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Abstract

Background One key aspect of personalized medicine is to identify individuals who benefit from an intervention.
Some approaches have been developed to estimate individualized treatment effects (ITE) with a single randomized
control trial (RCT) or observational data, but they are often underpowered for the ITE estimation. Using individual
participant data meta-analyses (IPD-MA) might solve this problem. Few studies have investigated how to develop
risk prediction models with IPD-MA, and it remains unclear how to combine those methods with approaches used
for ITE estimation. In this article, we compared different approaches using both simulated and real data with binary
and time-to-event outcomes to estimate the individualized treatment effects from an IPD-MA in a one-stage
approach.

Methods We compared five one-stage models: naive model (NA), random intercept (RI), stratified intercept (SI),
rank-1 (R1), and fully stratified (FS), built with two different strategies, the S-learner and the T-learner constructed
with a Monte Carlo simulation study in which we explored different scenarios with a binary or a time-to-event out-
come. To evaluate the performance of the models, we used the c-statistic for benefit, the calibration of predictions,
and the mean squared error. The different models were also used on the INDANA IPD-MA, comparing an anti-hyper-
tensive treatment to no treatment or placebo (N = 40237, 836 events).

Results Simulation results showed that using the S-learner led to better ITE estimation performances for both binary
and time-to-event outcomes. None of the risk models stand out and had significantly better results. For the INDANA
dataset with a binary outcome, the naive and the random intercept models had the best performances.

Conclusions For the choice of the strategy, using interactions with treatment (the S-learner) is preferable.
For the choice of the method, no approach is better than the other.

Keywords Personalized medicine, Individualized treatment effects, Individual patient data, Meta-analysis
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predicted benefit under one treatment minus the pre-
dicted benefit under the other treatment, given a set of
patients’ characteristics. It represents what treatment
effect is expected for a patient with these characteristics.
ITEs are generally estimated by building prediction mod-
els or by using machine learning methods such as ran-
dom forests [1].

In practice, prediction models for ITE are often devel-
oped using data from a single randomized controlled trial
(RCT) or observational data [2]. RCTs benefit from ran-
domization but are often underpowered for such a task,
which may lead to overfitting or the failure of captur-
ing the effects of many relevant variables. A solution to
that problem might be to use individual participant data
meta-analyses (IPD-MA), which include larger numbers
of patients and may also benefit from increased general-
izability. Nevertheless, it is necessary to consider the vari-
ation between studies in such data to avoid bias. Previous
studies have tackled the incorporation of heterogene-
ity when estimating the average treatment effect i.e. the
average difference of the predicted risk between treat-
ments, or have used IPD-MA to develop risk prediction
models [3, 4]. However, it is unclear how to deal with het-
erogeneity in an IPD-MA while using approaches to esti-
mate ITEs. Fisher et al. [5] and, more recently, Chalkou
et al. [6] considered a framework to estimate the ITE in
IPD-MA with a two-stage approach. More specifically,
Chalkou et al. used a network meta-analysis with individ-
ual participant data to, first, estimate a prognostic model.
Heterogeneity of treatment effects according to baseline
risk predicted by this model was then considered using a
two-stage approach with treatment by baseline risk inter-
actions estimated within each trial. Seo et al. used one-
stage meta-analytic approaches and focused on methods
for selecting which treatment-covariate interactions to
include in a model where study-specific intercepts and
common effects factors were added; they concluded that
shrinkage methods performed better than non-shrinkage
methods [7].

In the context of a single study or RCT, a wide range
of approaches have been proposed to estimate ITEs [8—
12]. To our knowledge, how to adequately combine those
with the approaches accounting for heterogeneity in IPD-
MA has not been investigated. In this work, we consid-
ered two strategies called meta-learners, the S-learner
and the T-learner [8].

In this study, we aimed to study the performance of
strategies that estimate the ITE from an IPD-MA in a
one-stage approach and methods focusing on taking into
account the heterogeneity in baseline risks to understand
which strategy and method should be used in practice.
Different methods were compared using both simulated
and real data with binary and time-to-event outcomes.
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We first present the different models and approaches
compared in estimating ITEs. Next, we describe the
Monte Carlo simulation study and its results, and the
models are then applied to the data of the INDANA
meta-analysis, a real individual patient data meta-analy-
sis evaluating anti-hypertensive treatments [13]. We con-
clude with some discussion and paths for future research.

