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PRIMITIVES OF VOLUME FORMS IN CARNOT GROUPS

ANNALISA BALDI
BRUNO FRANCHI
PIERRE PANSU

ABSTRACT. In the Euclidean space it is known that a function f € L? of
a ball, with vanishing average, is the divergence of a vector field F' € L?
with

1F|[z2(3)< Cllfll2(m)-
In this Note we prove a similar result in any Carnot group G for a vanish-
ing average f € LP, 1 < p < @, where @ is the so-called homogeneous
dimension of G.
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1. INTRODUCTION

This note is motivated by a question raised by Michael Cowling [7]: in
R™, it is known that a function f € L?(Bgy.(0, 1)) with vanishing average
can be expressed as the divergence of a vector field F' € L?(Bgy(0,1)),
satisfying

IE N 2 (Bac0,0)7 < CllLF Il L2(Bruc0,1) -
The question is whether a similar result holds in Heisenberg groups, which
can be identified with R?"+1,
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This problem can be rephrased in terms of Sobolev inequalities for dif-
ferential forms in the Rumin complex (Eg,d.) (see Section 3.1 for pre-
cise definitions). Specifically, given a compactly supported volume form
w = fdV with vanishing average, does there exist a (n — 1)-compactly
supported primitive ¢ whose L2-norm is controlled by the L?-norm of w?

Sobolev inequalities for the Rumin complex in Heisenberg groups have
been studied in [2], but unfortunately, the results in [2] do not cover the
case of volume forms. The aim of this paper is to fill this gap by providing
a positive answer to Cowling’s question. Furthermore, the results of this
note are formulated in the more general setting of Carnot groups (of which
Heisenberg groups are a special case), and the L?-norms are replaced with
any suitable L”-norms.

The main result is presented in Theorem 3.1 in Section 3 (see also The-
orem 3.17 for an equivalent formulation). Section 2 provides some prelim-
inary definitions, while Section 3.1 gives a brief introduction to Rumin’s
complex (for more details, see [15], [12] and [3]). Finally, Section 4 is an
appendix which collects various results on convolution kernels in Carnot
groups, some of which are well-known.

2. PRELIMINARY RESULTS AND NOTATIONS

A Carnot group G of step k is a connected, simply connected Lie group
whose Lie algebra g has dimension n and admits a step « stratification. This
means there exist linear subspaces V1, ..., V, such that
(D

g=Vi®..oV, [Vi,Vi]=Vin, V,#{0}, V={0}fori> s,

where [V}, V] is the subspace of g generated by the commutators [ X, Y]
with X € Vi andY € V. Let m; = dim(V;) fori = 1,..., K, and define
h; =my + - - -+ m,, with hg = 0 and, clearly, h,, = n.

Choose a basis {ey, . .., e, } of g, adapted to the stratification, such that
€h;_1+1,-- -, €h; is abasis of V;foreachj =1,... k.
This basis {e, ..., e, } will be fixed throughout this note.

Let X = {X3,..., X} be the family of left-invariant vector fields such
that X;(0) = e;. Given (1), the subset Xy, ..., X,,, generates, by com-
mutations, all the other vector fields. We will refer to X1, ..., X,,, as the
generating vector fields of the group.

The Lie algebra g can be endowed with a scalar product (-,-), mak-
ing {X3,...,X,} an orthonormal basis. The group G can be identified
with its Lie algebra g, endowed with the product defined by the Hausdorft-
Campbell-Dynkin formula. Therefore, on G, a scalar product, still denoted
by (-, ), is well defined.
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A point p € G can be written as p = (py,...,p,) orasp = pt) + ... +
p*), where p) € V; fori=1,..., k.

Two important families of automorphisms of G are the group translations
and dilations. For any « € G, the (left) translation 7, : G — G is defined
as

2 TpZ =X 2.

For any A > 0, the dilation 0, : G — G is defined as
Sy, my) = Aoy, ATy,

where d; € N is the homogeneity of the variable x; in G (see [10], Chapter
1), and is given by

d; =4 wheneverh;_; +1< 7 <h;.

