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Abstract: From the joint analysis of polarization and coherence properties of light, a remarkable5

concept referred to as polarization coherence frustration is introduced and analyzed. It is shown6

that two kinds of partially polarized and partially coherent light, with different level of complexity,7

can be distinguished and that they mathematically correspond to different equivalence classes.8

On the one hand, light has polarization coherence properties that are not frustrated in a spatial9

domain D when there exists a configuration of local polarization devices at each location of10

the light field that allows the maximization of the modulus of the scalar degree of coherence11

between any couple of points in D. Two conditions are shown to hold for light to be polarization12

coherence unfrustrated and their physical interpretation are analyzed. On the other hand, if one13

of these conditions is not verified, polarization coherence frustration occurs. These notions14

are discussed in analogy with well-known concepts of frustration and gauge transformations15

developed in statistical physics for spin glasses. Their relevance in the field of statistical optics is16

demonstrated through different theoretical results and examples.17

1. Introduction18

Coherence and polarization are fundamental notions in optics for theoretical developments as19

well as for experimental investigations. The analysis of these properties is more complex for20

partially polarized light than for totally polarized light [1–10]. On the one hand, coherence is21

generally related to the ability of light to interfere and, for totally polarized light, the modulus of22

the scalar degree of coherence is a linear function of the interference fringes visibility [11,12].23

On the other hand, polarization properties are related to the amplitude repartition between the24

different components of the transverse wave [13, 14]. It has already been shown that the analysis25

of the coherence properties of partially polarized light can lead to remarkable behaviors such26

as irreversibility [8, 9] or hidden symmetry [7] that are less straightforward than for totally27

polarized light. We show in this paper that the analysis of coherence properties of partially28

polarized light with the standard scalar degree of coherence when the interfering fields have29

been polarized also leads to remarkable properties. More precisely, the coherence properties30

of the field at two locations are analyzed looking at the maximal visibility of the interference31

fringes when these fields are polarized with polarization devices. These polarization devices32

are thus optimized in order to maximize the modulus of the scalar degree of coherence between33

the resulting polarized fields. This analysis shows that, in a spatial domain D, there exists two34

different classes of lights: polarization coherence frustrated or unfrustrated lights. In that latter35

case of polarization coherence unfrustrated lights, there exists a polarization device configuration36

at each location in D that maximizes the modulus of the scalar degree of coherence between fields37

observed at any pairs of locations in D. In other words, it is possible for unfrustrated lights to38

exhibit a spatial distribution of local polarization transformations that will allow the interference39

between any pair of locations in D to be maximized simultaneously. Such a property does not40

hold for polarization coherence frustrated lights that are introduced in this article. Furthermore,41

we demonstrate that these properties (polarization coherence frustration or unfrustration) are42

invariant by local non-singular polarization transformations described by deterministic Jones43

matrices. This invariance property allows one to show that frustrated and unfrustrated lights44

define two different mathematical classes of equivalence.45

Polarization coherence frustration and the invariance of this property by the action of local46



non-singular deterministic Jones matrices present interesting analogies with the concepts of47

frustration and gauge transformation in spin glasses [15, 16]. These concepts have been essential48

to analyze complex systems [15, 16] in statistical physics. Frustration is the impossibility49

to minimize simultaneously the energy of interaction of each couple in a set of interacting50

spins [15, 16]. Gauge invariance is related to the invariance of the property of frustration (or51

of unfrustration) by local transformations of the local spin basis. Frustration of spin glasses52

is an essential characteristic to observe the complex behavior of these systems. Indeed, in the53

absence of frustration, disordered magnetic systems have simpler statistical properties than54

for frustrated disordered magnetic systems [15, 16]. It can thus be expected that coherence55

polarization frustration is an important notion that separates partially coherent lights in a spatial56

domain D into two different classes. Frustrated ones, that may exhibit complex coherence57

properties, and unfrustrated ones that have simpler characteristics. It is shown in the following58

that this is indeed the case.59

This article is organized as follows. After background definitions and a description of the60

action of polarization devices that maximize the modulus of the scalar degree of coherence, the61

notion of polarization coherence frustration is introduced. Then, the property of gauge invariance,62

that allows one to define the two classes of equivalence, is discussed. General conditions that63

are satisfied by unfrustrated lights are then described in Section 5, followed by their physical64

interpretation that such lights can be decomposed in a spatial domain as the sum of two totally65

polarized lights incoherent between them with specific conditions on their coherence properties.66

Several examples are finally analyzed before the conclusion of this paper.67

2. Background68

In the following, we shall consider transverse light fields, i.e. their electrical fields will be69

assumed to fluctuate in 2D. Furthermore, they will be analyzed in the space-frequency domain70

although an analogous analysis could be done in the space-time domain. Thus at frequency71

𝜈 and at location 𝒓, the field will be simply written 𝐸 (𝒓)𝑇 =
(
𝐸𝑥 (𝒓), 𝐸𝑦 (𝒓)

)
where 𝐸

𝑇 is the72

transpose of 𝐸 and where 𝐸𝑥 (𝒓), 𝐸𝑦 (𝒓) are complex scalar values (i.e. in C). One over-line will73

denote vectors and two over-lines will denote matrices, although vectors of spatial location will74

be noted with bold font for clarity reasons. Since the fields will be assumed complex circular75

and wide-sense stationary [13, 14], the coherence properties can be analyzed with the 2 × 276

cross-spectral density matrix (CSDM) which is defined by:77

Ω(𝒓1, 𝒓2) = 〈𝐸∗ (𝒓1)𝐸
𝑇 (𝒓2)〉 (1)

where statistical (or ensemble) average is noted 〈 〉, and where 𝑎∗ is the complex conjugate of 𝑎.78

The polarization matrix is defined by: Γ(𝒓) = 〈𝐸∗ (𝒓)𝐸𝑇 (𝒓)〉 = Ω(𝒓, 𝒓). In the following Γ(𝒓)79

will be assumed non singular, which corresponds to the case of non totally polarized light. The80

particular case of totally polarized light will be discussed specially at the end of Section 4.81

In a standard interference experiment, in order to maximize the visibility of the interference82

fringes, it is useful and usual to adjust the polarization characteristics and the intensities of83

the interfering fields. Experimentally, such modification of the polarization characteristics can84

be obtained with a birefringent medium, followed by a polarizer, an intensity attenuator and a85

polarization rotator (see Fig. 1). The set of optical components performing such action will be86

referred to as the "polarization device" in the following. Let us show that the obtained polarized87

field can then be represented by the scalar field 𝑎(𝒓 𝑗 ) which can be written 𝑎(𝒓 𝑗 ) = 𝑝𝑇 (𝒓 𝑗 )𝐸 (𝒓 𝑗 )88

where the action of the polarization device is mathematically described by the 2D complex89

vector 𝑝(𝒓 𝑗 ) at location 𝒓 𝑗 . Indeed, the action of a birefringent medium (in the general sense)90

can be described by a unitary matrix 𝑈 (𝒓). A linear polarizer can be represented by a matrix91



𝑝𝑅 (𝒓) 𝑝𝑇𝑅 (𝒓) where 𝑝𝑅 (𝒓) is a two-dimensional real vector. Thus the action of the birefringent92

medium followed by the polarizer transforms 𝐸 (𝒓) into 𝑎(𝒓) 𝑝𝑅 (𝒓) with 𝑎(𝒓) = 𝑝𝑇 (𝒓) 𝐸 (𝒓)93

and with 𝑝(𝒓) = 𝑈
𝑇

(𝒓)𝑝𝑅 (𝒓). The vector 𝑝(𝒓) can represent any complex vector since 𝑈
𝑇

(𝒓)94

can be any unitary matrix. The action of a polarization rotator at location 𝒓2 allows one to get95

fields with parallel polarizations at locations 𝒓1 and 𝒓2, whose interference properties can be96

described by those of the scalar fields 𝑎(𝒓1) and 𝑎(𝒓2). The attenuators are necessary to obtain97

the maximal visibility of the interference fringes. It can be noted that other combination of98

optical components could lead to equivalent results.99
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Fig. 1. Schematic representation of the considered optimization of the standard degree
of coherence. The visibility of the interference fringes is directly related to the standard
scalar degree of coherence.