Methods to estimate individualized treatment
effects

In this section, we described the different approaches we
compared to estimate the ITE from an IPD-MA account-
ing for the clustering of patients within trials. We first
explain the two approaches used to obtain ITEs from
risk prediction models and then the different approaches
to develop risk prediction models in an IPD-MA we
considered.

ITE estimation

Let us consider a binary outcome without loss of general-
ity. The case of time-to-event outcomes, which is similar
in essence, is described in Supplementary Material S1.
The ITE, which is the difference in predicted benefits of
two treatments given a set of patients’ characteristics, is
estimated as:

T(x) = [i(x,1) — [i(x,0).

where [1(x,2), z € {0,1} represents the predicted mean
outcome under treatment z for an individual with covari-
ates x.

To estimate the ITE t many methods exist. In this pro-
ject, two meta-learners were used, the S-learner and the
T-learner, which decompose the estimation of the ITE
into sub-regression problems [8]. The meta-learners can
be implemented with various prediction techniques such
as regression or random forests for instance. In this work,
we decided to use regression since methods to handle the
heterogeneity in an IPD-MA have been developed with
regression in previous works [3, 4].

The S-learner estimates the ITE using a single regres-
sion model, where interactions between the indicator
variable for the treatment and relevant covariates are
introduced.

Considering for instance a logistic regression model,
the S-learner consists in estimating the following model:

logitu(x,z) = a + 0'x + yz + n'xz.
From this, we derive for all individuals:
fi(x, 1) = expit(& + 6'x + 7 + 1'x),

and
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(x,0) = expit(a + é’x).

Different approaches to obtain estimates of «, 0, y, ny are
described in the next subsection.

The T-learner estimates the ITE using two separate
regression models, one built using data from the treat-
ment group and one built using data from the control
group. The two following models:

logit/i(x,0) = o + 6%,
for individuals with z = 0 and
logiti(x, 1) = o' + 6,

for individuals with z = 1, are fitted and 7 is obtained from
a(x, 1) = expit(@ + 0’ x) and [i(x,0) = expit(@ + 0’ x)
for all individuals in the meta-analysis.

The S-learner algorithm may reduce overfitting com-
pared to the T-learner algorithm as it can adjust the
number of interactions included in the model and thus
can reduce the number of estimates. However, since IPD-
MA is used in this work, the potential overfitting of the
T-learner might be reduced due to a larger sample size.

In our case, we want to obtain [i(x,z) using data from
an IPD-MA. Several approaches exist to estimate this
quantity while accounting for the potential heterogeneity
that may arise in a meta-analysis. These approaches are
detailed in the next subsection.

Risk prediction models in IPD-MA

Let us consider an IPD-MA where data from individual
patients from J randomized controlled trials are avail-
able, and the outcome of interest is binary. Different
methods to develop a single risk prediction model using
IPD-MA have been proposed [3, 4]. Four of them were
compared in this work and a naive model, that ignores
any heterogeneity which may occur between the different
studies included in the meta-analysis, was added to the
comparison.

Let x;; = (i1, ..,%;n) be a vector of covariate values
for subject i € (1,...,N;) in study j € (1,...,]). For the
purpose of describing the different approaches, we do not
differentiate the treatment indicator from other covari-
ates and do not specify interactions between covariates,
they could be incorporated in the definition of x;;. We
considered the following five models:

« Naive model (NA): A first approach considers that
all data comes from a single population, and there-
fore assumes that there is no heterogeneity. In this
model, a common intercept and common predic-
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tor effects are included. This naive approach can
lead to bias when heterogeneity is actually present.
The model can be expressed as:

logit(pjlxij) = o + 6'x; (1)

where pjrefers to the probability of subject i in
trial j to develop the outcome. When individ-
ual predictions are made to estimate the ITE at a
covariate level x, these predictions are obtained by
(x) = expit(a + é’x), where & and 0 are the Maxi-
mum likelihood estimators of « and 6 respectively, in
the model (1).
Random intercept model (RI): A second approach
is to assume that the heterogeneity in the IPD-MA
occurs only on the baseline risk i.e. the intercept
varies between studies, but the effects of all predic-
tors are the same in each study. In this model, we
consider a random study effect to model the distri-
bution of the intercept across studies. The underly-
ing model can be written as:

lOgit(pi/'|in',(xl‘) =oj + 9’x,7 (2)

with ¢; ~N (a,r(f). The indiviflual predictions are
obtained by [i(x) = expit(& + 6’x). Estimators of «
and 6 are obtained via maximum likelihood which
is approximated with the adaptive Gauss-Hermite
quadrature.

