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Signal estimation and uncertainties extraction in
TeraHertz Time Domain Spectroscopy

Elsa Denakpo∗, Théo Hannotte∗, Noureddin Osseiran∗, François Orieux†, and Romain Peretti∗

Abstract—Terahertz Time Domain Spectroscopy (THz-TDS)
systems have emerged as mature technologies with significant
potential across various research fields and industries. However,
the lack of standardized methods for signal and noise estimation
and reduction hinders its full potential. This paper introduces
a methodology to significantly reduce noise in THz-TDS time
traces, providing a reliable and less biased estimation of the
signal. The method results in an improved signal-to-noise ratio,
enabling the utilization of the full dynamic range of such setups.
Additionally, we investigate the estimation of the covariance
matrix to quantify the uncertainties associated with the signal
estimator. This matrix is essential for extracting accurate material
parameters by normalizing the error function in the fitting
process. Our approach addresses practical scenarios where the
number of repeated measurements is limited compared to the
sampling time axis length. We envision this work as the initial
step toward standardizing THz-TDS data processing. We believe
it will foster collaboration between the THz and signal processing
communities, leading to the development of more sophisticated
methods to tackle new challenges introduced by novel setups
based on optoelectronic devices and dual-comb spectroscopy.

Index Terms—time domain spectroscopy, signal processing,
terahertz (THz), noise extraction, covariance inverse estimation

I. Introduction

Terahertz (THz) frequency range has long been a frontier
for technology, too fast for electronics and at too low energy
to ensure proper laser radiation. Therefore, THz spectroscopy
was only rarely used and only for research purposes despite
much interest in gas, liquid, and solid phase samples. The
paradigm shifted a few decades ago thanks to the use of
opto-electronics sources coupled to new generations of both
continuous and pulse lasers. This enabled the performances of
THz spectroscopy from a few fraction of THz to a few THz
with a very good dynamic range using a bench-top setup. This
highly contributed to the spread of THz spectroscopy, which
is used to characterize the physical and chemical properties
of samples from the solid, liquid, gaseous, and even plasma
phases [1].

In gas, THz covers both the rotational transitions of the
microwave regime for relatively small molecules (3 to 15
atoms) and the vibrational modes of the infrared for larger
molecules. Therefore, it is known to be the most selective
spectral range for organic volatile compounds [2] with poten-
tial application in atmospheric study, air pollution monitoring,
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Microélectronique et de Nanotechnologie, F-59000 Lille, France, marked
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or breathalyzers. In liquids, water picosecond dynamics is in
the same time an open fundamental subject and very sensitive
to interaction with solutes and thus provides important infor-
mation about proteins solvation [3, 4] for instance. Finally, in
the solid state, it is used in many fundamental semiconductor
[5–7], spintronic [8, 9], and 2D material research [10, 11],
as a very good tool to monitor the crystal phase of organic
molecules [12, 13]. THz is therefore very attractive for many
analytical fields and is used to characterize tablets porosity
during their fabrication in the pharmaceutical industry and in
the automotive one - with the major example of measuring
the thickness of paint layers during the painting of automotive
parts or non-destructive analysis of thin film elements.

The setups and techniques have developed now and com-
mercially available time-domain spectroscopy setups offer
more than 100 dB of dynamics range and bandwidth of about
8 THz and are distributed and used by scientists and engineers
all over the world. THz spectroscopy is a rapidly growing field
with a wide range of applications. During the experiments the
instrument records two time traces one without sample and one
with sample. From there, several teams have proposed method-
ologies to extract useful information for the physicist, chemist
or material scientist. Historically [14–17], the sequence of in-
formation extraction included, a FFT, phase unwrap, refractive
index evaluation thanks to a basic and often valid photonic
model, and finally the parameter estimation. They used either
a better model for the recorded signal [18], or went further
in classifying samples through data processing [19, 20]. The
last approach was to present statistically valid estimation to
extract the parameters when fitting the experimental data [21].
Still, despite these efforts [22], there is no standard in the
data acquisition and data processing and no accepted protocol
to extract the uncertainties from a measurement and therefore
rare are the studies proposing error bars in their measurements.

In this work, we propose to go a step further in the data
acquisition and processing in THz-TDS experiments thanks
to a robust estimator of the signal on the one hand, and an
estimation of the noise correlation matrix needed for materials
parameters extraction on the other hand. The estimator is
based on the average of the time traces corrected depending
on the source of noise, by applying a generic optimization
approach. The noise correlation matrix for its part is ap-
proximate with algorithms used for covariance and precision
matrices estimation. Both are included in the open source free
software Correct@TDS [23], which implements our estimator
and enables the estimation of the noise correlation matrix.
The manuscript first shortly describes the THz-TDS setup
and the methods used in the community to process the data,
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specifies the different sources of noise and ways to mitigate
it, proposes an estimator for the signal and the corresponding
noise correlation matrix. We believe that this approach and
software will help the technique to spread more in analytical
fields and hopefully to draw a bridge to the data processing
and instrumentation community.

II. TeraHertz Time Domain spectroscopy setup, data
exploitation and experimental errors

A. TeraHertz Time Domain spectroscopy experiments

Fig. 1: THz-TDS experiment principle showing the main ele-
ments and source of errors through noises and perturbations:
the delay line and the detector and the laser.

