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ALMOST STARSHAPED CMC HYPERSURFACES IN SPACE

FORMS ARE GEODESIC SPHERES

JULIEN ROTH

Abstract. We prove that a constant mean curvature hypersurface of the a

simply connected real space form which is almost starshaped is a geodesic
sphere.

1. Introduction

Over the last decades, many characterization of geodesic spheres have been ob-
tained. The most famous one is the Alexandrov Theorem [2] which says that a
closed embedded hypersurface of the Euclidean space Rn+1 with constant mean
curvature must be a geodesic sphere. The hypothesis, that the hypersurface is be
embedded, cannot be removed as proved by many counter-examples constructed by
Wente [23], Kapouleas [10], Hsiang [6] or Hsiang-Teng-Yu [7] for instance. Further,
this result has been extended by Ros to scalar curvature [16] and then higher order
mean curvatures [17] and more generally for any concave function of the principal
curvatures by Korevaar [14]. In the same note, Korevaar also explain that the proof
of Alexandrov is also valid in the hyperbolic space and the half-sphere. Another
proof was given by Montiel and Ros [15]. Note that for higher order mean curva-
tures, the necessity of the embedding is still an open question.

Many other characterizations of geodesic spheres have been proved where the
embeddedness has been replaced by another assumption in addition of the con-
stancy of the mean curvature or more generally of one of the higher order mean
curvature. For instance, Bivens proved in [3] that if two consecutive higher order
mean curvatures are constant, then the hypersurface is a geodesic sphere. This
have been extend by [11] to the constancy of the ratio of two consecutive higher
order mean curvatures and finally by Koh and Lee to the ratio any two higher order
mean curvatures [12, 13]. As a consequence, if two higher order mean curvatures
are constant, then the hypersurface is a geodesic sphere. In [18] and [19], we were
able to relax the hypothesis of the result of Bivens for the first two mean curvature.
Precisely, if the mean curvature is constant and the second mean curvature H2 is
almost constant, the conclusion also holds. We first prove it in [18] for pointwise
almost constancy of H2 and then in [19] if H2 is close to a constant for the Lp-norm.
All these results hold in the three space forms.

We introduce the following notations before stating the main result of this note.
Mn+1(δ) denotes the simply connected (n+ 1)-dimensional space form of constant
curvature δ, that is Mn+1(δ) is the Euclidean space Rn+1 if δ = 0, the hyperbolic
space Hn+1(δ) if δ < 0 and the upper half-sphere Sn+1

+ (δ) if δ > 0. Let r(·) = d(p0, ·)
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2 J. ROTH

be the distance function to a base point p0. We define the position vector Z as
Z = sδ(r)∇r, where ∇r is the gradient of r in Mn+1(δ) and the functions cδ and
sδ are defined by

cδ(t) =

 cos(
√
δt) if δ > 0

1 if δ = 0

cosh(
√
−δt) if δ < 0

and sδ(t) =


1√
δ

sin(
√
δt) if δ > 0

t if δ = 0
1√
−δ sinh(

√
−δt) if δ < 0.

In the present note, we are interested in the following characterization due to
Hisung [8] for hypersurfaces of Euclidean spaces, but easily extended to spheres and
hyperbolic spaces. Consider (M, g) a closed, connected and oriented Riemanniann
manifold isometrically immersed into Mn+1(δ). By the orientability of M , there
exists on M a globally defined normal unit vector field ν. We assume that M is
starshaped as a hypersurface, that is, the support function 〈Z, ν〉 never vanishes on
M , and so has a fixed sign. If, in addition, the mean curvature H is constant, then
M is a geodesic sphere. Hsiung also showed the same result for any higher order
mean curvature Hk, 1 6 k 6 n. Our goal is to relax the starshapedness assumption
and obtain a new characterization of geodesic spheres with a weaker assumption
that we will call almost starshaped. First, we will precise what we understand by
almost starshaped. Let ρ0 be a positive integer, we assume that there exists a
smooth positive function ε such that at any point of M , we have

(1) 〈Z, ν〉 6 −ρ0(1− ε).
In the sequel, ε will be a function with small L1-norm such that the hypersurface
M is not necessarily starshaped since we allow the support function 〈Z, ν〉 to be
positive at some points but its positive part is small. Now, we can state the main
result of this note.

