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Abstract. Natural and human-ignited fires affect all major biomes, altering ecosystem structure, biogeochem-
ical cycles and atmospheric composition. Satellite observations provide global data on spatiotemporal patterns
of biomass burning and evidence for the rapid changes in global fire activity in response to land management
and climate. Satellite imagery also provides detailed information on the daily or sub-daily position of fires that
can be used to understand the dynamics of individual fires. The Global Fire Atlas is a new global dataset that
tracks the dynamics of individual fires to determine the timing and location of ignitions, fire size and duration,
and daily expansion, fire line length, speed, and direction of spread. Here, we present the underlying method-
ology and Global Fire Atlas results for 2003–2016 derived from daily moderate-resolution (500 m) Collection
6 MCD64A1 burned-area data. The algorithm identified 13.3 million individual fires over the study period, and
estimated fire perimeters were in good agreement with independent data for the continental United States. A
small number of large fires dominated sparsely populated arid and boreal ecosystems, while burned area in agri-
cultural and other human-dominated landscapes was driven by high ignition densities that resulted in numerous
smaller fires. Long-duration fires in boreal regions and natural landscapes in the humid tropics suggest that fire
season length exerts a strong control on fire size and total burned area in these areas. In arid ecosystems with
low fuel densities, high fire spread rates resulted in large, short-duration fires that quickly consumed available
fuels. Importantly, multiday fires contributed the majority of burned area in all biomass burning regions. A first
analysis of the largest, longest and fastest fires that occurred around the world revealed coherent regional pat-
terns of extreme fires driven by large-scale climate forcing. Global Fire Atlas data are publicly available through
http://www.globalfiredata.org (last access: 9 August 2018) and https://doi.org/10.3334/ORNLDAAC/1642, and
individual fire information and summary data products provide new information for benchmarking fire models
within ecosystem and Earth system models, understanding vegetation–fire feedbacks, improving global emis-
sions estimates, and characterizing the changing role of fire in the Earth system.
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1 Introduction

Worldwide, fires burn an area about the size of the Euro-
pean Union every year (423 Mha yr−1; Giglio et al., 2018).
The majority of burned area occurs in grasslands and sa-
vannas where fires maintain open landscapes by reducing
shrub and tree cover (Scholes and Archer, 1997; Abreu et
al., 2017). However, all major biomes burn. Climate controls
global patterns of fire activity by driving vegetation produc-
tivity and fuel buildup as well as fuel moisture (Bowman et
al., 2009). Humans are the dominant source of ignition in
most flammable ecosystems, but human activities also reduce
fire sizes through landscape fragmentation and fire suppres-
sion (Archibald et al., 2012; Taylor et al., 2016; Balch et al.,
2017).

Over the past 18 years, socioeconomic development and
corresponding changes in human land use have considerably
reduced fire activity in fire-dependent grasslands and savan-
nas worldwide (Andela et al., 2017). At the same time warm-
ing climate has dried fuels and has increased the length of fire
seasons across the globe (Jolly et al., 2015), which is partic-
ularly important in forested ecosystems with abundant fuels
(e.g., Kasischke and Turetsky, 2006; Aragão et al., 2018).
Fire activity increases nonlinearly in response to drought
conditions in populated areas of the humid tropics (Alen-
car et al., 2011; Field et al., 2016), resulting in large-scale
degradation of tropical ecosystems (van der Werf et al., 2008;
Morton et al., 2013b; Brando et al., 2014) and extensive pe-
riods of poor air quality (Johnston et al., 2012; Lelieveld et
al., 2015; Koplitz et al., 2016). Moreover, increasing pop-
ulation densities in highly flammable biomes also amplify
the socioeconomic impact of wildfires related to air quality
or damage to houses and infrastructure (Moritz et al., 2014;
Knorr et al., 2016). Despite the importance of understand-
ing changing global fire regimes for ecosystem services, hu-
man well-being, climate and conservation, our current under-
standing of changing global fire regimes is limited because
existing satellite data products detect actively burning pixels
or burned area but not individual fires and their behavior.