The standard scalar degree of coherence 𝜂(𝒓1, 𝒓2) between the fields 𝑎(𝒓1) and 𝑎(𝒓2) is defined100

by:101

𝜂(𝒓1, 𝒓2) =
〈𝑎∗ (𝒓1)𝑎(𝒓2)〉√︁

〈|𝑎(𝒓1) |2〉〈|𝑎(𝒓2) |2〉
(2)

Then:102

|𝜂(𝒓1, 𝒓2) |2 =
|𝑝† (𝒓1) Ω(𝒓1, 𝒓2) 𝑝(𝒓2) |2

𝑝† (𝒓1) Γ(𝒓1) 𝑝(𝒓1) 𝑝† (𝒓2) Γ(𝒓2) 𝑝(𝒓2)
(3)

where |𝑥 | is the modulus of 𝑥 and where 𝑝† is the conjugate transpose of 𝑝.103

The polarization devices that maximize |𝜂(𝒓1, 𝒓2) |2 can be rewritten in a different form. For104

that purpose, let us introduce 𝑢(𝒓 𝑗 ) = 𝑣(𝒓 𝑗 )/
√︃
𝑣† (𝒓 𝑗 )𝑣(𝒓 𝑗 ) where 𝑣(𝒓 𝑗 ) = Γ

1
2 (𝒓 𝑗 ) 𝑝(𝒓 𝑗 ). The105

matrix Γ

1
2 (𝒓 𝑗 ) is obtained by replacing the eigenvalues 𝜆𝑖 of Γ(𝒓 𝑗 ) by

√
𝜆𝑖 in the eigenvalue106

decomposition of this matrix. Thus:107

|𝜂(𝒓1, 𝒓2) |2 = |𝑢† (𝒓1) 𝑀 (𝒓1, 𝒓2) 𝑢(𝒓2) |2 (4)

with 𝑢† (𝒓)𝑢(𝒓) = 1 and where:108

𝑀 (𝒓1, 𝒓2) = Γ
− 1

2 (𝒓1) Ω(𝒓1, 𝒓2) Γ
− 1

2 (𝒓2) (5)

is the normalized CSDM [17] also considered in the time domain in [3]. The matrix Γ
− 1

2 (𝒓 𝑗 )109

is the inverse matrix of Γ
1
2 (𝒓 𝑗 ). Thus, Γ

− 1
2 (𝒓 𝑗 ) is obtained by replacing the eigenvalues 𝜆𝑖 of110

Γ(𝒓 𝑗 ) by 1/
√
𝜆𝑖 in the eigenvalue decomposition of Γ(𝒓 𝑗 ).111



As a result, to maximize the visibility of the interference fringes, the optimal polarization112

configurations at locations 𝒓1 and 𝒓2 are thus obtained with the unit norm vectors 𝑢𝑜𝑝𝑡1 (𝒓1, 𝒓2)113

and 𝑢
𝑜𝑝𝑡

2 (𝒓1, 𝒓2) that maximize:114

C(𝑢1, 𝑢2) = |𝑢†1 𝑀 (𝒓1, 𝒓2) 𝑢2 | (6)

with the constraint | |𝑢1 | | = | |𝑢2 | | = 1. The optimal polarization devices are thus 𝑝
𝑜𝑝𝑡

𝑗
(𝒓1, 𝒓2) =115

𝑐 𝑗 Γ(𝒓 𝑗 )−
1
2 𝑢

𝑜𝑝𝑡

𝑗
(𝒓1, 𝒓2), where 𝑐 𝑗 are scalar normalization constants that can be introduced so116

that the polarization devices do not lead to an energy increase (i.e. they correspond to passive117

components).118

3. Polarization coherence frustration119

In general, 𝑢𝑜𝑝𝑡1 (𝒓1, 𝒓2) is not only a function of 𝒓1 but also of 𝒓2. In that case, at location 𝒓1, the120

optimal polarization device described by 𝑢
𝑜𝑝𝑡

1 (𝒓1, 𝒓2) for the couple of fields 𝐸 (𝒓1) and 𝐸 (𝒓2)121

can be different from the polarization device described by 𝑢
𝑜𝑝𝑡

1 (𝒓1, 𝒓3) for the couple of fields122

𝐸 (𝒓1) and 𝐸 (𝒓3) when 𝒓3 ≠ 𝒓2.123

Let us analyze simple examples before going into more details. Let us first assume that the124

field at three locations 𝒓1, 𝒓2 and 𝒓3 can be written:125

𝐸 (𝒓1) =
©«
𝜖1

𝜖2

ª®¬ , 𝐸 (𝒓2) =
©«
𝜖1

𝜖3

ª®¬ , 𝐸 (𝒓3) =
©«
𝜖3

𝜖2

ª®¬ (7)

where 𝜖 𝑗 are statistically independent random complex circular variables with 〈𝜖∗
𝑖
𝜖 𝑗〉 = 𝛿𝑖 𝑗126

(where 𝛿𝑖 𝑗 is the Kronecker symbol, i.e. 𝛿𝑖 𝑗 = 0 if 𝑖 ≠ 𝑗 and 𝛿𝑖 𝑗 = 1 otherwise). It can be noted127

that circularity imposes 〈𝜖 𝑗〉 = 0. In other words, the 𝜖 𝑗 are zero mean independent and unit128

variance random variables. Such a configuration is schematically shown in Fig. 2.a.129

Fig. 2. Simple examples of the analysis of polarization coherence frustration between
three locations. (a): example of polarization coherence frustration. (b): example of
polarization coherence unfrustration. 𝑒𝑥 and 𝑒𝑦 are respectively the unit vectors of
coordinates (1, 0)𝑇 and (0, 1)𝑇 .

The optimal polarization configuration that maximizes the modulus of the scalar degree130

of coherence (or equivalently the visibility of interference fringes) between 𝐸 (𝒓1) and 𝐸 (𝒓2)131

obviously corresponds to filter the fields with linear polarizers aligned along the horizontal 𝑥 axis132

(i.e. parallel to 𝑒𝑥 = (1, 0)𝑇 ). However, the optimal polarization configuration that maximizes133

the modulus of the scalar degree of coherence between 𝐸 (𝒓1) and 𝐸 (𝒓3) corresponds to filter the134

fields with linear polarizers aligned along the vertical 𝑦 axis (i.e. parallel to 𝑒𝑦 = (0, 1)𝑇 ). And135

finally, the optimal polarization configuration that maximizes the modulus of the scalar degree of136



coherence between 𝐸 (𝒓2) and 𝐸 (𝒓3) corresponds to filter 𝐸 (𝒓2) with a linear polarizer aligned137

along the 𝑦 axis and to filter 𝐸 (𝒓3) with a linear polarizer aligned along the 𝑥 axis. In that latter138

case, a 𝜋/2 polarization rotation applied to one field is necessary to observe the interference139

fringes with maximal visibility. These results are illustrated in Fig. 3 (a), (b) and (c).

ǫ1

ǫ2

ǫ2ǫ3
ǫ1

r1

r2 r3

ex
ey

ǫ1

ǫ2

ǫ2ǫ3
ǫ1

r1

r2 r3

ǫ1

ǫ2

ǫ2

ǫ3
ǫ1

r1

r2 r3

ey

!"#

!$#

!%#

ǫ1

ǫ2

ǫ3
ǫ1

ǫ2 + ǫ3√
2

ǫ1

r1

r2

r3

ex

!&#

ǫ3

ǫ3

Fig. 3. Analysis of polarization coherence frustration or unfrustration between three
locations of the examples of Fig. 2.a and Fig. 2.b. The 𝜋/2 arrow represents a 𝜋/2
rotation of the local polarization state (bottom right). The polarization state shown in
black at the center of the triangles shows the polarization components that are made
to interfere by the action of the polarization device. High contrast vertices represent
maximal visibility of interference fringes with the considered polarization states. (a,b,c):
frustrated case of Fig. 2.a. (d): unfrustrated case of Fig. 2.b.

140

It thus appears that there does not exist a configuration for the polarization devices at each141

location that allows one to maximize the modulus of the scalar degree of coherence between142

𝐸 (𝒓1) and 𝐸 (𝒓2), between 𝐸 (𝒓2) and 𝐸 (𝒓3) and between 𝐸 (𝒓1) and 𝐸 (𝒓3) at the same time.143

Such a situation leads to incompatibility between the optimal polarization configurations that144

maximize the modulus of the scalar degree of coherence between the fields at locations 𝒓1 and 𝒓2145

or at 𝒓1 and 𝒓3 or at 𝒓2 and 𝒓3.146

As discussed below, this situation will be referred to as "polarization coherence frustration".147

The situation is clearly different with (see Fig. 2.b):148

𝐸 (𝒓1) =
©«
𝜖1

𝜖2

ª®¬ , 𝐸 (𝒓2) =
©«
𝜖1

𝜖3

ª®¬ , 𝐸 (𝒓3) =
©«

𝜖2+𝜖3√
2

𝜖1

ª®¬ (8)

In that case, all scalar degrees of coherence are maximized with linear polarizers aligned along the149

𝑥 axis for locations 𝒓1 and 𝒓2, and along the 𝑦 axis for location 𝒓3 (followed by a 𝜋/2 polarization150

rotation). These results are illustrated in Fig. 3.d. As discussed below, this situation will be151

referred to as "polarization coherence unfrustration".152

Such examples illustrate the case of unfrustration or frustration situations between three153

locations. Of course, the two above examples, as well as the concepts of frustration and of154

unfrustration, can be extended to the general situation of a light with continuous locations in155

a given spatial domain D. The two above situations can be discriminated with the concept of156

polarization coherence frustration which we specify now. On the one hand, a light is referred to157



as polarization coherence unfrustrated in a spatial domain D if there exist a set of polarization158

devices that polarize the light such that, for any 𝒓1 and 𝒓2 in D, the polarization device at159

location 𝒓1 that maximizes |𝜂(𝒓1, 𝒓2) | is not a function of 𝒓2. In other words, for polarization160

coherence unfrustrated light, there exists a local polarization transformation that polarizes the161

light at each location that is optimal between any couple of locations in D to ensure interference162

with maximum fringes visibility. On the other hand, if such a set of polarization transformations163

that polarize the light (such that for any 𝒓1 and 𝒓2 in D the polarization device at location 𝒓1164

that maximizes |𝜂(𝒓1, 𝒓2) | is not a function of 𝒓2) does not exist, the light will be referred to as165

polarization coherence frustrated in D.166

Going back to the above examples, it has been shown for the example of Fig. 2.a that, at location167

