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Simple Summary: Varroa destructor is a parasitic organism feeding and living among honeybees.
It transmits viruses like the Deformed Wing Virus which can lead to the decline and death of the
colony. Many treatments have been developed over the years like formamidine amitraz, pyrethroid
tau-fluvalinate, organophosphate coumaphos or even acids like formic and oxalic to control the
spread of the mite. However, none of this solution provides long-term sustainability for honeybees
and no resistance from V. destructor. Therefore, the development of alternative tools remains open.
This will require the combination of both laboratory and field results through an integrative approach
based on the identification of V. destructor health biomarkers. Here we review what has been done and
what can be done from the laboratory to the field against the parasitic pressure held on honeybees.

Abstract: Varroa destructor is a real challenger for beekeepers and scientists: fragile out of the hive,
tenacious inside a bee colony. From all the research done on the topic, we have learned that a better
understanding of this organism in its relationship with the bee but also for itself is necessary. Its
biology relies mostly on semiochemicals for reproduction, nutrition, or orientation. Many treatments
have been developed over the years based on hard or soft acaricides or even on biocontrol techniques.
To date, no real sustainable solution exists to reduce the pressure of the mite without creating
resistances or harming honeybees. Consequently, the development of alternative disruptive tools
against the parasitic life cycle remains open. It requires the combination of both laboratory and
field results through a holistic approach based on health biomarkers. Here, we advocate for a more
integrative vision of V. destructor research, where in vitro and field studies are more systematically
compared and compiled. Therefore, after a brief state-of-the-art about the mite’s life cycle, we discuss
what has been done and what can be done from the laboratory to the field against V. destructor
through an integrative approach.

Keywords: Varroa destructor; honeybees; integrated pest management; biocontrol; holistic approach

1. Introduction

While honeybees forage, nurse, reproduce, eat, or communicate in an already critical
unhealthy environment with pesticides [1], climate change [2] or habitat loss [3], parasites
take their chance too [4]. One of them is Varroa destructor, a world major threat against
bees [5,6]. After a shift from its original host the Asian bee Apis cerana to the Western
honeybee Apis mellifera, it rapidly spread in the 1970s in Europe and in the 1980s in
America [5]. It is now observed in both managed and wild A. mellifera [7]. Due to a shorter
coevolution time between A. mellifera and V. destructor [8] as well as fundamental biological
differences, the Western honeybee is far more impacted by the mite than the original
host [5,9–11].

Why is this ecto-parasite such a threat for A. mellifera worldwide? It appears that
V. destructor is tightly connected to several viruses and especially the DWV (Deformed
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Wing Virus) with its diverse variants DWV-A, DWV-B originally known as VDV-1 and
DWV-C [12–14]. This RNA virus is responsible for wing malformations in bees, causing
flight incapacities, thus a lack in food collection for the colony but also a threat to pollina-
tion [15,16]. Assuming the transmission of the virus occurs at the adult stage, no visible
symptoms are reported [17] but a shortened lifespan is described [18]. The infection at the
larval stage (emphasised through V. destructor) induces damage like shortened abdomens,
reduced brood nursing and learning deficits [19,20]. From a host-parasite perspective,
interactions have to be considered not as a duo but as a triangle, highlighting the virus
quasispecies which can spread between bees and acari [17,21–26].

Fifty years of intense research about V. destructor support an impressive amount of
knowledge in order to deal with practical issues: how to reduce the impact of the mite
on honeybee populations [27]? It is true that current control methods efficiency for the
acari are still debated. Hard chemicals like pyrethroids, formamidine, organophosphate,
neonicotinoid, or sulfoximines were or are still used in the field. However, their negative
impact on honeybees’ cognition is now widely identified and the resistance developed
by the mite is part of current knowledge [28,29]. Other solutions were explored too, like
drone removal, brood interruption, or breeding programs [30,31]. Soft acaricides such as
thymol, hop leaves or acids seem promising for some [32,33] and already trouble making
for others [34,35].

As urged by the integrated pest management program (IPM), a more integrative
view is compulsory. The goal is not anymore to kill each and every one of them but
rather to reduce their impact without harming honeybees and other wild species around.
New strategies based on IPM and biocontrol are passionately studied all over the world.
Currently, none is adequate to reduce the adverse impact of mites on bees. It is imperative
to develop a holistic approach that focuses on the complete understanding of V. destructor
biology and its tight relationship with its host. Health biomarkers should be determined
for the mite and would help to evaluate at sub-lethal level on a long-term period the
impact of molecules or biotechnics. This integrative approach involves in silico, in vivo,
semi-field and field scales. Our review aims to discuss the latest ideas about control, IPM
and biocontrol for A. mellifera against V. destructor from the laboratory to the field in realistic
reproductible and applicable conditions.

2. Know Your Challenger, Varroa destructor
2.1. The Ecto-Parasite’s Life Cycle

A great dynamic for V. destructor research has enlightened the domain, giving us new
comprehension about the parasite’s interaction with its host. The mite’s cycle is composed
of two distinct phases. The dispersal phase, previously called phoretic phase [36,37]
refers to the periods during which the mite feeds, travels on adult honeybees, allows its
spermatophores to mature and activates ovaries [38]. The reproductive phase refers to the
part of the cycle which takes place within a brood cell, where the parasite feeds on the bee
throughout its development (from larvae up to imago). Once the female mite invades a
worker brood cell holding a larval bee from 15 to 20 h before capping [39], within a few
hours the oogenesis begins [40] and 60 h post cell capping the first egg is laid [41]. New
borns feed from the hole (100 µm) pierced by the mother’s chelicerae in the pupa [42,43].
The feeding pit on bee pupae stands open due to anticoagulants from the ecto-parasite
saliva and suppression of healing processes [37,44,45]. The first born is always a male
(haploid) while the following eggs laid are females (diploid). New borns go through
several steps of development, from protonymphs to deutonymphs that molt into adult
mites (Figure 1). Once they have reached the adult stage (9–10 days after cell capping for
the first born female) and until emergence, mating occurs between brother and sisters in
case of single infestation [46,47]. Cross-mating are possible when two or more foundresses
invade the same cell [48]. Multiple mating events happen within the cell, until the bee
reaches its imaginal stages and emerges. At this point, the male dies and the newly fecund
females climb on this new born honeybee, along with their mother, to leave the cell as
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well. A new generation is born, and the life cycle of the mite goes on with the dispersal
(ex phoretic) phase. Based on artificial experiments and anatomical observations, a female
would be able to do a series of seven reproductive phases before it dies [49,50]. A third state
is viable during the lifetime of V. destructor. Out of the brood cell or off the honeybee body,
the female acari moves freely on the surface of the comb [51] and therefore can survive a
few hours without a host.