Stratified intercept model (SI): A third approach is
to include a different intercept for each study, as a
fixed effect. With a binary outcome:

]
logit(pylxj, @) = Y aml(m =) +6'x;  (3)

m=1

where I(-) denotes the indicator function. To derive
the individual predictions as fi(x) = expit(@ + é’x),
the estimator of 6 is obtained via maximum like-
lihood. To obtain a single & , we used a random-
effects meta-analysis of the o, with inverse variance
weighting, as suggested by Debray et al. and Royston
et al. [3, 14]. The choice of a random-effects meta-
analysis was based on considering that using separate
intercepts for each study implied that some heteroge-
neity would be expected.

Fully stratified model (FS): A fourth approach is to
consider that there is heterogeneity across stud-
ies on both the baseline risks and the predictors’
effects. In that case, we calculate different intercept
and predictor effects for each trial included in the
meta-analysis. With a binary outcome:
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J
logit(pjj |xij, @, 6;) = Z(aml(m =j)+ 9,/%1(»'1 = j)xij) (4)
m=1
where «,, and 6,,, for m =1,..,], are real valued
parameters to be estimated. This is equivalent to fit-
ting a separate model in each study included in the
meta-analysis. The individual predictions are then
obtained as [i(x) = expit(a + 6/x), where a single
intercept estimate @ and single predictor estimatesf
are obtained with a random-effects multivariate
meta-analysis.

(i) (%))

where V is the between-study covariance matrix of
the intercept and the predictor effects.

+ Rank-1 model (R1): A final approach considers that
the linear predictors share a common direction in the
covariate space but that the size of their effects might
be systematically different [15]. This model can be
thought of as an intermediate between the common
effect models and the fully stratified model. In this
setting, the study-specific effects can vary in a pro-
portional way, modeled by a random effect ¢. With a
binary outcome:

logit(pij|xij, o, ) = o) + B0 (5)

with o ~ N (a, 2), ¢ ~NQ, rq%)
With the rank-1 model, the individual predictions are
acquired by f(x) = expit(& + 6'x), where both esti-
mators are directly obtained as in the random inter-
cept model.
The risk models using a time-to-event outcome are
described in Section 1 of the Supplementary Material.

Model validation

Internal-external cross-validation (IECV) was used
to validate the models. In the IECV, the model is con-
structed with J —1 studies and validated with the
remaining study for each permutation of / — 1 studies. To
account for the heterogeneity in baseline risk, the model
is re-calibrated in the test datasets. We first estimate the
intercept with the different risk prediction models pre-
sented previously. Recalibration is then performed by
estimating a regression model with the linear predictors
Ox of the original model as an offset i.e. the regression
parameter is forced to be one. These steps are performed
for all models except for the naive model which ignores
all potential heterogeneity. To assess the models’ perfor-
mance, discrimination and calibration were considered.
We also calculated the mean squared error.
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To assess the discrimination, which is the ability of
the model to distinguish between individuals who ben-
efit and individuals who do not benefit from taking the
treatment, the c-statistic for benefit proposed by van
Klaveren et al. [16] was used. Since the individual ben-
efit, i.e. obtaining a more favorable outcome when tak-
ing the treatment than when not taking it cannot be
observed, van Klaveren et al. used pairs of individuals,
one in each treatment group, with close predicted ITE to
approach the individual benefit. The c-statistic for ben-
efit is the extension of the c-statistic for individualized
treatment effects. The c-statistic for benefit is defined as
the probability that from two randomly chosen matched
pairs (pl, p2) with unequal estimated benefit, the pair
with greater estimated benefit also has a higher predicted
probability, where the estimated benefit refers to the dif-
ference in outcomes between two patients with the same
predicted benefit but with different treatment assign-
ments. To create the pairs, a patient in the control group
is matched to one in the treatment group with a similar
predicted treatment benefit. Higher values of the c-statis-
tic for benefit are better. The c-statistic for benefit can be
expressed as:

Cror-benetic = P(205p1) > £(552) | T03p1) > 7(52))

where 7(x,1) and 7(x,7) represent the observed benefits
of pairs p1 and p2 and where 7 (x,1) and 7 (x,2) represent
the predicted benefits of pairs p1 and p2 respectively.