𝒓1, 𝑢𝑜𝑝𝑡1 (𝒓1, 𝒓2) = 𝑒𝑥 while 𝑢
𝑜𝑝𝑡

1 (𝒓1, 𝒓3) = 𝑒𝑦 , which shows polarization coherence frustration.168

However, for the example of Fig. 2.b, at location 𝒓1, 𝑢𝑜𝑝𝑡1 (𝒓1, 𝒓2) = 𝑢
𝑜𝑝𝑡

1 (𝒓1, 𝒓3) = 𝑒𝑥 which169

does not exhibit polarization coherence frustration.170

4. Gauge invariance171

4.1. General notion172

A polarization coherence unfrustrated light in a spatial domain D remains polarization coherence173

unfrustrated in D after local linear transformation described by the action of local deterministic174

non-singular Jones matrices 𝐽 (𝒓). Thus, if 𝐸 (𝒓) is a polarization coherence unfrustrated light175

in D, then 𝐴(𝒓) = 𝐽 (𝒓) 𝐸 (𝒓) is also polarization coherence unfrustrated in D for any set of176

non singular deterministic Jones matrices 𝐽 (𝒓) functions of 𝒓. Indeed, if 𝐸 (𝒓) is polarization177

coherence unfrustrated, then there exists a vector function 𝑢𝑜𝑝𝑡 (𝒓) of the spatial coordinates 𝒓178

such that |𝑢†1 𝑀 (𝒓1, 𝒓2) 𝑢2 | is maximized with 𝑢1 = 𝑢𝑜𝑝𝑡 (𝒓1) and 𝑢2 = 𝑢𝑜𝑝𝑡 (𝒓2) for any 𝒓1 and179

𝒓2 in D. Let 𝑝𝑜𝑝𝑡 (𝒓) denote the corresponding optimal polarization devices. Then, from Eq.180

(3):181

|𝑝† (𝒓1) Ω𝐸𝐸 (𝒓1, 𝒓2) 𝑝(𝒓2) |2

𝑝† (𝒓1) Γ𝐸𝐸 (𝒓1) 𝑝(𝒓1) 𝑝† (𝒓2) Γ𝐸𝐸 (𝒓2) 𝑝(𝒓2)
(9)

is maximized with 𝑝𝑜𝑝𝑡 (𝒓1) and 𝑝𝑜𝑝𝑡 (𝒓2), where Ω𝐸𝐸 (𝒓1, 𝒓2) and Γ𝐸𝐸 (𝒓) are respectively the182

CSDM and the polarization matrices of 𝐸 (𝒓). But the CSDM and the polarization matrices of 𝐴(𝒓)183

are respectively Ω𝐴𝐴(𝒓1, 𝒓2) = 𝐽
∗
(𝒓1) Ω𝐸𝐸 (𝒓1, 𝒓2) 𝐽

𝑇

(𝒓2) and Γ𝐴𝐴(𝒓) = 𝐽
∗
(𝒓) Γ𝐸𝐸 (𝒓) 𝐽

𝑇

(𝒓).184

Let us introduce 𝑞𝑜𝑝𝑡 (𝒓) =
[
𝐽
𝑇

(𝒓)
]−1

𝑝𝑜𝑝𝑡 (𝒓), then:185

|𝑞† (𝒓1) Ω𝐴𝐴(𝒓1, 𝒓2) 𝑞(𝒓2) |2

𝑞† (𝒓1) Γ𝐴𝐴(𝒓1) 𝑞(𝒓1) 𝑞† (𝒓2) Γ𝐴𝐴(𝒓2) 𝑞(𝒓2)
(10)

is maximized with 𝑞𝑜𝑝𝑡 (𝒓1) and 𝑞𝑜𝑝𝑡 (𝒓2) where 𝑞𝑜𝑝𝑡 (𝒓1) (respectively 𝑞𝑜𝑝𝑡 (𝒓2)) is a function186

of only 𝒓1 (respectively of only 𝒓2), which shows that 𝐴(𝒓) is also a polarization coherence187

unfrustrated light in D.188

A corollary of this property is that polarization coherence frustrated lights in a domainD remain189

polarization coherence frustrated in D by transformations of the form 𝐴(𝒓) = 𝐽 (𝒓) 𝐸 (𝒓) where190

𝐽 (𝒓) are deterministic non-singular Jones matrices. To show this corollary, let us assume that there191

exists an invertible 𝐽 (𝒓) that transforms a polarization coherence frustrated field into a polarization192

coherence unfrustrated field. That would be in contradiction with the previous property that193

polarization coherence unfrustrated fields remains polarization coherence unfrustrated with the194



action of local deterministic Jones matrices. Indeed, 𝐽
−1
(𝒓) are local deterministic non-singular195

Jones matrices that would transform a polarization coherence unfrustrated field into a polarization196

coherence frustrated field.197

For the sake of simplicity, polarization coherence frustration of light in a spatial domain D198

will be simply referred to as frustration in the following and transformations described by local199

non-singular deterministic Jones matrices will be simply referred to as gauge transformations.200

Let us illustrate the notion of gauge invariance with the two above examples of Section 3 and201

Fig. 2. For the situation of Fig. 2.b, it is possible to apply at location 𝒓3 the transformation202

𝐸 (𝒓3) → 𝐸
′(𝒓3) = 𝐽3 𝐸 (𝒓3) with:203

𝐽3 =
©«

0 1

1 0
ª®¬ (11)

and then 𝐸
′(𝒓3) = 𝜖1𝑒𝑥 + 𝜖2+𝜖3√

2
𝑒𝑦 . It clearly appears that the scalar fields 𝑒𝑇𝑥 𝐸 (𝒓1), 𝑒𝑇𝑥 𝐸 (𝒓2)204

and 𝑒𝑇𝑥 𝐸
′(𝒓3) are fully coherent which shows that the situation is unfrustrated. However, such a205

gauge transformation that would allow one to get an unfrustrated situation does not exist for the206

situation of Fig. 2.a, which is a consequence of the frustration.207

4.2. Particular case of totally polarized light208

The simple case of totally polarized light is also enlightening. Let us indeed assume that the209

field can be written 𝐸 (𝒓) = 𝜖 (𝒓) 𝑢(𝒓) in a spatial domain D, where 𝜖 (𝒓) is a circular complex210

random field (i.e., a circular complex random variable at each 𝒓) and where 𝑢(𝒓) is a deterministic211

spatial function with values in C2. Thus, the scalar field 𝑎(𝒓) = 𝑝(𝒓)𝑇 𝐸 (𝒓) can be written212

𝑎(𝒓) = 𝛼(𝒓) 𝜖 (𝒓) with 𝛼(𝒓) = 𝑝(𝒓)𝑇 𝑢(𝒓). Since 𝛼(𝒓) is a deterministic quantity, the modulus213

of the scalar degree of coherence between 𝑎(𝒓1) and 𝑎(𝒓2) is thus independent of 𝑝(𝒓1) and214

𝑝(𝒓2) as long as 𝑝(𝒓𝑖) is not orthogonal to 𝐸 (𝒓𝑖) for 𝑖 = 1, 2. Indeed, in that latter case, the215

scalar degree of coherence in undefined. This analysis shows that totally polarized lights in a216

spatial domain D are unfrustrated since it is easy to design local polarization transformations217

that will align the polarization direction at all locations, and hence ensure maximum visibility of218

the interference fringes. As a result, polarization coherence frustration is a characteristic specific219

to partially polarized light, i.e., it can exist only for partially polarized lights.220

An example of such unfrustrated light does not only correspond to uniformly totally polarized221

lights but also to more complex lights such as Full Poincaré beams [18], which have a spatial222

distribution of totally polarized states across the beam that maps the entire surface of the Poincaré223

sphere. In particular, in that latter case, it is possible to define a local transformation that224

corresponds to the Jones matrix 𝐽 (𝒓) = 𝑒𝑥 𝛽(𝒓)†, where 𝛽(𝒓) is the local polarization vector at225

location 𝒓, so that Full Poincaré light becomes a fully polarized and coherent field with a linear226

horizontal polarization. Another example corresponds to a speckle field obtained by enlightening227

a surface with a totally polarized and coherent field 𝐸 (𝒓). If the speckle field can be written228

𝐴(𝒓) = 𝐽 (𝒓)𝐸 (𝒓), with 𝐽 (𝒓) deterministic, then 𝐴(𝒓) is unfrustrated.229

In the next section, a general expression for unfrustrated light is determined for non totally230

polarized light allowing us to exhibit general conditions that must hold to ensure unfrustration.231

The relevance of frustration and of the gauge transformation will then be illustrated with several232

simple examples in Section 7.233

5. General conditions of unfrustration234

The general expression of the singular value decomposition of the normalized CSDM (defined235

in Eq. (5)) is 𝑀 (𝒓1, 𝒓2) = 𝑈
†
(𝒓1, 𝒓2) Λ(𝒓1, 𝒓2) 𝑉 (𝒓1, 𝒓2) where 𝑈 (𝒓1, 𝒓2) and 𝑉 (𝒓1, 𝒓2) are236



unitary matrices that can be function of both 𝒓1 and 𝒓2 and where Λ(𝒓1, 𝒓2) is a diagonal matrix237

with non negative values. We show in Appendix A that for light to be unfrustrated in a spatial238

domain D, the unitary matrices 𝑈 (𝒓1, 𝒓2) and 𝑉 (𝒓1, 𝒓2) must have particular properties. Indeed,239

for unfrustrated light, at any locations 𝒓1 and 𝒓2, the normalized CSDM (defined in Eq. (5)) can240

be written (see Appendix A):241

𝑀 (𝒓1, 𝒓2) = 𝑁 (𝒓1) 𝐷 (𝒓1, 𝒓2) 𝑁
†
(𝒓2) (12)

where:242

𝐷 (𝒓1, 𝒓2) =
©«
𝜇1 (𝒓1, 𝒓2) 0

0 𝜇2 (𝒓1, 𝒓2)
ª®¬ (13)

with the properties that in D:243

244

(i) |𝜇1 (𝒓1, 𝒓2) | ≥ |𝜇2 (𝒓1, 𝒓2) | for any 𝒓1 and 𝒓2, and245

246

(ii) the unitary matrix 𝑁 (𝒓1) has to be a function of only 𝒓1 and the unitary matrix 𝑁 (𝒓2)247

has to be a function of only 𝒓2.248

Furthermore, in the above equations, |𝜇1 (𝒓1, 𝒓2) | and |𝜇2 (𝒓1, 𝒓2) | are equal to the intrinsic249

degrees of coherence [3], but defined in the spectral domain, and are the diagonal elements of250