The population dynamics, structure and genetics of the mite are crucial to under-
stand the spreading process as well as their adaptations and resistances [52,53]. Varroa
destructor mating biology leads to intense inbreeding with no exchange among lineages
in the population while a single foundress invades a brood cell. However, cross-mating
events occur with two or more foundresses co-infesting the same cell resulting in more
heterozygous loci [54]. In temperate climate like Europe, during spring at the beginning of
the season, single infestations happen due to excess of bee brood compared to the number
of ecto-parasites. During summer and fall, the number of available brood cell decreases
while V. destructor population increases, therefore co-infestations occur intensely (Figure 1).
Contrary to initial assumptions, the ecto-parasite is thus, genetically diversified with a
dynamic structure over time as it varies according to brood availability in the colony [48].
In addition, genetically different incomers arrive with workers drifting from surround-
ing colonies [55,56]. The host seasonal timeline is a key parameter for genetically based
resistance toward acaricides [57]. In fact, temporal rotation between incestuous mating
and cross-mating are critical in the failure of controlling V. destructor. Inbreeding increases
the frequency of homozygotes with resistant alleles to molecules even before any cure.
According to genetic population dynamics and structure, treatment should occur during
cross-mating period [48].

Besides allowing genetic diversity, the cycle and more specifically the synchronicity
between V. destructor and its host would not be possible without a chemical communication
network.

2.2. Eavesdropping and Hijacking the Hive: V. destructor, the Perfect Scrounger

Pheromones are known to be a key factor in colony communication, as they maintain
the unity and plasticity of the honeybee society [58,59]. In the present work, we will only
focus on some semiochemicals thought to be involved in the host–parasite interactions
with V. destructor, for a better understanding of the challenger biology.

ORIENTATION—Many olfactory signals from adults, brood, or colony matrices have
elicited behavioural responses from the mite. For instance, specific blends of fatty acid esters
from old bee larvae [60,61] or aliphatic alcohols and aldehydes from cocoons [62] were
shown to trigger the arrest or even the attraction of female acari in laboratory conditions.
Brood food holds 2-hydroxyhexanoic acid, a volatile blend which also appeals dispersive
mites [59,63]. Conversely, the mite is blocked by the ω-functionalised fatty acids from
royal jelly [64] and the larger amount of methyl oleate in royal cells [65], preventing the
parasitisation of queen brood. The ecto-parasite is also blocked and pushed away by
two components of the Nasonov pheromone, geraniol and nerolic acid [66] as well as
(Z)-8-heptadecene [67]. It turns out that foragers emit more of this semiochemicals and the
(Z)-8-heptadecene than nurses. Therefore, it partially explains why dispersal mites are able
to choose nurses over foragers [68,69].

Even V. destructor movements across the colony are primarily oriented through volatile
compounds catched by their chemosensory organs located in forelegs [70]. Nganso et al.,
(2020) [71] demonstrated by mechanically blocking them with nail polish that the mite has
lower ability to select and identify a suitable host to reproduce.

REPRODUCTION—In the dark environment of the capped cell, the male acari has
to recognise and mate specifically with the mature unmated females. The female actually
emits a volatile sexual pheromone, composed of oleic acid, palmitic acid, stearic acid and
their ethyl esters which attracts the male through its tarsal sensory pits and triggers its
courtship behaviour [72,73]. The youngest daughter seems to be always the favourite
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choice of the male because the emission of the sexual pheromone is stronger in young and
reduced in older females [72]. In the same way, once the mite is inside a capped brood cell,
it is the shift in the fatty acid ester compound produced by the bee pupa (a decrease of
ethyl esters and an increase of methyl esters) that initiates the reproduction and egg laying
through vitellogenin induction [74,75]. Even the sex determination seems to be driven by
bee pheromones as Garrido and Rosenkrank [76] showed. In that case, fatty acid esters
volatile signal triggers a male egg laying by the foundress. Supporting the hypothesis
of a complex chemical environment ruling V. destructor behaviour, Frey et al. [75] demon-
strated that artificially inserted mites with methyl esters compound stop reproduction.
Plettner et al. [59] hypothesised that this signal alone could indicate to the mite that the
bee pupa development is too advanced for the offspring to reach adulthood before the
honeybee emergence.
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Figure 1. Varroa destructor life cycle and its population dynamics throughout the year. On the left,
the two phases of the ecto-parasite cycle. The black line is in case of single infestation, the dashed
line is in addition of the black one, thus in case of co-infestation in a brood cell. Inside the brood
cell, the foundress laid eggs which go through several steps from protonymph to deutonymph
until becoming a new daughter and son. On the right, the pattern of infestation over time. The
balance between the number of brood available and the number of ecto-parasites in the colony
influence the genetic diversity. Varroa destructor mating biology leads to intense inbreeding with no
exchange among lineages in the population while a single foundress invades a brood cell in spring.
Co-infestation happens in drone brood cell early in the year. However, cross-mating events occur
around summer and fall with two or more foundresses co-infesting the same cell resulting in more
heterozygous loci [54]. Contrary to assumptions, the ecto-parasite is genetically diversified with a
dynamic structure over time [48].