For the calibration, the agreement between the
observed and the predicted benefit, was assessed by
extracting the intercept and the slope of the regression
line. An intercept close to 0 and a slope close to 1 indicate
a good calibration. Calibration curves were also plotted
when the methods were applied to the INDANA dataset.
The predictions were divided into five bins; to make sure
to include individuals who were allocated to the treat-
ment and individuals who were allocated to the control.
In each bin, the mean of the predicted benefit was com-
pared to the observed benefit.

Addressing aggregation bias

An issue related to the one-stage approach is the way
treatment-covariate interactions are included. Indeed,
if the model is not correctly specified, it can lead to
aggregation bias which occurs when using the informa-
tion across studies modifies the interactions’ estimates
obtained when using only within-study information. In
order to avoid aggregation bias, only within-trial interac-
tion should be used to estimate the treatment-covariate
interactions. To make sure only within-trial information
is used, a solution to distinguish within- and across-
trial information has been described in Riley et al. [17].
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This method consists in centering the covariates to their
study-specific mean and adding the covariates’ mean as
an adjustment term that explains between-study hetero-
geneity. Since within- and across-trial information are
now uncorrelated, we are able to solely use within-trial
information. After conducting some simulations (details
are given in Section 2 of the Additional file 1) in which
we compared the estimates obtained with the models
described in the previous section with and without the
aforementioned method, we concluded that not center-
ing variables to their study-specific mean and not includ-
ing a covariate-mean interaction term did not lead to
aggregation bias with the proposed models since the esti-
mates obtained were similar. In their paper, Belias et al.
find that using this method leads to very small differences
[18]. Therefore, we decided to evaluate the performance
of the different models without including the method.

Implementation

All the analyses were performed in R version 4.1.2. The
random intercept and the stratified intercept models
were developed using glmer from the 1med package
for binary outcomes and using coxme from the coxme
package for time-to-event outcomes. For the rank-1
models, we used rrvglm in the VGAM package and
coxme in coxme. Finally, the fully stratified model was
developed using glm and coxph from survival.

Monte Carlo simulation study
Setting
The performance of the models and meta-learners was
evaluated in a simulation study. We considered 24 sce-
narios in which we changed the number of covariates, the
number of patients in each trial, and the type of outcome.
The scenarios are briefly described below, and more
details are given in Section 3 of Additional file 1. We sim-
ulated 1000 IPD-MAs composed of 7 trials for each sce-
nario. All the continuous covariates were drawn from a
normal distribution and all the binary covariates were
drawn from a Bernoulli distribution. For individual i in
study j, the treatment allocation #; was sampled from a
Bernoulli distribution of parameter 0.5, the binary out-
come y; was generated from a Bernoulli distribution of
parameter p;;, where logit(p;;) = a; + 6;x;; + y;t;j and the
time-to-event outcome was generated from a Weibull
distribution f(x; k, b) = bkxf;fl exp (—bxk ), where k rep-
resents the shape parameter and b the scale parameter.
We chose k = 1.15i.e. the failure rate increases over time
and b= —2%—, with a =50 to obtain a stretch
exp (6jxij)
distribution.

In 12 scenarios, data was generated with a common
treatment effect (all y; = y), whereas in the other 12, we
included some variation in the predictor effects.

Page 5 of 15

In scenarios 1 to 3, we considered IPD-MAs with a total
number of patients equal to 2800, 1400 and 700 respec-
tively (for simplicity, trials were of identical sample size)
composed of 3 covariates, 3 treatment-covariate interac-
tions and a binary outcome. Among the covariates, one
of them was binary and the other two were continuous.

In scenarios 4 to 6, we computed IPD-MAs with a total
number of patients equal to 2800, 1400 and 700 (trials
were of identical sample size) composed of 9 covariates
(6 binary and 3 continuous) and 4 treatment-covariate
interactions.

Scenarios 7 to 12 had the same configuration as scenar-
ios 1 to 6 but the predictor effects varied according to the
trial for some variables.