Λ(𝒓1, 𝒓2).251

The normalized CSDM of an unfrustrated light thus has to satisfy two conditions. The first252

condition is that the diagonal matrix 𝐷 (𝒓1, 𝒓2) must satisfy |𝜇1 (𝒓1, 𝒓2) | ≥ |𝜇2 (𝒓1, 𝒓2) | for any253

𝒓1 and 𝒓2 in D. The second condition is that the unitary matrix 𝑁 (𝒓) must be a function of only254

the location 𝒓 in D.255

The first condition means that there must not exist locations 𝒓1 and 𝒓2 for which |𝜇1 (𝒓1, 𝒓2) | ≥256

|𝜇2 (𝒓1, 𝒓2) | and locations 𝒓1 and 𝒓3 for which |𝜇1 (𝒓1, 𝒓3) | < |𝜇2 (𝒓1, 𝒓3) |.257

The second condition implies that the hermitian matrix:258

W(𝒓1, 𝒓2) = 𝑀 (𝒓1, 𝒓2) 𝑀
†
(𝒓1, 𝒓2) (14)

can be written:259

W(𝒓1, 𝒓2) = 𝑁 (𝒓1) Υ(𝒓1, 𝒓2) 𝑁 (𝒓1)† (15)

with Υ(𝒓1, 𝒓2) = 𝐷 (𝒓1, 𝒓2) 𝐷
†
(𝒓1, 𝒓2) and hence:260

Υ(𝒓1, 𝒓2) =
©«
|𝜇1 (𝒓1, 𝒓2) |2 0

0 |𝜇2 (𝒓1, 𝒓2) |2
ª®¬ (16)

Thus, for an unfrustrated light, the matrix W(𝒓1, 𝒓2) is diagonal in an eigenvector basis that is261

independent of 𝒓2. Since W(𝒓1, 𝒓2) and W(𝒓1, 𝒓3) are diagonal in the same eigenvector basis262

if they commute, the second condition is thus satisfied if:263

W(𝒓1, 𝒓2)W(𝒓1, 𝒓3) = W(𝒓1, 𝒓3)W(𝒓1, 𝒓2) (17)

This relation can be a practical means to check if a light is frustrated or unfrustrated (see last264

example of Section 7).265



It is shown in Appendix A that the two above conditions are necessary. It is immediate to266

verify that they are sufficient. Indeed, let introduce Eq. (12) into Eq. (6) then C(𝑢1, 𝑢2) =267

|𝑢†1 𝑁 (𝒓1) 𝐷 (𝒓1, 𝒓2) 𝑁
†
(𝒓2) 𝑢2 |. But since it is assumed that |𝜇1 (𝒓1, 𝒓2) | ≥ |𝜇2 (𝒓1, 𝒓2) |, then268

𝑢
𝑜𝑝𝑡

𝑗
(𝒓1, 𝒓2) = 𝑁 (𝒓 𝑗 ) 𝑒𝑥 , which is a function of only 𝒓 𝑗 and which thus shows that the light is269

unfrustrated.270

In conclusion, the two above conditions are necessary and sufficient conditions for the light to271

be unfrustrated. It is frustrated if it does not satisfy at least one of these conditions.272

6. Mutual incoherence separability273

6.1. Physical interpretation of unfrustration274

In this section, we provide a physical insight of the above conditions for unfrustrated light in a275

spatial domain D. Eq. (12) implies (see Appendix A) that the normalized CSDM can be written:276

𝑀 (𝒓1, 𝒓2) = 𝜇1 (𝒓1, 𝒓2) 𝑛1 (𝒓1) 𝑛†1 (𝒓2) + 𝜇2 (𝒓1, 𝒓2) 𝑛2 (𝒓1) 𝑛†2 (𝒓2) (18)

where 𝑛1 (𝒓) is the vector defined with the first column of 𝑁 (𝒓) and 𝑛2 (𝒓) is the vector defined277

with the second column of the unitary matrix 𝑁 (𝒓) and where |𝜇1 (𝒓1, 𝒓2) | ≥ |𝜇2 (𝒓1, 𝒓2) | for all278

𝒓1 and 𝒓2 in D. Since 𝑛1 (𝒓) and 𝑛2 (𝒓) are vectors defined with the columns of 𝑁 (𝒓), they are of279

unit norm and orthogonal, i.e. 𝑛†1 (𝒓) 𝑛1 (𝒓) = 𝑛
†
2 (𝒓) 𝑛2 (𝒓) = 1 and 𝑛

†
1 (𝒓) 𝑛2 (𝒓) = 0. Furthermore,280

|𝜇1 (𝒓1, 𝒓2) | and |𝜇2 (𝒓1, 𝒓2) | are equal to the intrinsic degrees of coherence and are thus invariant281

by non-singular deterministic Jones transformations (gauge transformations) of 𝐸 (𝒓) [3].282

As a consequence if 𝐸 (𝒓) is an unfrustrated light, then there exists a local polarization and283

intensity transformation 𝐴(𝒓) = 𝐽 (𝒓) 𝐸 (𝒓) so that the normalized CSDM of 𝐴(𝒓) can be written284

in D:285

𝑀𝐴𝐴(𝒓1, 𝒓2) = 𝜇1 (𝒓1, 𝒓2) 𝑒𝑥 𝑒†𝑥 + 𝜇2 (𝒓1, 𝒓2) 𝑒𝑦 𝑒†𝑦 (19)

with |𝜇1 (𝒓1, 𝒓2) | ≥ |𝜇2 (𝒓1, 𝒓2) |. Thus, the scalar field 𝑎𝑥 (𝒓1) and 𝑎𝑥 (𝒓2), where 𝑎𝑥 (𝒓) = 𝑒†𝑥𝐴(𝒓),286

has a scalar degree of coherence equal to 𝜇1 (𝒓1, 𝒓2), and the scalar field 𝑎𝑦 (𝒓1) and 𝑎𝑦 (𝒓2),287

where 𝑎𝑦 (𝒓) = 𝑒†𝑦𝐴(𝒓) has a scalar degree of coherence equal to 𝜇2 (𝒓1, 𝒓2).288

Let us now analyze the consequences on the CSDM Ω(𝒓1, 𝒓2) in the case of an unfrustrated289

light in D. Since Ω(𝒓1, 𝒓2) = Γ

1
2 (𝒓1) 𝑀 (𝒓1, 𝒓2) Γ

1
2 (𝒓2), it can be written:290

Ω(𝒓1, 𝒓2) = 𝜇1 (𝒓1, 𝒓2) 𝑛′1 (𝒓1) 𝑛′†1 (𝒓2) + 𝜇2 (𝒓1, 𝒓2) 𝑛′2 (𝒓1) 𝑛′†2 (𝒓2) (20)

where 𝑛′1 (𝒓) = Γ

1
2 (𝒓) 𝑛1 (𝒓) and 𝑛′2 (𝒓) = Γ

1
2 (𝒓) 𝑛2 (𝒓). Let 𝐼1 (𝒓) =

[
𝑛′1 (𝒓)

]†
𝑛′1 (𝒓) =291

𝑛
†
1 (𝒓) Γ(𝒓) 𝑛1 (𝒓) and 𝐼2 (𝒓) =

[
𝑛′2 (𝒓)

]†
𝑛′2 (𝒓) = 𝑛

†
2 (𝒓) Γ(𝒓) 𝑛2 (𝒓). Then 𝜓(𝒓) = 1√

𝐼1 (𝒓)
𝑛′1 (𝒓)292

and 𝜙(𝒓) = 1√
𝐼2 (𝒓)

𝑛′2 (𝒓) are unit norm vectors. Thus, in D, the CSDM of an unfrustrated light293

can be written:294

Ω(𝒓1, 𝒓2) =
√︁
𝐼1 (𝒓1)𝐼1 (𝒓2) 𝜇1 (𝒓1, 𝒓2) 𝜓(𝒓1) 𝜓

† (𝒓2)

+
√︁
𝐼2 (𝒓1)𝐼2 (𝒓2) 𝜇2 (𝒓1, 𝒓2) 𝜙(𝒓1) 𝜙

† (𝒓2)

(21)

The physical interpretation of this property is simple. An unfrustrated light in a spatial domain295

D can be represented as the sum of two totally polarized lights that are incoherent between them.296



Furthermore, the first necessary condition for the light to be unfrustrated is that one of these297

totally polarized lights must have a modulus of the scalar degree of coherence that is always (i.e.298