CAMOUFLAGE—Varroa destructor has not only chemosensing skills but also under-
takes chemical mimicry to influence its host [37,77]. The mite avoids recognition by worker
bees that would clean the infested cell or clear their nestmate body carrying acari. As a
result, V. destructor hijacks host communication signals to bypass exposure [73]. Indeed, the
ecto-parasite and honeybees, whatever the developmental stage, share a typical pattern of
alkane like pentacosane or heptacosane [78]. In fact, Kather et al., (2015) [79] demonstrated
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that V. destructor is unable to biosynthesise host compounds itself (e.g., chemical mimicry)
but instead requires direct access to the cuticle for odour passive acquisition (e.g., chemical
camouflage) [80]. This camouflage mechanism is extremely plastic and takes only up to 9 h
after host shifting during the reproductive but also dispersal phases.

According to the period and the hive environment, the behaviour of V. destructor
is quite different and extremely adaptive [81]. At low mites abundance in the colony,
acari seem to prefer nurse bees over foragers or new born bees [82], based on differential
pheromonal signatures between nurses and foragers. Yet, the mite can passively modify the
hydrocarbon cuticle of its host according to colony infestation levels. At high infestation
levels, nurses and foragers, less discernible by their different cuticular hydrocarbons, are
equally appealing to V. destructor, thus promoting the exploration of new bee colonies [83].

This natural drifting of mites between colonies is one of the factors which increases
the deleterious effect of the ecto-parasite on bee populations, especially through viral
transmission. The biology of the ecto-parasite is indeed not complete without the study of
its viruses like the Deformed Wing Virus.

2.3. Varroa destructor and DWV—A Cut-Throat Association to Bees

The host–parasite relationship between honeybees and the ecto-parasite is more
complex than a duo and takes a third dimension associated with viruses like the DWV. This
multipartite interaction is not fully understood. The ecto-parasite plays a central role in the
recent expansion of the DWV [16]. It turned this originally benign virus, showing relatively
asymptomatic infection, to a highly virulent virus associated with disease symptoms and
colony losses [84–86].

Varroa destructor spread also made an impact on the virus genetics and resulted in
selection of virulent variants of DWV [87–89]. A particular DWV variant, namely DWV-B,
infects the gut epithelium and salivary glands of the ecto-parasite [24], establishing it
as a biological virus vector since it multiplies inside the vector [17,25,26]. Furthermore,
V. destructor enhances the development of DWV level in the European honeybee through a
saliva protein [22], the same that is toxic for A. cerana worker larvae. Equally important, the
predator–prey theory developed by Volterra seems to apply in this triangle connection [90].
The haemolymph punction, that could be associated with the parasitisation, destabilises
the immune system, accelerates the immunosuppression and causes explosive replication
of the DWV in infected bees [91,92].

What are the effects of DWV on V. destructor physiology? Few studies explored the
direct impact of the virus on the mite for itself. The main reason is due to the recent
advances which showed that V. destructor is not only a carrier but as well an amplificator
of the virus. One of these studies localised the DWV in the ecto-parasite synganglion
questioning the host manipulation hypothesis where the mite behaviour could be altered
to favour the transmission of the virus [93,94]. More research would help to identify health
biomarkers of V. destructor that can be influenced by the DWV.

All these key parameters in the understanding of the host/parasite interactions could
be as many promising therapeutic targets to control V. destructor.

3. Varroa destructor Chemical and Semi-Chemical Control Methods
3.1. Hard Acaricides

Synthetic acaricides were first used in the 1970s to effectively fight against the acari [95,96].
They were easy to use, cheap and effective [5]. Different types were released in the market
followed by several research works describing their impact on the mite but also collateral
impacts on bees. The formamidine amitraz, pyrethroid tau-fluvalinate and organophos-
phate coumaphos are the three active ingredients and major hard acaricides used against
V. destructor. Their mode of action is now well described in the literature. For example,
formamidine amitraz holds a toxic effect by interacting with the octopamine receptors
involved in insects’ nervous system [97]. It inhibits neurotransmission leading to paral-
ysis [98]. As for tau-fluvalinate, it changes kinetics of the voltage-gated sodium channel.
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The axonal membrane permanently depolarised induces the paralysis of the mite [31,99].
In addition, other pyrethroids are known to increase the transcription level of antimicrobial
peptides and hymenoptaecin (an antibacterial polypeptide) in bees [100–102] leading to a
modified physiology. The last major acaricide, coumaphos, acts as an acetylcholinesterase
inhibitor and impedes nerve signalling [103,104].

Due to their modes of action and their impact on gene expression, several works
showed that commercial acaricides harm honeybees lethally and sub-lethally. While a few
studies do not detect any detrimental effect [105], some have shown olfactory memory im-
pairment [106] or locomotor deficits [28] associated with the presence of acaricide. Another
major issue is due to lipophilic properties of these molecules which facilitate their accumu-
lation in bee products especially in wax, thus surexposing honeybees and V. destructor to the
substance [107–109]. Another drawback to keep in mind is the inability of hard acaricides
to reach capped brood, killing the ecto-parasite only out of the reproductive state.

One more exploratory option resides in lithium chloride. Ziegelmann et al. [110]
investigated its acaricidal impact by feeding honeybees and analysed their lifespan. This
molecule, not yet on the market, showed efficient results against dispersal mites through
oral and contact delivery methods [111,112]. However, the question arose about honeybee
products potential contamination [113]. Further research is still needed to determine
long-term and sub-lethal effects on bees in the laboratory as well as in the field.

The off-target effects, along with the increasing resistances of mites, pushed for new
ways of pest control [57] like soft acaricides.

3.2. Soft Acaricides

Many molecules from natural origins were considered as alternatives to synthetic
chemical treatments. Thymol, formic acid or oxalic acid have been stressed since the
1970s–1980s as efficient treatments against the ecto-parasite [114]. Yet, the ‘perfect’ solution
does not exist, and new molecules are tested each year in the hope to come up with a
long-term answer. Some of these molecules have been used for decades without a clear
understanding of their mode of actions on both the honeybee and the acari. This is for
instance the case of formic acid.

