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Political responses to the COVID-19 pandemic led to changes in city soundscapes around the globe. 
From March to October 2020, a consortium of 261 contributors from 35 countries brought together 
by the Silent Cities project built a unique soundscape recordings collection to report on local acoustic 
changes in urban areas. We present this collection here, along with metadata including observational 
descriptions of the local areas from the contributors, open-source environmental data, open-source 
confinement levels and calculation of acoustic descriptors. We performed a technical validation of the 
dataset using statistical models run on a subset of manually annotated soundscapes. Results confirmed 
the large-scale usability of ecoacoustic indices and automatic sound event recognition in the Silent 
Cities soundscape collection. We expect this dataset to be useful for research in the multidisciplinary 
field of environmental sciences.

Background & Summary
In response to the rapid spread of the coronavirus disease 2019 (COVID-19) around the world, governments of 
many countries adopted physical distancing measures in early 2020, including more or less drastically restricting 
individual travel and suspending many work and leisure activities deemed ‘non-essential’1–3. Incidentally, these 
public health policy decisions opened a window of opportunity for many environmental scientists to investigate 
the effects of such a reduction in human activity on ecosystems at multiple spatiotemporal scales4–8.

The modification of soundscapes, especially in urban and peri-urban areas, was among the most significant 
environmental changes observed during this period9–14. The sudden decrease in individual travel and motorized 
transport of people and goods shaped extraordinary soundscapes in most cities of the world for a few weeks. 
This revealed the richness of animal sounds in urban areas, previously hidden by a multitude of anthropogenic 
sounds. Such a change, directly perceptible by the population, even raised interest outside the academic sphere, 
as reflected in numerous articles in the general press. Among the thousands of press articles on the subject, 
we will particularly mention the interactive publications produced by The New York Times (see, for example:  
The Coronavirus Quieted City Noise. Listen to What’s Left; or: The New York City of Our Imagination).
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From an academic point of view, several studies have already been carried out on these “soundscapes of 
a confined world”, at different scales and in different types of spaces and territories (sub-continents15, coun-
tries16–21, regions22–25, cities18,26–33, neighborhoods29,34, protected natural areas35, semi-anthropized environ-
ments36–38, tourist sites39). Among these studies, some benefited from sensor networks predating the COVID-19 
crisis, mobilizing for example underwater acoustics and/or seismic monitoring networks16,22,40, permanent 
noise pollution monitoring networks in urban environments26,41,42, or devices installed for pre-existing research 
projects43. Beyond these physical measurement approaches, several studies have also investigated individual 
and subjective perceptions of changes in soundscape composition. More specifically, the perceived proportion 
between natural and anthropogenic events in the soundscape is regularly raised in investigations that more 
broadly address the changes induced by different periods of population containment on experiential relation-
ships to nature21,29,44.

In this paper, we present a global acoustic dataset45, collected between March and October 2020 by 261 
contributors, at 317 sites distributed in 35 countries (Fig. 1). Recordings were primarily collected using Open 
Acoustic Devices AudioMoth46 or Wildlife Acoustics Song Meters SM4 (www.wildlifeacoustics.com) pro-
grammable recorders, which are widely used within the professional and amateur naturalist communities. This 
dataset is unique, with its international dimension, collaborative construction and open access availability. The 
acoustic data are presented in addition to climate classification and surrounding environment, offering a more 
comprehensive understanding of their significance and implications. In addition, we provide a set of descriptors 
based on ecoacoustic indices47 and on automatic recognition of sound categories using a pretrained deep neural 
network48. These descriptors were subsequently validated by collecting expert annotations on a small subset of 
the dataset, with which we derived statistical models to demonstrate their usability.

Methods
Silent Cities is a data collection that involved programmable audio recordings worldwide. The global scale of the 
project warranted us to not only gather acoustical recordings, but also contextualize them. We first describe the 
data collection procedures, the contributors’ network and contextual information related to the recording sites, 
such as location, urban density, climate classification or governmental policies related to human population 
containment in response to COVID-19. Next, we describe the processing of acoustic measurements computed 
on all recordings, including ecoacoustic indices, automatic sound event recognition, and voice activity detection.

Data collection. Recording protocol. On March 16, 2020, the French government announced the upcoming 
first containment of the population. A few days later, a first version of the Silent Cities protocol was submitted to 
professional networks. Feedback from researchers but also from journalists, artists and biological conservation 
practitioners interested in contributing were received. As requested, a more inclusive version, opening up the 
possibility of using different equipment and sampling efforts while preserving requirements for further robust 
statistical analyses was proposed (https://osf.io/m4vnw/). This second and final version of the protocol was shared 
on March 25, 2020 and is described below.