∀ 𝒓1 and 𝒓2 in D) greater than or equal to the other. This property is a motivation to denominate299

the first condition as the "coherence domination condition".300

The second necessary condition for the light to be unfrustrated is that 𝑁 (𝒓) is only a function301

of 𝒓 in D. This condition is indeed sufficient in order to be able to describe the light as the sum302

of two partially coherent but totally polarized lights that are incoherent between them. This303

property is a motivation to denominate the second condition the "mutual incoherence separability304

condition". It is however not sufficient to guarantee that the light is unfrustrated since the305

coherence domination condition must also be fulfilled.306

6.2. Interpretation of mutual incoherence separability307

If the mutual incoherence separability condition is satisfied in D, and independently that the308

coherence domination condition is satisfied or not, the CSDM of the light can be separated into309

two totally polarized lights in D that are incoherent between them (see Eq. (21)). Thus, Eq. (21)310

is a beam decomposition in D that can be deduced from the normalized CSDM. In that case,311

let us assume that at each location 𝒓 in D, the field is projected on the polarization state 𝜑(𝒓),312

defined such that 𝜑𝑇 (𝒓)𝜙(𝒓) = 0. Then 𝑎1 (𝒓) = 𝜑† (𝒓)𝐸 (𝒓) is a scalar field with a scalar degree313

of coherence equal to 𝜇1 (𝒓1, 𝒓2). Analogously, if the field is projected on the polarization state314

𝜉 (𝒓), defined such that 𝜉𝑇 (𝒓)𝜓(𝒓) = 0, then 𝑎2 (𝒓) = 𝜉† (𝒓)𝐸 (𝒓) is a scalar field with a scalar315

degree of coherence equal to 𝜇2 (𝒓1, 𝒓2). Moreover, 𝑎1 (𝒓) and 𝑎2 (𝒓) are scalar fields that are316

incoherent between them, i.e. 〈𝑎∗1 (𝒓1)𝑎2 (𝒓2)〉 = 0 for all 𝒓1 and 𝒓2 in D. Such a polarization317

coherence filtering is not possible if the light does not satisfy the mutual incoherence separability318

condition. If the light is unfrustrated, in which case the coherence domination condition is also319

fulfilled, such a polarization coherence filtering amounts to extracting a field proportional to the320

most coherent part of the field in D.321

Reciprocally, if it is possible to extract with two local non parallel polarization filtering322

devices (i.e. with polarizations states that are not proportional) two scalar fields that are323

incoherent between them in a spatial domain D, then the light satisfies the mutual incoherence324

separability condition. Indeed, let 𝜑(𝒓) and 𝜉 (𝒓) be two non parallel local polarization states325

(i.e. such that there does not exist a complex scalar field 𝜆(𝒓) such that 𝜑(𝒓) = 𝜆(𝒓) 𝜉 (𝒓)).326

Let us then assume that 𝑎1 (𝒓) = 𝜑† (𝒓)𝐸 (𝒓) and 𝑎2 (𝒓) = 𝜉
† (𝒓)𝐸 (𝒓) are incoherent between327

them (i.e. 〈𝑎∗1 (𝒓1)𝑎2 (𝒓2)〉 = 0 ∀𝒓1 and 𝒓2 in D). The field 𝐴(𝒓) = 𝑎1 (𝒓) 𝜑(𝒓) + 𝑎2 (𝒓) 𝜉 (𝒓)328

satisfies the incoherence separability condition. But, since 𝐴(𝒓) can also be written 𝐴(𝒓) =329

𝜑† (𝒓)𝐸 (𝒓) 𝜑(𝒓) +𝜉† (𝒓)𝐸 (𝒓) 𝜉 (𝒓), then 𝐴(𝒓) = 𝑈 (𝒓) 𝐸 (𝒓) with𝑈 (𝒓) = 𝜑(𝒓) 𝜑† (𝒓) +𝜉 (𝒓) 𝜉† (𝒓)330

and then 𝐸 (𝒓) = 𝑈
−1
(𝒓) 𝐴(𝒓). Indeed, 𝑈 (𝒓) is invertible since 𝜑(𝒓) and 𝜉 (𝒓) are assumed non331

parallel. Then,332

𝐸 (𝒓) = 𝑎1 (𝒓) 𝜙(𝒓) + 𝑎2 (𝒓) 𝜓(𝒓) (22)

with 𝜙(𝒓) = 𝑈
−1
(𝒓) 𝜑(𝒓) and 𝜓(𝒓) = 𝑈

−1
(𝒓) 𝜉 (𝒓) which shows that 𝐸 (𝒓) is the sum of two333

polarized light incoherent between them, i.e., 𝐸 (𝒓) verifies the mutual incoherence separability334

condition. Indeed, Ω(𝒓1, 𝒓2) = 〈𝐸∗ (𝒓1)𝐸
𝑇 (𝒓2)〉 leads to:335

Ω(𝒓1, 𝒓2) = 𝐹 (𝒓1, 𝒓2) 𝜙
∗ (𝒓1)𝜙

𝑇 (𝒓2) + 𝐺 (𝒓1, 𝒓2) 𝜓
∗ (𝒓1)𝜓

𝑇 (𝒓2) (23)

with 𝐹 (𝒓1, 𝒓2) = 〈𝑎∗1 (𝒓1)𝑎1 (𝒓2)〉 and 𝐺 (𝒓1, 𝒓2) = 〈𝑎∗2 (𝒓1)𝑎2 (𝒓2)〉, showing it has a form that336

corresponds to Eq. (21).337

The mutual incoherence separability condition as described by Eq. (21) can be interpreted as338

a decomposition of the CSDM Ω(𝒓1, 𝒓2), with some analogies with the one discussed in [19].339



Such decompositions are different from the one considered in [20], as the former rely on the340

singular value decomposition (SVD) of the normalized CSDM while the latter uses the SVD of341

the CSDM itself. These approaches lead to different results, as will be illustrated in the example342

B in the next section.343

The previous analysis and Eq. (21) provide a practical solution to generate unfrustrated lights.344

Unfrustrated lights in a spatial domain D can be obtained with the sum of two partially coherent345

but totally polarized lights. These lights have to be incoherent between them, which guarantees346

the mutual incoherence separability condition. The modulus of the scalar degree of coherence347

in D of one of these lights has to be always greater than or equal to the modulus of the scalar348

degree of coherence of the other light in order to guarantee the coherence domination condition.349

7. Examples350

We provide in this section several examples that illustrate the concepts introduced above.351

7.1. Fields defined at three locations352

Let us first illustrate the properties of the previous sections on the examples of Section 3 and353

illustrated in Fig. 2. The example of Fig. 2.a leads to Γ(𝒓 𝑗 ) = 𝐼𝑑 where 𝐼𝑑 is the 2D identity354

matrix. It is easy to see that:355

Ω(𝒓1, 𝒓2) =
©«

1 0

0 0
ª®¬ , Ω(𝒓1, 𝒓3) =

©«
0 0

0 1
ª®¬ (24)

and356

Ω(𝒓2, 𝒓3) =
©«

0 0

1 0
ª®¬ (25)

from which it can be deduced (see Eq. (14)):357

W(𝒓1, 𝒓2) =
©«

1 0

0 0
ª®¬ , W(𝒓𝑖 , 𝒓3) =

©«
0 0

0 1
ª®¬ (26)

for 𝑖 = 1, 2 and where it is recalled that W(𝒓𝑖 , 𝒓 𝑗 ) = 𝑀 (𝒓𝑖 , 𝒓 𝑗 ) 𝑀
†
(𝒓𝑖 , 𝒓 𝑗 ) and 𝑀 (𝒓𝑖 , 𝒓 𝑗 ) =358

Γ(𝒓𝑖)−
1
2 Ω(𝒓𝑖 , 𝒓 𝑗 ) Γ(𝒓 𝑗 )−

1
2 . Eq. (26) clearly shows that the coherence domination condition is359

not satisfied and thus that the light is frustrated. Indeed, the first eigenvalue of W(𝒓1, 𝒓 𝑗 ) is not360

maximal for all couple of 𝒓𝑖 and 𝒓 𝑗 . Nevertheless, it can be noticed that W(𝒓1, 𝒓 𝑗 ) is diagonal361

in an eigenvector basis that is independent of the 𝒓 𝑗 which illustrates that both the properties (i)362

and (ii) are required for the light to be unfrustrated.363

Example of Fig. 2.b also leads to Γ(𝒓 𝑗 ) = 𝐼𝑑 . Furthermore,364

Ω(𝒓1, 𝒓2) =
©«

1 0

0 0
ª®¬ (27)

365

Ω(𝒓1, 𝒓3) = Ω(𝒓2, 𝒓3) =
©«

0 1
1√
2

0
ª®¬ (28)



From which it can be deduced (see Eq. (14)):366

W(𝒓1, 𝒓2) =
©«

1 0

0 0
ª®¬ , W(𝒓𝑖 , 𝒓3) =

©«
1 0

0 1
2

ª®¬ (29)

for 𝑖 = 1, 2 and which clearly shows that W(𝒓1, 𝒓 𝑗 ) is diagonal in an eigenvector basis that is367

independent of 𝒓 𝑗 , and the first eigenvalue of W(𝒓1, 𝒓 𝑗 ) is maximal for any of the considered368

𝒓 𝑗 . Thus both the coherence domination and the mutual incoherence separability conditions are369

satisfied, which is expected since the light is unfrustrated.370

Let us now consider a third example between three locations 𝒓1, 𝒓2 and 𝒓3 (illustrated in Fig.371

4) for which the mutual incoherence separability condition is not satisfied. For this example, the372

fields are:373

𝐸 (𝒓1) = 𝜖1 𝑒𝑥 + 𝜖2 𝑒𝑦

𝐸 (𝒓2) = (𝜖1 + 𝜖3) 𝑒𝑥 + (𝜖2 + 𝜖3) 𝑒𝑦
𝐸 (𝒓3) = (𝜖1 + 𝜖3) 𝑒𝑥 + ( 1

2 𝜖2 + 𝜖3) 𝑒𝑦

(30)

