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Abstract: Considering local adaptation has been increasingly involved in forecasting 17 

species distributions under climate change and the management of species 18 

conservation. Herein, we take the critically endangered Chinese giant salamander 19 

(Andrias davidianus) that has both a low dispersal ability and distinct population 20 

divergence in different regions as an example. Basin-scale models that represent 21 

different populations in the Huanghe River Basin (HRB), the Yangtze River Basin 22 

(YRB), and the Pearl River Basin (PRB) were established using ensemble species 23 
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distribution models. The species ranges under the future human population density 24 

(HPD) and climate change were predicted, and the range loss was evaluated for local 25 

basins in 2050 and 2070. Our results showed that the predominant factors affecting 26 

species distributions differed among basins, and the responses of the species 27 

occurrence to HPD and climate factors were distinctly different from northern to 28 

southern basins. Future HPD changes would be the most influential factor that 29 

engenders negative impacts on the species distribution in all three basins, especially in 30 

the HRB. Climate change will likely be less prominent in decreasing the species range, 31 

excluding in the YRB and PRB under the highest-emissions scenario in 2050. Overall, 32 

the high-emissions scenario would more significantly aggravate the negative impacts 33 

produced by HPD change in both 2050 and 2070, with maximum losses of species 34 

ranges in the HRB, YRB, and PRB of 83.4%, 60.0%, and 53.5%, respectively, under 35 

the scenarios of the combined impacts of HPD and climate changes. We proposed 36 

adapted conservation policies to effectively protect the habitat of this critically 37 

endangered animal in different basins based on the outcomes. Our research addresses 38 

the importance of incorporating local adaptation into species distribution modeling to 39 

inform conservation and management decisions.   40 

Keywords: local adaptation; Chinese giant salamander; species distribution models; 41 

human population density; climate change; range loss 42 

1 Introduction 43 

 Determining where and how species will respond to climate change is currently 44 
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a pivotal topic in biogeography and conservation biology research, which can provide 45 

great knowledge to help formulate conservation and management strategies to 46 

mitigate the extinction risks of endangered species (Chardon et al. 2019). Species 47 

distribution models (SDMs) are commonly employed approaches that explore how the 48 

distribution of a species of concern will shift in space and time with a changing 49 

climate (Pacifici et al. 2015). Such models correlate species occurrences with 50 

bioclimatic factors to predict the relative probability of occurrence by assuming that 51 

species track alongside the changing climatic conditions (Elith and Leathwick 2009, 52 

Booth et al. 2014). Given their simplicity and flexibility (Thuiller et al. 2009), as well 53 

as the easy accessibility of species occurrence records and climate datasets, SDMs are 54 

widely utilized to predict species’ range shifts across the globe and guide the 55 

conservation management of species in all earth spheres (García-Alegre et al. 2014, 56 

Gobeyn and Goethals 2019, Pecchi et al. 2019). 57 

Despite their widespread use, SDMs have been criticized for involving 58 

assumptions that ignore many ecologically relevant factors (Araújo and Peterson 59 

2012). One of the potential sources of model error that has been of increasing concern 60 

is the assumption that species across populations are ecologically uniform in their 61 

climatic tolerances within their range (Wiens et al. 2009). Typically, SDMs treat a 62 

species as a single entity (Busby 1988) and are developed utilizing all the occurrence 63 

data of a species in the whole area to project its potential distribution (Merow et al. 64 

2013). Substantial evidence has shown that the distribution limits of many species 65 

vary among populations and that climate tolerances differ among distribution areas 66 
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due to adaptation to local climate conditions (Sheth and Angert 2014, Lee‐Yaw et al. 67 

2016). Despite this, most models assume that species’ tolerances 68 

to climate changes do not differ across distributional ranges (Valladares et al. 2014). 69 

Uncertainties and errors in geographic distribution predictions can be produced by not 70 

considering local adaptation (Pearman et al. 2010, Peterson et al. 2019), which 71 

preclude the analysis of genetic variation in ecologically important traits (Marcer et al. 72 

2016).  73 

Local adaptation most likely exists within species whose distribution, dispersal, 74 

and population dynamics are affected by natural barriers, including physical and 75 

biological barriers (Cozzi et al. 2013). Relevant physical barriers may include 76 

geographical and topographical events that result in discontinuous habitats (Aliaga‐77 

Samanez et al. 2020) and biological barriers that may include interspecific 78 

competition and changes in the trophic habitat (Hallfors et al. 2016, Aliaga‐Samanez 79 

et al. 2019). Very recent research indicated that a growing number of studies are 80 

emphasizing the importance of incorporating different forms of local adaptation or 81 

intraspecific variation in climate responses (Chardon et al. 2019, Peterson et al. 2019). 82 

When modeling range shifts under climate change with the incorporation of local 83 

adaptation, individuals within species were divided into groups with different climate 84 

responses based on taxonomic units, populations, geographic regions, phenotypes or 85 

genetic groups (Pearman et al. 2010, Kapeller et al. 2012, Marcer et al. 2016, 86 

