It emerged that pasture supports a higher evapotranspiration compared 

552 to forest (on the average 483 against 460 mm/yr, respectively). The more intense evapotranspiration 

553 rate of pasture may be supported by both the higher re-evaporation from the shallow aquifer (97 

554 against 92 mm/yr) to the root zone and the lower percolation (80 against 72 mm/yr) into 

555 groundwater, presumably due to the denser basal area of the pasture cover of the root zone. This is 

556 accordance to Wolf et al. (2011), who report that in tropical environments the fraction of 

557 evaporation from the soil is higher in the pasture than at the forest sites. Furthermore, in tropical 

558 regions, grassland has the potential to transport as much or more water vapour to the atmosphere 

559 than forest does (Brauman et al. 2015). Santos et al. (2015) report that, compared to forest, higher 

560 levels of compaction may have favoured greater water loss in pasture areas of tropical areas 

561 (Southwestern Amazonia). 
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562 The increase of runoff generation capacity in a deforested area suggested by SWAT in the 

563 studied micro-watershed agrees with the results of dos Reis Pereira et al. (2014; 2016b). These 

564 authors studied the impacts of deforestation on a watershed on the Brazilian east coast and found an 

565 increased water flow in the analysed river due to decreased evapotranspiration. 

566

567 4.2.2 Climate and land use changes in the future (2020-2099)

568

569 Under the future climate projections, a decadal variability of runoff coefficients was forecasted as 

570 watershed responds to variations of input precipitation in time windows of 20 years. More 

571 specifically, while an almost constant runoff coefficient may be expected throughout the 80-year 

572 period, the related values fluctuate for all the studied land uses with a similar shape. In spite of these 

573 fluctuations, the negative slope of the regression lines of RCs indicates that across the forecast 

574 period the runoff generation capacity of the experimental watershed will slightly decrease (Figures 

575 6a to 6d). Among the different RCPs, the hydrological response of the watershed soil will be more 

576 intense under RCP 4.5 for all the investigated land uses, except for the pasture cover (Figures 6 and 

577 7). The differences in precipitation and runoff coefficient were not significant at p < 0.05 among the 

578 RCP scenarios, while runoff was significantly different among some RCPs. Moreover, while the 

579 runoff was significantly different between forest and pasture on one side, and cropland and bare soil 

580 on the other side, all the evaluated land uses gave significantly different runoff coefficients (Table 

581 6). 

582 If the runoff coefficients of the observation period (1993-2014) are assumed as reference, a 

583 combined analysis of the effects of climate and land use changes on the future hydrological 

584 response of the watershed can be made. 

585 Firstly, the mean runoff generation capacity of the experimental watershed is expected to 

586 slightly decrease in pasture for all the RCPs analysed (on the average by -0.9%), while an increase 

587 can be forecasted under forest (+0.8%), except for RCP 2.6, and crop (+6.8%) covers. If the soil 

588 will be bare (e.g., for a deforested watershed), this increase will be the highest (+12.4%) among the 

589 analysed land uses (Figure 7a). This indicates that, compared to tropical forest or cropland, 

590 pastureland is more efficient to govern the hydrological response of the watershed.

591 Secondly, the maximum runoff coefficients will increase (positive variations compared the 

592 baseline, on the average +23.3%) under all the land use and climate change scenarios. Since the 

593 highest RCs can be expected in occasion of years with floods (that is, when the soil is saturated and 

594 the runoff capacity generation gets its maximum value) and is linked to soil erosion, this means that 

595 in the future the climate change will determine an aggravation of the flood and soil erosion risks in 
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596 this tropical watershed. However, although flooding is one of the problems of the studied 

597 watershed, the flood risk is not the most critical. While it is obvious that over bare soil this increase 

598 will be the highest (+33.3%), less expected is the fact that agricultural activities and forest cover 

599 will induce higher RCs (+25.8% and +18.3%, respectively) compared to pasture (+15.9%) (Figure 

600 7b).