Scenarios 13 to 18 had the same configuration as sce-
narios 1 to 6 and scenarios 19 to 24 were similar to sce-
narios 7 to 12 but instead of a binary outcome, we used a
time-to-event outcome.

A summary of all scenarios can be found in Supple-
mentary Table 7 of Additional file 1.

We also tackled the impact of variables’ selection on
the performance of the approaches. We performed vari-
ables’ selection using a Group lasso [19] for scenarios 4
to 6 and 10 to 12 with the stratified intercept model. The
results can be found in Supplementary Material S3.

Results

Results of scenarios 1 to 6 and 13 to 18 are available in
Section 4 of Additional file 1. If outliers were found in the
results, they were removed from the analysis.

With 3 covariates, all methods had a nearly equal per-
formance, in terms of discrimination and calibration,
with both meta-learners (Fig. 1). The mean c-statistic
for benefit values were around 0.52 for all models, and
although van Klaveren stated that it was difficult to
obtain values over 0.6 [16], it still indicates poor dis-
crimination. The calibration was mediocre, the inter-
cept values were close to 0 but the slope values were
not close to 1. The rank-1 and the stratified intercept
models had higher MSE values and than the other
model. With 9 covariates, the fully stratified under-
performed the other models with lower discrimina-
tion and calibration as well as higher MSE values. The
poor performance of FS might be due to overfitting,
different intercept and predictor effects are included
in the model for all studies (Fig. 2). The other models
performed similarly, they had a good calibration with
intercept values and slope values close to 0 and 1,
respectively, and acceptable discrimination with c-sta-
tistic for benefit values around 0.6. Using the S-learner
or the T-learner led to equivalent performances for
the NA, R SI, and R1 methods. However, for the fully
stratified method, it was preferable to use the S-learner
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Fig. 1 Boxplot of the models’ performance with 3 covariates, a binary outcome, and variation in the predictor effects

approach to obtain better results and lower MSE val-
ues. Changing the size of the IPD-MA did not impact
the results. When a binary outcome is used and the
model includes few covariates, we recommend using
the naive, random intercept or fully stratified mod-
els which have lower MSE. When the model includes
more covariates, we recommend avoiding using the
fully stratified model and favoring the other methods.
Despite including some heterogeneity in the predictor
effects between studies, the naive model, which ignores
any potential heterogeneity, did not perform worse
than the other methods. The naive model might under-
estimate some effects and overestimate others, thus
leading to a similar performance to the other methods’
performances. Similar conclusions were reached in sce-
narios without variation in the predictor effects (results
in Section 4 of Additional file 1).

When a time-to-event outcome was used with 3
covariates, we noticed that using the T-learner led
to slightly better discrimination results for all meth-
ods, whereas using the S-learner led to better calibra-
tion results (Fig. 3). Slope values far from 1 indicating
a poor calibration. Higher MSE values were obtained
for the fully stratified model and for the rank-1 model

when the T-learner was used. The NA, RI, and SI meth-
ods’ results were similar.

With 9 covariates, using FS led to better calibration
results but led to worse discrimination (Fig. 4). The other
methods produced analogous discrimination results and
had mean c-statistic for benefit values above 0.65. FS had
the higher MSE. Overall, using the S-learner led to more
stable results and led to lower MSE values.

When a time-to-event outcome is used, we recom-
mend choosing the S-learner approach to estimate ITEs.
No methods outperformed the others but with several
covariates, the fully stratified model had the best calibra-
tion. Similar conclusions were obtained when variation
in the predictor effects was not included (results in Sec-
tion 4 of Additional file 1).

In scenarios where variation in predictor effects
was included across studies, the rank-1 and the fully
stratified models, which are the models that capture
more heterogeneity, did not stand out from the other
models and did not lead to better ITE estimation. The
fully stratified, which estimates separate intercept and
predictor effects for each study included in the meta-
analysis, is prone to overfitting. This overfitting was
seen in our results, particularly in scenarios with more
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Fig. 2 Boxplot of the models’ performance with 10 covariates, a binary outcome, and variation in the predictor effects

covariates. The rank-1 model allows the predictor
effects to vary in a proportional way, which might not
capture well the type of heterogeneity we considered in
the various scenarios (see Supplementary Material S3).
In a scenario where heterogeneity was generated in a
proportional way, the rank-1 model performed better
(Supplementary Material S4)”