In a THz-TDS experiment (Fig. 1), a femtosecond laser
emits an ultrafast pulse that is split in two by a beam splitter
and directed to two photoconductive antennas. When the
ultrashort pulse excites the transmitting antenna, it creates
carriers which are accelerated by an high voltage between
two electrodes and induce the terahertz pulse. The detectors
works on a very similar principle and the delay line allows
to adjust the length of the path before reaching the detection
antenna. Thus by varying the time delay between the pulse on
the detector and the one on the emitter, the E-field is measured
as a function of time. At the end of an experiment, we obtain
two time traces, one without sample that we call the reference
and one with sample that we call sample. In both cases, the
electric field measured versus time, which will be analyzed to
retrieve information on the properties of the studied material.

B. TeraHertz Time Domain spectroscopy First data process

From theses time traces, several further steps have been
proposed to extract information from the experiments. The
first one is the computing of the Transmission; it consists
on a simple performance of the ratio between the absolute
value of the FFT of the time traces. The second one add
a log to the previous step to get the loss per unit length
when divided by the thickness of the sample. The third one
is a bit more complex, it consists on the extraction of the
complex refractive indices versus frequency, of the studied
material. It is again usually done from the frequency domain
by Fourier-transform of the recorded time traces. Then, a
fitting process is used, to get the two real value describing the
complex refractive index [24]. Finally, one can further extract
information by fitting the dispersion of the refractive index by
permittivity models to get physical insight about the material.
This method in the frequency domain reach its limitations for

instance when the signal is too noisy due to a too strong
absorption [25]. Indeed, the accuracy of the measured time
traces have a direct influence on the performance of the fitting
model. Moreover, the fit by the permittivity models usually
do not take into account the noise. This omission would be
valid if the noise would be a Gaussian white noise but in the
experiments this assumption was actually never confirmed. To
overcome this issue, several group decided to look back to the
initial time traces in the performance of the data processing.
Mohtashemi et al. [26] proposed a method that includes the
noise correlation matrix which is a fair description of the
uncertainty due to the noise in the reference and in the sample
time traces. In our group [27] and [28, 29], we proposed a
software called Fit@TDS which implements a method where
the permittivity models are directly fitted from the data in time
domain and include the noise correlation matrix. This two new
method show the importance of looking deeper on the source
of error from the systems in THz-TDS experiments.

C. THz-TDS systems noises and perturbations

THz-TDS systems are now well matured but their capabili-
ties can still be improved beside simple the output power of the
emission antenna and the bandwidth of the systems. Indeed,
the interpretability and the reproductibility of the output data
is of utter importance specifically regarding application such
as in biology [30]. This relies on a deep understanding of all
the sources of error, including noises and perturbations, induce
by the system itself. THz-TDS are known to have a very good
dynamic range, but up to now there is no standard definition
of the signal to noise ratio. Thus it’s important to understand
where the noise comes from the system. Many studies [31–36]
had been done on the subject of noise sources in THz-TDS
systems. Jahn et al. [37] described how the uncertainties in
the delay line positioning influences the acquired signal and
its spectrum. Rehn et al. [38] explained how the periodic error
in delay line line position can make the spectrum unusable.
Hence, the main sources of noise identified are the variation
of the laser power and the delay line position which impact
the time sampling step.

To better quantify and understand the noise added to the
signal by the spectrometer, we performed a set of experi-
ments. Our setup is a MenloSystems’s terahertz spectrometer
TeraSmart. This setup is relatively standard using a 100 MHz
repetition rate laser and a 850 ps long delay line covering 8.5%
of the laser period with a time step of 33 fs. The typical THz
bandwidth is around 4 THz.

For the sake of comprehension of the rest of this work, we
denote:

Ti = (Ei(t))h (1)

T̃i =
(
Ẽi( f )

)
f∈

{
0,··· ,

⌊
p−1

2

⌋} (2)

T = (Ti) i ∈{1,··· ,n} (3)

T =

1
n

n∑
i=1

Ei(t)


t ∈{t0,··· ,tp−1}

(4)
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with Ti the ith measured time trace, T̃i its Fourier transform,
T the set of n time traces measured repeatedly, and T the
average along the time axis of all time traces Ti, i ∈ {1 · · · n}.

For the first experiment the two optical fibers are unplugged
and we recorded the signal on 845 ps without THz emission
and activation of the detector. We call this noise ”Dark noise”
and it is generated by the detector when no THz pulse
is sent to the detector. In fact, even when no carrier are
promoted to the conduction band, some hole-electron pairs
are created, generating a small current, that is amplified by the
transimpendance amplifier, itself adding noise. Fig. 2 shows
the average on 1000 single record in frequency domain. Its
average power decreases when accumulating, it goes from
1× 10−1 µV for an average on 30 time traces to 1.1× 10−2 µV
for an average of 3000 time traces. It is non deterministic and
has the flat spectrum of a white noise.
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Fig. 2: Noise recorded in the different experimental conditions:
Dark noise and THz-Dark noise with different filtering show-
ing that this filtering is unavoidable to keep a reasonable noise
even in the absence of signal.