FORMIC ACID—Formic acid holds a great potential since it is the only molecule, so
far, able to reach both dispersal and reproductive mites inside brood cells [115]. When
used as a treatment, formic acid seems to interfere with the cellular respiratory chain,
more precisely the cytochrome C oxidase. It inhibits the oxidative phosphorylation, thus
impacting the mitochondrial energy metabolism [116]. Genath et al., (2020) [117] studied
the transcriptome of A. mellifera and V. destructor after topical formic acid treatment and
highlighted a difference in detoxification capacity between the host and the acari. Their
work supports the hypothesis of interference with cellular respiration through the modified
expression of several genes like cytochrome P450 suggesting a stronger toxic selectivity
toward the mite. To date, no resistance was detected in V. destructor [59,73]. Hansen et
Guldborg (1988) [118] showed that the formic acid concentration increasing in honey after
a treatment was not sufficient to be harmful and persistent in time [119,120]. Nevertheless,
many parameters such as the delivery methods, the size of the hive, the position of the
evaporator in the hive, the humidity and the temperature are known to greatly affect the
treatment efficacy [121–124]. For example, high temperature combined with low ventilation
in-hive may lead to higher brood toxicity and lower mite mortality due to quick evaporation
rates [125]. In addition, several studies described some drawbacks like swarming, queen
mortality, damaged young bees or reduction of sealed brood [123,126,127]. At sub-lethal
doses, formic acid involved memory impairment for bees in the short and long term [106].
Still, this acid seems a good compromise to keep a reduced number of mites without drastic
honeybees loss [123]. In addition to health risk for the user in case of incorrect use, real
efficacy is known to variate throughout the world, from 39.8% of mite mortality in the
USA [125] to 92% in Argentina [128].
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OXALIC ACID—Oxalic acid is a natural acaricide in use since the 1980s against the
mite. Again, this acid is a molecule naturally present in honey [119]. Due to its hydrophilic
nature, oxalic acid is used as an acaricide treatment and does not lead to high residual
concentration in wax [129–132]. It kills dispersive mites on honeybee body but cannot
penetrate a brood cell, limiting its effects [130,133,134]. In field trials, Maggi et al., (2016)
for instance, showed a miticide efficacy of 93.1%. Surprisingly its mode of action towards
V. destructor is still unclear although it is most likely mechanical [73]. Sublimation method
seems to cause crystallisation of the acid on the acari’s body, leading to the inability of
the mite to adhere to any substrate [135]. The fact that V. destructor appears unable to
detect this acid by olfaction [135] and the putative mechanical mode of action could reduce
the chance of resistance from the mite [73]. No resistance was observed over 8 years of
treatment in a recent bioassay [32]. Yet, caution should be taken as bacteria characterised
from V. destructor microbiota were shown to express oxalotrophy. This gives them the
ability to degrade oxalic acid in order to use it as their carbon source [136], thus conferring
resistances to the carrying mites. Despite its use as an organic treatment, oxalic acid at high
and sub-lethal doses can still be harmful to the bees. Severe and irreversible internal tissue
damages [137,138] or disruption of the proteolytic activity of the cuticle were observed,
impeding bees’ immunity [139]. Administration method is actually a key point and higher
death rates were associated with oral exposure when compared to topical application [140].
Maggi et al. [32] suggested that the combination of glycerol with oxalic acid may prevent
honeybees from oral ingestion, reducing deleterious effects, without reducing the efficacy
of the acaricide treatment. Besides the effect on adult bees, experiments led on larval stages
with spray application showed midgut damages as well [141]. Finally, tests on long-term
effects on colonies characterised loss of brood, workers and sometimes queen according to
the concentration used [130,142].

OTHERS—In addition to formic and oxalic acid, several other acids were screened
and their effects against V. destructor were assessed. While citric and acetic acids were
disappointing attempts [143,144], costic and oleic acids sound promising. The extraction
of costic acid from Dittichia viscosa plant allowed field tests with a miticide effect of 80%
without apparent bee mortality [145]. More precisely, alpha-costic acid was identified as the
compound responsible of the acaricidal activity and was also shown to knock out the mite
without killing it [146]. A later work even combined oxalic and costic acids to increase the
compound efficiency against V. destructor [147]. Despite these promising results, sub-lethal
effects on honeybees still need to be precisely explored in vitro and during field trials.

As for oleic acid, it is involved in different biological functions and would constitute
a key death pheromone eliciting hygienic behaviour in honeybees [148] and a sexual
pheromone for V. destructor [72]. Regarding the latest, the authors discovered that a pest
management solution through sexual confusion was possible in vitro and on semi-field
trials [149]. However, even if oleic acid seems encouraging, it could be a tricky solution to
put in use because of its omni-presence and its role in the regulation of diverse behaviours
in bee colonies.

Besides acids, essential oils and derivatives were alternatives with good miticide
effects [150]. Thymol is commercialised since the 1990s [151]. Derived from thyme oil, it
is the most common essential oil-based product used against V. destructor. Unfortunately,
due to the accumulation in wax, scientists uncovered severe sub-lethal consequences for
honeybees [152] like low larvae survival rate, delayed vitellogenin expression [34] or al-
tered specific memory traces [153]. Thymol binds to dopamine receptors, which irritates
honeybees and can modify the taste of honey [154,155]. Moreover, it triggers higher hy-
gienic behaviour from bees [156]. Many other essential oils have been tested, and some
were even commercialised. For instance, savoury or spearmint oils were investigated and
showed acaricidal properties with low rate of honeybee mortality while dillsun induced
higher death rates [157]. Menthol in sugar syrup displayed encouraging short-term re-
sults [150,158] whereas neem oil killed mites [159], but also increased brood mortality and
reduced the worker’s walking activity [160].
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Finally, another plant extract, relying on hop leaves, was shown to contain polyphe-
nols with high miticide effect and low acute toxicity for bees [161,162]. An advantage
of hop extracts comes from their antioxidant activity for honeybees, benefiting them if
administered orally [33].