Hence,l=dy = =dy, <dp,11=2<...<d, =K.

If f is a real function defined on G, we denote by ¥ f the function defined
by " f(p) = f(p~ ).

Following [10], we adopt the following multi-index notation for higher-
order derivatives. If I = (iy,...,1,) is a multi-index, we set

XI :Xil "_Xvin.

By the Poincaré-Birkhoff-Witt theorem (see, e.g., [6], 1.2.7), the differential
operators X! form a basis for the algebra of left-invariant differential oper-
ators on G. Moreover, we define the order of the differential operator X7 as
|I|:=1iy + -+ + iy, and its degree of homogeneity with respect to dilations
asd(I) :=dyiy + -+ + dpin.

Again, following [10], we define the group convolution in G. If f €
D(G) and g € L .(G), we set

loc

fg(p) = / H@alap)dg forp € G.

It is important to note that, if g is a smooth function and L is a left-invariant
differential operator, then

L(fxg) = f*Lg.

The convolution is also well defined when f, g € D'(G), provided at least
one of them has compact support. In this case, the following identities hold:

(2) (fxg,0)=(9,"f*p) and (fx*g,0)=(fpx"g)

for any test function .
If f € &(G)and g € D'(G), then for ¢ € D(G), we have

(XTf)xg, ) = (XTfx"g) = (=D f0x(XVg)) = (1) "(f+' X Vg, 9).
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Let1 < p < oocandm € N, and let Wi""(U) denote the usual Sobolev
space. We also recall the definition of the (integer order) Folland-Stein
Sobolev space (see, e.g., [9] and [10] for a general presentation).

Definition 2.1. I[fU C G is an open set, 1 < p < oo, and m € N, the space
WmP(U) consists of all w € LP(U) such that
X' € LP(U)  for all multi-indices I with d(I) < m,

endowed with the norm

lullwnay=D IX ullrw)-
d(I)<m

When p = 2, we will simply write H™(U) = W™2(U).

Theorem 2.2. Let U C G be an open set, 1 < p < 0o, and m € N. Then:
i) W™P(U) is a Banach space.
In addition, if p < oo, the following hold:
ii) WmP(U) N C>®(U) is dense in W™P(U);
iii) If U = G, then D(G) is dense in WP (U);
iv) If 1 < p < oo, then W™P(U) is reflexive;
v) Waot (U) € W™P(U), i.e., forany V. CC U and for any u €

I;%}Llc,loc
WEu’cPiloc(U%
[ullwmron < Cvllullwmr )
vi) Weme(U) € Weil (U), ie., for any V. CC U and for any u €
Wemep(U),

HUHW"”’(V)S CVHUHWmn,p(U).

Euc

Definition 2.3. Let G be a Carnot group. A homogeneous norm ||-|| on G
is a continuous function ||-||: G — [0, +00) such that:

Ipll=0 <= p=0;
I~ 1= lIpll;

10x(p)[I= Allpll;

1P~ all< lIpll+llqll;

forall p,q € G and all \ > 0.

A homogeneous norm induces a homogeneous left-invariant distance d
in G in a standard way. If p € G and r > 0, we denote by By = By(p,r)
the open d-ball centered at p with radius r.

3)

In a Carnot group G, we shall consider in particular the homogeneous
norm defined in the following theorem.
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Theorem 2.4 (see [11]). Let G = V; & --- @ V. be a Carnot group. Let

I-lvas - - -5 I llv.. be fixed Euclidean norms on the layers.

Then there exist constants €1, . . . €., Withey = land es, ... &, € (0, 1],
depending only on the group G and the norms ||-||v,, ..., |||lv., such that
the functions
) ]loci = maxe; (=) ’

are homogeneous norms on G.

We denote by d. the homogeneous left-invariant distance associated with
I||cc and by B, the metric balls of d..

We stress that the balls By, (e, 1) are convex.

The vectors of Vi, also called horizontal vectors, define by left transla-
tions the horizontal bundle, which we also denote by V;. A section of the
horizontal bundle is called a horizontal vector field.