Each contributor provided recording equipment. To homogenize the recordings collection, recording devices 
were configured to obtain a 1 minute-long recording every 10 minutes on a daily cycle schedule, with a sampling 
rate set at 48 kHz. All recorders were to be set in Coordinated Universal Time (UTC+00) with an output format 
in .wav. In order to have comparable data, the use of an audible SM4 (Wildlife Acoustics) or an AudioMoth 
(Open Acoustic Devices), which were the two most popular programmable recorders at the time, was recom-
mended. However, any device with high quality recording, allowing the recording configuration requested, was 
accepted. To anticipate the return of high levels of anthropogenic sounds after the end of containment measures, 
the gain was to be set at “low” for the Audiomoth and at 31 dB for the SM4 (gain at 5 dB and preamplification at 
26 dB). The final dataset includes 216 sites monitored by an Audiomoth, 47 by an SM4 and 54 by another device.

The sampling duration of the collection was locally dependent. The protocol recommended to continue 
recording a minimum of two weeks after the end of the total city shut down and restoration of “normal” activi-
ties. However, the expected scenario of the return to “normal” activity extended well beyond predictions as the 
magnitude of the pandemic became progressively realised. As containment measures were being lifted in many 
countries during the summer, the acoustic sampling was ended on July 31, allowing contributors to continue 
collecting data after this date based on local situations. To summarise, the entire recordings collection covers 
the period from March 16 to October 31, 2020, with the highest number of recordings between April and July 
(see Fig. 1d).

Originally, contributors were able to choose between three levels of sampling effort based on their ability to 
record during the entire or partial duration of the project. Hereafter, we refine the definition of those levels to 
better fit the diversity of recording profiles represented in the final data set: 

•	 expert - The daily cycle schedule, duration of files and sampling rate were set according to the recommenda-
tions, and the duration of the sampling period was at least two months;

•	 modified - The parameters are set as recommended but the sampling period is less than two months or some 
parameters such as the file duration, the sampling rate or the daily cycle schedule are different (i.e. every 3 
hours), while conserving a fixed recording pattern along the sampling period;

•	 opportunistic - All other sites that do not show any type of recording patterns.

The expert protocol was applied by 228 contributors, while the modified protocol and the opportunistic 
protocol were followed respectively by 72 and 17 contributors.

https://doi.org/10.1038/s41597-024-03611-7
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International contributor network. The dataset45 results from the collaborative work of 261 international con-
tributors from various professional fields: 182 are academics, 37 are conservationist practitioners, 12 are artists 
and 30 do not recognize themselves in the three previous groups. An Open Science Foundation (OSF) project45 
was created to organize the data collection and guarantee its open access with no restrictions. Other tools used 
to manage the collaborative work were Framaforms (https://framaforms.org/abc/fr/) to collect metadata about 
sites and contributors from the consortium.

Fig. 1 Panel a. Global and European mapping of recording sites. Colors refer to climates. Panel b. Number of 
recording sites per country. Colors refer to continents. Panel c. Number of recordings by confinement level and 
climate. Panel d: temporal distribution of global sampling effort, in number of recordings.

https://doi.org/10.1038/s41597-024-03611-7
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Site descriptions. The containment of a large number of citizens worldwide restricted the location of the 
recorders. Contributors deployed their recorder on private land or a balcony at their residency (example on 
Fig. 2a). We encouraged those living in (peri-)urban areas to participate, even though recordings were also 
collected in rural areas. The soundscape recordings were collected from 317 sites located in or around 197 cit-
ies and 35 countries (see Fig. 1). In order to protect citizens’ privacy, the exact coordinates of the sites remain 
unknown and the location of the sites were based on the coordinates of their corresponding cities and approxi-
mate neighborhood. The sites cover four of the five climates defined by the Köppen climate classification49, with 
a majority of sites located in the temperate and dry climates and a spatial sampling in favor of the European 
and American continents (see Fig. 1). For each site, we extracted information about the surrounding land cover 
(more specifically the percentage of built-up and tree cover within a 1 km radius buffer scale around the sites; 
100 m resolution50), human footprint (from 0 to 50, with the lowest score depicting the least human influence, 
1 km resolution51,52), and population density (no. of inhabitants per square kilometer, 1 km resolution53) to 
document the degree of urbanization and human impact on the landscapes encompassing the recordings. In 
addition, contributors described in a few sentences the surroundings/context of their site. Thanks to the open 
data available on https://aa.usno.navy.mil/data/AltAz, we also extracted for each recording site the altazimuth 
coordinates of the Moon and Sun as well as the moon phase for each 10-second time interval during the days 
where soundscapes were collected. These data would be important for potential analysis about temporal sound-
scape dynamics. Finally, containment measures3 per country and date, summarized by the University of Oxford 
in the Oxford COVID-19 Government Response Tracker dataset, were downloaded from the web portal https://
ourworldindata.org/grapher/stay-at-home-covid. These stay-at-home requirements are organized in 4 levels: 