Theorem 1.1. Let n > 2 be an integer and ρ0 a positive real number. Let us con-
sider (Mn, g) a closed, connected and oriented Riemannian manifold of dimension
n isometrically immersed into Mn+1(δ) with second fundamental form B and mean
curvature H. If δ > 0, we assume in addition that M is contained in a geodesiic
ball of radius R < π

2
√
δ
.

Let h > 0, then there exists a positive constant ε0 depending on n, h, δ, ‖B‖∞ and
Vol(M), and also on R if δ > 0, so that if M has constant mean curvature H = h
and is almost starshaped in the sense of (1) with ‖ε‖1 6 ε0, then M is a geodesic
sphere.

2. Preliminaries

Let (Mn, g) be an n-dimensional closed, connected and oriented Riemannian
manifold isometrically immersed into the (n + 1)-dimensional simply connected
real space form Mn+1(δ) of constant curvature δ. For more convenience, we will
denote in the sequel the metric g by 〈·, ·〉. The second fundamental form II :
TM × TM −→ NM of the immersion of M into Mn+1(δ) is defined by for any
vector fields U and V tangent to M by

∇UV = ∇UV + II(U, V ),

where ∇ and ∇ are the Riemannian connections on M and Mn+1(δ) respectively.
In other word, II is the normal part of ∇ over M . Since we consider an oriented
hypersurface, there exists a globally defined normal unit vector field ν on M which
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allows us to view the second fundamental form as real-valued. Indeed, the real-
valued second fundamental form B of the immersion is the bilinear symmetric form
on TM defined for two vector fields U, V by

B(U, V ) = 〈II(U, V ), ν〉 = 〈∇UV, ν〉 = −〈∇Uν, V 〉.

In the sequel, we will denote by B the second fundamental form. Moreover, we
will denote by S the symmetric endomorphism associated with this the quadratic
form B defined by SU = −∇Uν. Note that S is called the shape operator or the
Weingarten operator .

From B (or S), we can define the mean curvature, which is simply the normalized
trace of S:

H =
1

n
tr (S).

Now, we recall the Gauss formula. For U, V,W,X ∈ Γ(TM),

(2) R(U, V,W,X) = R(U, V,W,X) + 〈SU,W 〉 〈SV,X〉 − 〈SV,W 〉 〈SU,X〉

where R and R are respectively the curvature tensor of M and Mn+1(δ). By taking
the trace on U and W and for X = V , we get

(3) Ric(V ) = Ric(V )−R(ν, V, ν, V ) + nH 〈SV, V 〉 −
〈
S2V, V

〉
.

By taking the trace a second time and since Mn+1(δ) has constant sectional curva-
ture δ, we have

(4) Scal = n(n− 1)δ + n2H2 − ‖S‖2,

or equivalently

(5) Scal = n(n− 1)
(
H2 + δ

)
− ‖τ‖2,

where τ = S − HId TM is the traceless part of the shape operator, also called
umbilicity tensor. If τ = 0, M is said totally umbilical.

Now, we define the higher order mean curvatures, for k ∈ {1, · · · , n}, by

Hk =
1(
n
k

)σ(S) =
1(
n
k

)σk(κ1, · · · , κn),

where σk is the k-th elementary symmetric polynomial and κ1, · · · , κn are the
eigenvalues of S, that is the principal curvatures of the immersion. By convention,
we set H0 = 1 and from the definition, it is obvious that H1 is the mean curvature
H. We also remark from the Gauss formula (2) that

(6) H2 =
1

n(n− 1)
Scal − δ.