Schwalm et al. 2016, Meynard et al. 2017, Peterson et al. 2019). Among the existing 87 

studies that incorporated local adaptation, few examined the adaptation patterns of 88 
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nonclimatic variables that could characterize the environmental tolerances of a 89 

species(Peterson et al. 2019). At least three studies have considered adaptations to 90 

local environmental conditions other than climate factors (Wang et al. 2010, Schwalm 91 

et al. 2016, Hu et al. 2017); however, all of them assumed the nonclimatic variables to 92 

remain static over time when predicting future conditions. Therefore, how differences 93 

in local adaptation to human-related pressures could affect future predicted range 94 

shifts remains poorly documented.  95 

Since SDMs are widely used to support conservation or management decisions, 96 

not taking local adaptation into account may lead to inaccurate descriptions of species 97 

responses to environmental changes across their geographic ranges and, therefore, 98 

misplaced conservation efforts, especially for critically endangered species (Hamann 99 

and Aitken 2013). Amphibians represent the most threatened vertebrates around the 100 

world (Zhang et al. 2019). especially salamanders, which are highly sensitive to 101 

climate change because of their low vagility and restrictive physiological demands 102 

(Barrett and Guyer 2008). Unlike species that can track varying climates, salamanders 103 

will suffer range shrinkage when the climate condition in their distribution areas 104 

become unsuitable to sustain their populations (Araújo et al. 2006). Therefore, 105 

salamanders are likely to have distinct local adaptations because of their strong 106 

climatic requirements, and their wild populations are varied in community structure 107 

and ecosystem function in different biogeographic regions (Kozak and Wiens 2006, 108 

Ficetola et al. 2016). Human pressures from anthropic activities serve as yet another 109 

threat to salamanders' wild population and are likely to aggravate existing stresses 110 
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(Hof et al. 2011). Therefore, it is fundamental to figure out how the salamanders’ 111 

ranges will respond to future disturbances from exacerbated human pressures and 112 

future climate change to ensure efficient management and conservation. 113 

In the present study, we addressed intraspecific variation in responses to climate 114 

and human-related factors in distribution models to explore how it will affect 115 

conservation management. We take the critically endangered Chinese giant 116 

salamander (CGS; Andrias davidianus (Blanchard, 1871)) as a case. It is known to be 117 

historically distributed in most of mainland China. Its wild populations and habitat 118 

have been declining due to habitat destruction and hunting for use in medicinal herbs 119 

and foods, and the species is currently critically endangered (Yan et al. 2018). We 120 

separated the region into three basins, i.e. the Huang River (Yellow River) basin and 121 

its adjacent Hai River Basin, the Yangtze River basin, and the Pearl River basin. 122 

Basin-scale SDMs were constructed by considering the effects of both climate and 123 

human-related factors on the range shifts. This study aims to: (1) test whether 124 

basin-scale models describing separate populations are reliable in species distribution 125 

modeling; (2) describe whether the species responses to climate and human-related 126 

variables varied among geographical regions; (3) quantify the species range shifts 127 

impacted by human pressures and climate change in separate areas; and (4) to help 128 

guide management and conservation efforts for the CGS based on these outcomes. 129 
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2 Methods 130 

2.1 Species occurrence and data grouping 131 

  The CGS is recognized as the world’s largest amphibian. It is one of the three 132 

extant giant salamanders that are Cryptobranchidae living in aquatic habitats (Zhang 133 

et al. 2019). Due to habitat loss and human consumption, their population has sharply 134 

declined over the past decades. The species has been classified as a critically 135 

endangered animal by the Chinese government, included in the Appendix I listed 136 

species of CITIES and listed as “CR” in the IUCN Red List of Threatened Species 137 

(Yan et al. 2018). The occurrence data of CGS were collected from the literature (Wen 138 

2015, Turvey et al. 2018), the Global Biodiversity Information Facility (GBIF; 139 

http://www.data.gbif.org/), and the geodatabase of the natural reserves 140 

(https://www.osgeo.cn/data/). The period covered by these data was from the late 20th 141 

century to the early part of this century. The occurrence data were located mainly in 142 

the Huang River (Yellow River) basin (HRB), the Yangtze River basin (YRB), and the 143 

Pearl River basin (PRB), as well as adjacent rivers and basins (Figure 1). We retained 144 

259 occurrence records after discarding erroneous (e.g., records far from waters) and 145 

duplicate records. We selected only one record in each model grid to diminish the 146 

spatial autocorrelation of presence records (i.e., more than one presence record in one 147 

environmental grid cell with a 30 arc-second spatial resolution, ca. 1.0 km2 at the 148 

equator)  through a spatial thinning method provided by Boria et al. (2014), and 253 149 

occurrences datasets finally remained for model construction. 150 

Due to its limited ability to disperse, particularly between river systems, the CGS 151 
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distributions were geographically partitioned and confined in neighboring regions 152 

(Liang et al. 2019). Considerable studies have found genetic diversity and variability 153 

among the CGS populations across the whole distribution area based on molecular 154 

analysis (Liang et al. 2019). For instance. Tao et al. (2005) discovered significant 155 

genetic differentiation between populations in the PRB and the YRB and between 156 

populations in the YRB and the PRB by applying mitochondrial DNA sequencing. 157 

Yang et al. (2011) used AFLP makers and found significant genetic diversity from 158 

northern to southern China The high population differentiation likely originated in 159 

association with their lower dispersal ability and geographical barriers (including 160 

mountains and drainages), as well as their specific habitat requirements(Liang et al. 161 

2019).  Based on these studies, we divided all the occurrences into three populations 162 

from north to south. The northern population involved the occurrence located in the 163 