To further investigate the performance of the methods,
we computed prediction intervals around the predicted
ITE of all individuals for each method and calculated the
number of times the true ITE was included in the inter-
val (Fig. 5). The predicted ITEs correspond to what would
be expected as a treatment effect for an individual with
characteristics x;, had they been assigned to an average
trial. In scenarios 7 to 9, FS’s prediction intervals were the
ones that included the true ITE the most. In scenarios
with 9 covariates and a binary outcome (scenarios 10 to
12), the true ITE was more often in the intervals of NA
and RI. With a time-to-event, the prediction intervals of
FS and R1 with the S-learner included the true ITE more
frequently when 3 covariates were used. With 9 covari-
ates, R1’s prediction models captured the true ITE more
often. Overall, the two methods that included more het-
erogeneity were the ones that captured the most the true
ITE in their prediction intervals.

lllustration on real data

INDANA IPD-MA

To illustrate the different approaches, we used data from
the individual data analysis of antihypertensive interven-
tion trials (INDANA) IPD-MA to evaluate the models
[20]. This IPD-MA is composed of 9 randomized con-
trolled trials comparing an antihypertensive treatment
versus no treatment or a placebo, but given the large dis-
parity between trials, notably for the variable age (See
Supplementary Fig. 8, Additional file 1), we decided to
compare the different methods on 4 of them for which
the median age was under 60 years old. The outcome
used in this project was death. The dataset was composed
of 40 237 observations and 836 deaths. After comparing
the calibration obtained with different combinations of
variables, we decided to include the following variables in
the final models: age, sex, systolic blood pressure (SBP),
serum creatinine and treatment group (Table 1). Since
some values were missing, we replaced them using a sim-
ple run of a multiple imputation procedure [21]. Consid-
ering that the dataset was only used for illustration, we
considered that a single imputed dataset would be suf-
ficient. For clinical research, it would be recommended
to use several imputed datasets and pool the results [22].
Proper guidance for estimating ITE is lacking but could
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Fig. 3 Boxplot of the models’ performance with 3 covariates, a time-to-event outcome, and variation in the predictor effects

be adapted from techniques used for building risk predic-
tion models [23, 24].

Results

Considering death as a binary outcome, a higher c-sta-
tistic for benefit was obtained with the S-learner rather
than the T-learner, whatever method to handle hetero-
geneity was used (Table 2). No significant difference
was found between the five methods, with c-statistic
for benefit values close to 0.5. Even recalling that van
Klaveren et al. mentioned it was usual to observe a
c-statistic for benefit under 0.6, our results still showed
a limited discrimination for the treatment effects [16].
Despite its large sample size (40 237 observations), the
dataset only contained 836 events which could also
explain why it was difficult to obtain models that dis-
criminated well. In terms of calibration, the median
intercept value was close to 0 for every model, with
slightly better results when the S-learner was used.
With the S-learner, the naive method had a slightly bet-
ter median slope and the fully stratified method gave
the values further from 1. With the T-learner, the RI
method had a median slope closer to 1. The SI and R1
methods gave identical median slope values with both

approaches. In general, median slope values were not
close to 1 which we can visualize in Fig. 6 showing that
most points are not close to the diagonal. The MSE val-
ues were close to 0 and comparable for every method
whatever approach was used. The naive model and
the random intercept method built with the S-learner
produced the best performances with the INDANA
dataset.

The usefulness of adopting a personalized strategy
with the INDANA dataset was assessed with three dif-
ferent metrics(Table 3). The individualized treatment
rules developed with all methods were compared to a
rule treating everyone and to a rule treating no one. The
PAPE, which compares the ITR with a treatment rule
that randomly treats the same proportion of patients, was
also computed [25].

Results showed that there was almost no benefit of
using a personalizing strategy with INDANA. PAPE
were all around 0 indicating the ITRs did not improve
the outcome compared to a rule that randomly treats
the same proportion of patients. Similar results were
obtained when comparing the ITRs to a rule that treats
everyone or to a rule that treats no one. All methods
performed similarly with both meta-learners. The
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Fig. 4 Boxplot of the models’ performance with 10 covariates, a time-to-event outcome, and variation in the predictor effects

limited gain in personalization might be due to the dis-
tribution of the treatment effects. Sufficient heteroge-
neity of treatment effects is needed to develop useful
individualized treatment rules.