Hence, the equation (5) becomes H2−H2 =
1

n(n− 1)
‖τ‖2 and thus H2 > H2. We

also recall the very useful Hsiung-Minkowski formula

(7)

∫
M

(
Hk+1 〈Z, ν〉+ cδ(r)Hk

)
dvg = 0,

for any k ∈ {0, · · · , n− 1} and where Z defined above is the position vector of M .
In particular, we will use in the proof of the theorem the first two formulas, that is,

(8)

∫
M

(
H 〈Z, ν〉+ cδ(r)

)
dvg = 0,
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and

(9)

∫
M

(
H2 〈Z, ν〉+ cδ(r)H

)
dvg = 0.

We can see for instance [1] or [5] for a proof. Note also that often in the litterature,

these formula are written

∫
M

Hk+1 〈Z, ν〉 dvg =

∫
M

cδ(r)Hkdvg, that is with a dif-

ferent sign. This is due to our sign convention for the second fundamental form,
namely B(U, V ) = −g

(
∇Uν, V

)
which implies that geodesic spheres have positive

constant mean curvature with respect to the inner normal vector field. Note that
there is no need that the hypersurface bounds a domain to get Hsiung-Minkowski
formulas and so there is no canonical choice of the unit normal vector field. However,
if the mean curvature is positive and the hypersurface is suppose to be starshaped,
then the first Hsiung-Minkowski formula implies that the support function 〈Z, ν〉
is negative. That’s why we wrote the almost starshapedness assumption as (1).

We finish this preliminaries section by recalling the following result that we
proved with Grosjean in [4]. It is very classical fact that totally umbilical closed
hypersurfaces of space forms are geodesic spheres. In [4], we proved a result about
the stability of this characterization, that if the hypersurface has a sufficiently small
umbilicity tensor, then the hypersurface is close to a sphere. Namely, we proved

Theorem 2.1 (Grosjean-Roth [4]/ Hu-Xu [9]). Let (Mn, g) be an n-dimensional
closed, connected and oriented Riemannian manifold isometrically immersed into
the (n+ 1)-dimensional simply connected real space form Mn+1(δ). Let us assume
also that M lies in a ball of radius R < π

2
√
δ

if δ > 0. Let ε < 1, r, q > n. Then

there exist positive constants:

• C and ε1 depending on n, q, δ, Vol(M), ‖B‖q and ‖H‖∞ and also on R if
δ > 0,
• α depending on n and q,

such that if ε 6 ε1 and

(i) ‖τ‖r 6 ‖H‖rε.
(ii)

∥∥H2 − ‖H‖2∞
∥∥
r/2
6 ‖H‖2rε,

then M is diffeomorphic and Cεα-quasi-isometric to S

(
p0, s

−1
δ

(
1√

‖H‖2∞+δ2

))
,

where p0 is the center of mass of M . Moreover, M is embbeded.

By Cεα-quasi-isometric, we mean that the diffeomorphism from M into the
desired sphere given by the theorem satisfies∣∣|dFx(u)|2 − 1

∣∣ 6 Cεα
for any x ∈M , u ∈ TxM and |u| = 1.

This results has been proved first by the author with Grosjean but with the
condition that M lies into a ball of radius R < π

8
√
δ
. This result is based on a

pinching result for the first eigenvalue of the Laplacian. Later, in [9], Hu and Xu
improved this pinching result for the first eigenvalue of the Laplacian for hypersur-
faces of spheres with the condition that the hypersurface lies into a ball of radius
R < π

2
√
δ

which automatically improved this almost umbilicity result. In the case

where δ is positive, ε1 depends on R. This comes from the improvement of Hu
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and Xu. More precisely, ε1 goes to zero as R goes to π
2
√
δ
. In [20], the author

with Scheuer were able to remove the second condition that the mean curvature is
close to its maximum (or some Lp-norm more generally). We will use this result
in Section 4 and will state it there. In the same paper [20], by a conformal change
of metric, they were also able to obtain a proximity to sphere for almost umbili-
cal hypersurfaces but only for Hausdorff distance and so without embeddedness a
priori. Nevertheless, since were are interesting here with constant mean curvature
hypersurfaces, Theorem 2.1 is enough for our use since the second hypothesis of is
trivially satisfied.