HRB and its adjacent Hai River Basin (n=33); the central population included the 164 

occurrence located in the YRB (n=172), and the southern population contained the 165 

occurrence located in the PRB (n=28). Other occurrences located in Huai River Basin 166 

(HuRB, n=8) and South-eastern River Basin (SRB, n=12) were classified as unknown 167 

populations. We developed a model at the species level with all the occurrences for 168 

the whole area (model name “M_Whole”) and three separate basin-scale models for 169 

the populations in the HRB and Hai River Basin, the YRB, and the PRB (model 170 

names: “M_HRB”, “M_YRB” and “M_PRB”). The basin-scale models were used to 171 

test the spatial transferability to other basins and compared with the model including 172 

the whole occurrence dataset. 173 
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 174 

Figure 1. Location of the study basins 175 

  176 

2.3 Model establishment 177 

We applied the ensemble modeling technique to develop SDMs of the CGS by 178 

considering their reliability in reducing the uncertainties from a single modeling 179 

algorithm and providing robust projections of species distribution (Grenouillet et al. 180 

2011). We used four model algorithms, i.e. the generalized linear model (GLM), 181 

generalized boosting model (GBM), random forest (RF), and multiple adaptive 182 

regression splines (MARS) model, which have been frequently employed in SDMs to 183 

develop the ensemble models (Zhang et al. 2020a). All the model algorithms and the 184 

ensemble model were implemented by the biomod2 package in the software R 185 

3.6.1(Thuiller et al. 2009). Since we used presence-absence algorithms and reliable 186 
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absence data are not available, pseudo-absence records with the same number of 187 

presence records within the local basin for each model scenario were generated using 188 

a random method that can exclude pixels in the presence locations (Barbet-Massin et 189 

al. 2012). Afterward, all the presence and pseudo-absence records were combined and 190 

shuffled for ultimate use in model construction (Senay et al. 2013). For each model 191 

algorithms, 70% of all records were randomly chosen for model calibration, and the 192 

remaining 30% was used to assess the algorithm performance. Each model algorithm 193 

was run 10 times to avoid bias from the splitting of the total records. The predictive 194 

abilities of each model were evaluated using the true skill statistic (TSS) and the area 195 

under the receiver operating characteristic curve (AUC) (Swets 1988). To ensure the 196 

optimal predictive ability, algorithms with a TSS score greater than 0.6 and AUC 197 

score greater than 0.8 (Allouche et al. 2006) were selected to develop ensemble 198 

models by the committee-averaged method. We also determined the relative 199 

importance of the selected predictors using an inbuilt randomization procedure 200 

(Thuiller et al. 2016) and the response curves of species occurrence for each algorithm 201 

using the evaluation strip method (Elith et al. 2005).    202 

  203 

2.2 Predictor selection 204 

 The selection of predictors in SDMs can strongly affect the reliability of the 205 

predicted niche and spatiotemporal transferability (Peterson et al. 2007). Recent 206 

research tested 19 bioclimatic variables and 11 nonclimatic variables, including eight 207 

human-related variables, to predict the species distribution of the CGS for the whole 208 
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potential distribution area in China (Zhang et al. 2020a). Through analysis of the 209 

variable collinearity, contribution, and reasonability, four climate variables, and three 210 

nonclimatic variables were finally selected as important predictors and showed a good 211 

performance in distribution modeling and prediction of the species in that study. In the 212 

present study, however, as only about forty occurrence data points were used for 213 

model calibration for the HRB and PRB (70% of the whole presence and 214 

pseudoabsence data), we selected the four most important variables from the seven 215 

variables (see Table 1 in Zhang et al. (2020)) to meet the empirical rule of the use of a 216 

maximum of one predictor for ten data points to avoid overparameterization of the 217 

models(Harrell Jr et al. 1984, Petitpierre et al. 2017). The four predictors included 218 

three bioclimatic variables, i.e., the temperature seasonality (TS), the mean 219 

temperature of the coldest quarter (MTCQ), and the precipitation of the warmest 220 

quarter (PWQ) accessed from the WorldClim data website 221 

(https://www.worldclim.org/data/index.html), and the human population density 222 

(HPD) from SEDAC (http://sedac.ciesin.columbia.edu). Despite the small number of 223 

predictors, these four variables were regarded as the most relevant factors affecting 224 

the distribution of the CGS, as  the contributions of the other three variables to 225 

species occurrence were all less than 5% (Zhang et al. 2020a). We used the four 226 

selected variables in the four basal model algorithms and ensemble models to predict 227 

current and future species distributions at the basin-scale and over the whole area. 228 

 229 



12 
 

2.4 Model prediction and evaluation  230 

The CGS distributions under the current (1950-2000) and future (2050 and 2070) 231 

climate conditions with and without the impact of future HPD change for three 232 

separate basins and the whole area were projected. We considered two representative 233 

concentration pathways (RCPs) for climate change, the optimistic scenario with 234 

stringent mitigation (RCP 2.6) and the pessimistic scenario (RCP 8.5). Future climate 235 

data were derived from three global circulation models (GCMs) 236 

(MIROCESM-CHEM, CCSM4, and BCC-CSM1-1) that are widely used in Asia. To 237 

reduce uncertainties in the prediction of the species occurrence probability, the 238 

averaged outputs of the three GCMs were used as future climates. We obtained future 239 