A second experiment is to put an absorbent to block the
cell occupied by the sample and record the signal on 845 ps.
Both antennas are excited by the femtosecond laser and we
call this ”THz-Dark perturbation”; its amplitude as well as
its shape include a low frequency artifact-perturbation that is
reproducible [29]. As shown in Fig. 2, its amplitude is two
orders of magnitude greater than the Dark noise recorded pre-
viously in our first experiment and its shape has a deterministic
trend. Here, we thoroughly ensure that this noise was not due
to parasitic THz reflection in our setup by translating and
rotating the antenna without changing this perturbation. This
implies that some parasitic laser emission reach the detector
after the main pulse and after going through the delay line.
At low frequency, its contribution is important and must be
reduced. This was done thanks to a low cut filter at 200 GHz
corresponding to the low bounds frequency of the bandwidth
given by the manufacturer of our setup. The filter is a smooth
step function and is defined by:

H( f ) = 0.5 + 0.5 tanh
(

( f − fcut)β
fcut

)
(5)

with fcut the cut-off frequency and β the sharpness. Fig. 2
shows the average power of this noise. After filtering for an

accumulation of 3000 time traces the THz-Dark noise average
power goes from 14 µV before filtering to 3 × 10−2 µV after
filtering for a sharpness of 10, similar to the Dark noise order
of magnitude.

From this experiments, it appears that the signal should be
filter at low frequencies in order to reduce both noises. Also
the sharpness of the filter can have a great influence on the
result. In fact, 200 GHz is the frequency limit of our system,
and a large sharpness means more correlation added to the
data. Hence a filter under 200 GHz with a sharpness of 2 is
a good compromise to not impact the most important part of
the signal at higher frequencies.

A third experiment is to record THz pulse traveling in dry
nitrogen between the two antennas, plugged to the optical
fibers. Here 100 000 time traces on 100 ps have been acquired
consecutively. Fig. 3 shows the average on 1000 time traces
and the standard error on 100 averages on 1000 time traces.
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Fig. 3: Mean and standard error in frequency and time domain
on time traces recorded in dry nitrogen showing that the noise
cannot be said to be equal to neither the dynamic range nor
to the dark noise.

When averaging on time traces samples, the goal is to
increase the signal to noise ratio. The average is then consid-
ered as an estimator of the signal and the standard error it’s
standard deviation. Indeed, in statistics, when the samples are
independent and identically distributed (i.i.d.) from a Gaussian
distribution with mean µ the average - also called the sample
mean - is the maximum likelihood estimator of this mean µ.

As we can see in Fig. 3, the standard error is correlated to
the signal and the signal to noise ratio is about 28 dB while the
dynamic range as define in the community (maximum of the
signal compare to the high frequency noise) is ∼ 84 dB. The
first conclusion is that for the estimator ”average”, the noise
estimated by the standard error is very high compare to the
dynamic range. Two causes can lead to this effect: There is
a very important noise correlated to the signal; the estimator
”average” on the raw data is not a good estimator for this
experiments. In the next sections, we will propose to correct
most of the noise coming from the system to build a better
estimator of the signal and increase the signal to noise ratio.
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III. Signal estimator

A. Delay line initial position drift

While accumulating multiple measurements is a common
approach to improve signal estimation, the simple average
often results in a biased estimator for time-domain sampled
signals as already noted in [39]. Specific efforts have been
pursued to retrieve unbiased signal estimators in time domain
experiments. In our case, upon closer examination of the data,
we discovered that the time traces exhibited slight shifts of a
few femtoseconds between each accumulation. It translates in
a shape of the standard deviation of the time signal similar
to the one shown in [40] and the inset of 3. These shifts,
attributed to temperature variations in optical fibers altering
the optical delay or positioning changes in the delay line, lead
to misalignment of the main pulse in each time trace. As a
result, when these traces are averaged, noise is introduced,
as depicted in Fig. 3. This issue of signal alignment is quite
general [41] and not unique to THz-TDS experiments; similar
challenges exist in other fields such as sampling oscilloscopes
[40, 41] , seismology [42, 43], radar[44], and ultrasound for
biology [45]. While several methods have been proposed to
address this problem, we initially chose to explore the simplest
solutions.

To correct this misalignment smaller than the size of a time
sampling step, we implemented the standard formula of the
Fourier transform of a translation. A time trace among the
recorded time traces is chosen as a reference and all time traces
are readjusted one by one to this time trace before averaging.
The reference time trace is defined as the time trace closest to
the average:

Tre f = arg min
Ti∈T

T · Ti

||Ti||2
. (6)

By naming δi the delay shift on the time trace i, the
corrected signal in frequency domain is:

Ẽi−corrected( f ) = exp ( j.2π f .δi).Ẽi( f ) (7)

δi = arg min
δi

∥∥∥Tre f − Ti−corrected(δi)
∥∥∥

2 . (8)

The goal in Eq.8 is to find for each time trace the drift
which minimize the distance between the reference and the
corrected time trace.

Fig. 5 shows the mean and the precision on 1 000 time traces
after the drift correction. The signal to noise ratio increase
from 28dB to 55dB, which means approximately a gain of
27dB.