If F =" F, X, is ahorizontal vector field,

F € L, (G, V),
we define
divgF =Y X,F}
J
in the sense of distributions.

3. MAIN RESULT
The main result of this note is stated in the following theorem.

Theorem 3.1. Let d be a left-invariant distance on a Carnot group asso-
ciated with a homogeneous norm. Suppose 1 < p < Q and A\ > 1. Set
B := Byl(e,1) and B' := By(e,\). If f € LP(B) is compactly supported
and satisfies

/Bf(p) dp =0,

then there exists a compactly supported horizontal vector field F' € L1(B’', V),
where:

i) 1§q§£—?pifp>1,0r
i) 1<g<ghifp=1
such that
f=divgF inB.
Additionally, there exists a constant C = C(p,q, \, B), independent of f,
such that

£ 2oz ps 00 < Cllflzrs).
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Ifp>1landq= pQ , then the constant C' does not depend on B.

Our proof of Theorem 3.1 involves several steps and relies on Sobolev in-
equalities for differential forms in Rumin’s complex. In the next subsection,
we recall the key features of the Rumin’s complex.

3.1. Rumin’s Complex. Let g be the Lie algebra of the Carnot group G.
The dual space of g is denoted by A" g. The basis dual to { X, ..., X, } is
the family of covectors {6;,...,0,}.

Following Federer (see [8] 1 3) the extenor algebras of g and of /\ g are

the graded algebras indicated as /\ g= @ /\ g and /\ g= @ /\ g

where/\og—/\ g—Rand,forlgkgn,
/\kg::span{Xil/\.../\Xik:1§i1<---<ik§n},
k
/\ g:=span{f;, A...A0; :1<i3 <---<ip<n}.

The elements of /\, g and /\k g are called k-vectors and k-covectors.

We denote by ©F the basis {#;, A...A0; :1<i3 <--- <ip <n}of
A

We denote also by dV := 6, A ... A 6, the volume form associated with
our adapted basis of g. Obviously, A" g := span{dV}.

The dual space A\'(A, g) of A\, g can be naturally identified with A a.
The action of a k-covector ¢ on a k-vector v is denoted as (p|v).

The inner product (-, -) extends canonically to A, g and to A" g making
the bases X;, A ... A X, and0;, A ... A0, orthonormal.

Definition 3.2. We define linear isomorphisms (Hodge duality: see [8]
1.7.8)

*:/\kg<—>/\n_kg and *:/\kg<—>/\nik

for1 < k <n, putting, forv=">_ ;v X;and p = ;0

*U 1= ZI vi(xXy) and x = Z[ e1(x01)

where
«Xp = (=1)°DX; and 0= (-1)7"0,.
With]z{il, ik}1§i1<"'<ik§n,X[:XilA"'AX‘

(7734

Op =0, N---NO,, I*"={if <---<i*_ t={1,---,n}\Tando(l)is
the number ofcouples (in,1p) with i, > 1.
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Notice that, if v = v; A ... A vy is a simple k-vector, then *v is a simple
(n — k)-vector. If v € A\, g we define v* € \" g by the identity (v*|w) :=
(v, w), and analogously we define " € A, g for ¢ € A g.

Definition 3.3. If o € /\1 g, a # 0, we say that o has pure weight k, and
we write w(a) = k, if o € V;. Obviously,

hi
w(a) =k ifandonlyif o= Z a;0;,
j=hr—1+1
with ap, 41, - .., an, € R. More generally, if o € /\h g, we say that o has

pure weight k if o is a linear combination of covectors 0;, \ --- N\ 0;, with
w(0;,) + -+ w(;,) = k.
Remark 3.4 (see [3], Remark 2.6). If o, 8 € \" g and w(a) # w(f), then
(a, B) = 0.