Thus Γ(𝒓1) = 𝐼𝑑 , but:374

Γ(𝒓2) =
©«

2 1

1 2
ª®¬ and Γ(𝒓3) =

©«
2 1

1 5
4

ª®¬ (31)

Furthermore, Ω(𝒓1, 𝒓2) = 𝐼𝑑 and375

Ω(𝒓1, 𝒓3) =
©«

1 0

0 1
2

ª®¬ and Ω(𝒓2, 𝒓3) =
©«

2 1

1 3
2

ª®¬ (32)

However, sinceΓ(𝒓1) = 𝐼𝑑 it is immediate to see (see Eq. (14)) thatW(𝒓1, 𝒓 𝑗 ) = Ω(𝒓1, 𝒓 𝑗 ) Γ
−1
(𝒓 𝑗 )Ω

†
(𝒓1, 𝒓 𝑗 ),376

which leads to:377

W(𝒓1, 𝒓2) =
©«

2
3 − 1

3

− 1
3

2
3

ª®¬ ,W(𝒓1, 𝒓3) =
©«

5
6 − 1

3

− 1
3

1
3

ª®¬ (33)

It is easy to verify that W(𝒓1, 𝒓2)W(𝒓1, 𝒓3) ≠ W(𝒓1, 𝒓3)W(𝒓1, 𝒓2). Thus W(𝒓1, 𝒓2) and378

W(𝒓1, 𝒓3) cannot be diagonal with the same unitary matrix 𝑁 (𝒓1) as in Eq. (15). The mutual379

incoherence separability condition is thus not satisfied (i.e. Eq. (17) is not satisfied) and the light380

is frustrated.381

7.2. Mean square coherent light382

Mean square coherent light (MSC) provides a simple example of a category of unfrustrated light.383

Such lights can indeed be written [17]:384

𝐸 (𝒓) =
√︁
𝐼1 𝜖1 𝑓 1 (𝒓) +

√︁
𝐼2 𝜖2 𝑓 2 (𝒓) (34)

with 𝐼𝑖 > 0, 〈𝜖∗
𝑖
𝜖 𝑗〉 = 𝛿𝑖 𝑗 and where 𝑓 1 (𝒓) and 𝑓 2 (𝒓) are two deterministic functions of 𝒓 with385

values in C2. In that case, it is easy to see [17] that 𝜇1 (𝒓1, 𝒓2) = 𝜇2 (𝒓1, 𝒓2) = 1, which shows386
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Fig. 4. Simple example for which the mutual incoherence separability condition is not
satisfied.

that the coherence domination condition is respected. The mutual incoherence separability387

condition is also respected, which shows that mean square coherent lights are unfrustrated.388

Mean square coherent light corresponds to the particular case of unfrustrated light for which389

𝜇1 (𝒓1, 𝒓2) = 𝜇2 (𝒓1, 𝒓2) = 1. The polarization matrix is not singular at location 𝒓 if there does390

not exist a complex number 𝜆 such that 𝑓 1 (𝒓) = 𝜆 𝑓 2 (𝒓) and, in that case, there exists a gauge391

transformation that leads to the field 𝐴(𝒓) = 𝜖1𝑒𝑥 + 𝜖2𝑒𝑦 . The field 𝐴(𝒓) has thus a diagonal392

CSDM (the polarization matrix is equal to the identity matrix as well as the normalized CSDM).393

The field 𝐴(𝒓) corresponds to uniformly and totally unpolarized light. There exists also394

mean square coherent lights more complex than 𝐴(𝒓) such as Full Poincaré light beams of type395

II [21]. Another example corresponds to a speckle field obtained by enlightening a surface with a396

totally unpolarized and coherent field 𝐸 (𝒓) = 𝜖1𝑒𝑥 + 𝜖2𝑒𝑦 . If the speckle field can be written397

𝐴(𝒓) = 𝐽 (𝒓)𝐸 (𝒓), then 𝐴(𝒓) is unfrustrated since 𝐴(𝒓) is a gauge transformation of 𝐸 (𝒓) and398

𝐸 (𝒓) is a mean square coherent light and hence unfrustrated.399

Let us now consider another example of MSC light, which will allow us to illustrate the400

difference of the decomposition considered in this article in Eq. (21) with the one proposed401

in [20]. The field of this MSC light is assumed to be the sum of two perfectly polarized beams,402

incoherent between them, with non parallel polarization:403

𝐸 (𝒓) = 𝑓 (𝒓) 𝜖1 𝑒𝑥 + 𝜖2 𝑒 𝜋
4

(35)

with 〈𝜖∗
𝑖
𝜖 𝑗〉 = 𝛿𝑖 𝑗 and 𝑓 (𝒓) ≥ 0, 𝑒𝑥 = (1, 0)𝑇 and 𝑒 𝜋

4
= (1, 1)𝑇 . Then:404

Ω(𝒓1, 𝒓2) =
©«

1 + 𝑓 (𝒓1) 𝑓 (𝒓2) 1

1 1
ª®¬ (36)

Since Ω(𝒓1, 𝒓2) is real and symmetric and since its eigenvalues are positive, its singular values405

and singular vectors are equal to its eigenvalues and eigenvectors. Its singular values are thus:406

𝜆± (𝒓1, 𝒓2) =
1
2
(2 + 𝑔± (𝒓1, 𝒓2)) (37)

where 𝑔± (𝒓1, 𝒓2) = 𝑓 (𝒓1) 𝑓 (𝒓2) ±
√︁

4 + 𝑓 (𝒓1)2 𝑓 (𝒓2)2. The normalized singular vectors are:407

𝑤 𝑗 ,± (𝒓1, 𝒓2) =
1√︁

4 + 𝑔2
± (𝒓1, 𝒓2)

©«
𝑔± (𝒓1, 𝒓2)

2
ª®¬ (38)



Thus, the polarization vectors obtained with this decomposition are equal at locations 𝒓1 and408

𝒓2 (i.e., 𝑤1,± (𝒓1, 𝒓2) = 𝑤2,± (𝒓1, 𝒓2)) for this example but they are different from 𝑒𝑥 and 𝑒 𝜋
4
.409

Moreover, the polarization obtained with this decomposition at 𝒓1 varies if 𝒓2 varies which is not410

the case of 𝑒𝑥 and 𝑒 𝜋
4
.411

Let us now analyze the same situation from the point of view of the decomposition considered412

in this article in Eq. (21) based on the SVD of the normalized CSDM. It can indeed be performed413

from the only knowledge of the CSDM and the polarization matrices at 𝒓1 and 𝒓2 without414

requiring the knowledge of Eq. (35). Since Γ(𝒓) = Ω(𝒓, 𝒓), a direct calculus allows one to see415

with Eq. (36) that:416

Γ(𝒓) = 𝑓 2 (𝒓) 𝑒𝑥 𝑒𝑇𝑥 + 𝑒 𝜋
4
𝑒𝑇𝜋

4
= 𝐽 (𝒓) 𝐽 (𝒓)𝑇 (39)

with the Jones matrix:417

𝐽 (𝒓) = ©«
𝑓 (𝒓) 1

0 1
ª®¬ (40)

that transforms the field 𝐸 (𝒓) into the field 𝐴(𝒓) = 𝐽
−1
(𝒓) 𝐸 (𝒓). It can be noticed that 𝐽

−1
(𝒓)418

acts as a gauge transformation. A direct calculus shows that the CSDM of 𝐴(𝒓) is equal to the419

identity matrix (i.e. 〈𝐴∗ (𝒓1)𝐴
𝑇 (𝒓2)〉 = 𝐼𝑑), and so do the polarization matrices at locations420

𝒓1 and 𝒓2 (since the polarization matrix is 〈𝐴∗ (𝒓)𝐴𝑇 (𝒓)〉 and is thus also equal to 𝐼𝑑). Thus421

𝐴(𝒓) = 𝜖1 𝑒𝑥 + 𝜖2 𝑒𝑦 with 𝑒𝑥 = (1, 0)𝑇 and 𝑒𝑦 = (0, 1)𝑇 . But 𝐸 (𝒓) = 𝐽 (𝒓) 𝐴(𝒓) and then:422

𝐸 (𝒓) = 𝑓 (𝒓) 𝜖1 𝑒𝑥 + 𝜖2 𝑒 𝜋
4

(41)

which allows one to recover the model of Eq. (35) that corresponds to the two totally polarized423

and coherent fields (but totally incoherent between them) considered in this example. This simple424

example demonstrates the relevance of the normalized CSDM to get the decomposition that425

corresponds to the initial perfectly polarized lights and incoherent between them.426

7.3. Diagonal Gaussian Schell model427

Let us now consider the following particular diagonal Gaussian Schell model [22] in a spatial428

domain D that corresponds to a particular transverse plane to the propagation axis for which the429

