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Abstract—Magnetic anomaly detection aims to find hid-
den ferromagnetic masses by estimating the weak perturba-
tion they induce on local Earth’s magnetic field. Classical
detection schemes rely on signals recorded on a moving
sensor, and the modeling of the source as a function of
unknown parameters. These are eased if the source field
along the magnetometer trajectory decomposes over an
orthonormal basis. Usually, spherical harmonics are used
for determining the general multipolar basis functions
that describe the anomaly signal. A new analytical set of
functions (multipolar orthonormal basis functions - MOBF)
that spans the space of the noise-free measured signal is
introduced in this paper. The sampled MOBF are shown
to satisfy quasi orthonormality, providing fairly equivalent
performances than those obtained after a Gram-Schmidt
orthonormalization on the sampled initial basis.

Index Terms—Magnetic Anomaly Detection, Harmonic
Multipolar Decomposition, Multipolar Orthonormal Basis
Functions

I. INTRODUCTION

Magnetic anomaly detection (MAD) consists in an-
alyzing a measured local magnetic field to assess the
presence of hidden weak magnetic sources and is used
for various applications (detection of under water pipes
or cables, wrecks, submarines, etc). MAD is based on
the analysis of a recorded signal from a magnetometer
on board an aircraft flying over the ocean surface.
Algorithms based on orthogonal basis functions (OBF)
are widely studied [1]–[4] to derive efficient detection
methods, that mostly lead to develop a generalized
likelihood ratio test (GLRT) on the projected signal
onto the OBF. In the far field assumption, the magnetic
source is accurately modeled by a magnetic dipole. In
a more realistic framework where this assumption is no
longer satisfied, the problem has been revisited in [5] [6,
Sec. 3.12] and a spherical harmonic (SH) expansion of
the magnetic induction B has been used as follows:

B(P ) = −grad

(
µ0

4π

+∞∑
l=1

1

rl+1

l∑
m=0

(
al,m cos(mϕ)

+ bl,m sin(mϕ)
)
Pm
l (cos θ)

)
(1)

where (r, θ, ϕ) are the spherical coordinates of P as-
suming that the source is placed at the origin of the
reference system, Pm

l denote the associated Legendre
polynomials. The truncation of Eq. (1) has allowed to
propose a general multipolar basis, orthonormlized with
a Gram-Schmidt process, that efficiently represents the
signal. In the sequel, we will call this basis “multipolar
orthonormal basis functions” (MOBF). Our contribution
is twofold. First, a direct approach (avoiding SH expan-
sion) is proposed to recover the basis of [5], spanning
the space of the multipolar signal along the sensor trajec-
tory. Secondly, an analytical derivation of the MOBF is
presented, based on orthogonal polynomial theory. The
advantage of this derivation is the avoidance of numeri-
cal Gram-Schmidt (GS) orthogonalization, known to be
potentially numerically unstable in large dimensions, or
of more complex orthonormalization procedures [7]. As
this approach is theoretically desired for expressing true
signals, sampling effect is studied, as well as the effect of
GS on the sampled MOBF. Finally, the behavior of the
three sets of functions (sampled MOBF, numerical or-
thonormalization of the sampled initial basis or MOBF)
in the detection performance will be briefly illustrated
through a simulated example.

II. MAGNETIC ANOMALY DETECTION PROBLEMATIC

A. The detection problem – A reminder

The detection problem is classically formulated as a
binary hypothesis testing problem:{

H0 : x = n (absence of the target)

H1 : x = s+ n (presence of the target)
(2)

where noise n, measurement x and signal s to be
detected are matrices of Rd×K , K being the number of
samples and d the measurement dimension (i.e. d = 3
for triaxial magnetometer). All the non-source signals
are embedded in the noise, modeling geomagnetism
phenomena, instrumental uncertainties or motion related
instabilities. Such a problem is widely documented and
the Bayes optimal solution (w.r.t. a cost function related
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to some decision error) leads to compare the likelihood
ratio (LR) or any monotonic transform of LR to a thresh-
old [8]. For the model (2) at hand the probability density
function (pdf) of x under H1 may involve an unknown
parameter vector θ ∈ Θ leading to the formulation of
the generalized log-likelihood ratio test (GLLRT) [8],
the latter taking the following expression when θ is only
involved in s:

max
θ∈Θ

Λ(x |θ) ≡ log

pn

(
x− s

(
θ̂mle

))
pn(x)