601  Thirdly, it is well known that a minimum runoff generation is vital for surface water body 

602 recharge and thus to feed potable water to population and irrigation resources to crops, when 

603 groundwater is not exploited. Small watersheds of tropical forests must have an adequate water 

604 supply to compensate the high evapotranspiration rates of forest throughout the year (Zema et al. 

605 2018). If the availability of surface water is related to the minimum values of runoff coefficients, 

606 from the future predictions of surface runoff provided by SWAT model it is evident that a pasture 

607 cover will produce the highest reduction of surface runoff (on the average -2.8%). Conversely, the 

608 minimum runoff generation capacity will remain constant under tropical forest (-0.84%), while it 

609 will increase in cropland (+3.7%) and in particular in bare soil (+9.6%) (Figure 7c). 

610 Comparisons of our results with other literature experiments are quite hard, due to the lack 

611 of similar studies analysing the effects of climate change in tropical watersheds. Regarding other 

612 SWAT applications in other environmental contexts, we should consider modelling experiences in 

613 USA, Spain, China, Malaysia and India. The study of Ficklin et al. (2009), carried out in an 

614 agricultural watershed of California, showed its high sensitivity to the climate change, indicating 

615 that not only temperature and precipitation have significant effects on all hydrological components 

616 of the water cycle, but also that these effects are complicated by the activities of irrigated 

617 agriculture. In the headwater of the Segura River basin (South-eastern Spain), Senent-Aparicio et al. 

618 (2017) showed that, compared the baseline period (1971-2000), the negative and positive trends of 

619 precipitation and temperature, respectively, will lead to a decrease in the availability of water 

620 resources by between 2 and 5% in this important water supplying basin. Raneesh & Thampi 

621 Santosh (2011) implemented SWAT in an Indian watershed (humid tropics) with forest and 

622 agricultural land uses and predicted that stream flow will undergo a declining trend under future 

623 climate change scenarios. However, the effect will not adversely affect agricultural production in 

624 the watershed, because the future temperature increase will be compensated by an expected storm 

625 intensity increase in the summer and pre-monsoon periods. A mountainous large watershed of 

626 China was monitored and modelled using SWAT by Zhang et al. (2016), who noticed relatively 

627 slight changes in stream flows in both RCP 2.6 and RCP 4.5, but increases under RCP 8.5. 

628 However, these authors suggested that future projections given by GCM emission scenarios must be 

629 considered with caution. As a matter of fact, GCMs generally cannot fully capture the interactions 
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630 between atmospheric and hydrological processes and thus the effects of future climate changes on 

631 stream flows are largely uncertain (Knutti & Sedláček 2013). Tan et al. (2017) got to the same 

632 conclusions (that is, larger surface runoff changes under the RCP 8.5 compared to the RCP 2.6 and 

633 RCP 4.5, and large uncertainties in GCMs and RCPs), applying SWAT to a large watershed 

634 dominated by tropical rainforest and rubber and oil palm plantations in Malaysia. 

635 From a social approach, the evaluation of land use and climate impacts on future 

636 management of water resources at the watershed scale indicates that deforestation must be avoided. 

637 Leaving the soil bare would increase the flood risk in urban areas (with possible lost of lives and 

638 infrastructure damages) and this would be a very large impact under the forecasted climate change. 

639 Moreover, although the SWAT simulations have demonstrated that a land use change from forest to 

640 pasture or cropland would have a moderate impact on the runoff generation capacity, this 

641 conversion would determine a significant lost of biodiversity in highly natural watersheds of the 

642 tropical environment; society should not accept that this hazard may happen in one of the most 

643 delicate ecosystems in the world. Finally, the risk of water resource reduction in tropical rivers can 

644 be expected in some of the simulated climate scenarios, and this could lead to the reduction of clear 

645 water availability for potable uses.