HPD data at a spatial resolution of 1 km for 2050 and 2070 from the global population 240 

dataset of the Socioeconomic Data and Applications Center (SEDAC) (Jones and 241 

O’Neill 2016).  242 

For real application and model evaluation, species presence and absence maps 243 

are required and obtained through transforming the continuous suitability predictions 244 

produced by SDMs to binary outputs using threshold values. We applied the mean of 245 

the predicted probabilities of species occurrences that can objectively maximize the 246 

agreement between observed and predicted distributions (Cramer 2003, Liu et al. 247 

2005), as the threshold to determine the species range (Zhang et al. 2020a). This 248 

method was suggested to be reliable in transforming SDM results from presence 249 

probabilities to presences/absences binary maps (Liu 2005, Liu et al. 2013, França 250 

and Cabral 2019). For each basin-scale model, the threshold was calculated separately, 251 
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and range sizes under current and future conditions were quantified based on the 252 

presence/absence map. The changes of the range size in the scenarios of HPD and 253 

climate changes relative to the current condition were calculated and compared 254 

among the three basins. 255 

3 Results 256 

3.1 Model performance 257 

For each basin-scale model, most model algorithms performed well when 258 

assessed with AUC and TSS, with their median values being greater than 0.8 and 0.6, 259 

respectively (Supplementary Figure S1). Of the four model algorithms, RF always 260 

performed better compared to others for all basin-scale models. Among the 40 basal 261 

models, 31, 36, and 29 basal models were respectively selected to develop the 262 

ensemble SDMs for the HRB, YRB, and PRB (Table 1). For the model with all the 263 

occurrences for the whole area, it is not surprising that all basal models performed 264 

better compared to those in the basin-scale models, and all the basal models were 265 

retained to establish the ensemble models. However, the ensemble model for each 266 

basin-scale model also showed high accuracy, with AUC≧0.94 and TSS≧0.0.80 for 267 

all the basins, indicating that basin-scale ensemble models could be reliable in species 268 

distribution modeling. In terms of predicted mean probabilities (MP) of species 269 

occurrence (Table 1), the whole-area model performed slightly better for the YRB 270 

(0.93) than the YRB model (0.90). The predicted MP values for the HRB and PRB 271 

(0.75 and 0.79), however, were lower than those by the local basin models (0.83 and 272 
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0.88), indicating the improved capabilities of basin-scale models in modeling the local 273 

distribution of the CGS.  274 

 275 

 276 

 277 

Table 1 Statistics of model performance, the number of models used in ensemble modeling 278 

(NME), and the predicted mean probabilities (MP) of species occurrence. MP_Basin: MP of 279 

local species occurrence in each basin-scale model; MP_Whole: MP of species occurrence in 280 

each basin in the whole-area model; MP_HuRB: MP of species occurrence in the Huai River 281 

Basin in Basin-scale and whole-area models; MP_SRB: MP of species occurrence in the 282 

Southeastern River Basin in the basin-scale and whole-area models 283 

Models AUC TSS NME MP_Basin 

MP_Whol

e MP_HuRB MP_SRB 

M_HRB 

0.95

2 

0.81

2 31 0.83  0.75  0.73  0.40  

M_YRB 

0.97

5 

0.83

3 36 0.90  0.93  0.84  0.83  

M_PRB 

0.94

4 

0.80

4 29 0.88  0.79  0.62  0.82  

M_Whol

e 

0.98

3 

0.86

2 40 0.89  0.89  0.92  0.93  

 284 

3.2 Variable importance and response curves 285 

For the whole-area model, the importance of all four predictors was greater than 286 

10%, with the MTCQ (32.6±2.5%) and HPD (26.8±1.9%) being more important than 287 

the other two (Table 2). However, the allocation of the variable importance 288 

considerably changed for the basin-scale models. For the HRB model, the most 289 

important variable was the HPD (mean of 40.7%), while the MTCQ played a less 290 

pivotal role (mean of 7.8%). The second-most important variable was the PWQ,  and 291 
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the contribution of TS became less. The variable importance pattern produced by the 292 

YRB model was similar to that of the whole-area model, despite a significant decrease 293 

in the HPD (mean of 11.0%). The MTCQ was the most crucial factor for the species 294 

occurrence in the YRB (mean of 37.8%), surpassing all other variables. The most 295 

important predictor for the PRB was the PWQ (mean of 35.3%), while the HPD and 296 

MTCQ were less important (both mean values were less than 8%). These results 297 

revealed that the importance of each variable in the whole-area model seemed 298 

balanced by the occurrences in different basins from north to south. The findings from 299 

basin-scale models indicated that the environmental conditions affecting the 300 

distribution and survival of populations in different basins were likely to greatly differ 301 

from each other. 302 

Table 2 Variable importance (%) and the optimal range of the variables (species presence 303 

probability>0.8) produced by different models. The units for the range of the TS, MTCQ, 304 

PWQ, and HPD are Celsius, Celsius, millimeters, and people per km2, respectively. 305 

Predictors M_HRB M_YRB M_PRB M_Whole 

Variable 

importance 

TS 3.3±0.8 12.1±1.1 10.6±1.3 10.9±1 

MTCQ 7.8±0.9 37.8±2 6.2±0.9 32.6±2.5 

PWQ 18.8±2.1 8.0±0.6 35.3±4.3 15.2±0.4 

HPD 40.7±3 11.0±0.9 7.6±0.5 26.8±1.9 

Optimal 

range 

TS [8.6, 11.9] [6.6, 8.4] [6.2, 7.5] [6.1, 10.1] 