 > η, (3)

pn being the noise pdf and where θ̂mle is the maximum
likelihood estimator (MLE) of θ,

θ̂mle = argmax
θ∈Θ

pn (x− s(θ)) (4)

The major drawback of such an approach is the
requirement of the knowledge of both the noise pdf
and the parametric (w.r.t. θ) model of the signal un-
der H1. This motivates numerous studies where the
departure from H0 only is considered. The purpose
of this paper is different and put the emphasis on
the target modeling. The noise contribution is as-
sumed to be Gaussian, with independent and identi-
cally distributed components with variance σ2, thus
pn(x) = (2πσ2)−

Kd
2 exp

(
− 1

2σ2 Tr (x
tx)
)
. Conse-

quently, the GLLRT reads:

Tr

(
2 s
(
θ̂mle

)
xt − s

(
θ̂mle

)
s
(
θ̂mle

)t)
> η (5)

with Tr and ·t the trace and transposition operators.

B. Source modeling – Multipole expansion

Our detection problem requires the modeling of the
source signal. Remind that the sensor follows a rectilin-
ear trajectory, at a constant altitude and constant speed,
see Fig. 1. The coordinate system is centered at the
source O, assumed to be motionless with respect to the
sensor, so that the x-axis is parallel to sensor’s trajectory
and x−y is the horizontal plane. The closest point to the
source origin is called CPA (Closest Point of Approach).
Let t0 be the instant when the sensor is at the CPA, D
the minimal source-sensor distance and β the angle made
by the line (O-CPA) with the vertical axis.

Departing from the SH expansion in [5], we propose
to use the field expression proposed by [9] valid outside
the Brillouin sphere (BS):

B(P ) =
∑
l∈N∗

B(l)(P ) (6)

with

B(l)(P ) =
µ0

4π

(2l + 1)
(
r ·M (l)

)
r − l r2M (l)

rl+4
(7)
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Fig. 1. Geometry of the problem. Center of the target is located at O,
sensor P moves along the dashed line. D is the distance between the
CPA and the source location, and is reached at time t0 by the sensor.
(a) perspective view and (b) view in the y − z-plane.

where M (l) is a vector resulting from the Einstein prod-
uct [10], [11] between an l-order1 symmetric traceless
tensor m(l) of size 3 in each dimension and the unitary
ur = r

r to the (l − 1)-th tensor power,

M (l)(P ) =
m(l) ∗l−1 r⊗(l−1)

l! rl−1
(8)

In the source cartesian coordinate system from Fig. 1,
we get r =

[
x D sinβ D cosβ

]t
, thus r =√

x2 +D2. As the components of the tensor r⊗(l−1) are
monomials in x of degree less or equal to l− 1 (with a
factor function of β), the numerator of M (l) in Eq. (8)
is a polynomial in x with degree lower or equal to l−1,
with 3-dimensional constant coefficients depending on β
and components of m(l). Inserting Eq. (8) into (7), we
finally obtain along the trajectory:

B(l)(u) =

l+1∑
n=0

α(l)
n un

(1 + u2)
l+ 3

2

, u =
x

D
=

V (t− t0)

D
(9)

where the d-dimensional coefficients α
(l)
n depend only

on the tensor m(l) and the angle β.
From now on, the magnetic field will be assumed to

be produced by a finite number of multipoles N , or
approximated by a truncation of order N . We addition-
ally assume that the sensor does not rotate along the
trajectory so that the projection of the coefficients α

(l)
n

on the sensor axes is constant w.r.t. u. Consequently,
from the truncated Eq. (6) and Eq. (9), the sensor
measurement along its trajectory reads:

s(u) =

2N∑
n=0

a
(n)
N fN,n(u), u =

V (t− t0)

D
(10)

where the set FN =
{
fN,n

}2N

n=0
of the 2N+1 functions

fN,n : u 7→ un

(1 + u2)
N+ 3

2

(11)

forms a basis for the source space.