The embeddedness of M in the conclusion of Theorem 2.1 comes from the fact
that the diffeomorphism is explicitely constructed as the radial projection onto the

sphere S

(
p0, s

−1
δ

(
1√

‖H‖2∞+δ2

))
. A control on the second fundamental form is

needed to prove that this projection is a diffeomorphism. However, with a control
only of the mean curvature, we can just obtain proximity for Hausdorff distance.

We also want to note that the constant ε0 of Theorem 2.1 depends in of the
quantities Vol(M), ‖B‖q and ‖H‖∞ in an scaling invariant way since the depen-
dence is in fact in Vol(M)‖B‖nq and Vol(M)‖H‖n∞. For the use we need here, one
can also remove the parameter q and get only a dependence on Vol(M) and ‖B‖∞
instead of Vol(M), ‖B‖q and ‖H‖∞, also with invariance by scaling.

Now, we have all the ingredients to prove Theorem 1.1.

3. Proof of Theorem 1.1

The idea of the proof is to apply Theorem 2.1 to get embeddedness. Since we
assume that M has constant mean curvature, point (ii) is trivial and point (i)
resumes to ‖τ‖r 6 hε, so that we just need to show that ‖τ‖r is small for some
r > n. We will show that for r = n+ 1.
First, we have

‖τ‖2(n+1)
n+1 =

(
1

V (M)

∫
M

‖τ‖(n+1)dvg

)2

=

(
1

V (M)

∫
M

‖τ‖n · ‖τ‖dvg
)2

.

By the Cauchy-Schwarz inequality, we get

‖τ‖2(n+1)
n+1 6

1

V (M)2

(∫
M

‖τ‖2ndvg
)(∫

M

‖τ‖2dvg
)

From this, we deduce immediately that

(10) ‖τ‖2(n+1)
n+1 6

1

V (M)
‖B‖2n∞

(∫
M

‖τ‖2dvg
)
.

On the other hand, we have∫
M

‖τ‖2dvg =
ρ0
ρ0

∫
M

‖τ‖2dvg.(11)

From the almost starshapedness condition (1), we get

ρ0 6 −〈Z, ν〉+ ρ0ε,
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which give together with (11)∫
M

‖τ‖2dvg 6
1

ρ0

∫
M

‖τ‖2 (−〈Z, ν〉+ ρ0ε) dvg

6
n(n− 1)

ρ0

∫
M

(
H2 −H2

)
(−〈Z, ν〉+ ρ0ε) dvg

6 −n(n− 1)

ρ0

∫
M

(
H2 −H2

)
〈Z, ν〉dvg + n(n− 1)

∫
M

(
H2 −H2

)
εdvg(12)

where we have used the fact that −〈Z, ν〉+ρ0ε > 0 and ‖τ‖2 = n(n−1)
(
H2 −H2

)
to get the second line.
Now, we will estimate both terms of the right hand side. On one hand, since H is
constant equal to h, we have∫

M

(
H2 −H2

)
〈Z, ν〉dvg = h

∫
M

H〈Z, ν〉dvg −
∫
M

H2〈Z, ν〉dvg

so, by the Hsiung-Minkoski formulas, we have∫
M

(
H2 −H2

)
〈Z, ν〉dvg = −h

∫
M

cδ(r)dvg −
∫
M

H2〈Z, ν〉dvg

= −h
∫
M

cδ(r)dvg +

∫
M

cδ(r)Hdvg

= −h
∫
M

cδ(r)dvg + h

∫
M

cδ(r)dvg

= 0(13)

On the other hand, we obviously have H2 −H2 6 2‖B‖2∞.
Hence, (12) gives with this last estimate and (13)∫