We have

M}YLHFLX
h h,p
5) Ne= P A's
p:M}anin
where /\h’p g is the linear span of the h—covectors of weight p and M™™",
M;** are respectively the smallest and the largest weight of h-covectors.
Since the elements of the basis ©" have pure weights, a basis of /\h’p gis
given by ©"? := ©" N A" g (in the Section 2, we called such a basis an
adapted basis).
We denote by Q" the vector space of all smooth h—forms in G of pure
weight p, i.e. the space of all smooth sections of /\h’p g. We have
Mmex
(6) o= P o
p=Mmin
Lemma 3.5. We have d(\""g) = N7 g, ie, if o € N""gis a left
invariant h-form of weight p, then w(da) = w(«).
Proof. See [15], Section 2.1. U
Let now a € Q™ be a (say) smooth form of pure weight p. We can write

a= Z o 0 with o; € £(G).

6 c0hp

do= > Y (Xo)0 A0+ > udb]

oheohrr j 6l eohr

Then
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Hence we can write
d=do+d+-+dy,

where
h
doox = E a;db;
6leohr

does not increase the weight,

dla: Z i(X]CQ)QJ/\Q?

oreohr j=1

increases the weight of 1, and, more generally,

deao= Y Y (X)) A0 k=1, K

oheehr w(d;)=k
In particular, dj is an algebraic operator.

Definition 3.6. If 0 < h < n and we denote by dj the algebraic adjoint of
do, we set

Bl :=kerdy Nker d; = ker dy N (Im dp)*= C Q"

Since the construction of E} is left invariant, this space of forms can be
viewed as the space of sections of a fiber bundle, generated by left transla-
tion and still denoted by E.

We denote by N/™™ and N/ the minimum and the maximum, respec-
tively, of the weights of forms in EJ.
If we set Ey” := El N Q"7 then

max
Nh

Ey = P E*

— ymin
p—Nh

We notice that also the space of forms Eg P can be viewed as the space
of smooth sections of a suitable fiber bundle generated by left translations,
that we still denote by Ej”.

As customary, if  C G is an open set, we denote by £(€2, E) the space
of smooth sections of EJ.

The spaces D(Q, E") and S(G, E}) are defined analogously.

Since both Eg P and E!' are left invariant as /\h g, they are subbundles of
/\h g and inherit the scalar product on the fibers.
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In particular, we can obtain a left invariant orthonormal basis = = {¢£ Jh}
of El such that

N}ILI]&X
—=h __ —h,p
(7 == =7
p:N;lni“
—h —_ h, . . . . h,
where 2,7 := =" N A\ g is a left invariant orthonormal basis of E;”. All

the elements of Eg P have pure weight p.

Once the basis O is chosen, the spaces £(2, E), D(Q, El), S(G, E})
can be identified with £(Q)%™ P3| D(Q)m ES | §(G)dm ES | respectively.
Proposition 3.7 ([15]). If 0 < h < n and * denote the Hodge duality (see

Definition 3.2), then
xEp = By

By a simple linear algebra argument we can prove the following lemma.

Lemma 3.8. If 3 € Q"L then there exists a unique o € Q" N (ker dy)*
such that
didoce = di53. We set o :=dy'pB.

Remark 3.9. We stress that d, " is an algebraic operator, like dy and &,

Lemma 3.10 ([15]). The map dy'd induces an isomorphism from R(dy")
to itself. In addition, there exist a differential operator

N
P = Z(—l)ka, N € N suitable,
k=1

such that
Pdy'd = dy'dP = Tdg ).
We set ) .= Pdy".
Remark 3.11. If a has pure weight k, then P« is a sum of forms of pure
weight greater or equal to k.
We state now the following key results.

Theorem 3.12 ([15]). The de Rham complex (Q*, d) splits as the direct sum
of two sub-complexes (E*,d) and (F*,d), with

E:=kerdy' Nker(dy'd) and F :=R(dy")+ R(ddy"),
such that

i) The projection Il on E along F is given by llp = Id — Qd — dQ).
In particular, 11 is a differential operator of order s > 0 in the

horizontal derivatives, where s depends on G and on the degree of
the forms it acts on.
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i) If 1lg, is the orthogonal projection from Q0" on Efj, then Il g 11 gllp, =

HEO and HEHEOHE = HE
Theorem 3.13 ([15]). If we set
dc = HEO d HE',

then d, : E} — E'*! satisfies

i) d> = 0;

ii) the complex Ey = (Ej,d.) is exact;

In particular, if h = O and f € Ef) = £(G), thend.f = > " (X;f)6; is
the horizontal differential of f.
In addition, by Proposition 3.7, Ef} = {fdV, f € £(G)}.