•	 0 - No measures;
•	 1 - Recommended not to leave home;
•	 2 - Not allowed to leave home, with exceptions for daily exercise, grocery shopping, and other activities con-

sidered as essential;
•	 3 - Not allowed to leave home, with rare exceptions (e.g. allowed to leave only once every few days, or only 

one person at a time).

Due to the limited data collected during the strictest containment period (level 3, see Fig. 1c), we combined 
data from the two periods when leaving home was not permitted (levels 2 and 3) when performing the technical 
validation.

acoustic measurements. All computations described here were performed with open-source packages or 
code from github, including scikit-maad (v1.4)54,55, librosa56 and pytorch57. The analysis code used to prepare this 
dataset is available for reference at https://github.com/brain-bzh/SilentCities.

Preprocessing audio. Audio preprocessing was divided into two steps. First, the file name, sample rate, date 
and relative sound pressure level were extracted from each audio recording. Then, each file (n = 2,701,378) was 
divided into 10-second segments (n = 16,252,373) in order to have a meaningful duration for both acoustic 
index calculation and automatic sound event recognition. The sampling rate of audio segments were homoge-
nised at 48 kHz for acoustic index calculation and resampled to 32 kHz for automatic sound event recognition. 
For acoustic indices, the signals were filtered using a bandpass filter from 100 Hz to 20 kHz to remove low fre-
quency electronic noise inherent to some recorders.

Acoustic Indices calculation. Acoustic diversity indices aim to summarize the overall complexity of an acous-
tic recording in a single mathematical value. Numerous acoustic indices have been previously proposed47,58,59, 
considering the time, frequency and/or amplitude dimensions of the recorded sound wave. We selected and 
calculated eight indices on all recordings; these indices were chosen based on their complementary and/or wide 
representation in the literature: 

•	 dB represents the relative acoustic energy of a signal;
•	 dB Full Scale or dBfs represents the acoustic energy of a signal where the RMS value of a full-scale sine wave 

is defined as 0 dBfs60;
•	 Acoustic Complexity Index or ACI61 measures the frequency modulation over the time course of the record-

ings. The value is calculated on a spectrogram (amplitude per frequency per time). ACI is described to be 
sensitive to highly modulated sounds, such as song birds, and less affected by constant sounds, such as back-
ground noise;

•	 Activity or ACT62 corresponds to the fraction of values in the noise-reduced decibel envelope that exceed the 
threshold of 12 dB above the noise level. This noise level was estimated for each site by seeking the audio file 
yielding the minimum dB value;

•	 Bioacoustic index or BI63 measures the area under the frequency spectrum (amplitude per frequency) above 
a threshold defined as the minimum amplitude value of the spectrum. This threshold represents the limit 
between what can be considered acoustic activity (above threshold) and what could be considered back-
ground noise (under threshold);

•	 Entropy of the Average Spectrum or EAS62 is a measure of the ‘concentration’ of mean energy within the mid-
band of the mean-energy spectrum;

•	 Entropy of the Spectrum of Coefficients of Variation or ECV62 is derived in a similar manner to EAS except 
that the spectrum is composed of coefficients of variation, defined as variance divided by the mean of the 
energy values in each frequency bin;

https://doi.org/10.1038/s41597-024-03611-7
https://aa.usno.navy.mil/data/AltAz
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Fig. 2 Panel a. Top left: Professional fields of the 261 participants. Middle: Distribution of type of devices for 
the 317 recording sites. Bottom left: type of protocol implemented. Right: Photos of the two main recording 
devices used: Open Acoustic Devices AudioMoth (top) and Wildlife Acoustics SM4 (bottom). Panel b. 
Association between the measured acoustic indices and tagging types and the presence of geophonical (Geo), 
biophonical (Bio) and anthropophonical (Ant) events detected manually by the contributors. Model estimates 
and associated 95% confidence intervals are represented with points and bars, respectively. Positive and 
negative estimates with confidence intervals not overlapping zero indicate positive and negative associations, 
respectively. Panel c. Radial barplots depicting the mean anthropophony and biophony level values per site, 
combining all protocols, recorded hourly throughout each period of COVID-19 containment levels. Panel d. 
Model predictions and associated 95% confidence intervals for NDSI, biophony (birds) and anthropophony 
(engine noise) levels at 8:00 a.m. during the COVID-19 confinement measures, following the expert protocol 
only. ***p < 0.001, **p < 0.010, *p < 0.050, ns: p > 0.050.