M

‖τ‖2dvg 6 2n(n− 1)‖B‖2∞
∫
M

εdvg.(14)

Hence, from (10) and (14), we get

‖τ‖2(n+1)
n+1 6 2n(n− 1)‖B‖2(n+1)

∞ ‖ε‖1,

that is

‖τ‖n+1 6 (2n(n− 1))
1

2(n+1) ‖B‖∞‖ε‖
1

2(n+1)

1 .(15)

Now, we set ε0 =
(hε1)2(n+1)

2n(n− 1)‖B‖2(n+1)
∞

, where ε1 is the constant of Theorem 2.1.

Hence, if ‖ε‖1 6 ε0,we get from (15) that

‖τ‖n+1 6 hε1,

and we deduce from Theorem 2.1 that M is embedded. Finally, we conclude by
using the Alexandrov Theorem, M is embedded and has constant mean curvature
so M is a geodesic sphere.
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4. A result with higher order mean curvatures in Euclidean spaces

As mentionned in the introduction, Hsiung showed that a closed connected and
oriented starshaped hypersurface of the Euclidean space Rn+1 with constant higher
order mean curvature Hr, r ∈ {2, · · · , n} is a geodesic sphere. This result is also
true if the ambient space is a half-sphere or a hyperbloic space. In this last section,
we will prove that the conclusion is sitll the same if we replace starshaped by almost
starshaped in the case of Euclidean spaces only. Precisely, here is the result we can
prove:

Theorem 4.1. Let n > 2 and r ∈ {2, · · · , n−1} be two integers. Let ρ0 be a positive
real number. Let us consider (Mn, g) a closed, connected and oriented Riemannian
manifold of dimension n isometrically immersed into the Euclidean space Rn+1 so
that the (r + 1)-th mean curvature Hr+1 is positive everywhere on M .
Let h > 0, then there exists a positive constant ε0 depending on n, r, h, ‖B‖∞,
Vol(M) and infM (Hr+1;n,1) so that if M has constant r-th mean curvature Hr = h
and is almost starshaped in the sense of (1) with ‖ε‖1 6 ε0, then M is a geodesic
sphere.

This result has to be compared to Theorem 1.1. First of all, we assume here
that Hr is constant, but also that Hr+1 is positive everywhere on M . Such an
hypothesis is not require in Theorem 1.1, indeed, we do not assume that H2 is
positive. Second there is an additional dependence of the constant ε0 here, namely
infM (Hr+1;n,1). This quantity Hr+1;n,1 is an extrsinsic quantity defined form the
second fundamental form and is positive if Hr+1 is positive, which is the case
here. Finally, Theorem 4.1 Is valid for the Eculidean space only for the moment.
Our proof si based on the almost umbilicity result proved in [20] and which gives
embeddedness only in the case of Rn+1 as mentionned previously, in the other space
forms, we deduce by a conformal change of metric proximity for Hausdorff distance
only. However, it might be possible with other technics to obtain embeddedness
in half-spheres dans hyperbolic spaces. Note also that Theorem 2.1 does not allow
to conclude here since we have no control on the mean curvature so that we don’t
know if point (ii) is satisfied.

Before beginning the proof, we need to define the function Hr+1;n,1. Let l ∈
{2, · · · , n} and i, j ∈ {1, · · · , n} three integers with i > j. Then, we can define the
extrinsic curvature term Hl;i,j by

Hl;i,j =
∂Hl

∂κi∂κj

where Hl is the l-th mean curvature and κi, κj are the i-th and j-th principal

curvatures (order by κ1 6 κ2 · · · 6 κn). The notation
∂Hl

∂κi∂κj
is to understand in

the sense that Hl is defined form the principal curvature by

Hl =
1(
n
l

)σl(κ1, · · · , κn)

and thus

Hl;i,j =
1(
n
l

)σl−2(κ1, · · · , κj−1, κj+1, · · · , κi−1, κi+1, · · · , κn).
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In the sequel, we will only be interested in Hr+1;n,1 =
1(
n
r+1

)σk−1(κ2, · · · , κn−1).