CSDM is:430

Ω(𝒓1, 𝒓2) =
©«
𝜔𝑥 (𝒓1, 𝒓2) 0

0 𝜔𝑦 (𝒓1, 𝒓2)
ª®¬ (42)

with 𝜔𝑠 (𝒓1, 𝒓2) = 𝐼𝑠 𝑒
− | |r1 | |2+||r2 | |2

4 𝜎2
0 𝑒

− | |r1−r2 | |2

2 𝜎2 with 𝑠 = 𝑥, 𝑦. The normalized CSDM is thus:431

𝑀 (𝒓𝑖 , 𝒓 𝑗 ) = Γ
− 1

2 (𝒓𝑖)Ω(𝒓𝑖 , 𝒓 𝑗 ) Γ
− 1

2 (𝒓 𝑗 ) = 𝑒
−

| |r𝑖−r 𝑗 | |2

2 𝜎2 𝐼𝑑 (43)

since Γ(𝒓) = Ω(𝒓, 𝒓) and which implies:432

Γ
− 1

2 (𝒓) = ©«
1/
√︁
𝜔𝑥 (𝒓, 𝒓) 0

0 1/
√︁
𝜔𝑦 (𝒓, 𝒓)

ª®¬ (44)

The matrix W(𝒓𝑖 , 𝒓 𝑗 ) = 𝑀 (𝒓𝑖 , 𝒓 𝑗 ) 𝑀
†
(𝒓𝑖 , 𝒓 𝑗 ) is diagonal in an eigenvector basis that is433

independent of 𝒓𝑖 and 𝒓 𝑗 (since 𝑀 (𝒓𝑖 , 𝒓 𝑗 ) is proportional to the identity matrix), the mutual434



incoherence separability condition is thus respected. Furthermore, the first eigenvalue is equal to435

the second eigenvalue for any considered 𝒓𝑖 and 𝒓 𝑗 which shows that the coherence domination436

condition is also respected. The light is thus unfrustrated.437

Indeed, it is easy to see that 𝑢†𝑀 (𝒓𝑖 , 𝒓 𝑗 )𝑢 = 𝑒
−

| |r𝑖−r 𝑗 | |2

2 𝜎2 for all 𝑢 with 𝑢†𝑢 = 1. Thus, the438

polarization configuration 𝑢(𝒓) = 𝑢0 for all 𝒓 and whatever 𝑢0, maximizes the modulus of the439

scalar degree of coherence, and this is valid for any triplet of locations.440

7.4. Frustrated light with Gaussian Degrees of Coherence441

An example of frustrated light in a spatial domain D that corresponds to a particular transverse442

plane to the propagation axis is observed with the sum of two fields with anisotropic coherence.443

Indeed, let us assume that the field is the sum of a horizontally polarized light and of a vertically444

polarized light incoherent between them. Let us also assume that the expression of the CSDM is445

still provided by Eq. (42) but with:446

𝜔𝑠 (𝒓1, 𝒓2) = 𝐼𝑠 𝑒
− | |r1 | |2+||r2 | |2

4 𝜎2
0 𝑒

− (𝑠1−𝑠2 )2

2 𝜎2 (45)

with 𝑠 = 𝑥, 𝑦. A development similar to the one of the previous example shows that the normalized447

CSDM is:448

𝑀 (𝒓1, 𝒓2) =
©«
𝑒
− (𝑥1−𝑥2 )2

2 𝜎2 0

0 𝑒
− (𝑦1−𝑦2 )2

2 𝜎2

ª®®¬ (46)

The matrix W(r𝑖 , 𝒓 𝑗 ) (defined in Eq. (14)) is diagonal in an eigenvector basis independent of449

𝒓𝑖 , 𝒓 𝑗 and thus the mutual incoherence separability condition is respected. However, the first450

eigenvalue 𝑒−
(𝑥1−𝑥2 )2

2 𝜎2 is not always greater than or equal to the second eigenvalue 𝑒−
(𝑦1−𝑦2 )2

2 𝜎2 which451

shows that the coherence domination condition is not respected. The light is thus frustrated.452

This result can be easily illustrated by looking at the coherence at the three locations453

𝒓1 = (0, 0)𝑇 , 𝒓2 = (
√

2 𝜎, 0)𝑇 and 𝒓3 = (0,
√

2 𝜎)𝑇 . Indeed, the maximal coherence between 𝒓1454

and 𝒓2 is obtained with projection of the field on the vertical 𝑦 polarization. However, between455

𝒓1 and 𝒓3, the field has to be projected on the horizontal 𝑥 polarization in order to maximize the456

modulus of the standard degree of coherence.457

7.5. Sum of three Hermite-Gaussian lights458

With this last example, the considered field, in a spatial domain D that corresponds to a particular459

transverse plane to the propagation axis, is the sum of three Hermite-Gaussian lights which are460

statistically incoherent between them. Setting: 𝐺𝑛𝑚 (𝒓) = 𝑥𝑛 𝑦𝑚 𝑒
− 𝑥2+𝑦2

2 𝜎2 where 𝒓 = (𝑥, 𝑦)𝑇 , let461

us assume that the total field is defined with:462

𝐸 (𝒓) = 𝜖0 𝐺00 (𝒓) 𝑒0 + 𝜖1 𝐺10 (𝒓) 𝑒𝑥 + 𝜖2 𝐺01 (𝒓) 𝑒𝑦 (47)

where 〈𝜖𝑖𝜖∗𝑗 〉 = 𝛿𝑖 𝑗 and where 𝑒𝑇0 = ( 1√
2
, 1√

2
). Then:463

Ω(𝒓1, 𝒓2) = 𝑒
− | |𝒓1 | |2+||𝒓2 | |2

2 𝜎2 ©«
1
2 + 𝑥1𝑥2

1
2

1
2

1
2 + 𝑦1𝑦2

ª®¬ (48)

and Γ(𝒓) = Ω(𝒓, 𝒓).464



Let us show that the mutual incoherence separability condition is not respected for the three465

locations 𝒓1 = (1, 1)𝑇 , 𝒓2 = (1, 0)𝑇 and 𝒓3 = (0, 1)𝑇 . In that case one obtains (where the symbol466

∝ means proportional to):467

Γ(𝒓1) ∝
©«

3 1

1 3
ª®¬ , Γ(𝒓2) ∝

©«
3 1

1 1
ª®¬ , Γ(𝒓3) ∝

©«
1 1

1 3
ª®¬ (49)

and Ω(𝒓1, 𝒓2) ∝ Γ(𝒓2) and Ω(𝒓1, 𝒓3) ∝ Γ(𝒓3). The relation W(𝒓𝑖 , 𝒓 𝑗 ) = 𝑀 (𝒓𝑖 , 𝒓 𝑗 ) 𝑀
†
(𝒓𝑖 , 𝒓 𝑗 )468

(see Eqs. (14) and (5)) implies W(𝒓𝑖 , 𝒓 𝑗 ) = Γ
− 1

2 (𝒓𝑖) Ω(𝒓𝑖 , 𝒓 𝑗 ) Γ
−1
(𝒓 𝑗 ) Ω(𝒓 𝑗 , 𝒓𝑖) Γ

− 1
2 (𝒓𝑖). But469

since Ω(𝒓1, 𝒓 𝑗 ) ∝ Γ(𝒓 𝑗 ) for 𝑗 = 2, 3 then:470

W(𝒓1, 𝒓 𝑗 ) ∝ Γ
− 1

2 (𝒓1) Ω(𝒓 𝑗 , 𝒓1) Γ
− 1

2 (𝒓1) (50)

It has been seen that to satisfy the mutual incoherence separability condition it is necessary that471

W(𝒓1, 𝒓2)W(𝒓1, 𝒓3) = W(𝒓1, 𝒓3)W(𝒓1, 𝒓2) (see Eq. (17)). Thus Eq. (17) is satisfied if:472

Γ
− 1

2 (𝒓1) Ω(𝒓2, 𝒓1) Γ
− 1

2 (𝒓1)Γ
− 1

2 (𝒓1) Ω(𝒓3, 𝒓1) Γ
− 1

2 (𝒓1) (51)

is equal to:473

Γ
− 1

2 (𝒓1) Ω(𝒓3, 𝒓1) Γ
− 1

2 (𝒓1) Γ
− 1

2 (𝒓1) Ω(𝒓2, 𝒓1) Γ
− 1

2 (𝒓1) (52)

It thus implies that474

Ω(𝒓2, 𝒓1) Γ
−1
(𝒓1) Ω(𝒓3, 𝒓1) = Ω(𝒓3, 𝒓1) Γ

−1
(𝒓1) Ω(𝒓2, 𝒓1) (53)

In the present case Ω(𝒓 𝑗 , 𝒓1) = Ω(𝒓1, 𝒓 𝑗 ) for 𝑗 = 2, 3 and Ω(𝒓1, 𝒓 𝑗 ) ∝ Γ(𝒓 𝑗 ) for 𝑗 = 2, 3. Thus475

the separability condition would imply476

Γ(𝒓2) Γ
−1
(𝒓1) Γ(𝒓3) ∝ Γ(𝒓3) Γ

−1
(𝒓1) Γ(𝒓2) (54)

A simple direct calculus shows that it is not the case and thus the mutual incoherence separability477

condition is not satisfied. The considered sum of the three Hermite-Gaussian lights is thus478

polarization coherence frustrated.479

In summary, the above examples illustrate the situations of unfrustrated light, frustrated light480

due to the non respect of the coherence domination condition and frustrated light due to the non481

respect of the mutual incoherence separability condition.482

8. Conclusion483

We have shown in this article that there exists two classes of partially polarized and partially484

coherent lights in a spatial domain D: polarization coherence frustrated and polarization485

coherence unfrustrated lights. Each of these classes of equivalence is stable by the "gauge486

transformations" that correspond to the application of linear local transformations described by487

non singular deterministic Jones matrices. These properties and the proposed denomination are488

in analogy with the concepts of frustration and gauge invariance in statistical physics and spin489

glasses. As a result of these properties of light, practical manipulation of polarization coherence490

unfrustrated lights are expected to be easier than for polarization coherence frustrated lights491

which have more complex coherence properties.492



On the one hand, it has been shown that to be unfrustrated in a spatial domain D the light has493

to satisfy two different conditions. Indeed, the light has to be the sum of two totally polarized494

light in D that are incoherent between them and one of these lights has to have a modulus of the495

scalar (i.e. standard) degree of coherence always greater than or equal to the other in D. The496

decomposition method of the light as the sum of two totally polarized light incoherent between497

them can be obtained with a singular value decomposition of the normalized CSDM. It has been498

shown that a polarization coherence filtering allows one to extract a field proportional to the most499

coherent part of the field in that case of unfrustrated light. The maximum value of the modulus500

of the degree of coherence that can be extracted this way can be directly obtained by determining501

the value of the largest intrinsic degree of coherence between different locations.502