https://doi.org/10.1038/s41597-024-03611-7
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•	 Entropy of the Spectral Peaks or EPS62 is defined as a measure of the evenness or ‘flatness’ of the maxi-
mum-frequency spectrum, maximal frequencies being measured along the time of the recording. A recording 
with no acoustic activity should show a low EPS value, as all spectral maxima are low and constant over time;

•	 Normalized Difference Soundscape Index or NDSI64 measures a ratio between biophony and anthropophony. 
The value of this index is calculated on a spectrogram and varies between -1, meaning the entire acoustic 
energy of the recording is concentrated under the frequency threshold of 2kHz and attributed to anthropoph-
ony only, and +1, meaning the entire acoustic energy of the recording is concentrated above the frequency 
threshold and attributed to biophony only.

Manual soundscapes description. In order to have a more thorough description of the recorded sound-
scapes, some contributors manually performed sound identification on a subset of their recordings. Two 
non-consecutive days of recordings were randomly selected for each site and each one-minute-long audio file 
recorded at the beginning of each hour was analysed (i.e. a total of 48 1-min files). Using software dedicated to 
sound analysis (e.g. Audacity: https://www.audacityteam.org/, Sonic visualizer: https://www.sonicvisualiser.org/, 
and Kaleidoscope: https://www.wildlifeacoustics.com/uploads/user-guides/Kaleidoscope-User-Guide.pdf),  
contributors were to (i) listen and view spectrograms of the recordings, (ii) estimate the percentage of time 
occurence (0%, 1-25%, 25-50%, 50-75% and 75-100%) of geophonic, biophonic, and anthropophonic events 
in each audio file, and (iii) provide more information about the source/type (e.g. geophony: wind, rain and 
river; biophony: birds, mammals and insects; anthropophony: car, plane and music) of each event. They further 
indicated the strength/intensity (on a scale from 0 to 3) of the identified geophonic and anthropophonic events 
and to provide for each biophonic event the number of different song/call/stridulation types visible on the spec-
trogram. Scoring per recording was associated with a confidence level on a scale from 1 to 5 (see Table 3 for an 
example of the identification table, inspired from protocol proposed in65).

A total of 1351 minutes of sounds were manually described from 30 sites. Contributors from Europe (Austria, 
Czech Republic, France, Germany, Ireland, Poland, Portugal, Serbia, and United Kingdom), the Americas 
(Canada, Colombia, Mexico, and United States of America), and Australia participated in the manual sound 
identification process. The number of audio files described varied slightly between participants (min: 9 minutes, 
max: 96, median: 48, mean: 45). Most audio files manually analyzed were recorded using AudioMoth (19 sites) 
and SM4 (8 sites).

Recordings were dominated by geophonic, biophonic and anthropophonic events (i.e. time occurence >75% 
within 1-min files) in 20, 34 and 51% of the 1351 minutes of sounds recorded, respectively. The most detected 
geophonic sounds were from wind (26% of the total number of records, including 76 records with strong wind 
intensity) and rain (12%). Bird calls (63%) and insect stridulations (16%) were the most encountered biophonic 
sounds. Around one third of the recordings with bird calls contained at least four different bird call types. Noise 
from cars (61%) and people talking (26%) were responsible for most of the anthropophonic sounds.

Automatic sound event recognition. Automatic sound event recognition (SER) became an essential task due 
to the immense volume (around 20 Terabytes) of the Silent Cities dataset. We adopted the AudioSet ontology 
and dataset66, which covers a wide range of everyday sounds. We explored the viability of utilizing PANNs (pre-
trained audio neural networks) pretrained on the full AudioSet data (available online: https://github.com/qiu-
qiangkong/audioset_tagging_cnn). The choice of a pretrained model was driven by its generality, as it has been 
exposed to a wide range of sounds, rendering it suitable for recognizing various audio events. In implement-
ing our methodology, we employ a zero-shot inference approach. This involves applying the pretrained model 
directly to the entirety of the Silent Cities recordings without the need for additional training or fine-tuning. By 
doing so, we can benefit from the model’s generalization capabilities and avoid the time-consuming process of 
manual annotation. To categorize the diverse audio events within our dataset, we leverage the Audioset ontol-
ogy and make necessary adaptations. Specifically, we classify the sounds into three main types: anthropoph-
ony (sounds produced by human activities), biophony (sounds originating from natural living organisms), and 
geophony (sounds resulting from non-living sources like weather or geological activities). The details of sound 
event grouping (i.e. audio tagging types) and corresponding labels are presented in Table 4 to provide clarity and 
consistency in the classification process. This grouping was also done to have the same categories than in the 
manual annotation described in the previous section.