646 Overall, since the study has shown that SWAT is able to delineate the hydrological response 

647 of tropical watersheds to natural (e.g., climate change) or anthropogenic (e.g., land use 

648 modification) forcing, this model represents a useful tool for land planners and, more in general, 

649 socio-economic stakeholders, in order to adopt the most suitable measures for water resource and 

650 soil protection. 

651

652 5. Conclusions 

653

654 Once the applicability and reliability of SWAT model in predicting surface runoff have been 

655 verified at the annual scale and improved by calibration in a tropical forest watershed, its 

656 hydrological response under four alternative land uses (forest, cropland, pasture and bare soil) and 

657 forecasted climate changes has been simulated. The results of model application showed that the 

658 tropical watershed under investigation does not show a high sensitivity to land use, regardless of the 

659 type of the change introduced, provided that the soil is not left bare. If forest was replaced by crops 

660 or pasture, slight increases or decreases of the runoff coefficients would be expected, but the 

661 watershed's hydrological response would not significantly been affected. Conversely, a complete 

662 deforestation, leaving the soil bare, would increase the runoff generation capacity of the watershed.
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663 Despite the uncertainty of future weather projections, under forecasted climate change 

664 scenarios, the most conservative and sustainable land use on the long term basically will depend on 

665 water management purposes established by land planners. More specifically, the runoff generation 

666 capacity of the watershed will tend to decrease and will not be noticeably different among the four 

667 climate change scenarios simulated throughout the next 80-year period. In the RCP 4.5, which will 

668 produce the most intense hydrological response in the watershed, pasture and bare soil have been 

669 found to give the lowest and highest runoff coefficients, respectively. To protect the watershed from 

670 floods and soil erosion, the most "hydrologically" efficient land use is pasture, since the conversion 

671 from forest to a natural herbaceous cover (as pasture is) will allow a decrease of the maximum 

672 values of the runoff coefficient. Finally, since the minimum runoff generation capacity will remain 

673 basically constant under tropical forest, the presence of the current tree cover will be suitable to 

674 assure surface water body recharge and thus to feed potable water to population and irrigation 

675 resources to crops. The societal implications of the forecasted changes in tropical forest watersheds 

676 go from the aggravation of the flood risk to the reduction of water resource availability for potable 

677 uses.

678 Overall, the study has confirmed the good accuracy in runoff predictions of the SWAT 

679 model, and provided useful indications about the sustainability of water resource management in 

680 tropical watersheds under climate and land use change scenarios. The model can support land 

681 planners’ strategies in view of the conservation of the delicate ecosystems of tropical forests.

682
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911 TABLES 

912

913 Table 1. Values and source of the input data for implementation of the SWAT model at "A" micro-

914 watershed (Brazil).

915

Input data Source Notes

Topography 

Topodata project of the National Institute if 

Spatial Investigation (INPE) of Brazil, based 

on data from the Shuttle Radar Topography 

Mission (SRTM)

Spatial resolution of 30 metres

Soil
Soil map of 2001, prepared by the Brazilian 

Institute of Geography and Statistics (IBGE)

Ferralic Cambisol

Rhodic Ferralsol

Land use

Land use map of 2014, prepared by the 

Brazilian Institute of Geography and Statistics 

(IBGE) 

Tropical rain forest

Weather
Meteorological station installed in the 

watershed 

Hygrothermograph

Pyranometer

Weather vane 

Anemometer

Precipitation measured using a rain gauging 

station (W11-00-60 model, NAKAASA 

Instruments Company Ltd., Japan)
Hydrology

Water flow depth measured by ultrasonic flow 

meter (WR-11Z model, NAKAASA 

Instruments Company Ltd., Japan)

Precision 0.5 mm

916
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925 Table 4. Statistics and model evaluation criteria for the surface runoff observations and predictions 

926 by the SWAT model at the "A" micro-watershed outlet (Brazil).