Furthermore, averaging shifted time traces is equivalent to
applying a convolution low-pass filter to the signal as ex-
plained in [39]. Assuming a linear drift during the acquisition
for an overall drift ∆, for an average over a large number of
traces, the attenuation factor in amplitude caused by the drift
can be approximated in the frequency domain as

A∆(ω) =
1
∆

∫ ∆
2

− ∆2

e jωδdδ = sinc
(
ω∆

2

)
. (9)

More generally, the attenuation is the Fourier transform of
the delay distribution among all the time traces. Equation 9

corresponds to the special case of an uniform distribution. It is
important to note that the attenuation does not depends directly
on the number of traces, but only on the delay distribution.
Hence, the simple average of the raw time traces is a biased
estimator of the signal, and does not approach the real signal
for large number of time traces. In fact, the delay distribution
is more likely to be broader for long acquisitions, such that the
accuracy of the uncorrected average decreases with the number
of time traces. Fig. 4 shows the ratio between the corrected
average and the raw average for 1000 and 50 000 time traces.
In this example, the delay drift caused a severe attenuation in
the raw average, and gets much worse for a larger number of
averaged time traces. The attenuation closely match the form
predicted in equation 9 up to 4 THz, despite a non linear drift
(see supplementary document for details on the actual drift).

Fig. 4: Power ratio of spectra obtained from a raw average and
a corrected average showing the multiplicative bias caused by
the drift. Shown for 1000 and 50000 time traces. The drift
attenuation for 50000 time traces is fitted with the model from
equation 9.

Figure 4 highlights the potentially misleading nature of the
error caused by the delay drift. Indeed, despite the signal
being affected by more than 20% at 3 THz, the signal does
not appear more ”noisy”, and it is very difficult to distinguish
this error from a real signal if only the raw average is taken
into consideration. In fact, it could well be an explanation
of the dispersion in the published results of THz spectral
analysis of water using THz-TDS techniques ([35, 46] and
references therein), where the strong absorption makes long
accumulations necessary .

B. Delay line speed variation

At the view of the major gain obtained by the delay
correction at the first order, we decided to go a step further.
In fact, the variations in speed of the delay line due to
the temperature or any other environmental fluctuation, has
already been reported as in [37]. Hence, there can be at the
second order, noise due to the phenomena describe above.
It leads to a dilatation in the time axis where the measured
signal is E(t + αt) instead of E(t). A dilatation in the time
domain implies a contraction in the frequency domain, which
is a nonlinear transformation. To correct this, we stay in the
time domain and use the Taylor formula at first order.
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Ei−corrected(t) = Ei(t) − (αit)E′i (t) (10)

αi = arg min
αi

∥∥∥Tre f − Ti−corrected(αi)
∥∥∥

2 (11)

After the delay line speed correction, the gain is really small
and there is almost no difference in the time and frequency
domain, when applied to a single peak reference as we are
doing here. However, we performed experiments outside of the
scope of this paper and realized that this correction becomes
important when analyzing time traces containing echoes as
the one coming from the recording of a solid state sample
(the echoes come from the Fabry Perrot effect).

C. Laser amplitude fluctuation

The gain after the drift correction is important, however
there is still noise remaining. This noise corresponds to other
sources such as shot noise and fluctuations in laser power.
We suppose this noise is proportional to the signal with a
coefficient ai for each time trace i. Hence the corrected signal
in time domain is:

Ei−corrected(t) = (1 − ai)Ei(t) (12)

ai = arg min
ai

∥∥∥Tre f − Ti−corrected(ai)
∥∥∥

2 (13)

Here the goal is the same as before, find for each time
trace the coefficient which minimize the distance between the
reference and the corrected time trace.
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Fig. 5: Mean and standard error in frequency and time domain
after drift and amplitude correction

Fig. 5 shows the mean and the precision on 1000 time traces
after the drift and the amplitude correction. In this case the
signal estimated does not change. However the noise estimated
does. Hence, the signal to noise ratio increase from 55 dB to
62 dB, which means approximately 7 dB gain.

D. Periodic sampling errors

When averaging repeating measures, it appears that there
is a distortion in the spectrum, which makes the spectrum of
the estimated signal unusable and can significantly influence
the extraction of the refractive index of the sample at high
frequencies (typically > 7.5 THz). Fig. 6 shows the mean on

50 000 time traces before correction in gray and after drift
plus other corrections in blue. After approximately 7.5 THz
there is an artifact and between 4.5 THz and 7.5 THz, the
artifact is present but hidden by the signal intensity, this area
is then not reliable depending of the number of time traces
accumulated. As explained in [38], this distortion is called
periodic sampling error and comes from periodic deviation of
the delay line position. It leads to apparently higher artificial
bandwidth due to parasitic mirror copies of the main pulse
spectrum around the error’s frequency. Indeed, at each time
t, instead of measuring the signal E(t) the system measures
E(t + σ(t)), σ(t) being a periodic error in the time domain. It
is possible to recover an approximation of the normal spectrum
from the measured spectrum, by minimizing the electric field
in the concerned area. Indeed there is a frequency we call
fps ∈