Voice activity detection. As many recordings in Silent Cities were performed at home (e.g. on a balcony) dur-
ing periods of containment, human voices are likely to be heard and speakers may be easily identified. In order 
to prevent issues related to privacy, we identified audio segments containing speech and only shared in open 
access the audio segments without speech. Voice activity detection was conducted using a general purpose 
voice activity detector (GP-VAD) that was pretrained on noisy, natural speech recordings in the wild67 (available 
online: https://github.com/RicherMans/GPV). We applied GP-VAD on a subset of 250000 one-minute record-
ings (approx. 24 weeks). Detections on this subset were considered as a ground truth speech label, that we set a 
reference to detect speech in the entirety of the Silent Cities dataset, for which we have a weak speech label from 
the Audioset SER (described in the previous paragraph). More precisely, we used the GP-VAD predictions on 
the subset to estimate a receiver-operator characteristic curve, and by setting a true positive rate of detecting  
75 % of speech recordings, we obtain an average false positive rate of 34 % false alarms when using the Audioset 
SER. The corresponding threshold was applied on the raw probability from the Audioset SER on the entirety 
of the dataset, which eventually resulted in a rejection of 2,868,098 10-second audio segments, representing 
approximately 18 % of the dataset.

https://doi.org/10.1038/s41597-024-03611-7
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Data Records
The dataset45 comprises the entire collection of acoustic recordings in Free Lossless Audio Codec (FLAC) format 
and associated metadata spread across several Comma Separated Value (CSV) tables (see Table 1). In order to 

Name Description Type Number of files

Collection of acoustic recordings Preprocessed 10-second audio files from soundscape recordings collected for each site (compressed in 
tar.gz archives) FLAC 16,252,373

Glossary Definitions of table elements csv 1

dB List of readable files uploaded by the contributors and their dB level (archived in a single zip file) csv 317

Site

Information about each site including contributors’ description about the recorder (e.g. type and 
serial number), the location (e.g. description of the surrounding area, city), and the description of the 
containment measures in place at the time of deployment. Also contains the metadata describing the 
landscape (e.g. population density, climate) corresponding to the cities of the dataset as well as the 
extracted information about the protocol used (e.g. type, sampling rate, file duration), and the amount of 
data collected

csv 1

ConfinementLevels For each country and date covered by the acoustic collection, displays information about the levels of 
“stay-at-home requirements" according to the dataset built by the University of Oxford csv 1

SunMoon Information about the sun and moon azimuth and altitude for the dates and times covered by the Silent 
Cities dataset, with a 10-second increment, for each city (197 csv files in a zip file) csv 197

AcousticMeasurements List of preprocessed 10-second acoustic files and associated calculations of acoustic indices and categories 
of automatic sound event (all csv files compressed in a single zip file) csv 317

AcousticMeasurements_nospeech Same as AcousticMeasurements but only for recordings without speech (all csv.gz files in a single zip file) csv.gz 317

ManualIdentification Sound event identification made by contributors on a subsample of the original 1-min recordings csv 1

AverageCompleteTable
For each unique site at a unique date and a unique hour, averaged values of acoustic indices and 
automated event recognition categories. This table also includes the corresponding Site, SunMoon, and 
ConfinementLevels information. Finally, given the original recording date and time in UTC+0 and 
knowing the associated timezone, a local date and time information was calculated

csv 1

AverageCompleteTable_nospeech Same as AverageCompleteTable but the averaged values are only calculated on speech-filtered subsample 
of the acoustic collection csv 1

Table 1. Silent Cities dataset description.