The distributions of the individualized treatment
effects estimated with the different methods were
comparable when the same approach, the S-learner
or the T-learner, was used (Fig. 7). With the S-learner,
all the ITEs were negative. All the ITE estimates were
close to 0 which explains the fact that it was difficult
to discriminate individuals benefiting from individu-
als not benefiting from taking the treatment and might
indicate a very small treatment effect.

When considering the performance of the methods
and the approaches on the train dataset, the discrimi-
nation was still low and the calibration improved a
bit, especially for the SI and R1 methods (Supplemen-
tary Material S5). The c-statistic for benefit values
remained close to 0.5 and the ITEs estimated were
close to 0 which explains the low discrimination. The
fact that the performance did not drastically increase
on the train dataset might indicate that the dispar-
ity between the trials was too high for them to be
meta-analyzed.

Discussion

This paper compared different approaches to estimate
individualized treatment effects in an IPD meta-analysis.
Using Monte Carlo simulations, the performance of those
approaches was compared in terms of calibration and
discrimination of the ITE. Eight approaches were consid-
ered, combining two strategies for model building (meta-
learners), one where interactions between treatment and
covariates are added in a regression model (S-learner),
and one where two different regression models are fit-
ted for each treatment group (T-learner), with five meth-
ods to handle the heterogeneity from the meta-analytic
design: naive, random intercept, stratified intercept, fully
stratified and reduced rank (rank-1) models. Both binary
and time-to-event outcomes were studied. The methods
were illustrated in a clinical example.

In the settings we considered, and with binary out-
comes, using interactions with treatment (S-learner)
or two different models (T-learner) had little impact on
the model performance. With a binary outcome, we rec-
ommend avoiding using the fully stratified model when
several covariates are included, as it is prone to overfit-
ting. For time-to-event data, results were better when
the S-learner approach was used but no methods stand
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Table 1 Description of the predictors in each trial of the INDANA IPD-MA. The dataset with imputed missing data we analyzed is

presented
Variable ANBP MRFIT HDFP MRC1
Age, mean (SD) years 50.1 (9.0) 46.9 (5.9) 50.8 (9.8) 52.1(7.5)
Male, no. (%) 2475 (63.0) 8012 (100.0) 5910 (54.0) 9048 (52.1)
SBP, mean (SD) mmHg 154.3 (19.1) 141.1 (14.4) 158.8 (22.8) 1616 (17.1)
Serum creatinine, mean (SD) umol/I 87.2(21.6) 98.0(13.4) 94.1 (23.2) 84.8(21.1)
Antihypertensive treatment arm, no. (%) 1988 (50.6) 4019 (50.2) 5485 (50.1) 8700 (50.1)
Table 2 Median results using INDANA with a binary outcome

S-learner T-learner

NA RI Sl R1 FS NA RI Sl R1 FS
C-stat 0.530 0.530 0.530 0.530 0.530 0.507 0.524 0.524 0.524 0.518
Intercept 0.001 0.001 0.002 0.002 0.001 -0.003 -0.003 -0.003 -0.003 -0.003
Slope 1433 1453 1.460 1.460 1.961 0.268 0.727 0.569 0.569 0.596
MSE 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000

out and outperformed the others. Additionally, consider-
ing variable selection did not change the performance of
the algorithms. The rank-1 and the fully stratified models

that include more heterogeneity were the methods that
captured more of the uncertainty around the ITE pre-
diction, and their prediction intervals included the true
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Table 3 Metrics to assess the usefulness of personalization on the INDANA dataset

S-learner T-learner
NA RI Sl R1 FS NA RI Sl R1 FS
PAPE 0 0 0 0 0 0.001 0 0.001 0.001 0.001
V(r) — E(Y(0)) -0.003 -0.003 -0.003 -0.003 -0.003 -0.002 -0.002 -0.002 -0.002 -0.002
V(r)y —E(Y(1)) 0 0 0 0 0 0.001 0.001 0.001 0.001 0.001
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Fig. 7 ITE distribution of the models with the S-learner (blue) and the T-learner (red)

ITE more often than the prediction intervals of the other
methods.

In this paper, the ITE was estimated using a one-stage
approach. Esti