{
f0, · · · , f⌊ p−1

2

⌋} that can be identify graphically, where
the error start. The corrected signal is:

Ei−corrected(t) = Ei(t) − E′i (t).σi(t) (14)
σi(t) = Ai cos(νit + ϕi) (15)

(Ai, νi, ϕi) = arg min
Ai,νi,ϕi

∑
f∈ fps,··· , f⌊ p−1

2

⌋
|Ẽi( f )| (16)

σ(t) is found by minimizing the integral of the spectrum
in the concerned area. fps is approximately 7.5THz in Fig. 6
showing this noise and its reduction by the proposed method.
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Fig. 6: Spectrum with periodic sampling error beginning at
7.5 THz before and after correction with a Tukey window (α =
0.05)

In this section, we proposed and implemented in Cor-
rect@TDS two important corrections for the signal estimator
in THz-TDS. As in sampling oscilloscope for instance [40],
the time sampling drift lead to low-pass effect on the amplitude
characteristic that can be even more detrimental here because
if its effect on the reference would be more important than on
the sample this would lead to an artificial gain measurements
on the sample. We anticipate that, as in fast electronics and
ultrasonic systems[47], further corrections in both the systems
and in the data processing would further improve the signal
estimator in the future. This will be even more interesting
and impactful regarding the new developed THz-TDS ultra-
rapid systems. There the mechanical delay line is replaced by
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optoelectronic elements as in asynchronous optical sampling
systems (ASOPS) [48, 49], or by two coupled laser as dual
comb spectroscopy [50]. Despites their speed to acquire a
spectrum and their high resolution these systems are facing
issues to reach as good signal to noise ratio as the mechanical
systems for the same integration time and will surely benefit
of specific and more sophisticated noise correction and signal
estimators.

IV. Material parameters extraction from estimated signals

Spectroscopy studies how a sample, a material, behaves
when crossed by an electromagnetic wave. The goal is to
extract parameters describing the physics of the electric
charges in the sample. In THz-TDS, this extraction requires the
knowledge of the THz pulse before and after the sample, which
translate in without and with the sample. The measurements
without the sample is called the reference pulse and the one
with the sample the sample pulse. Once recorded both pulses
are processed to estimate both the signal and the noise.

A. Fitting process

Then to go further in the interpretation of the measurements
the physicist select a permittivity model set in a transfer
function transforming the reference pulse into the sample
pulse. Since most of the dielectric function models are de-
picted in the frequency domain, most of the fits are performed
there. However, several groups of which we are part have
decided to perform it in the time domain to be as close as
possible to the experimental signal. In [27], we implement
our approach in a software called called Fit@TDS where the
cost function to compare a model with its set of parameters
P to the experiments, is defined as the squared error between
the sample pulse and the model fitted curve:

Cmodel{P} =
∥∥∥Esample − Emodel{P})

∥∥∥
2 (17)

Emodel{P} = f (P, Ere f ) (18)

The function f corresponds to the model, while Cmodel{P} is
the error associated with the model and its parameters P.

Most fitting models implicitly assume that the noise is
Gaussian and independent and identically distributed (i.i.d.).
However, as shown in Fig. 3, the noise present in THz-
TDS signals is not a Gaussian white noise, then its impact
cannot be ignored. To address this issue, [26] proposed to
incorporate the noise correlation matrix, into the cost function
in the fitting process to account for measurement uncertainties.
This approach involves normalizing the model cost with the
matrix and selecting the best fitting model based on the Akaike
criterion, which balances goodness of fit and model complexity
in terms of number of parameters [29].

The noise correlation matrix called here Mnoise contains the
information about the noise in the sample signal, the reference
signal and the correlations. It enables a proper weighting of the
cost function during the fitting process and therefore improves
the accuracy of the material parameter extraction. It leads to
a new associated cost function to the fitting model:

Cmodel{P} =
∥∥∥[Mnoise]−1/2(Esample − Emodel{P})

∥∥∥
2 (19)

Mnoise = ΣEsample + Σh∗Ere f (20)

CAIC{P} = Cmodel{P} + 2NP (21)

CAIC{P} is the Akaike criterion associated with the model and
its parameters P, NP is the number of parameters of the model.
The equation (20) represents the noise correlation matrix as
a sum of two covariance matrices. The first term, ΣEsample ,
is the covariance matrix of the sample measurements. The
second term, Σh∗Ere f , is the covariance matrix of the reference
measurements, convolved with the transfer function h of the
THz-TDS system. The transfer function h accounts for the
distortion of the THz pulse as it propagates through the system.
By convolving the reference with the transfer function, the
noise correlation matrix of the reference is transferred to the
sample one and added to the noise correlation matrix of the
sample.

In practice, the true values of h and the covariances ΣEsample

and Σh∗Ere f are unknown and have to be estimated from
measured data. The estimation of the off-diagonal values of
the covariance matrices is important because there are often
correlations, as we have seen previously. Moreover, these
correlations increase in the presence of a sample due to its
own variations, making their estimation even more crucial.
Therefore, the estimators should be able to approximate these
off-diagonal values accurately. One approach is to estimate
them from a set of repeated measurements, but there can
be errors caused by the system, leading to a high variance
in the signal. This problem highlights the importance of our
corrections, which reduce the noise and enable a less biased
estimation of the covariance matrices.