1(l = 1 corresponds to the dipole, l = 2 to the quadripole,. . . )
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Note that:
• Coefficients a

(n)
N depend on the source and the

trajectory (coordinate system orientation, angle β),
and the basis functions fN,n on the trajectory
through V,D, t0.

• We recover the expression exhibited in [5] by using
another formula for the multipolar field [9], [12],
solution of the Laplace equation.

• The OBF inferred from a dipole source field [2],
[3] are a particular case of the MOBF with N = 1.

In the sequel, parameters N , D and t0 are assumed to be
known. Their estimation is left as a perspective (see [2],
[5] for this problem).

III. SOURCE PARAMETERS ESTIMATION AND
INDUCED DETECTOR

In practice, the measurements are sampled along the
trajectory, so that Eq. (10) writes for the acquisition

s = ANFN (12)

where AN =
[
a
(0)
N · · · a

(2N)
N

]
∈ Rd×(2N+1) de-

pends on the source and β, and FN ∈ R(2N+1)×K is
the matrix whose rows are the sampled basis functions
fN,n, depending only on the trajectory.

From Eqs. (12), (4) and (5) we get θ̂mle ≡ ÂNmle =
argmaxAN

Tr
(
2ANFNxt −ANFNF t

NAt
N

)
. Conse-

quently, the MLE is solution of ANFNF t
N = xF t

N .
In practice, the number of samples K ≫ 2N + 1, and
FN is of full rank, as FN is a basis of the source space.
Therefore, the Gram-matrix FNF t

N is nonsingular, so

ÂNmle = xF t
N

(
FNF t

N

)−1
(13)

and the GLLRT Eq. (5) turns to be,

Tr
(
ÂNmleFNF t

NÂN

t

mle

)
> η (14)

the well-known energy detector. However, performing
the detection requires a matrix inversion and studying the
performance of the detector, at first glance, is not an easy
task. It would be clearly easier if FN were composed
by orthonormal rows i.e., if FN were a Stiefel matrix.

Previous studies realized an orthonormalization pro-
cess thanks to the GS orthonormalization, as well as for
the dipole case [2], [3] as for multipole one [5]. Let
us write F o

N a given matrix composed by orthonormal
rows, and Ao

N the coefficient on this basis, so that
Eqs. (13)–(14) reduce to the projection of the observation
on F o

N , and to the energy receiver

Âo
Nmle = xF o

N
t,

∥∥∥Âo
Nmle

∥∥∥2
F

> η (15)

where ∥A∥2F = Tr
(
AAt

)
is the squared Froebenius

norm. As the components of n are independent, Gaus-
sian with variance σ2, it turns out that ∥A∥2F /σ2 follows

a chi-squared law with d(2N + 1) degrees of freedom,
with central parameter λi = i

∥∥sF o
N

t∥2F /σ2 under
Hi. This allows to write the theoretical probability of
detection Pd = Pr[Λ > η|H1] and that of false alarm
Pfa = Pr[Λ > η|H0] thanks to the cumulative density
function of noncentral and central chi-squared variables,
respectively [5].

Note that these results require an orthonormalization
procedure instead of the matrix inversion involved in
the receptor when no orthonormalization is performed.
Moreover, in both cases, numerical errors can appear,
especially when N becomes large. Furthermore, in the
case where we have to perform the detection for var-
ious N (e.g., when unknown), the procedure is to be
performed several times. Such a procedure could be
avoided if an analytical orthonormal basis is found to
express the signal. We show in the next section that such
an expression exists, involving non classical orthogonal
polynomials, although they can be indirectly linked to
known ones.