Response variable Explanatory variable Estimate SE Z value P value

NDSI

Intercept 0.121 0.243 0.497 0.619

Confinement level 1 vs no measures 0.035 0.012 2.832 0.005**

Confinement level 2 and 3 vs no measures 0.051 0.014 3.535 <0.001***

PCA axis: degree of anthropization −0.190 0.052 −3.645 <0.001***

Julian day: season −0.083 0.005 −17.930 <0.001***

Climate: dry vs tropical 0.498 0.366 1.358 0.174

Climate: temperate vs tropical 0.018 0.230 0.077 0.938

Climate: continental vs tropical 0.023 0.276 0.082 0.934

Birds

Intercept −2.408 0.264 −9.137 <0.001***

Confinement level 1 vs no measures 0.083 0.013 6.191 <0.001***

Confinement level 2 and 3 vs no measures 0.207 0.015 14.074 <0.001***

PCA axis: degree of anthropization −0.115 0.044 −2.595 0.009**

Julian day: season −0.131 0.005 −28.449 <0.001***

Climate: dry vs tropical 0.381 0.353 1.079 0.281

Climate: temperate vs tropical −0.153 0.238 −0.642 0.521

Climate: continental vs tropical −0.136 0.287 −0.476 0.634

Engine noise

Intercept −4.844 0.207 −23.445 <0.001***

Confinement level 1 vs no measures −0.033 0.011 −2.887 0.004**

Confinement level 2 and 3 vs no measures −0.216 0.014 −15.130 <0.001***

PCA axis: degree of anthropization 0.091 0.049 1.845 0.065

Julian day: season 0.054 0.005 10.839 <0.001***

Climate: dry vs tropical −0.220 0.351 −0.626 0.531

Climate: temperate vs tropical 0.022 0.220 0.100 0.920

Climate: continental vs tropical −0.152 0.265 −0.573 0.566

Table 2. Outputs of the full GLMMs relating the effects of COVID-19 confinement measures (alongside 
covariates) on NDSI, biophony (here, probability of bird calls) and anthropophony (here, probability of engine 
noise) levels at 08:00 am. Δ AIC values between the full and the null models are, from top to bottom, 593, 2056 
and 1023, thus indicating that the full models were more informative than the null ones. SE: standard error of 
the estimate. ***P < 0.001, **P <0.010, *P < 0.050. Confinement level 1 calls for “recommended not to leave 
home” and Confinement level 2 and 3 calls for “not allowed to leave home”.
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protect privacy, only the preprocessed 10-second audio files with no speech identified are in direct open access 
on the OSF website (https://doi.org/10.17605/OSF.IO/H285U).

technical Validation
To validate the Silent Cities dataset45, we verified the veracity of the metadata reported by the contributors and 
consolidated the acoustic recordings collections by checking for device malfunctions. We also verified whether 
the automated acoustic measurements conducted on the recordings were coherent with aural human observa-
tions. Finally, proof of validity of the dataset to reflect urban soundscape changes due to stay-at-home require-
ments is presented. The three steps of this technical validation are detailed below.

First, we verified the quality of the data by manually verifying that the recordings were correctly attributed 
to their dedicated site with the help of the contributors. We also ran a manual cleaning of information given 
by the contributors to remove any personal information, such as address or GPS coordinates, and to correct 
spelling mistakes to ensure interoperability between tables. In addition, we verified the conformity of the pro-
tocol by automatically extracting information from the recording collection (i.e. frequency range, schedule of 
recordings) and reported observed modification of the protocol. We also automatically and manually verified 
the proper calculation of acoustic measurements and identified 10,724 files for which the calculation failed, 
probably due to file-related issues; these files were excluded from the dataset without affecting an entire site  
(i.e. no sites were excluded because of this issue). Finally, we checked for recorder device malfunction by making 
sure of a temporal variation of the dB value for each recorder, only one site was identified with a flat dB response, 
leading to its exclusion from the dataset.

Second, we confirmed that the automated soundscape measurements informed and aligned with real sound-
scape events. More specifically, we investigated whether the acoustic indices and audio tagging categories were 
representative of geophonic, biophonic and anthropophonic events detected manually by the contributors. To do 