B. Noise correlation matrix

Covariance matrices are used in all field of signal from
sampling oscilloscope [51], acoustics [52] and biomedical
application [53]. It serves, for instance, to propagate uncertain-
ties, to shrink huge data to a reasonable size, and to obtain the
necessary normalization [51] in a fitting process. In our case,
we first estimate Esample and Ere f with the proposed method :
averaging nacc time traces after correcting the delay line and
the laser amplitude errors.

Ere f ≈ Ere f−nacc =
1

nacc

nacc∑
i=1

Ti−{re f } (22)

Esample ≈ Esample−nacc =
1

nacc

nacc∑
i=1

Ti−{sample} (23)

Following, the empirical value of the transfer function h is
derived as follow:

h = TF−1
[

Ẽsample

Ẽre f

]
≈ TF−1

[
Ẽsample−nacc

Ẽre f−nacc

]
(24)

Also, the computation of Mnoise requires to know the co-
variance matrices associated to the sample and the transformed
reference. Since Esample and h∗Ere f are estimated by averaging
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nacc corrected time traces, their covariance matrices can be
estimated using the following formula:

Σh∗Ere f ≈
1

nacc
Σh∗Ere f−nacc

(25)

ΣEsample ≈
1

nacc
ΣEsample−nacc

(26)

We divide by nacc in the formula because we are estimating
the covariance of the mean of the corrected time traces, not
the covariance of each individual trace. When we average
the nacc corrected time traces, we reduce the variance of the
resulting mean by a factor of nacc. Thus, dividing by nacc in the
covariance computation accounts for this reduction in variance
due to averaging.

Finally, the normalization in equation (19) implies the
computation of the inverse of the noise correlation matrix.
If the two covariance matrices in equation (20) are invertibles,
that means definite positive then their sum is also invertible.
But there is no assumption on this invertibility if the two
covariance matrices are singulars.

C. Covariance and precision matrices estimators

A necessary condition for the inversion of an estimated
covariance is that the number of sample meaning the number
of repeated measurements used for the estimation, must be
strictly greater than the number of variables meaning the
number of time sampling points. In practice, the acquisition
of sufficient number of time traces could be very long and
an unpractical when dealing with numerous experimental
conditions to test. For example, a time trace of 400 ps is
about 12 500 time sampling points, and the acquisition of
12 501 time traces is about 2 hours. Also, the more time traces
are accumulated, the more drifts errors are accumulated from
intrinsic instability.

The literature offers various methods to approximate well-
conditioned covariance matrices. Our goal is to propose a sim-
ple, reproducible process for approximating well-conditioned
covariance matrices and to integrate this process into our
open-source software solution, Correct@TDS, making it easily
accessible to users. To achieve this, we utilize methods imple-
mented in the widely-used Python library, Scikit-learn [54].
We examine three covariance estimation methods: empirical
covariance, shrinkage methods, and graphical lasso.

The empirical covariance matrix Σemp , can be unreliable as
an estimator when n is close to or less than p, leading to ill-
conditioned covariance estimates due to the large magnitude
gap between the eigenvalues. To avoid this inversion problem,
the shrinkage method has been proposed by [55] (Ledoit-Wolf
shrinkage). It is a transformation of the empirical covariance
matrix toward a target matrix with regularization techniques:

Σshrunk = (1 − α)Σemp + α
Tr(Σemp)

p
I (27)

The target matrix considered here is proportional to the
weighted sum of the identity matrix and the empirical matrix.
The optimal value of α is computed by finding a bias-variance

trade-off with no assumption on the data distribution. An-
other methods called Oracle Approximating Shrinkage method
[56] had been proposed as an improvement of Ledoit-Wolf
shrinkage where α is computed under Gaussian distribution
assumption on the samples.

There are also methods that rely on solving the covariance
selection problem to approximate sparse inverse covariance
matrices with lasso regularization [57] [58] [59]. These meth-
ods have the advantage to be able to recover the off diagonal
structure of the covariance matrix. Since two independent
variables will have zero coefficient in the precision matrix, the
idea is to estimate a sparse covariance matrix of multivariate
Gaussian distributed observations by minimizing the penalized
negative log-likelihood:

Σglasso = arg min
Σ
− log

(
detΣ

)
+ Tr

(
ΣempΣ

)
+ α

∥∥∥Σ∥∥∥1 (28)

The coefficient α is the lasso penalty; its value is found by
comparing different values on a grid of α values. The larger
alpha is, the more sparse the matrix is. This method tends to
work better when n ≤ p, however the lasso penalization based
methods can be inconsistent on some graph structures [60]. In
[59], they proposed the graphical lasso, a fast algorithm based
on coordinate descent approach to solve this problem.

For the sake of the simplicity in the explanations, we
limited the scope of the paper to data of a reference, meaning
without samples in the estimation of ΣEre f−nacc

and its inverse.
It worth noticing that the process is the same for ΣEsample−nacc

and Σh∗Ere f−nacc
and we expect that the noise induced by the

signal will be lower simply because a sample will reduce the
magnitude of the signal.