IV. CONSTRUCTION OF ANALYTICAL MULTIPOLAR
ORTHONORMAL BASIS FUNCTIONS

A. Orthogonalization step

From Eq. (11), finding an orthonormal basis for the
space spanned by FN associated with the natural inner
product in L2(R) is totally equivalent to finding an or-
thonormal basis for the space of polynomials R2N [X] of
degree 2N associated with the following inner product:

⟨P |Q⟩wN
=

∫
R
P (u)Q(u)wN (u) du (16)

where the weight wN of this inner product is given by:

wN (u) = (1 + u2)−2N−3 (17)

wN satisfies the required conditions for applying the
Rodrigues formula [13, Eq. 22.1.6] to build a sequence
PN,n of polynomials of degree n forming an orthonor-
mal basis of R2N [X] for the inner product (16)-(17),
which writes here:

PN,n(u) = cN,n (1 + u2)2N+3 dn

dun
(1 + u2)n−2N−3

where cN,n is a normalization coefficient to be found.
Let us introduce h : u 7→ un−2N−3 and g : u 7→

1+u2. The nth derivative term in the Rodrigues formula
is (h◦g)(n), i.e., that of a composite function which can
be computed with the Faà di Bruno formula [14],

(h◦g)(n) =
∑
π∈Πn

h(|π|)◦g
∏
B∈π

g(|B|)

where Πn denotes the set of partitions of {0, . . . , n} and
| · | the cardinal of a set. Because g(k) = 0 when k >
2, the non-zero terms are those given by the partitions
whose elements have cardinal less or equal to 2. Iterating
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over the number of doublets contained in each of such
partitions allows us to finally obtain

PN,n(u) = cN,n

⌊n
2

⌋
∑
k=0

dN,n,k(1 + u2)k (2u)
n−2k (18)

where ⌊·⌋ is the floor function and

dN,n,k =
(−1)n−k n! (2N + 2− k)!

(n− 2k)! k! (2N + 2− n)!
(19)

B. Normalization

Normalizing the basis means searching for cN,n such
that ∫

R
PN,n(u)

2 wN (u) du = 1

The key idea here is to introduce the Rodrigues
formula into only one factor PN,n in the integral and
to repeat n successive integrations by part. The nullity
of the all-inclusive terms leads to:

(−1)n n! cN,n pN,n

∫
R
(1 + u2)n−2N−3 du = 1 (20)

where pN,n is the dominant coefficient of PN,n. It just
so happens that it is easy to find it by using binomial
formula into (18)-(19):

pN,n = cN,n n!

⌊n
2

⌋
∑
k=0

(−1)n+k 2n−2k (2N + 2− k)!

(n− 2k)! k! (2N + 2− n)!

It appears that the sum is a Gegenbauer polynomial eval-
uated at point 1 whose value is known [13, Eqs. 22.3.1,
22.4.2], leading to,

pN,n = cN,n n! (−1)n C(2N+3−n)
n (1)

= cN,n n! (−1)n
(
4N + 5− n

n

)
Inserting this result into (20) and calculating the integral
term [13, § 6.2] we get:

c2N,n =
42N−n+2 (4N + 5− 2N)! (2N − n+ 2)!

π n! (4N + 5− n)! (4N + 4− 2n)!
(21)

As a conclusion, GN =
{
gN,n

}2N

n=0
with

gN,n(u) =
PN,n(u)

(1 + u2)N+ 3
2

(22)

with PN,n given by Eqs. (18), (19), (21) is an or-
thonormal basis of the source space for the natural inner
product.

It can be remarked that the basis functions can
be expressed thanks to Gegenbauer polynomials [13,
Eq. 22.3.4]

gN,n(u) ∝
(
1 + u2

)n−3
2 −N

C(2N−n+3)
n

(
u√

1 + u2

)

This writing can be useful for numerical calculations,
since Gegenbauer polynomials are widely implemented
in many numerical software.

V. SHORT STUDY OF THE BASIS

Let us denote by GN the matrix whose rows are
formed by the sampling of the gn,N . The inner product
between the rows, normalized by the sampling period,
can be interpreted as a Riemann approximation of the
continuous inner product. Therefore, there is no reason
that the Gram-matrix GNGt

N precisely equals the iden-
tity matrix I as expected for the easiness of the receptor
implementation presented in Eq. (14).

In order to measure the orthonormality discrepancy
in EN = GN , compared to that induced by the GS
orthormalization of the initial sampled basis FN or of
GN , respectively EN = F gs

N and EN = Ggs
N , we

compute the Frobenius distance ∥ENEt
N−I∥F between

the Gram-matrices ENEt
N and the identity I . This

distance is represented in logarithmic scale in Fig. 2,
w.r.t. N for u ∈ [−10 , 10] sampled on K = 1000 points.