Variable Definition Possible value and range

Geophony_TempLevel range of occupancy 0%/1-25%/25-50%/50-75%/75-100%

Wind strength 0/1/2/3

Rain strength 0/1/2

Wave strength 0/1/2

Thunder strength 0/1

Biophony_TempLevel range of occupancy 0%/1-25%/25-50%/50-75%/75-100%

Bird range of song types 
number 0/1-3/4-6/7-8/9-11/>11

Amphibian range of song types 
number 0/1-3/4-6/7-8/9-11/>11

Insect range of song types 
number 0/1-3/4-6/7-8/9-11/>11

Mammal range of song types 
number 0/1-3/4-6/7-8/9-11/>11

Reptile range of song types 
number 0/1-3/4-6/7-8/9-11/>11

Antropophony_TempLevel range of occupancy 0%/1-25%/25-50%/50-75%/75-100%

Walking presence/absence 0/1

Cycling presence/absence 0/1

Beep presence/absence 0/1

Car sound intensity 0/1/2

Car honk presence/absence 0/1

Motorbike sound intensity 0/1/2

Plane presence/absence 0/1

Helicopter presence/absence 0/1

Boat presence/absence 0/1

Other_motors sound intensity 0/1/2

Shoot presence/absence 0/1

Bell presence/absence 0/1

Talking presence/absence 0/1

Music presence/absence 0/1

Dog bark presence/absence 0/1

Kitchen sounds presence/absence 0/1

Rolling shutter presence/absence 0/1

Confidence level low (0) to high 
confidence (5) 0/1/2/3/4/5

Table 3. Summary table of the typology used to manually describe the recordings.
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so, we conducted a series of univariate generalized linear mixed-effect models (GLMMs; ‘glmmTMB’ package68,)  
in R v4.2.1. We tested independently the presence/absence of geophonic, biophonic and anthropophonic events 
within the 1351 1-min recordings (i.e. response variables) in relation to acoustic indices and tagging types 
(i.e. explanatory variables). Models were fitted with a binomial error distribution and a logit link function. We 
considered the identity of contributors as a random effect to avoid pseudoreplication. We also implemented a 
first-order autoregressive function to account for serial autocorrelation in residuals. Statistical assumptions were 
visually assessed using model diagnostics (i.e. Quantile-Quantile plot, residuals vs fitted plot) with the DHARMa 
package69. The acoustic indices were linked to geophonic, biophonic, or anthropophonic events, albeit to varying 
degrees (Fig. 2b). For instance, the presence of biophonic events was associated with greater values of EAS and 
ECV and lower values of dB. Audio tagging categories effectively captured the intended soundscapes they aimed 
to portray (Fig. 2b).

Third, we assessed the validity of the dataset in evaluating the impact of stay-at-home requirements on 
soundscapes. In a first step, we plotted the mean values of biophony and anthropophony levels (here defined as 
the maximum probability of having a biophonic and anthropophonic event in the 1-min recording, respectively) 
per site recorded at each hour (all protocols combined). As expected, we observed temporal patterns in bioph-
ony and anthropophony levels throughout the day (Fig. 2c). Regardless of the time of day, biophony levels were 
greater during the period when leaving home was not permitted (i.e. confinement level 2 or 3) compared to the 
other periods, while the opposite pattern was true for anthropophony. In a second step, we modeled changes in 
the values of acoustic indices as well as biophony and anthropophony levels (i.e. response variables) in relation 
to the containment measures (i.e. explanatory variables) using GLMMs with a beta distribution and a log link 
function. We aimed to provide a proof of validity and therefore limited the analysis to the expert protocol and 
all recordings collected at 8:00 am (i.e. peak of biophonic and anthropophonic events; Fig. 2d). We focused 
on NDSI for the acoustic index and the probability of bird calls and engine noise indicated by the automatic 
sound event recognition in the recordings as proxies of biophony and anthropophony levels, respectively. We 
added as covariates in the models: (i) Julian day to consider seasonal changes in biological and anthropogenical 
sounds, (ii) the first Principal Component Analysis axis depicting the level of anthropization in the landscape 

Final tag name Corresponding labels in AudioSet Ontology Category

Wind Wind

Geophony

Rain Rain

River Stream/Waterfall

Wave Ocean

Thunder Thunderstorm

Bird Bird vocalization, bird call, bird song/Pigeon, dove/Crow/Owl/Gull, seagull

Biophony

Amphibian Frog

Insect Insect

Mammal Rodents, rats, mice/Canidae, dogs, wolves

Reptile Snake

Walking Run/Walk, footsteps

Anthropophony

Cycling Bicycle/Bicycle bell

Beep Reversing beeps

Car Car passing by/Tire squeal

Car honk Vehicle horn, car horn, honking

Motorbike Motorcycle

Plane Aircraft engine/Fixed-wing aircraft, airplane

Helicopter Helicopter

Boat Motorboat, speedboat/Ship/Sailboat, sailing ship

Other motors Traffic noise, roadway noise

Shoot Gunshot, gunfire

Bell Chime/Jingle bell/Cowbell/Church bell/Change ringing (campanology)

Talking Speech/Hubbub, speech noise, speech babble/

Music Music

Dog bark Dog

Rolling shutter Power windows, electric windows

Kitchen sounds
Door/Cupboard open or close/Drawer open or close/Dishes, pots, and pans/
Cutlery, silverware/Chopping (food)/Sink (filling or washing)/Water tap, faucet/Kettle whistle/
Microwave oven/Blender