Remark 3.14 (see [3] Remark 2.17). We have
8) dllp = Ilgd.
It follows from Proposition 2.18 of [3] that, if o € E{f has weight p, then
[Igpa = o + terms of weight greater than p.

Remark 3.15. In particular, if « € E (and therefore has weight (), then
[Ipa = «, since there are no forms of weight > Q).

Definition 3.16. We denote by d;' the L?-(formal) adjoint of d.. We recall
that on E!

d* = (_1)n(h+1)+1 * dc .

c

3.2. Equivalent formulation and proof of Theorem 3.1. Let us start by
noticing that d’ on 1-forms can be identified with the horizontal divergence.
Indeed, If F = Y7 F; X; € L (G, Vi), we denote by F* the differential
1-form defined by

) = EV) =3 [ BV
~ Je
J
forany V =>"" V. X; € D(G, V1), i.e.
F*=) F6,
If now ¢ € D(G), then (keeping in mind that d* F* is a 0-form)

[odariap= [ (a0 iy
—;/GFijqb——/G(bdivGF,

€))
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where the above identities are meant in the sense of distributions. Hence
f = divgF if and only if }F* = f, i.e.

—xd,x F' = f.

Applying Hodge operator to identity, and keeping in mind that d, * F* is a
n—form and hence ** = Id, we obtain

— sxokd, * F% = xf,
ie.

d(—* F*) = fdV.
If weset ¢ := —xF%and w := f dV/, an equivalent formulation of Theorem
3.1 becomes:

Theorem 3.17. Let d be a left invariant distance on a Carnot group as-
sociated with a homogeneous norm. Let 1 < p < Q and A\ > 1, and
set B := By(e,1) and B' := By(e,\). If w € LP(B, E}) is compactly
supported and satisfies
/ w =0,
B

then there exists a compactly supported differential form ¢ € LI(B', Eg_l)
with

D1<g<pQ/(Q—p)ifp>1
or

i) 1<¢<Q/(Q-1)ifp=1,
so that
dep = w in B.
In addition, there exists C = C(p, q, \, B) independent of w such that

12l Lo mp—1y < Cllwll o s.ep)-

Ifp>1land g = pQ/(Q — p), the constant does not depend on B.

Since different homogeneous norms are equivalent ([S], Proposition 5.1.4),
without loss of generality from now on we may assume that d = d., and
for sake of simplicity, we shall write B(p, r) for B (p, 7).

The first step in order to prove Theorem 3.17 will be to define an operator
acting on n-forms which inverts Rumin’s differential d. (albeit with a loss
of regulaity) . Inspired by the work of [13], Mitrea, Mitrea and Monniaux,
in [14], define a compact homotopy operator Jg, , in Lipschitz star-shaped
domains in Euclidean space R", providing an explicit representation for-
mula for Jg, . together with continuity properties among Sobolev spaces.
Since in this Note we are interested on forms of top degree n, we recall
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what Theorem 4.1 of [14] states only in this particular case. Theorem 4.1
of [14] says that if D C RY is a star-shaped Lipschitz domain, then there
exists

Jeuen : LP(D, \") = Wl (D, \*™) — W*»(D, Eg ")

Euc

such that

(10)  w = dJguenw + (/ w)ddV  forallw € D(D, \"),

D
/Hdp— 1.
G

Furthermore, Jgy., maps smooth compactly supported forms to smooth
compactly supported forms.