3.3. Years Outcome of Restricted Therapeutic Arsenal: Varroa destructor Biotype Disparities

Adaptability strikes particularly in the original host of the mite, Apis cerana. Indeed,
the long host–parasite coevolution has led to fitness optimality for both through natural
selection process. It is well described in the literature that V. destructor females reproduce
only in drone brood cells in A. cerana hive [163] thus, confining them in a restraint area
and timeline. In addition, the Asian bees maintain efficient hygienic behaviour against the
mite with infested brood removal, entombing or grooming a nestmate [164–166], thereby
maintaining an equilibrium [9]. It is a different story with A. mellifera so far where the
co-evolution is shorter than A. cerana. Nevertheless, several traits such as varroa sensitive
hygiene (VSH) or suppressed mite reproduction (SMR) emerged and are still broadly
studied [167–169]. In the meantime, chemical solutions were used to face this invader.
Hard acaricides were largely described in the literature for causing resistance in the parasite
due to long-term exposure to high doses of chemicals. In the colony, the mite population
can be divided in three categories: susceptible, tolerant and resistant [170]. Mechanisms of
resistance can take several forms such as behavioural acaricide avoidance, desensitisation
through changes in the active site, diminished penetration or modulation of detoxification
enzyme expression [171]. A majority of acaricides target crucial proteins from the nervous
system leading to resistant mites through protein modifications.

In addition, the toxicity efficacy can be challenged by the ecological diversity of
mites within colonies (Figure 2). In fact, there are four different states of Varroa females:
(1) dispersal ecto-parasite attached to honeybee’s body, (2) comb mite freely moving inside
the hive, (3) reproductive acari confined in brood cell and (4) non reproductive mite
confined in brood cell [30,172]. This variety represents distinct targets with their own
reachability, which has to be considered while studying molecule toxicity on V. destructor.
Moreover, the mite population varies from winter to summer and seems adapted to each
season. Females are smaller with larger shields and shorter legs in summer. The ratio of
morphotypes is dynamic and goes from 20% of winter morphotype in summer to 20%
of summer morphotype in winter [173,174]. Viruses loads add a third dimension where
the mite can be free of viruses, positive with replication of the virus or positive without
replication of the virus (asymptomatic).

Why extermination is not the solution. Treatments that eradicate susceptible acari
keep the least sensitive to reproduce, which leads the V. destructor population to become
highly resistant over time. It is especially the case with this ecto-parasite because of the
high level of inbreeding within colonies. This makes the fixation of resistant alleles happen
quicker [48]. To limit this phenomenon, at least temporarily, a rotation in molecular targets
should be adopted [175]. Moreover, acaricides used at their lowest effective dose reduce
the amount of residues stored in wax or honey, thus moderate the speed in acaricide
resistance [176].

As a recent paper by Colin et al., (2020) [177] rightly advocated, acaricides should
be tested at sub-lethal level to assess their impact on reproduction, nutrition or even
orientation. It is a pity that toxicological studies rely mainly on lethal dose to evaluate the
efficiency of the product while eradication of V. destructor is not an ecological long-term
solution. However, preventing them from reproduction or right orientation, as supported
by Soroker et al., (2019) [81], would reduce the selective pressure in favour of the most
resistant mites. Other works also explained that the use of natural substances could grant a
low level of V. destructor infestation, keeping honeybee colonies alive [33]. An integrated
pest management strategy should thus, combine all the above ideas. It is necessary to
understand the diversity of the V. destructor population within one single hive. Long-term
alternative methods should rely on safer compounds (e.g., no interference with the nervous
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system) in small quantities altering host preference or mite reproduction through biocontrol
and IPM to preserve honeybees.
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4. Biocontrol and IPM Strategies for V. destructor Management

Here we summarised the main roads of IPM and biocontrol for honeybees against the
ecto-parasite explored by scientists.

4.1. Biotechnical Approach

Often combined with organic molecules, a mechanical approach can be an alternative
as well. The main goal is to perform total brood interruption, removal of drone brood,
queen caging or trapping combs to decrease the pressure of V. destructor population on
the colony [131,178,179]. In fact, these mechanical methods allow to artificially create a
broodless period where mites have to be on adult honeybees, making them accessible
to molecules. The removal of brood frames after a broodless period can also allow the
trapping of an important number of reproductive mites. Unfortunately, according to the
region of the world, brood interruption does not give the same results. It was the best
solution to lower the ecto-parasite pressure on colonies in several countries in Europe but
not in the USA where it affected their strength and survival [179–183]. Another method
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called sugar shake, used as a diagnosis method, reduces as well the number of mites on
adult honeybees and lower the pressure on the colony without causing deep damages [184].

Regrettably, these techniques are tedious, difficult to execute at large scale and can
lead to honey losses which is a problem for beekeepers. Their great advantage is to keep
the highest quality and safety standard for honeybee products while reducing V. destructor
pressure [185].

4.2. Natural Predators

Another biological alternative in treatments against V. destructor relies on natural
predators. Different species were identified as potential candidates.

First, pseudoscorpions can occasionally be observed in hives and feed upon the ecto-
parasite without harming bees [186,187]. They are able to paralyse and kill the mite by
injecting their venom from their pincers [188]. Different species were described all over the
world like Nesochernes gracilis or Chelifer cancroides. Some seemed beneficial to bees and
others not [189]. Recent efforts showed that pseudoscorpions can be mass-reared, making
it easier to consider them a long-term solution against V. destructor [190]. Yet, a gap in
knowledge still needs to be filled regarding their actual utilisation in field experiments.

Second, the predatory mite Stratiolaelaps scimitus is another potential candidate studied
for biocontrol solution. Despite an effective ability to kill V. destructor, they also prove
to prefer the eggs of the honeybee to the mite [191]. Moreover, in field experiments, an
introduction in early and late fall did not lead to a decrease in the acari pressure upon
colonies [192,193].