MTCQ [-10.8, -1.1] [-1.5, 9.1] [9.6, 12.1] [-3.9, 9.7] 

PWQ [134.8, 447.7] [346.5, 576.2] [557.5, 911.6] [239.7,721.2] 

HPD <441.7 <437.6 -- <414.6 

 306 

For each predictor, the response curves among different algorithms were similar 307 

in all basin-scale models and the whole-area model (Supplementary Figure S2). A 308 

comparison of the response curves produced by the ensemble models showed that the 309 
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species occurrence exhibited a unimodal response to three climate factors for all 310 

basins, but the responses were different among basins for each variable (Figure 2). 311 

This demonstrated that the curves of both the MTCQ and PWQ moved from the left 312 

to the right of the horizontal axis from the HRB to the YRB and the PRB, indicating 313 

that the requirements for these two variables were gradually enhanced for populations 314 

from north to south. The requirements for the TS of different populations, however, 315 

decreased from northern to southern basins. This revealed the response curves of the 316 

climate variables produced by the whole-area model failed to reflect the peak 317 

occurrence probabilities of different basins despite their wider range of high 318 

occurrence probabilities. The optimal ranges for the climate variables were distinctly 319 

different from each other, although they slightly overlapped between connected basins 320 

(Table 2). The optimal range increased for the MTCQ and PWQ and decreased for the 321 

TS from northern to southern basins. The optimal MTCQ for the HRB was less than 322 

the freezing temperature (-10.8~-1.1°C), while it was greater than 9°C for the PRB 323 

(9.6~12.1°C). The optimal range of the MTCQ, the most important variable for 324 

species in the YRB, was above and below 0°C for this basin (-1.5~9.1°C). As the most 325 

important variable for species in the PRB, the optimal PWQ (557.5~911.6 mm) was 326 

significantly greater than those in the other two basins. It should be noted that the 327 

whole-area model did not produce an optimal range covering those in HRB and PRB. 328 

For all basins, the occurrence probability decreased with the increase of the HPD 329 

(Figure 2), suggesting that the species is inclined to occur in regions where the HPD is 330 

less than 450 people in one square kilometer (Table 2). The requirement for human 331 
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interference of the species occurrence in the PRB is stricter, as HPD was less than 75 332 

people per km2 when its occurrence probability was above 0.6. Generally, the 333 

requirements of the species distribution varied distinctly in different basins, especially 334 

for climate factors, and these differences could only be detected by separate 335 

basin-scale species distribution models. 336 

  337 

 338 

Figure 2. Response curves of predictor variables for separate and whole populations 339 

 340 

3.3 Current distribution  341 

The species occurrence probabilities predicted by the basin-scale models and the 342 

whole-area model under current conditions were compared (Figure 3). Generally, the 343 

species distribution areas predicted by the basin-scale model were constrained to local 344 

basins, despite some areas with medium species occurrence probability transferred 345 
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around basin boundaries. Figure 4 shows that the range of the climate predictors 346 

clearly varied from northern to southern basins, which could have resulted in confined 347 

projections in local areas, considering the distinct responses of the species occurrence 348 

to climate factors (Figure 2). Comparisons showed consistent species distributions in 349 

the YRB predicted by the whole-area and YRB models (Figure 3b and 3d), but this 350 

was not observed in the basin-scale models in the HRB and PRB (Figure 3a and 3c). 351 

The mean occurrence probability of the species occurrence data predicted by the 352 

whole-area model was less than 0.8 (Table 1, 0.75 and 0.79 for the HRB and PRB, 353 

respectively), while it was 0.93 for the YRB, indicating that the whole-area model had 354 

a better performance for the YRB but a poor performance in predicting species 355 

occurrence for the HRB and PRB. As a result, compared with the local basin models, 356 

the whole-area model significantly underestimated the species distribution area by 357 

93.4% and 80.3% for the HRB and PRR, respectively. Therefore, these results implied 358 

that the basin-scale model could be locally adapted and would be better in projecting 359 

the CGS distributions in different basins. 360 
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 361 

Figure 3. Comparison of projected current occurrence probabilities for the basin-scale 362 

models and whole-area model, with a, b, c, and d representing the modeling results of 363 

the HRB, YRB, HRB and the whole basin, respectively. Low: occurrence probability 364 

below 0.6; Medium: occurrence probability from 0.6 to MH in Table 1 (MH_Basin); 365 

High: occurrence probability from MH to 1. 366 
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 367 

Figure 4. Range comparison of the four predictors among the three basins and the whole 368 

area 369 

 370 

3.4 Species range shifts 371 

Future species distributions were predicted for separate basins using basin-scale 372 

models (Supplementary Figure S3), and species range shifts were compared (Figure 373 

5). HPD change caused similar impacts on species distribution for the three basins in 374 

both 2050 and 2070 (Figure 5a, 5b) and evidently decreased the species range by over 375 