For the sake of simplicity, from now on we drop the index 7 - the degree
of the form - writing, e.g., Jgy instead of Jgyc p-

where § € D(G) satisfies

To our aim, take now D = B. If w € D(B, E{f), with vanishing average,
we set

(11) J:HEOOHEOJEUCOHE-
Since [Ipw = w on £, on E we can also write
(12) Jw = HEO ¢) HE @) JEqu.

Then J inverts Rumin’s differential d. on forms of degree n in the sense of
the following result.

Lemma 3.18. If o € EJ is a compactly supported smooth form in a ball B

with
/ a=20,
B
then
(13) a=d.Ja.

In addition, Jo is compactly supported in B.
Proof. By (10),
(14) a = dJgucCr.

We recall now that HEHEO HE = HE and HEOHEHEO = HE@O In addition,
on forms of degree n — 1, dllgz = Ilgd. Thus, by (14),

chOé = HEOdHEHEOHEJEuca = HEOdHEJEuCOé
HEOHEdJEuca = HEOHEOé = HEOO{ = Q,
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since o € L. Finally, if suppa C B, then supp Jaw C B since both I
and IIg, preserve the support. U

Unfortunately, the operator J contains the differential operator IIx that
yields a loss of regularity. We can get rid of this inconvenient combining
J with a smoothing operator coming from an approximated homotopy for-
mula. The approximated homotopy formula is based on a global homotopy
identity relying on the inverse of Rumin’s Laplacian.

Indeed, if w = fdV € D(G, E}}), we can define its sub-Laplacian as

Agnw = d.dw.
Since ** = Id on n-forms,
Agpw = *Ag * W,
and the fundamental solution A@ln of Ag,, is given by
Aé}n = *A(_;}o*
that is associated with a kernel of type 2 (see [9]).

We are now able to prove the equivalent formulation of Theorem 3.1
arguing as in Theorem 5.12 of [2].

Proof of Theorem 3.17. Suppose first that w € D(B, E). If w is continued
by zero on all of G, we notice preliminarily that

w = A@mAé}nw = dc(diA(}}n)w,

where dZA(E”ln is associated with a matrix-valued kernel k; of type 1 acting
on f. Keeping in mind that, by Hodge duality, w can be identified with the
function f, without loss of generality, we can treat k; as it were a scalar
kernel. We consider a cut-off function ¢ supported in a R-neighborhood
of the origin, such that )z = 1 near the origin. We can write

(15) ky =Ygk + (1 — r)ky.

Since the kernel of Aan is of type 2, the kernel gk, belongs to L' (G). Let
us denote by K  the convolution operator associated with ¢ zk; and by S
is the convolution operator associated with the kernel

(16) Kg = de((1 = ¢p)k).
It follows from (15) that
17) w=d. K1 pw + Sw ifw e D(B, E}).

The kernel Kg is smooth. We stress also that supp & rw is contained in
a R-neighborhood of B so that

(18) supp K1 pw C B’
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provided R = R(\) < d(B,0B’). By (17), also
(19) supp Sw C B'.

Finally, by (17), Sw € EJ.
The homotopy formula (17) still holds in the sense of distributions when
w € LP. To prove that, we need the following lemma.

Lemma 3.19. Being S and K, r defined as above, we have:

i) S is regularizing from £'(G) to £(G). In addition, if p,q > 1 and
m € N U {0} then S can be continued as a bounded map from
LP(B,E})NE (B, EY) to W™4(B'| E})

S:LP(B,Ey) — Wm’q(B’, EY).
In particular, by Thorem 2.2, vi), due to the arbitrariness of the
choice of m, we also have

S: LP(B,El) — WI(B', ED);

Euc

i) if p > 1, the map K, r can be continued as a bounded map from
LP(B,E})NE (B, EY) to LP(B', EY);

iii) if p > 1 then the map K, r can be continued as a bounded map
from LP(B, E}) N E' (B, EY) to WY (B’ EV) and the identity (15)
still holds for w € LP(B, E}) N E'(B, E});

iv) the identity (15) still holds for w € L'(B, Ey) N E'(B, E}) in the
sense of distributions;

V) ifp > 1, then Ky p : LP(B,E})NE' (B, EY) — LY(B', Ey~1) for
p<q=Q/(Q-1);

vi) K1 g : LYB,E}) N E(B,EY) — LYB,E}") forl < q <
Q/(Q—1).