On the other hand, polarization coherence frustrated light in a spatial domain D can appear503

when one or both of these conditions are not satisfied. In that case, such a polarization coherence504

filtering to extract a field proportional to the most coherent part of the field is not possible.505

In terms of practical application of these concepts, the ability to verify the non frustration of506

the light, and to design the appropriate local gauge transformations can be of interest for optimal507

light focusing for instance. The faculty to extract a maximally coherent field from an unfrustrated508

light through appropriate polarization filtering can also be of interest for some applications.509

There exists several perspectives for this work. In particular, it will be interesting to analyze510

the frustration properties of several general models of coherence used in standard coherence511

theoretical studies and to analyze the evolution of unfrustration or frustration with propagation512

for these models. It will be useful to better investigate new practical implications of polarization513

coherence frustration and in particular experimental demonstrations to illustrate this concept are514

motivating perpectives. Finally, this concept could be generalized to light for which the fields515

can fluctuate in 3D.516

9. Appendix A517

The singular value decomposition of the matrix 𝑀 (𝒓1, 𝒓2) can be written:518

𝑀 (𝒓1, 𝒓2) = 𝑈 (𝒓1, 𝒓2)†
©«
𝜇𝑆 (𝒓1, 𝒓2) 0

0 𝜇𝐼 (𝒓1, 𝒓2)
ª®¬ 𝑉 (𝒓1, 𝒓2) (55)

where 𝑈 (𝒓1, 𝒓2) and 𝑉 (𝒓1, 𝒓2) are unitary matrices and where 𝜇𝑆 (𝒓1, 𝒓2) and 𝜇𝐼 (𝒓1, 𝒓2) are519

the intrinsic degrees of coherence introduced in [3] defined in the spectral domain, that520

satisfy 𝜇𝑆 (𝒓1, 𝒓2) ≥ 𝜇𝐼 (𝒓1, 𝒓2) ≥ 0. As defined in section 3, the light is unfrustrated in a521

domain D if there exists 𝑛1 (𝒓) such that 𝑛1 (𝒓)†𝑛1 (𝒓) = 1 and |𝑛1 (𝒓1)†𝑀 (𝒓1, 𝒓2)𝑛1 (𝒓2) | is522

maximal for any 𝒓1 and 𝒓2 in D. If 𝜇𝑆 (𝒓1, 𝒓2) > 𝜇𝐼 (𝒓1, 𝒓2), the optimal configuration leads523

to |𝑛1 (𝒓1)†𝑀 (𝒓1, 𝒓2)𝑛1 (𝒓2) | = 𝜇𝑆 (𝒓1, 𝒓2), and this property implies that 𝑉 (𝒓1, 𝒓2) 𝑛1 (𝒓2) =524

𝑒𝑖𝜑𝑣 (𝒓1 ,𝒓2) 𝑒𝑥 and 𝑈 (𝒓1, 𝒓2) 𝑛1 (𝒓1) = 𝑒𝑖𝜑𝑢 (𝒓1 ,𝒓2) 𝑒𝑥 , where 𝑒𝑥 = (1, 0)𝑇 , since 𝜇𝑆 (𝒓1, 𝒓2)525

is the maximal value of the modulus of the scalar degree of coherence [3]. If 𝜇𝑆 (𝒓1, 𝒓2) =526

𝜇𝐼 (𝒓1, 𝒓2), the choices of 𝑛1 (𝒓1) and 𝑛1 (𝒓2) such that 𝑉 (𝒓1, 𝒓2) 𝑛1 (𝒓2) = 𝑒𝑖𝜑𝑣 (𝒓1 ,𝒓2) 𝑒𝑥 and527

𝑈 (𝒓1, 𝒓2) 𝑛1 (𝒓1) = 𝑒𝑖𝜑𝑢 (𝒓1 ,𝒓2) 𝑒𝑥 are still possible to maximize the modulus of the scalar degree528

of coherence.529

Let us introduce the vector 𝑛2 (𝒓) such that 𝑛2 (𝒓)†𝑛2 (𝒓) = 1 and 𝑛2 (𝒓)†𝑛1 (𝒓) = 0. One has530

𝑛2 (𝒓2)†𝑉 (𝒓1, 𝒓2)†𝑉 (𝒓1, 𝒓2) 𝑛1 (𝒓2) = 𝑛2 (𝒓2)† 𝑛1 (𝒓2) = 0 and also 𝑛2 (𝒓2)†𝑉 (𝒓1, 𝒓2)†𝑉 (𝒓1, 𝒓2) 𝑛1 (𝒓2) =531

𝑒𝑖𝜑𝑣 (𝒓1 ,𝒓2) 𝑛2 (𝒓2)† 𝑉 (𝒓1, 𝒓2)† 𝑒𝑥 = 0. Then, necessarily 𝑉 (𝒓1, 𝒓2) 𝑛2 (𝒓2) = 𝑒𝑖𝜙𝑣 (𝒓1 ,𝒓2) 𝑒𝑦 with532

𝑒𝑦 = (0, 1)𝑇 . In other words 𝑉 (𝒓1, 𝒓2) 𝑁 (𝒓2) = 𝐷𝑣 (𝒓1, 𝒓2) with 𝑁 (𝒓) = [𝑛1 (𝒓), 𝑛2 (𝒓)] and533

where 𝐷𝑣 (𝒓1, 𝒓2) is the diagonal matrix with diagonal values 𝑒𝑖𝜑𝑣 (𝒓1 ,𝒓2) and 𝑒𝑖𝜙𝑣 (𝒓1 ,𝒓2) . An534



analogous development leads to 𝑈 (𝒓1, 𝒓2) 𝑁 (𝒓1) = 𝐷𝑢 (𝒓1, 𝒓2) where 𝐷𝑢 (𝒓1, 𝒓2) is the diagonal535

matrix with diagonal values 𝑒𝑖𝜑𝑢 (𝒓1 ,𝒓2) and 𝑒𝑖𝜙𝑢 (𝒓1 ,𝒓2) . Then 𝑉 (𝒓1, 𝒓2) = 𝐷𝑣 (𝒓1, 𝒓2) 𝑁 (𝒓2)−1
536

and 𝑈 (𝒓1, 𝒓2) = 𝐷𝑢 (𝒓1, 𝒓2) 𝑁 (𝒓1)−1 and thus:537

𝑀 (𝒓1, 𝒓2) =
[
𝑁 (𝒓1)−1

]†
𝐷 (𝒓1, 𝒓2) 𝑁 (𝒓2)−1 (56)

with:538

𝐷 (𝒓1, 𝒓2) =
©«
𝜇𝑆 (𝒓1, 𝒓2) 0

0 𝜇𝐼 (𝒓1, 𝒓2)
ª®¬ (57)

where 𝜇𝑆 (𝒓1, 𝒓2) = 𝜇𝑆 (𝒓1, 𝒓2) 𝑒𝑖 [𝜑𝑣 (𝒓1 ,𝒓2)−𝜑𝑢 (𝒓1 ,𝒓2) ] and 𝜇𝐼 (𝒓1, 𝒓2) = 𝜇𝐼 (𝒓1, 𝒓2) 𝑒𝑖 [𝜙𝑣 (𝒓1 ,𝒓2)−𝜙𝑢 (𝒓1 ,𝒓2) ] .539

It is easy to verify that 𝑁 (𝒓)𝑁 (𝒓)† = 𝑁 (𝒓)†𝑁 (𝒓) = 𝐼𝑑 , where 𝐼𝑑 is the identity matrix in 2D,540

and thus 𝑁 (𝒓)−1 = 𝑁 (𝒓)†. Thus:541

𝑀 (𝒓1, 𝒓2) = 𝑁 (𝒓1) 𝐷 (𝒓1, 𝒓2) 𝑁 (𝒓2)† (58)

which leads to Eq. (12). Furthermore, since 𝑁 (𝒓) = [𝑛1 (𝒓), 𝑛2 (𝒓)], it is easy to see that542

𝑀 (𝒓1, 𝒓2) can also be written:543

𝑀 (𝒓1, 𝒓2) = 𝜇𝑆 (𝒓1, 𝒓2) 𝑛1 (𝒓1) 𝑛†1 (𝒓2) + 𝜇𝐼 (𝒓1, 𝒓2) 𝑛2 (𝒓1) 𝑛†2 (𝒓2) (59)

with |𝜇𝑆 (𝒓1, 𝒓2) | ≥ |𝜇𝐼 (𝒓1, 𝒓2) | for any 𝒓1 and 𝒓2 in D and where |𝜇𝑆 (𝒓1, 𝒓2) | and |𝜇𝐼 (𝒓1, 𝒓2) |544

are the intrinsic degrees of coherence of the light for the couple of locations 𝒓1 and 𝒓2.545
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