Frequent observations from moderate-resolution, polar-
orbiting satellites may provide information on individual fire
behavior in addition to estimates of total burned area. Several
recent studies have shown that fire-affected pixels can be sep-
arated into clusters based on spatial and temporal proximity.
This information can be used to study the number and size
distributions of individual fires (Archibald and Roy, 2009;
Hantson et al., 2015; Oom et al., 2016), fire shapes (Nogueira
et al., 2016; Laurent et al., 2018) and the location of ig-
nition points (Benali et al., 2016; Fusco et al., 2016). One
limitation of fire-clustering algorithms that rely on spatial
and temporal proximity of fire pixels is the inability to sep-
arate individual fires within large burn patches that contain
multiple ignition points, a frequent phenomenon in grassland
biomes. To address the possibility of multiple ignition points,
other algorithms have specifically tracked the spread of indi-

vidual fires in time and space, with demonstrated improve-
ments for isolating ignition points and constraining final fire
perimeters (Frantz et al., 2016; Andela et al., 2017). In addi-
tion to the size and ignition points of individual fires, other
studies used daily or sub-daily detections of fire activity to
track growth dynamics of fires (Loboda and Csiszar, 2007;
Coen and Schroeder, 2013; Veraverbeke et al., 2014; Sá et
al., 2017). Together, these studies highlight the strengths and
limitations of using daily or sub-daily satellite imagery to
derive information about individual fires and their behavior
over time.

Here, we present the Global Fire Atlas of individual fires
based on a new methodology for identifying the location and
timing of fire ignitions and estimating fire size and duration,
and daily expansion, fire line length, speed, and direction of
spread. The Global Fire Atlas is derived from the Moderate
Resolution Imaging Spectroradiometer (MODIS) Collection
6 (Col. 6) burned-area dataset (Giglio et al., 2018), which
includes an estimated day-of-burn data layer at a 500 m res-
olution. Individual fire data were generated starting in 2003,
when combined data from the Terra and Aqua satellites be-
gan to provide greater burn date certainty. The algorithm for
the Global Fire Atlas tracks the daily progression of indi-
vidual fires at a 500 m resolution to produce a set of met-
rics on individual fire behavior in standard raster and vector
data formats. Together, these Global Fire Atlas data layers
provide an unprecedented look at global fire behavior and
changes in fire dynamics during 2003–2016. The data are
freely available at http://www.globalfiredata.org (last access:
9 August 2018) and https://doi.org/10.3334/ORNLDAAC,
and new years will be added to the dataset following the
availability of global burned-area data.

2 Data and methods

Here, we developed a method to isolate individual fires from
daily moderate-resolution burned-area data. The approach
used two filters to account for uncertainties in the day of
burn, in order to map the location and timing of fire igni-
tions and the extent and duration of individual fires (Fig. 1).
Subsequently, we tracked the growth dynamics of each indi-
vidual fire to estimate the daily expansion, fire line length,
speed, and direction of spread. Based on the Global Fire
Atlas algorithm, burned area was broken down into seven
fire characteristics in three steps (Fig. 1b). First, burned area
was described as the product of ignitions and individual fire
sizes. Second, fire size was further separated into fire dura-
tion and a daily expansion component. Third, the daily fire
expansion was subdivided into fire speed, the length of the
fire line and the direction of spread. The Global Fire Atlas
algorithm can be applied to any moderate-resolution daily
global burned-area product, and the quality of the resulting
dataset depends both on the Fire Atlas algorithm as well as
the underlying burned-area product. Here, we applied the al-