Proof. Let us prove 1). Since the kernel Kg is smooth and the convolution
maps £'(G) x £(G) into £(G), the operator S is regularizing from £'(G) to
E(G) (see [16], p.167). In addition, since B is bounded, then without loss
of generality we may assume that p = 1.

Remember w = fdV; hence we can identify w and the scalar function f.
We have:

[Swllwmap gp)= |lw* Ksllwmas
= D lw* X Ksllogm)
d(I)<m

= 30 (f (X R

d(I)<m



PRIMITIVES OF VOLUME FORMS IN CARNOT GROUPS 15

Notice now that, if z € B’ and y € B, then y 'z € B(e,1+ \). Thus, if
X € D(G) is a cut-off function, x = 1 on B(e, 14+-)), then x X Kg € LY(G),
so that, by Young’s inequality (see Theorem 4.3, 1)), Proposition 1.18)

ISwllwmam < Y Ixw@) X Ksll| o)
d(1)<m

< Cllw)lei@= Cllw®)l -
Proof of ii). By a similar argument

|1 K1, rwl| Lo emy < l|lw * YrK: | 2o (37 B
< ([ ([ ol onkaty )]y )
B JB

< CllYrkill By lwlloes,6)-

Proof of iii). Let X be a horizontal derivative. Then, we have only to
estimate the LP-norm of

X(w*xtgk)) =w* (Xg)ks +w * (YrXky).
By Lemma 4.4
| (XYr)k1l Lo < Cllw x (Xr)k1| prer@— ()
< Cllw * (X¥r)ki1| pres@-n )< Cllwl|r@)= Cllwl| e (s);
analogously, since X k; is a kernel of type 0,
Jw s (VrXE) || r5n < Cllwll @) < CllwllLo(s)-

Finally, since w is compactly supported in B, it can be approximated in
LP(B) by a sequence (wy)gen in D(B). Thus

chl,ka — chl,Rw in LP(G) as k — oo.
In addition, by 1),
Swy, — Sw in LP(G) as k — oo,

and iii) is proved
Proof of iv). Take a sequence (wy )ren as in the proof of iii). By ii)

KLka — Kl,RW in LP(G) as k — oo.

In particular, d. K pwy — d.K; rw in the sense of distributions. Then iv)
follows from (15).

Proof of v). The statement follows by Lemma 4.4.

Proof of vi). The statement follows by Remark 4.10
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Let us resume the proof of Theorem 3.1. Since .S is a smoothing operator,
then Sw € D(B', E}), keeping also in mind that Sw is supported in B’ (see
(19)).

We notice also that for any p > 1, Sw has vanishing average, since w
has vanishing average. Indeed, take x € D(G), x = 1 on B’. Again
identify w = fdV with the scalar function f, we have, by Lemma 3.19 iii)
and 1v), that the homotopy formula (17) holds in the sense of distributions.
Therefore

/ SwdV = xSw dV
! B/

:/dev+/(dcx)/\K1,Rw:0,
G G

since d.x = 0 on supp K pw.

Since Sw has vanishing average, we can apply (13) to a := Sw and we
get Sw = d.JSw, where J is defined in (11). By Lemma 3.18, JSw is
supported in B’. Thus, if we set ¢ := (J.S + K; g)w, then ¢ is supported in
B'. Moreover d.¢ = d.JSw + d. K1 pw = Sw + w — Sw = w.

Remember now that, by Theorem 3.12-i), I on forms of degree (n — 1)
is a differential operator of order s > 0 in the horizontal derivatives. Thus,
by Lemma 3.19,

||¢||LG(B/,E6“1)§ ||JSWHLQ(B/,Eg*l)*‘||K1,RW||Lq(B/,ngl)
< ”JSWHLq(B',Eg—l)+CHWHL1’(B’,ES)
S ||Sw”stl,q(BCE(r]z—l)‘f—CHw||Lp(B/7E6’L)

(20) Euc
< ”SW|’W§;J‘?C(B/,Eg*1)+CHWHLP(B’7E6‘)
< C(||Sw||W“qu(B7E(’f)+||w||Lp(B':E8))
< Cllwl|zrs,2y)-

This completes the proof of the theorem.