26% (Table 3), especially in the HRB (range loss of 55.8% and 61.3% in 2050 and 376 
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2070, respectively). Compared with the current status (Figure 3), future HPD changes 377 

would fragment the habitat in all the basins. The species range extended westward, 378 

and new habitat was gained in the YRB due to the impact of HPD change (Figures 5a 379 

and 5b). The species range was not obviously altered in the HRB and YRB due to the 380 

impact of climate change (Figures 5c-5f), and the species ranges were slightly 381 

decreased or even slightly increased (due to climate change with RCP2.6 in 2050, 382 

Table 3), excluding an obvious range loss of 11.0% in the YRB under climate change 383 

with RCP8.5 in 2050. The species range loss was obvious in the northern PRB, while 384 

the species ranges expanded southward to the coastal area of the PRB in the 385 

climate-change scenarios. The overall range loss in the PRB, however, was more 386 

significant in 2050 than in the 2070s in both RCP scenarios (Table 3). When 387 

overlapping the impacts from HPD and climate changes, the range loss was 388 

aggravated in RCP 8.5 scenarios for all basins (Figure 5i, 5j), especially in 2070 with 389 

stable habitat nearly disappearing in the HRB and only remaining in the west and the 390 

south coast, respectively, in the YRB and PRB (Figure 5j). The maximum losses of 391 

species ranges in the HRB, YRB, and PRB were 83.4%, 60.0%, 53.5%, respectively, 392 

indicating a significant negative impact of the combined effect of HPD and climate 393 

changes on the species distributions. Despite this, slight offset effects induced by 394 

climate change with RCP 2.6 were identified in the HRB and YRB (Table 3). 395 

Generally, the effects of HPD and climate changes on species ranges varied among 396 

watersheds and periods. HPD variation was likely the most influential factor that 397 

engendered negative impacts on species distributions in all three basins, especially in 398 
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the HRB. Climate change was probably less prominent in decreasing the species 399 

range, excluding the YRB and PRB in high emission scenario in 2050. Overall, the 400 

high-emissions scenario would more significantly aggravate the negative impacts 401 

produced by HPD change under the superimposed impacts of future climate changes 402 

and human pressures.  403 

 404 

Figure 5. Species distribution shifts predicted by the basin-scale models in different 405 

scenarios, in which (a) and (b) are HPD change scenarios in 2050 and 2070, respectively; 406 

(c) and (d) are climate change scenarios with RCP 2.6 in 2050 and 2070, respectively; (e) 407 

and (f) are climate change scenarios with RCP 8.5 in 2050 and 2070, respectively; (g) 408 

and (h) are HPD and climate changes with RCP 2.6 in 2050 and 2070, respectively; and 409 

(i) and (j) are HPD and climate changes with RCP 8.5 in 2050 and 2070, respectively. 410 

 411 
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Table 3. The relative losses of species ranges (%) for the three basins in different scenarios. 412 

CC: climate change; HPD+CC: climate change with HPD change. 413 

Scenarios Models 
RCP2.6 RCP8.5 

2050 2070 2050 2070 

HPD 

HRB -55.8  -61.3    

YRB -28.1  -33.0    

PRB -26.9  -27.9    

CC 

HRB 3.9  -0.7  -3.5  -1.7  

YRB 1.9  -1.2  -11.0  -3.2  

PRB -13.3  -2.1  -41.8  -2.1  

HPD+CC 

HRB -53.7  -60.9  -56.1  -83.4  

YRB -26.5  -32.5  -30.8  -60.0  

PRB -34.6  -30.3  -53.5  -37.2  

Difference* 

HRB 2.1  0.4  -0.3  -22.1  

YRB 1.6  0.5  -2.7  -27.0  

PRB -7.7  -2.4  -26.6  -9.3  

*The difference is the range loss in scenarios HPD+CC minus that in scenario HPD. A positive 414 

value indicates offset effects by climate change, while a negative value means aggravated 415 

negative impacts due to climate change.  416 

4 Discussion 417 

4.1 Model comparison and consideration  418 

In the present study, we selected the most important variables based on the model 419 

that used all species occurrence records across the whole study area. We used the 420 

same variables in the basin-scale models to make the models in separate basins 421 

comparable. Only four variables were used to avoid overparameterization because of 422 

the relatively limited occurrence records in the HRB and YRB. Although we 423 

acknowledge that the species occurrence size in these two basins was tiny and that the 424 

inference ability of the SDM could be subsequently influenced, previous studies 425 
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indicated that SDMs based on small samples size can also produce useful predictions 426 

(Hernandez et al. 2006, Wisz et al. 2008, Zhang et al. 2020b). Given the assumed 427 

niche transferability of SDMs, projections in space could be useful in identifying 428 

potential distributions in other geographical regions (Randin et al. 2006, Wenger and 429 

Olden 2012). However, the differences of environmental conditions among different 430 

study regions can be distinct in species’ range, thus, the regional model can result in a 431 

generally low transferability across regions. It should be noted that the aim of this 432 

study was not to explore the model transferability of different regional models but to 433 

probe local differences in species distribution responses to environmental changes, 434 

specifically for the CGS that have a limited dispersal ability and distinct population 435 

divergence among basins. We found distinctly different responses of species 436 

occurrence to climate conditions and similar responses to HPD among the three basins 437 

(Figure 2), which could be an adaptation to local environments (Figure 4). 438 

Additionally, our results showed that species distribution area from the whole-area 439 

model did not completely cover the species occurrences in the HRB and YRB (Figure 440 