Table 4. Mapping between the Silent Cities tags and the labels from the AudioSet ontology. Each tag is 
computed using the maximum probability output from the pretrained network among the corresponding 
Audioset labels. Finally, the three tags Antropophony, Geophony and Biophony are computed using the 
maximum tag probability in the category.
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surrounding the recordings, and (iii) the climate type. Continuous covariates were scaled (mean = 0; SD = 1) 
to avoid convergence issues. We considered as random effects site identity nested within country to account for 
hierarchical clustering within data and recorder type, due to potential sensitivity differences between devices. 
Due to the limited data collected during the strictest containment period, we combined data from the two peri-
ods when leaving home was not permitted. The same approach as outlined previously was employed for model 
validation (note that the validity of the statistical assumptions, assessed using Quantile-Quantile and residuals 
vs fitted plots, was only partially met for the engine noise model). Full models were more informative than the 
null ones with differences in Akaike Information Criterion scores > 500. Finally, we conducted Tukey’s post hoc 
multiple comparison test to investigate pairwise differences in NDSI values and biophony and anthropophony 
levels between the three COVID-19 containment measures investigated. Overall, we found that COVID-19 
lockdown had positive effects on NDSI values and biophony levels and negative effects on anthropophony levels. 
After accounting for seasonal and landscape effects, our models suggest that NDSI values and biophony levels 
were significantly greater during the periods when leaving home was not recommended or permitted, compared 
to the period with no measures (Fig. 2d; Table 2). There were also higher biophony levels during the period when 
leaving home was not permitted than during the period with when leaving home was not recommended. The 
opposite patterns were found for the anthropophony levels, with significantly lower values measured during 
the periods when leaving home was not permitted compared to the other periods, albeit the differences were of 
smaller magnitude (Fig. 2d; Table 5). Altogether, our preliminary analysis revealed potential changes in sound-
scape patterns that can be attributed to containment policies, these changes being above expected differences 
due to climate.

Usage Notes
The Silent Cities dataset could be considered for multiple applications. In the specific fields of bio/ecoacous-
tics, it could be used to study the effect of containment measures on urban soundscapes29, to improve the 
performance of acoustic indices in urban environments70 and to gain a deeper understanding of the interplay 
between biophony and urban environment characteristics71. In the field of machine learning (machine listen-
ing, deep learning), it will allow the testing of difficult cases of generalization in sound event recognition from 
one site to another, due to the variety of sampled sites72. In the interdisciplinary field of territorial sciences 
(e.g. economic geography, territorial economics, spatial planning, urban engineering sciences), it will make 
it possible to analyze the links between the levels of economic activity of a city and the levels of noise pol-
lution. Finally, for environmental sciences interested in well-being and relationships between humans and 
non-humans within urban socio-ecosystems (e.g. environmental and health psychology, landscape design, 
environmental geography, etc.), this dataset opens up opportunities for the qualitative study of individual and 
subjective perceptions of the different soundscape configurations collected. More broadly, we aim for this inter-
national and collaborative dataset to be usefully mobilized in any research working to make better coexistence 
between humans and non-humans possible, and thus working to maintain the Earth’s habitability conditions 
for all of them.

The Silent Cities dataset45 is available under the terms of a Creative Commons Attribution 4.0 International 
waiver (CC-BY 4.0, https://creativecommons.org/licenses/by/4.0/). The CC-BY-4.0 waiver facilitates the discov-
ery, re-use, and citation of the dataset. When using all or part of the dataset, we require anyone to cite both the 
dataset45 and this publication.

Code availability
The recording manipulation and acoustic measurements were run using Python, https://github.com/brain-bzh/
SilentCities and the analyses were run on R https://github.com/agasc/SilentCities-R.
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Response variable Explanatory variable Estimate SE t ratio P value

NDSI

Confinement level 1 vs no measures 0.035 0.012 2.832 0.013*

Confinement level 2 and 3 vs no measures 0.051 0.014 3.535 0.001**

Confinement level 2 and 3 vs Confinement level 1 0.016 0.011 1.464 0.309

Birds

Confinement level 1 vs no measures 0.083 0.013 6.191 <0.001***

Confinement level 2 and 3 vs no measures 0.207 0.015 14.074 <0.001***

Confinement level 2 and 3 vs Confinement level 1 0.124 0.011 11.272 <0.001***

Engine noise

Confinement level 1 vs no measures −0.327 0.011 −2.887 0.011*

Confinement level 2 and 3 vs no measures −0.216 0.014 −15.130 <0.001***

Confinement level 2 and 3 vs Confinement level 1 −0.183 0.01 −16.999 <0.001***

Table 5. Results of the post hoc pairwise comparisons applied to the GLMMs relating the effects of COVID-
19 confinement measures (alongside covariates) on NDSI, biophony (here, probability of bird calls) and 
anthropophony (here, probability of engine noise) levels at 08:00 am. SE: standard error of the estimate. 
***P < 0.001, **P <0.010, *P < 0.050. Confinement level 1 calls for “recommended not to leave home” and 
Confinement level 2 and 3 calls for “not allowed to leave home”.
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