It is quite difficult to find the perfect natural predator for V. destructor. An efficient mite
predator would have to, at least, consume the ecto-parasite eggs or larvae, thus entering a
brood cell in tandem with an adult mite [194]. Plus, this organism should not harm the
bees, regardless of the stage of development which makes the task truly challenging.

4.3. Microbiota

Microbiota is a highly dynamic field of research. For honeybees, worker guts from
colonies parasitised with V. destructor hold a higher proportion of Snodgrassella alvi and
a smaller of Lactobacillus spp., indicating a modification of their microbiota induced by
the acari [195,196]. Besides, healthy larvae host a large population of Enterobacteriaceae,
meanwhile the infested one owns a diversified microbiota similar to the ecto-parasite
microbiome [197]. Therefore, the microbiota is a new opportunity to dig in to fight the
ecto-parasite. Various strategies have been already experimented by several scientific
groups. One of them supports the use of transgenic gut bacteria for biocontrol purposes.
A key point to do so, relies on the adaptation of the gut microbiota through transfer
of plasmids and trans-conjugation between bacterial strains, making it the best place to
transfer genes [198]. Leonard et al. [199] engineered a symbiotic bacterium from honeybees’
gut, S. alvi, producing repeatedly dsRNA against essential genes for the acari and were
successfully fed to the bees. Ecto-parasites fed from bees nourished with the engineered
bacteria died faster than mites fed upon control bees. This elegant research work is a
real breakthrough and shows how significant bacteria from honeybees gut could help
in the battle against the mite. It also shows that combining several treatment methods
(e.g., dsRNAi and microbiota), can be an efficient way of reducing parasite pressure, nicely
filling integrative pest management perspectives. Using a different approach based on the
study of honeybee’s cuticle microbiota, where bacteria already fit the micro-environment
of the hive, Sacca et Lodesani [200] also obtained encouraging results. They isolated strains
able to induce V. destructor’s death within 3 days after spraying, namely Lactobacillus kunkeei,
Bacillus thuringiensis or Bifidobacterium asteroides.

Rather than targeting the mite, honeybee microbiota can also be used to improve
health and resistance in the host. Probiotics were already considered to enhance the
immune system against other threats to honeybees like American foulbrood or Nosema
ceranae [201–203]. As the acari was spotted to disturb honeybees’ gut microbiota (dysbiosis),
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it appeared that probiotics, like Gram-positive bacteria Lactobacillus and Bacillus strains,
brought beneficial impacts on colony health and seemed to reduce the incidence of the
mite [195,204,205]. Bacteria communities appealed as well for their released metabolites.
They were tested as treatment against the ecto-parasite. Lactic acid from L. johnsonii AJ5
induced the mite’s death when fed to bees. The mechanism implied in V. destructor’s
mortality remains unknown and needs further confirmations [206,207].

4.4. Pathogens

Pathogens are another avenue of potential sustainable solutions against the acari.
Entomopathogenic bacteria like Bacillus thuringiensis (Bt) are widely used as bioinsecticide
agents in crops [208,209]. Bt is a Gram-positive procaryote, naturally present on insects’
corpses as well as on leaf surface [210]. It penetrates the host via ingestion and produces
crystal (protein called Cry) and vegetative toxins. In vitro studies showed that Bt is present
on V. destructor corpses and were extracted to test their pathogenicity on mites as well as
honeybees. They reported that, after being treated with Bt for 24 h, V. destructor trembled,
regurgitated, with intestinal inflammation (dysentery) and eventually died [211–213].
Short-term experiment showed no lethal effects among A. mellifera adults or larvae and
possibly reduced vertical displacement [213,214] whereas chronic exposure to Bt induced
precocious mortality for adults and larvae bees [215]. A lack of field studies does not
allow to consider Bt as a resolutive method against the mite. Moreover, resistance and
biosafety are key issues raised by Bt use. The advantage of Bt relies on its fast-action and
host specificities which should limit adverse effects on non-targeted organisms [209]. Yet, a
watchful care should be taken due to several resistances from lepidoptera and coleoptera
species already spotted to transgenic plants which produce Bt proteins [216].

Besides entomopathogenic bacteria, a wide range of studies used entomopathogenic
fungi since they kill acarine species [194,217,218]. Entomopathogenic fungi spread into their
hosts via specialised spores called conidia. It takes 3 to 10 days to destroy the host by a lack
of nutrient, water distress, toxins impact and mechanical disruption [219]. In the biocontrol
area, Metarhizium anisopliae and Beauveria bassiana are the figurehead with thousands of
research papers. The former was studied several times by Kanga et al. [220–223] They
explored the effectiveness of the fungi against the mite through dust versus coated strips
and determined that broodless periods are more favourable. M. anisopliae seems very
persistent due to its presence 42 days after treatment. Field experiments in Texas and
Florida showed encouraging results. The efficient formulation seemed tricky but dry
conidia sprinkled held good results. Unfortunately, the fungus was also shown to kill
honeybees [220,224]. Italian researchers shed light on sub-lethal behavioural impacts of the
fungi (M. anisopliae var. anisopliae BIPESCO 5) on the mite that held a repellent effect from
nurses carrying conidia [225]. They led as well a field experiment for 24 days which resulted
in lower pressure of the acari, although honeybees losses were detected [226]. Besides,
V. destructor infested-brood inoculated with the fungi showed a recovery in the expression
of hymenoptaecin gene, involved in immunity, thus correcting the immunosuppression
induced by the mite [227]. To date it is not crystal clear whereas M. anisopliae is safe
for honeybees if applied intra hive even considering the improved results showed by
Hans et al. [228] with a modified strain. Further experiments are still needed.

Regarding B. bassiana, it seems naturally present in hives, even in brood cells some-
times [229]. Meikle et al. [172,230,231] explored the effect of the fungi on honeybees colonies
health while infested by V. destructor in field experiments and could not clearly reveal
a high efficacy. They investigated the best formulation for an easy use, knowing that
conidia germination is a key issue difficult to standardise. If sprayed, it seems to reduce
the survival of worker Africanised bees [232].