3d), while their occurrence probability was corrected to be higher by the local basin 441 

models, indicating that the local model could outperform the whole-area model. 442 

Considering the additional finding that basin-scale models could provide more detail 443 

about species distribution, basin-scale models that incorporated local adaption were 444 

suggested as more reasonable model strategies. However, to improve or validate the 445 

ability of the model to predict species distribution, independent geographically or 446 

temporally separated data should be collected (Bahn and McGill 2013). Considering 447 
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the difficulty and high cost of filed investigation, the emerging environmental DNA 448 

method can be employed to determine the presence in the potential distribution area 449 

of the CGS predicted by our study and incorporate the data into future SDM work. 450 

Selecting a model-specific threshold to transform model outputs into binary 451 

presence/absence maps has been essential in various aspects of conservation 452 

applications and management (Guisan et al. 2013). Maximizing the sum of sensitivity 453 

and specificity (MaxSSS) is regarded as an efficient method for threshold selection for 454 

presence-only SDMs when compared with various other existing methods (Liu et al. 455 

2013), and this method is also commonly used in real applications. However, it is 456 

stated that specificity and commission error cannot be calculated without true absence 457 

data when using the MaxSSS method to select the threshold (Braunisch and Suchant 458 

2010). In this study, we tested the MaxSSS method to generate the binary map for all 459 

three separate basins and the whole area and found the resulted presence area of the 460 

CGS continuously spread over almost all of the basins. The predicted distribution 461 

distinctly deviated from the real distribution of this species that is limited in dispersal 462 

ability and has a habitat highly impacted and isolated by human modification of the 463 

environment. It is indicated that the predicted distribution generated by MaxSSS could 464 

not characterize the potential distribution if information about the biotic and 465 

anthropogenic factors that affect the distribution of specific species is not 466 

incorporated in the SDM (Liu et al. 2013). For a given species with populations that 467 

are geographically confined due to dispersal limitation or species interactions, 468 

the occupied geographic range will be smaller than its full potential distribution 469 
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(Leathwick 1998, Svenning and Skov 2004, Soberon and Arroyo-Pena 2017). 470 

Furthermore, limited climate availability is also expected to reduce the fundamental 471 

niche to a smaller realized niche (Soberón and Nakamura 2009). Although no direct 472 

biotic and human factors were considered in our model, we constrained the model 473 

area in the separate basin for this species with a limited dispersal ability and included 474 

the human population as an important predictor in the model. Therefore, we 475 

hypothesized that our model-estimated distribution was closer to the realized 476 

distribution, which is more consistent with the actual distribution of the CGS. To 477 

achieve this, we used a more rigorous threshold, which was the predicted mean 478 

probability of the occurrence data, for the studied critically endangered species. 479 

Satisfactory agreements between occurrence sites and the predicted high occurrence 480 

probabilities were also achieved with this method (Figure 3, Table 1). The predicted 481 

current species distribution was also generally consistent with the results from the 482 

county-scale habitat model produced by Chen et al. (2018). Further work is still 483 

needed to test and compare other threshold methods (e.g. kappa maximization and 484 

prevalence approaches) (Liu 2005) to select the optimal thresholds for different basins 485 

to better support model evaluation and application. 486 

 487 

4.2 Difference among populations in local basins 488 

Our research revealed a distinct response variation of species occurrence to 489 

climate factors from northern to southern basins. As the basins changed from 490 

temperate areas to subtropical monsoon regions, the preferred MTCQ and PWQ of the 491 



27 
 

CGS were found to increase (Figure 2) with increases in the air temperature and 492 

precipitation from north to south. As the HRB is a mountainous region with complex 493 

landforms and is partly controlled by a continental dry climate, its annual temperature 494 

differences are very large (Lu et al. 2014). This may explain why the preferred TS of 495 

the CGS in the HRB was higher than those in the other two basins. For the studied 496 

ancient animal with poor dispersal potential, mountains and rivers blocked its 497 

migration with the formation and evolution of geographic structures, which has led to 498 

a rather high level of population differentiation in different geographic regions (Liang 499 

et al. 2019). At the same time, the distributions of the species could have adapted to 500 

local climate conditions, as indicated by our research. Such local adaptation evidence 501 

was also shown in the difference in the contributions of climate factors to species 502 

occurrence (Table 2). The most important climate factor in the HRB and PRB was the 503 

PWQ, while it was the MTCQ in the YRB. Like most amphibians, the CGS needs to 504 

hibernate in cold months to reduce energy consumption and protect them from the 505 

frozen period. Unlike the HRB and PRB, where the preferred MTCQ of CGS 506 

occurrence is either below-zero temperatures or higher-than-zero temperatures (Figure 507 

2), the optimal range of the MTCQ in the YRB is around the freezing temperature 508 

(Table 2), revealing that the CGS in the YRB could be more sensitive to the variation 509 

of winter temperatures required for hibernating. As the breeding month of the CGS is 510 

mainly in wet June and July and the quantity of precipitation is a dominant factor 511 

influencing the biomass and health of aquatic ecosystems (Grimm et al. 2013), a 512 

suitable PWQ could afford a suitable habitat and enough food for CGS reproduction 513 
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in the HRB and PRB. Although the TS was found to be relatively less important to 514 