The tests are done on the measured time traces on 100 ps
in the third experiment in section 2. Since we don’t know the
distribution of the residual noise in Fig. 5, we tried different
estimation methods for different values of n with n ≤ p and
compared them to targets matrices which are supposed to be
the true covariance/precision matrices. Those targets matrices
are obtained by computing the empirical covariance and its
inverse on n = 100 000 time traces with p = 3000 and
p/n = 0.03. We assume that we have enough data for a well
conditioned matrix close to the true matrices.

D. Results and discussion

Our goal was to compare the different methods to estimate
the covariance and precision matrices. On this basis, we tested
Ledoit Wolf shrinkage, Oracle Approximating shrinkage and
the Graphical Lasso. This section shows the obtained results.

1) Covariance matrix: Figure 7(a) illustrates the normal-
ized distance between the estimated covariance matrix for
different number of sample and the empirical target covariance
matrix. This distance is defined as the Frobenius norm of
the difference between the two matrices, normalized by the
Frobenius norm of the target matrix, with an expected value
of 0. The gray line indicates the point at which n = p + 1,
indicating the invertibility of the covariance matrices. We can
see that the two shrinkage methods produce similar results
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Fig. 7: Comparison between Ledoit Wolf shrinkage, Oracle
Approximating shrinkage and the Graphical Lasso methods
for the covariance matrix estimation. (a) Normalized distance
between estimated and target covariance matrices for different
number of sample showing a good estimation with the graph-
ical lasso already with 100 time traces. (b) Normalized norm
of the estimated covariance matrices showing that the norm
of the estimated matrices are in the range of the targeted ones
and that the graphical Lasso performs better

despite their different assumptions about the Gaussian distri-
bution. When n ≤ p, which is the relevant scenario of interest
for us, the graphical lasso algorithm performs better even with
small number of time traces such as 100.

In addition to the comparison of the distances, we also
compare the norm of the estimated matrices to the norm of
the target matrices. Figure 7(b) shows the ratio between these
two norms, with an expected value of 1. The ratio ranges from
approximately 0.6 to 1 depending on the estimation method.
These results suggest that the estimated matrices are in close
neighborhood of the target matrix and have similar norms,
which indicates that the estimation methods produce accurate
results.

Moreover, in order to evaluate the accuracy of the estimators
in retrieving the covariance matrix structure and correlation
values, a plot was generated.

Figure 8(a) displays the empirical covariance matrix before
correction on 100 000 time traces. Before correction, the
diagonal values are not large compared to the off-diagonal
values, indicating a certain degree of correlation between the
variables that represent each time point in the signal. The
correlations are certainly due to noise or artifacts in the signal
and need to be removed or corrected. It should be noted
that here, a low frequencies filter (refer section 2) is applied,
otherwise the correlations would be stronger. Furthermore, the
highest positive and negative covariance values are close to the
main pulse, reflecting the position of the main pulse.

In Figure 8(b), the empirical covariance matrix after cor-
rection on 100 000 time traces is shown as the target matrix.
The correction leads to a reduction of covariance values by

three orders of magnitude, and a change in the diagonal
elements, which become larger than the off-diagonal elements.
Moreover, the correlation due to the main pulse is still
reflected. This suggests that the correlation due to noise or
unwanted artifacts in the signal are corrected. Hence we can
conclude that the corrections help to obtain an almost accurate
representation of the underlying signal.

Figure 9 illustrates the estimated covariance matrix with
nacc = 1000 and p = 3000 with Graphical Lasso (a) and
Ledoit-Wolf (b). They have the same structure with the target
variables, meaning they refleted the main pulse correlation
and the large diagonal values. However, the Graphical Lasso
algorithm appears to provide a more precise estimation of the
main pulse correlation compared to the target covariance ma-
trix, which is consistent with the results shown in Figure 7(a)
where the graphical lasso algorithm performed better in terms
of distance to the target matrix.

2) Precision matrix: The most challenging task is now to
determine which estimator is the most precise for retrieving the
precision matrix. Obviously we have a curse of dimensionality
problem and there is no optimal solution for this. The same
comparisons as for the covariance estimator are done for the
precision.

Figure 10(a) shows the normalized distances between the
estimated precision matrices and the target precision matrix
(inverse of the empirical target covariance matrix). The two
shrinkage methods also produce here similar results. In the
case where n ≤ p, where empirical covariance matrix is not
invertible, the distances for all methods are almost in the
same order of magnitude. However when we get closer to the
invertibility line, the graphical lasso seems to works better.

Regarding the normalized norms of the estimated matrices
in Figure 10(b), we can observe that, the norms with the
shrinkage methods get closer to the target with more samples
while the norms with graphical lasso are almost constant.
However all values also range from 0.6 to 1 depending on
the estimation method indicating that the estimated matrices
are also in close neighborhood of the target matrix.

In Fig. 11, the precision matrix (inverse of the empirical
covariance matrix) is shown before and after correction on
100 000 time traces. Despite the number of sample supposed
sufficient used for computation, the precision matrix before
correction does not reflect the strong correlation on the main
pulse as in the covariance, which is contrary to the expectation
that two independent variables would have a zero coefficient
in the precision matrix, and vice versa. On the other hand, the
precision matrix which is our target precision after correction
appears to better capture the expected structure. Also their is
an increase of the partial correlation values by one order of
magnitude after correction.