In [22], Scheuer showed that if Hr is positive then Hr+1;n,1 is also positive. Note
that the proof of this fact is by contradiction so that we do not have an explicit
inequality between Hr and Hr+1;n,1. Like for Theorem 1.1, we want to obtain
almost umbiliciity. For this, we begin by giving the following lemma

Lemma 4.2. (Mn, g) a closed, connected and oriented Riemannian manifold of
dimension n isometrically immersed into the Euclidean space Rn+1 so that the
(r + 1)-th mean curvature Hr+1 is positive everywhere on M . Then, there exists a
positive constant K depending on n, r,min

M
(Hr+1;n,1), min

M
(Hr) and ‖B‖∞ so that

‖τ‖2 6 K
(
HHr −Hr+1

)
.

Proof: First, we recall the classical following inequalities between higher order mean
curvatures, for any k ∈ {1, · · · , n− 1},

H2
k −Hk+1Hk−1 > 0.

Moreover, we have a more precise estimate of the positivity of this term. Namely,

(16) H2
k −Hk+1Hk−1 > cn‖τ‖2H2

k+1;n,1

where cn is a constant depending only on n. One can find the proof in [22] for
instance. We also recall the classical fact that since we assume that Hr+1 > 0, then
all the functions Hk are also positive for k ∈ {1, · · · , n−1} and we have in addition
the so-called Maclaurin inequalities

H
1

k+1

k+1 6 H
1
k

k 6 · · · 6 H
1
2
2 6 H.

Thus, dividing by HkHk−1, (16) becomes

(17)
Hk

Hk−1
− Hk+1

Hk
> cn‖τ‖2

H2
k+1;n,1

HkHk−1
.

Thus, by summing equation (17) for k from 1 to r, we get

(18) H − Hr+1

Hr
> cn‖τ‖2

r∑
k=1

H2
k+1;n,1

HkHk−1
,

and so

(19) HHr −Hr+1 > cn‖τ‖2
(

r∑
k=1

H2
k+1;n,1

HkHk−1

)
Hr.

Moreover, we have HkHk−1 6 ‖B‖2k−1∞ . In addition, since Hr+1 is positive, then all
the function Hk are also positive and thus, as proved by Scheuer in [22], the func-
tions Hk;n,1 are also positive. In addition, since they are the normalized symmetric
polynomial evaluated for κ2, · · · , κn−1, they also satisfy the Maclaurin inequality,
up to a normalization constant, that is

(Hk;n,1)
1

k−2 > an,k (Hk+1;n,1)
1

k−1 ,

where an,k is a positive constant depending only on n and k, and so

(Hk;n,1)
1

k−2 > bn,k,r (Hr+1;n,1)
1

r−1 ,
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where bn,k,r is a positive constant depending only on n, k and r. Note that the
exponents come from the fact that Hk;n,1 is the symmetric polynomial of degree
k − 2. Thus (19) gives

(20) HHr −Hr+1 > cn‖τ‖2
 r∑
k=1

b
2(k−1)
n,k+1,rH

2(k−1)
r−1

r+1;n,1

‖B‖2k−1∞

Hr > C‖τ‖2,

where C = cn min
16k6r

(
b
2(k−1)
n,k+1,r

) min
M

(Hr)

2‖B‖∞

r∑
k=1

min
M

(Hr+1;n,1)
1

r−1

‖B‖∞

2(k−1)

. This con-

cludes the proof of the lemma by setting K =
1

C
which depends only on n, r,

min
M

(Hr+1;n,1), min
M

(Hr) and ‖B‖∞. �

Now, we can prove Theorem4.1. The strategy is to show almost umbilicity with
the help of Lemma 4.2 in order to apply the following result that we proved with
Scheuer in [20].