CGS occurrence in the three basins, studies revealed that the seasonal variation of 515 

climatic conditions may influence the phenology and spatial distributions of 516 

salamanders (Kirk et al. 2019).  517 

As the life attributes of ectothermic animals are highly linked to the climate, 518 

climate change may cause profound impacts on salamanders (Bartelt et al. 2010). 519 

However, as indicated in this study, future HPD variations were primarily accountable 520 

for the loss of the species’ range, especially for the HRB, where HPD played an 521 

important role in the occurrence of the species. Future increasing human populations 522 

may advance the harvesting rate of the CGS, where it is popularly believed that they 523 

are nutrient-rich foods. As salamanders have low dispersal abilities and rigorous 524 

habitat requirements, they are susceptible to human-induced environmental changes 525 

(e.g., urbanization and river reconstruction) (Price et al. 2011). The obvious range loss 526 

of the CGS resulting from future HPD changes will probably be caused by the 527 

booming expansion of urban areas in China in the future. As the CGS prefers to live 528 

in habitats with clean and fast-flowing waters(Chen et al. 2018), urbanization can 529 

destroy suitable habitats by changing the land cover, altering catchment hydrology, 530 

and contaminating river water (Price et al. 2011). Additionally, our study revealed 531 

distinct habitat fragmentation caused by HPD change, which would decrease the 532 

genetic diversity of populations by obstructing movement among species ranges 533 

(Marsh et al. 2005) and ultimately increase the risk of species extinction (Noël et al. 534 

2006).  535 
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 536 

4.3 Insights for conservation and management 537 

The endangered CGS has attracted considerable conservation attention, while the 538 

baseline data on its distribution status is often limited for identifying conservation 539 

activities and management policies (Fellowes et al. 2009). The spatiotemporal species 540 

distribution produced by our study could provide helpful guidance to surveys of the 541 

species’ presence and could detect key habitats and populations throughout its ranges. 542 

Setting up nature reserves has been acknowledged as an effective strategy for 543 

protecting natural populations of the CGS (Liang et al. 2013). However, effective 544 

management to prohibit human access to habitats has been lacking in some of the 545 

protected areas (Pan et al. 2015). Our research elucidated that future HPD change 546 

would result in a significant range loss of the CGS, which is basically  following the 547 

accepted view that their population decline in the wild is primarily attributed to 548 

human-induced habitat destruction and overexploitation. Therefore, tighter measures 549 

that prevent human interference should be addressed, especially for the existing nature 550 

reserves of the CGS. To do this, public education campaigns should be enhanced to 551 

provide better information about the survival status of the CGS and the importance of 552 

conserving their habitat. The government should implement severer penalties and 553 

regulations to prohibit hunting wild CGS. We recognize that climate change would 554 

induce relatively fewer negative impacts on the CGS distribution; however, it is likely 555 

to evidently aggravate the adverse impacts from human pressure in the future.\, as 556 

indicated in our study. Therefore, climate factors that heavily influence the habitat and 557 
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survival of the CGS should not be neglected when formulating conservation 558 

measures. 559 

We revealed local differences in climate variable importance and range shift 560 

responses to HPD and climate changes among the three basins using basin-scale 561 

models. Therefore, we suggest that local adaptive management strategies should be 562 

employed for populations in different regions in the future. For the HRB, it is 563 

especially important to eliminate the impact of human activities on the habitat of the 564 

CGS, as the variation of the used human-related factor would cause distinct range loss. 565 

For this relatively dry basin, we reported that precipitation in the wet season is a 566 

dominant climate factor since it may affect its breeding activities. Water 567 

replenishment to the key habitat streams and rivers in the reproduction season could 568 

be an effective measure. If no urgent conservation measures are implemented, the 569 

suitable habitats would be devastated by HPD and climate changes (Figure 5j). For 570 

the YRB, we advocate strengthening the conservation of existing nature reserves, as 571 

most of them are in this basin, and new reserves could be established in the west of 572 

the range since the habitat there is more stable; thus, new habitats would be colonized 573 

in this region with the changes of HPD and the climate (Figure 5). Mitigating the 574 

environmental temperature in the winter is needed for the reserves, as the temperature 575 

is crucial in influencing the hibernation of the CGS. For the PRB, compared to the 576 

impact of human pressure, climate change would seriously reduce the species range in 577 

the northern part of the basin, although new habitat could be gained in the south 578 

(Figure 5c-5f). This would force the habitat and populations in the PRB to be more 579 
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isolated from those on the north side. As precipitation in the wet season was found to 580 

be notably more important for species occurrence compared to other climate factors 581 

and the human factor, similar measures in the HRB should be particularly enforced to 582 

support the successful breeding of the species. As the species ranges of the three 583 

basins would distinctly be detached from each other in the future (Figure 5g-5j), 584 

specific mitigation strategies at the population level should be further addressed in 585 

future studies, and our findings concerning the local adaptation differences of species 586 

ranges provide beneficial information.  587 

 It is worth mentioning that the release of farmed salamanders has been 588 

increasingly approved as a conservation measure for the CGS in recent years. 589 

Although it could help restore its populations, the introduction of non‐native 590 

individuals might induce severe genetic homogenization in local populations (Liang et 591 

al. 2019). Therefore, we suggest that environmental tolerance and genetic lineage 592 

should be tested before releasing farmed individuals into the wild. In any case, our 593 

study highlights the importance of local adaptation in generating more robust 594 

management and conservation plans for this critically endangered species of special 595 

interest.  596 
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