4. APPENDIX A: KERNELS IN CARNOT GROUPS

Following [9] and [10], we now recall the notion of a kernel of type ;1 and
some related properties, as outlined in Propositions 4.2 and 4.3 below. For
these results, we refer to Section 3.2 of [1].

Definition 4.1. A kernel of type 1 is a homogeneous distribution of degree
1 — Q (with respect to group dilations), that is smooth outside of the origin.
The convolution operator with a kernel of type i is still called an operator

of type p.
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Proposition 4.2. Let K € D'(G) be a kernel of type .
1) YK is again a kernel of type i,
i) WK and KW are associated with kernels of type u — 1 for any
horizontal derivative W
iii) If u > 0, then K € L (G).

loc

Theorem 4.3. We have:

i) Hausdorff-Young inequality holds, i.e., if f € LP(G), g € L1(G),
1<p,qr< ooandi—i— % —1= %, then fx g € L"(G) (see [10],
Proposition 1.18) .

i) If K is a kernel of type 0, 1 < p < o0, then the mapping T :
u — u* K defined for u € D(G) extends to a bounded operator on
LP(G) (see [9], Theorem 4.9).

iii) Suppose 0 < p < Q, 1 <p < Q/uandé = %—fé. Let K be a
kernel of type ju. If u € LP(G) the convolutions u x K and K x u
exists a.e. and are in LY(G) and there is a constant C,, > 0 such
that

[ux Ko< Cyllull, and  [|K s ul[g< Cpllull,
(see [9], Proposition 1.11).

Lemma 4.4. (see Lemma 3.5 in [2]) Suppose 0 < p < Q. If K is a kernel
of type pand i € D(G), ¥ = 1 in a neighborhood of the origin, then the
statement iii) of Theorem 4.3 still holds if we replace K by YK or (1—1)K.

Analogously, if K is a kernel of type 0 and 1) € D(G), then statement ii)
of the same theorem still holds if we replace K by YK or (¢ — 1) K.

Definition 4.5. Let f be a measurable function on G. Ift > 0 we set
Ar(t) = KISI> 3.

If1 <r <ooand

supt"As(t) < oo,
>0

we say that f € L">°(G).

Definition 4.6. Following [4], Definition A.1, if 1 < r < oo, we set
||u||prr:=inf{C > 0; / lu|dz < C|K|"™ for all L-measurable set K C G}.
K

and M" = M"(G) is the set of measurable functions u on G satisfying
||l w]| arr < 00

Repeating verbatim the arguments of [4], Lemma A.2, we obtain
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Lemma4.7. If 1 <r < oo, then

< sup{e [{lul> 1)1 } < llull;
RS M= t>g’ = Ul e

In particular, if 1 < r < oo, then M = L">*(G).
Corollary 4.8. If 1 < g <r, then M" C L] (G) C L. _(G).

loc loc

Proof. By Lemma 4.7, if u € M" then |u|€ M"/4, and we can conclude
thanks to Definition 4.6.
O

Lemma 4.9. Let K be a kernel of type i € (0, Q). Then for all f € L'(G)
we have f x K € M®Q/(Q=1 gnd there exists C' > 0 such that

If * Kllper-n< Cllfll o)

forall f € LN(G). In particular, by Corollary 4.8, if 1 < q < Q/(Q — p),
then fx K € LL (G) C L .(G).

loc loc

Asin [1], Remark 3.10, we have:

Remark 4.10. Suppose 0 < p < Q. If K is a kernel of type p and ¢ €
D(G), ¥ = 1in a neighborhood of the origin, then the statements of Lemma
4.9 still hold if we replace K by (1 — 1)K or by v K.
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