5 10 15

−12

−8

−4

0

4

N

lo
g
1
0
∥E

N
E

t N
−

I
∥ F

EN = GN

EN = F gs
N

EN = Ggs
N

Fig. 2. Frobenius distance between Gram-matrice of EN and identity,
for EN = GN ,F gs

N or Ggs
N w.r.t. N .

Figure 2 shows that applying the GS orthonormal-
ization to the rows of the matrix GN leads to the
more stable orthonormalization as the order increases.
The reason is that from the very start of the algorithm,
the rows of matrix GN are already relatively close to
orthonormality, which limits the errors of successive
projections involved in GS. Moreover, even if Ggs

N is
closer to a Stiefel matrix than GN , we note that the
latter, for reasonable orders N , is fairly equivalent to a
Stiefel matrix. This result is all the more interesting that
GN comes from an intrinsic orthonormalization over R
and not just over the window [−10 , 10]. We will see
in the next section that choosing GN instead of F gs

N or
Ggs

N to perform detection has little or no impact on the
detection performance.

VI. SIMULATION RESULTS

We consider a multipolar signal of maximum order
N = 4 computed with Eq. (1) and virtually measured
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by a sensor moving according to the trajectory described
in Fig. 1. The 24 harmonic coefficients al,m and bl,m are
randomly drawn so that the signal power is distributed
equally over the B(l)(u), l = 1, . . . , 4.

As a reminder, the detector performance is assessed
by detection and false alarm probabilities Pd and Pfa

through the receiver operating characteristic (ROC)
which is a step function for a perfect detector, and
identity for the worst one. The ROC for the receiver
in Eq. (15) using EN = F gs

N or GN (without numerical
orthonormalization) instead of F gs

N , applied to the noisy
multipolar signal, are depicted in Fig. 3 for various
signal-to-noise ratios (SNR). The latter is defined as
the ratio between the signal and noise powers that is,
for a signal s and a Gaussian noise whose entries are
independent and of variance σ2:

SNR (dB) = 10 log10

(
∥s∥2

dKσ2

)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

Pfa

P
d EN SNR (dB)

F gs
N GN

−20

−22

−24

Fig. 3. ROC from Monte Carlo simulation with 2000 realizations for
EN = F gs

N , GN and various SNR.

Fig. 3 shows that very close ROC are obtained for
different SNR values, with the initial basis orthonor-
malized by GS procedure (EN = F gs

N ) [5] and the
analytical MOBF without GS procedure (EN = GN ).
The comparison of the area under the curve (AUC) of
each ROC in Fig. 3, reported in Tab. I, shows a maximal
difference of 0.07% between the detectors. There is no
significant impact on the detection performance to justify
continuing to apply a GS orthonormalization either on
the initial basis, or on the analytical MOBF, which is a
very comforting result.

TABLE I
AUC (%) OF THE DETECTORS FOR DIFFERENT SNR.

SNR (dB)

EN -25 . -24 -23 -22 . -21 -20

F gs
N 78.63 83.59 87.84 92.36 96.03 98.29

GN 78.53 83.51 87.77 92.31 96.00 98.28
Ggs

N 78.63 83.59 87.84 92.36 96.03 98.29

VII. CONCLUSION

In this paper, the multipolar basis functions, used to
describe the magnetic field produced by a fixed general
source and measured on a line, have been obtained
more directly than in [5] by considering the expression
from [9]. In addition, we have built multipolar orthonor-
mal basis functions based on orthogonal polynomials
theory which allows to avoid orthonormalization proce-
dures and their possible numerical instabilities. We also
showed that even if the sampling process may damage
the orthonormal properties of our analytical basis, they
remain enough accurately satisfied even for relatively
large values of the multipolar order. Finally, in terms
of detection, the performances are fairly comparable
to [5] and at a lower computational cost as additionnal
orthonormalization procedures are not necessary.

In future work, further investigations will deal with the
estimation of the CPA parameters (t0 and D) and that
of the order truncation N . In the latter case, information
criteria were proposed in [5], but the theoretical impact
on the performance remains to be studied.
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