Theorem 4.3. (Roth-Scheuer [20]) Let M be a closed, connected, oriented hyper-
surface of Rn+1. Let p > n ≥ 2. Then there exist constants c and ε2, depending
on n, p, Vol(M), ‖B‖p as well as a constant α = α(n, p), such that whenever there
holds

‖τ‖p 6 ‖H‖pε2,

there also holds

dH(Σ, Sρ) 6
cαρ

‖H‖αp
‖τ‖αp = ρεα,

and M is diffeomoprhic and εα-quasi-isometric to a sphere Sρ of approriate radius
ρ. In addition, M is embedded.

As in the proof of Theorem 1.1, we will estimate the Ln+1-norm of the umbilicity
tensor τ . We still start from(10), that is,

‖τ‖2(n+1)
n+1 6

1

V (M)
‖B‖2n∞

(∫
M

‖τ‖2dvg
)
.

The difference here is the way to estimate
∫
M
‖τ‖2dvg. First, from the almost

starshapedness condition (1), we have like in the proof of Theorem 1.1,

ρ0 6 −〈Z, ν〉+ ρ0ε,

which give together with (11)∫
M

‖τ‖2dvg 6
1

ρ0

∫
M

‖τ‖2 (−〈Z, ν〉+ ρ0ε) dvg(21)

Now, we use Lemma 4.2 to obtain∫
M

‖τ‖2dvg 6
K

ρ0

∫
M

(HHr −Hr+1) (−〈Z, ν〉+ ρ0ε) dvg

6 −K
ρ0

∫
M

(HHr −Hr+1) 〈Z, ν〉dvg +K

∫
M

(HHr −Hr+1) εdvg(22)
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On one hand, we have∫
M

(HHr −Hr+1) 〈Z, ν〉dvg = h

∫
M

H〈Z, ν〉dvg −
∫
M

Hr+1〈Z, ν〉dvg

= −hVol(M) +

∫
M

Hrdvg

= −hVol(M) + hVol(M)

= 0(23)

where we have used the first are (r+ 1)-th Hsiung-Minkowksi formula and the fact
that Hr is constant equal to h.
On the other hand, we have clearly HHr −Hr+1 6 2‖B‖r+1

∞ , so that (22) gives∫
M

‖τ‖2dvg 6 2K‖B‖r+1
∞

∫
M

εdvg.(24)

Hence, reporting into (10), we obtain

‖τ‖2(n+1)
n+1 6 2K‖B‖2n+r+1

∞ ‖ε‖1(25)

that is

‖τ‖n+1 6 (2K)
1

2(n+1) ‖B‖
2n+r+1
2(n+1)
∞ ‖ε‖

1
2(n+1)

1 .(26)

we set ε0 =
h

2(n+1)
r ε

2(n+1)
2

2K‖B‖2n+r+1
∞

where ε2 is the constant of Theorem 4.3. Hence, if

‖ε‖1 6 ε0, we get from (26) that

‖τ‖n+1 6 h
1
r ε2

= ‖H
1
r
r ‖n+1ε2

6 ‖H‖n+1ε2.

We can apply Theorem 4.3 with p = n + 1 and we deduce in particular that M is
embedded. Since M has constant r-th mean curvature, by the Alexandrov theorem
for Hr prove by Ros [17], we conclude that M is a geodesic sphere. Note that
the constant ε0 depends only on the quantities announced in the statement of the
Theorem. Indeed, ε0 depends on n, r, h and ‖B‖∞ from its expression. It depends
also on K and ε2. First, ε2 is obtained form Theorem 4.3 with p = n + 1 and
so depends on n, Vol(M) and ‖B‖n+1. The dependence on ‖B‖n+1 can clearly be
replaced by ‖B‖∞ when analysing the proof of Theorem 4.3. Finally, K comes
from Lemma 4.2 and depends on n, r,min

M
(Hr+1;n,1), min

M
(Hr) and ‖B‖∞. But Hr

is constant equal to h hence min
M

(Hr) is nothing else but h which concludes the

proof.
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