In Fig. 12, the precision matrices obtained by applying the
graphical lasso and Ledoit-Wolf methods on 1000 time traces
are presented. Although these matrices appear to be closer
to the target matrix (also referring to Fig. 10), the graphical
lasso fails to capture the strong correlation on the pulse in
the precision matrix. Still, this structure can be explained by
the sparsity hypothesis of the precision matrix made in lasso
algorithm, can affect the structure and make it different from
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Fig. 8: Empirical covariance before correction and after correction for 100 000 time traces showing the importance of the
correction to get a covariance immune to drift
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Fig. 9: Estimated Covariance with Graphical Lasso and Ledoit-Wolf algorithms for 1000 time traces

the covariance matrix. As for Ledoit-Wolf, we observe a partial
retrieval of the strong correlation, but it remains difficult for
the estimators to capture it entirely. It can just be due to the
fact that 1 000 time traces is not sufficient for this method.

3) Best estimator: Finally, graphical lasso seems to be the
best estimator for our problem. The model’s goal is to retrieve
the matrix structure. It regularizes the empirical matrix and
give sparse precision matrices. While the resulting matrices
may not be entirely accurate, they are still suitable for our
purpose that is to ensure a proper fit normalization taking
into account the noise distribution and therefore giving better
evaluation of the extracted physical parameters and not to

get the exact values. Additionally, Graphical lasso has the
advantage to give sparse matrix that will be advantageous in
terms of computational costs during the fitting process.

Noise correlation matrix estimation is again a general prob-
lem in data processing where specific solution can be found
for specific problems. Here, we took the first steps in their
evaluation in the case of THz-TDS with the goal of ensuring
a proper weighting during the fit process giving the parameters
interesting for the users of the setup. It leads to the first
evaluation of these matrix for this setup to our knowledge with
a reasonable accuracy using only python public libraries. We
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Fig. 10: Comparison between Ledoit Wolf shrinkage, Oracle
Approximating shrinkage and the Graphical Lasso methods
for the precision matrix estimation. (a) Normalized distance
between estimated and target precision matrices for different
number of sample showing almost the same results for the
three methods when n ≤ p. (b) Normalized norm of the
estimated precision matrices showing that the norm of the
estimated matrices are in the range of the targeted ones.

have no doubt that more sophisticated methods based on the
recent works on the subject [61–63] will give quicker and more
accurate evaluation of the matrix. Similarly to what we wrote
previously, new systems based on optoelectronics or dual laser
are able to record thousands of time traces per second and
will benefit a lot from proper sparse evaluation of the noise
correlation matrix to avoid to record huge volume of correlated
data.

V. Conclusion

In conclusion, we have introduced a nonlinear signal es-
timator and several techniques for retrieving the noise cor-
relation matrix for THz-TDS experiments. These methods
have been implemented in our open-source software, Cor-
rect@TDS, readily available to the community. Our signal
correction significantly improves the signal-to-noise ratio(over
30 dB enhancement at 1 THz for 1000 accumulated traces).
This advancement transforms THz-TDS setups worldwide
from capable of measuring small or very attenuated signals
to excelling at measuring tiny variations of signal, such as
in very thin samples or samples with subtle physical or
chemical differences. Additionally, our work brought THz-
TDS material parameter extraction to more reliable standards
by incorporating the proper noise term as a weighting factor.

Our work opens several exciting perspectives in several
areas. This work motivates experimentalists to search for
hidden noise sources to further reduce noise even more and
approach true Gaussian white noise. We are already beginning
the integration of Correct@TDS with our existing software,
FIT@TDS [27], to extract error bars for fitted parameters, even
with our super-resolution technique [64].

Moreover, the fields of THz-TDS signal processing [65, 66]
and parameter retrieval [14, 67, 68] have a rich history of
over two decades, primarily led by physicists with a focus
on other areas of expertise. We anticipate our work to fos-
ter stronger collaborations between the THz and the signal
processing communities. The latter could leverage concepts
and techniques from speech recognition, seismology, radar,
or biomedical echography to build faster, more accurate, and
improved data processing methods. The widespread adoption
of THz analysis in analytical fields like pharmaceuticals and
nondestructive testing relies on continued improvements in
measurement reliability and reproducibility, areas where stan-
dardized data processing can make significant contributions.
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Fig. 11: Empirical Precision before correction and after correction for 100 000 time traces
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Fig. 12: Estimated Precision with Graphical Lasso and Ledoit-Wolf algorithms for 1000 time traces
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[57] N. Meinshausen and P. Bühlmann, “High-dimensional graphs and vari-
able selection with the lasso,” The Annals of Statistics, 2006.

[58] M. Yuan and Y. Lin, “Model selection and estimation in the gaussian
graphical model,” Biometrika, vol. 94, no. 1, pp. 19–35, 2007.

[59] J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance
estimation with the graphical lasso,” Biostatistics, vol. 9, no. 3, pp. 432–
441, 2008.
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