The main drawback of fungi and bacteria, regardless the lack of data about long-term
effects, relies on low specificity of their toxins and complication for them to colonise and
survive in the ecosystem of the hive [172,207]. In addition, from a phylogenetic perspective,
the honeybee and the ecto-parasite are relatively close, making it harder to reach a single
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one. Conversely, their way of action targets multiple receptors which is supposed to result
in a lower and/or slower evolution in host resistance.

4.5. Double-Stranded RNA Interference (dsRNAi)

DsRNAi is often mentioned as a recent potential alternative for V. destructor pest
management [37,73,81,175]. In fact, dsRNA induces the degradation of RNA with similar
sequences. Therefore, the job of dsRNAi is to momentarily silence targeted gene expression,
preventing the protein from filling its function. Varroa destructor holds the molecular
machinery to be sensitive to RNAi treatment, administered orally or via dsRNA injection.
Campbell et al. [233] showed for the first time that glutathione S-transferase (GST), a key
enzyme in the detoxification pathway, could be decreased through dsRNAi injection or
submersion of V. destructor. A few years later, they also demonstrated that neural peptides
could be targeted [94]. Garbian et al. [234] went further and led an elegant experiment
demonstrating that dsRNA could be delivered to V. destructor by inserting it in honeybees’
food. Their work unlocked the delivery issue making it much easier to administer. Besides,
odorant receptors as well as genes involved in survival or reproduction were discovered
in the mite using RNAi methods [235,236]. Odorant receptor knockdown even led to the
augmentation of vitellogenin in the acari, simulating the change from non-reproductive
to reproductive mode. Although it seems to be a promising method, its long-term and
potential risk of mutations or off-target effects are still unclear and largely debated.

4.6. Chemo-Disruption

This alternative pest management involves volatiles disturbance associated with key
moments in V. destructor life cycle [59,237,238]. This method requires a full description and
understanding of honeybees as well as the mite chemical communication in order to disturb
targeted behaviours only. In addition, it is critical to note that many compounds hold
different roles and significance according to the diverse hive contexts [59]. Nevertheless,
several research attempted to master chemo-disruption, mostly to interfere with the mite’s
mating behaviour. In vitro and semi-field tests used oleic acid, the sexual pheromone for the
mite, but also the hygienic pheromone for honeybees. The aim was to saturate brood cells
with the compound to confuse the male and reduce its successful attempts of copulation
with suitable females. This technique allowed to reduce by 20% the number of spermatozoa
carried by females [72,149]. Besides sexual confusion, host selection disruption was studied
through electrophysiological assay and some compounds like cy{2,2} showed efficient
results, which pushed the mite to pick a forager instead of a nurse bee, reducing the chance
to find a new suitable larvae in brood cells [51]. Several semiochemicals, around 60, were
identified over time by researchers that modify the mite behaviour [60,66,75,81] but rarely
tested at relevant colony concentration [238]. The tricky part about chemo-disruption in
hives is to reach mites inside combs and on honeybees’ bodies with an easy application of
molecules at a relevant concentration to be effective. This is even more challenging as most
of the molecules are also involved in bee pheromonal communication.

Owing to in vitro rearing methods developed lately, a better understanding of molecu-
lar pathways, and accurate communication channels used by the ecto-parasite was achieved.
It is crucial to put them back into reality through a holistic approach gathering ecological,
genetic and physiological factors.

5. From the Laboratory to the Field: How to Be Realistic?

Clearly, to identify key factors in host–parasite relationships under laboratory condi-
tions and to be able to transfer these conclusions into the field is a complex and laborious
purpose. This is especially the case in studies about eusocial species with a completely
different dynamic at the group level [239]. There is no common method to extrapolate
laboratory results into the field. Yet, for each case a practical tactic could be examined with
an integrative view. Theoretically, a holistic approach through an inverted funnel with a
4-steps loop and feedback could be conducted. This process includes in silico (modelling),
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in vitro rearing and testing, semi-field, field tests and back to modelling with new enriched
data (Figure 3). A critical point to set up laboratory experiments is to find a trade-off
between being close to natural conditions with complex but relevant conclusions and
reducing the natural complexity to try to better interpret parameters of interest. To dig
into that direction, accurate technical tools to study the relationship between the parasite
and the host including their bacteria or viruses, are capital and sometimes still deficient.
For example, the ultimate step for an in vitro rearing method relies on the development
of a complete isolation of the ecto-parasite from the host. On the other side of the spec-
trum, field studies could benefit from easy to use technical tools to track honeybees on
long distances [240]. Besides these technical issues and on a more applied research aspect
many in vitro applications were often led but hardly pushed through the long run until a
successful field product was released.
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5.1. In Vitro Methods

To identify key elements in the physiology and biology of the mite with precise
reproducibility, obtaining a large quantity of V. destructor is crucial. This is quite a challenge
as relying on colonies implies high risks of colony losses and seasonal constraints [241].
In vitro rearing is thus, a promising tool for obtaining such a large number of mites while
being able to study the parasite cycle in detail. The first main technical lock to study
V. destructor is supported by its incapacity to survive or complete its cycle detached from
its host and out of a brood cell, making an entirely controlled study complicated in the
laboratory. That is why available in vitro rearing methods to study the reproductive acari
are still dependent on the presence of bee larvae [183,242]. A full in vitro rearing with
alive and reproductive daughters maintained out of the season is, to our knowledge, not
available yet. Some current methods for instance use freshly collected larvae transferred
into gelatine capsules, in which a foundress is inserted to obtain viable offspring after
12 days [243–245]. Maintenance of living V. destructor on synthetic feeding membranes is
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possible too. Parafilm or chitosan surfaces were created to study the nutrition, reproduction
or virus infection of mites [25,36,246–249]. In these conditions, survival was possible for
a few days and the initiation of reproduction was sometimes observed. In laboratory
conditions, more than 20 molecules naturally emitted in bee colonies were identified but
only a few were tested in field. For example, in natural conditions, after application
of methyl palmitate to brood cells, Boot [250] did not observe any attractive effect like
previously demonstrated in controlled environment [251]. This point shows how tricky it
can be to transfer in vitro results into the field.