927

Mean Std. Dev. Min Max Surface 

runoff

Model 

input 

parameters (mm/yr)
r2 E

CRM

(PBIAS) 

Calibration (1993-2003)

Observed - 1309 312 862 1712 - - -

Default 1108 326 556 1583 0.82 0.35 0.15
Predicted

Calibrated 1265 257 874 1657 0.86 0.83 0.03

Validation (2004-2014)

Observed - 1347 271 912 1843 - - -

Predicted Validated 1370 251 1002 1895 0.71 0.70 -0.02

Whole period (1993-2014)

Observed - 1328 286 862 1843 - - -

Default 1180 309 566 1848 0.62 0.25 0.11

Predicted Calibrated/

validated
1321 253 875 1881 0.78 0.78 0.01

928
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930 Table 5. Difference (%) between the hydrological data simulated by the SWAT model with 

931 observed and projected precipitation (provided by three GCMs) for the baseline period (1993-2005) 

932 at the "A" micro-watershed outlet (Brazil).

933

Global Circulation Model

MIROC5 GISS-E2-H MRI-CGM3
Statistics

Rainfall Runoff 
Runoff 

coeff.
Rainfall Runoff 

Runoff 

coeff.
Rainfall Runoff 

Runoff 

coeff.

Mean 0.05 -0.56 0.03 -0.61 -0.95 0.30 -0.13 0.20 0.99

Minimum -0.98 -0.84 0.14 -0.98 -0.66 0.32 -0.62 0.38 1.00

Maximum 0.71 0.89 -0.12 0.95 0.41 -0.83 0.82 0.90 -0.22

Standard 

deviation
0.31 0.64 -0.27 1.02 -0.54 0.52 0.67 0.64 0.52

934 Note: all differences are not statistically significant after one-way ANOVA (at p < 0.05).
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Figure 1. Geographical location (a) and land use map (b) of the "A" micro-watershed (Brazil). 
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Figures 2a, b. Annual precipitation and surface runoff volumes observed at the outlet and simulated by the 
SWAT model (run with the default and calibrated input parameters) in the "A" micro-watershed (Brazil) - (a) 

calibration period, 1993-2003; (b) validation period (2004-2014). 
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Figure 3. p-values of the input parameters of the SWAT model given by SWAT-CUP procedure applied to 
simulate surface runoff in the "A" micro-watershed (Brazil) - the most sensitive input parameters correspond 

to a p-values < 0.05. 
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Figure 4. Scatter plots of annual runoff volumes observed at the outlet and predicted by the SWAT model in 
the "A" micro-watershed (Brazil). 
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Figures 5a, b, c and d - Annual precipitation (P) and surface runoff (SR) volumes simulated by the calibrated 
SWAT model under climate (four RCPs) and land use change scenarios in the "A" micro-watershed (Brazil) - 
(a) forestland; (b) pasture; (c) cropland; (d) bare soil (standard deviations among the evaluated GCMs are 

not shown due to the small scale). 
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Figures 6a, b, c and d - Runoff coefficients (RC) at the annual scale simulated by the calibrated SWAT model 
under climate (RCP) and land use change scenarios in the "A" micro-watershed (Brazil) - (a) forestland; (b) 

pasture; (c) cropland; (d) bare soil. The dashed line is the linear regression model. 
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Figures 6a, b, c and d - Runoff coefficients (RC) at the annual scale simulated by the calibrated SWAT model 
under climate (RCP) and land use change scenarios in the "A" micro-watershed (Brazil) - (a) forestland; (b) 

pasture; (c) cropland; (d) bare soil. The dashed line is the linear regression model. 
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Figure 7a, b and c - Difference between the mean (a), maximum (b) and minimum (c) runoff coefficients at 
the annual scale observed in the period 1993-2014 and simulated by the calibrated SWAT model under 

climate (RCP) and land use change scenarios in the "A" micro-watershed (Brazil). 
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