While essential, those laboratory results still lack the countless sonar, tactile or olfactory
cues naturally present within a hive. Semi field and field studies, on the other hand, allow
the inclusion of such parameters to further understand the parasite cycle.

5.2. Semi Field and Field Scales

SEMI-FIELD—An intermediate step between in hive and in vitro studies consists of
semi-field experiments, for example by using beehive frames brought into the laboratory.
Indeed, while being out of the full complex environment of the hive, it allows the inclusion
of important sources of interactions, such as those emitted by the brood, the wax or the
food. By considering part of this complex environment, Light et al. [252] showed that
many of the V. destructor volatile attractants isolated in laboratory studies were not detected
when a whole frame was analysed. Furthermore, in the case of chemo-disruption, if many
kairomonal candidates have been identified [81], attempts of delivering these distracting
odours in an accurate range in natural or semi natural conditions are scarce. To our
knowledge, this crucial step from the laboratory to the field was only successfully achieved
once in the case of sexual pheromone confusion [72]. One of the reasons for this void lies
in the fact that establishing protocols to disturb the mite cycle without impacting honeybee
communication is a critical task.

FIELD—For eusocial species, like A. mellifera, studies at the colony level remain crucial.
Unfortunately, in the darkness of the hive, to collect quantitative data on a wide range of
individuals for long periods can be tricky. One of the solutions rely on connected hives [253].
It should allow us to measure some variables like temperature, hygrometry, vibrations
but as well social exchanges for bees and why not mite movements. Some exciting new
works caught inside videos of within comb cell exploring the movements of honeybees
from egg to emergence as well as feeding behaviour from nurses to larvae [254,255]. This
type of tracking is essential to reconnect laboratory observations to field experiments. The
recent development and adaptation of gas sensor systems to beekeeping practices is really
promising. They have already been used to infer a parasite pressure based on volatils
detected in hives [256,257]. It is necessary to be able to precisely assess the state of the
colony when infested with the acari, thus to use acaricides only if required and at the right
moment [175,257]. From an IPM perspective and regardless of the agent, the formulation
is also crucial. The active ingredient needs to survive in the environment of the hive and
to access its target without or with the minimum off-target effects. The formulation of
a biocontrol agent should thus depend on the environment where it is delivered. In the
same way, the heterogeneity of the V. destructor population intra hive, between hives and
locations has to be taken into account. The numerous sources of physiological, pathological,
environmental, behavioural and genetic variations can interfere with the treatment against
the mite and determine the success of the method (Figure 2) [172,174,258]. Several works
took this aspect into account while testing different molecules or agents against the acari
and showed a customised response per location [29,222,259]. To improve our knowledge
about the host-parasite dynamic, we still need further research including these aspects to
get the full picture from the molecular scale to the population dynamic [260].

5.3. In Silico (Modelling Approach)

Modelling approach is part of an integrative strategy to identify key elements in the
host–parasite relationship using a high number of colonies. This powerful tool helps to
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represent complex systems, to test multi-factor hypotheses, to predict the outcome of host–
pathogen interactions without the cost of individuals, time or money and to estimate crucial
parameters from data [261–263]. Moreover, the use of models allows scientists to handle
simulated experiments when conducting those experiments is realistically impossible. It
is, thus a powerful tool to explore and understand the complexities of ecosystems [264],
especially when associated with field data [265]. In the case of host-parasite dynamics, it is
well-known that they are influenced by the exchange between parasite and host density.
This phenomenon is illustrated through the central transmission-density function. Here
the difficulty relies on the selection of the best model, the more representative of the
reality [266]. However, it highlights crucial variables involved in the issue. For example, in
the triangle A. mellifera, V. destructor and viruses like DWV or APV (acute paralysis virus)
vectored by the mite, the modelling approach showed a similar population dynamic as the
one measured in the field. It demonstrated that DWV reduces the number of healthy young
bees accessing the overwintering population. This imbalanced situation in ages for the
colony results in losses during winter or spring. Unfortunately, around 2000 V. destructor
females in autumn seems enough to lead to death. The model predicted a widely spread
DWV due to its lower virulence compared to another virus. They indicated as well that
prior to the generation of overwintering honeybees, the ecto-parasite pressure should be
reduced [267–269]. An interesting point with the latest development in modelling approach
remains in the study of sub-lethal doses of pesticides and their combined effect on the
colonies [270] as well as the long-term effect of antibiotics on bees [271]. Even acute contact
toxicity was predicted recently [272], advocating for a deeper connection between in silico,
in vitro, semi-field and field experiments. In the end, the host-parasite relationship should
be part of an integrative view and inserted in a wider picture where other variables like
poor nutrition, crop pesticides or pathogens are assessed to identify if they act in synergism
or antagonism inside the hive [273].

6. Conclusions

In the absence of a better solution, the current optimal strategy seems to be the use
of oxalic acid in glycerol strips combined to biotechnical approach [32,179,181]. A tight
monitoring of the infestation level is a key element to be effective. Rotation in time and
space for treatments among hives can help to reduce the resistance spill over [48,274].
However, according to climate and country legislation the achievement and results can be
dramatically different.

More than ever, researchers need to develop control strategies against V. destructor
that adopt effective alternatives to hard chemicals, well-known to generate problems like
residuals and resistance. If the use of organic acids, plant products and biological control
were investigated these last years, none is conclusive for V. destructor management yet.
The stumble point resides in the transfer of results obtained in the laboratory conditions
to the field. In such a context, it would be necessary to intensify attempts, which rely
on gene expression datasets, to discover a robust and reliable panel of health biomarkers
towards integrated control of V. destructor. In the end, a holistic approach, evaluating at sub-
lethal level different biotic and abiotic factors, will be a relevant pest management tool for
sustainable apicultural and agricultural production while getting closer to field conditions.
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