Earth Syst. Sci. Data, 11, 529–552, 2019 www.earth-syst-sci-data.net/11/529/2019/

http://www.globalfiredata.org
https://doi.org/10.3334/ORNLDAAC


N. Andela et al.: The Global Fire Atlas 531

gorithm to the MCD64A1 Col. 6 burned-area dataset (Giglio
et al., 2018), and the minimum detected fire size is there-
fore one MODIS pixel (approximately 21 ha). Several studies
have shown that the MCD64A1 Col. 6 burned-area product is
a considerable improvement compared to the previous gen-
eration of moderate-resolution global burned-area products
(Giglio et al., 2018; Humber et al., 2019; Rodrigues et al.,
2019). We also present a preliminary accuracy assessment of
the higher-order Global Fire Atlas products using indepen-
dent fire perimeter data for the continental US and active-fire
detections to assess estimated fire duration and the temporal
accuracy of individual fire dynamics.

2.1 Individual fires: ignitions, size, perimeter and
duration

Large burn patches are often made up of multiple individual
fires that may burn simultaneously or at different points in
time during the fire season, particularly in frequently burn-
ing grasslands and savannas with a high density of ignitions
from human activity. Separating large clusters of burned area
into individual fires is therefore critical to any understanding
of the fire regime in human-dominated landscapes. To isolate
individual fires, clusters of adjacent burned area for a given
fire season (12 months centered on the month of maximum
burned area) were subdivided into individual fires based on
the spatial structure of estimated burn dates in the MCD64A1
burned-area product. Although we allow individual fires to
burn from one fire season into the next, we processed the
data on a per-fire-season basis in each 10◦×10◦ MODIS tile.
In the rare case that a pixel burned twice during a single fire
season (< 1 %), we retained only the earliest burn date. This
approach results in a small reduction of total burned area in
order to create standardized annual data layers in both grid-
ded raster and shapefile formats. To locate candidate ignition
points within each burned-area cluster, we mapped the “local
minima”, defined as a single grid cell or group of adjacent
grid cells with the same burn date surrounded by grid cells
with later burn dates. However, because of variability in or-
bital coverage and cloud cover, burn date estimates are some-
what uncertain (Giglio et al., 2013), which results in many lo-
cal minima that may not correspond to actual ignition points.
We applied a three-step procedure to address burn date uncer-
tainty and distinguish individual fires. First, we developed a
filter to adjust the burn date of local minima that do not cor-
respond to ignition points. Second, we set a “fire persistence”
threshold that determines how long a fire may take to spread
from one 500 m grid cell into the next, to distinguish individ-
ual fires that are adjacent but that occurred at different times
in the same fire season. Third, we developed a second filter
to correct for outliers in the burn date that occurred along the
edges of large fires. Each of these steps is described in detail
below.

The ignition point filter is based on the assumption that
the fires progress continuously through time and space. First,

all local minima were mapped within the original field of
burn dates (Fig. 2a and b). Next, each local minimum was re-
placed by the next burn date of the surrounding grid cells, and
a new map of local minima was created. If the original local
minimum remained as a part of a new, larger local minimum
with a later burn date, the fire followed a logical progression
in time and space, and the original local minimum was re-
tained. If the local minimum disappeared, the original local
minimum was likely the product of an inconsistency within
the field of burn dates rather than a true ignition point and the
burn date was adjusted forward in time to remove the origi-
nal local minimum. This step can be repeated several times,
with each new iteration further reducing the number of local
minima and increasing the confidence in ignition points, yet
each iteration also results in a greater adjustment of the orig-
inal burn date information (Fig. A1 in Appendix A). Here,
we implemented three iterations of the ignition point filter
to remove most local minima that did not spread forward
in time while limiting the scope of burn date adjustments
(Figs. 2c and d, A1 and A2). For short duration fires, the
ignition points were retained associated with the largest pos-
sible number of iterations. In all cases, if several local min-
ima were connected through a single cluster of grid cells with
the same burn date, only the local minimum with the earliest
burn date or largest number of grid cells was retained, unless
the required adjustment of the burn date was larger than the
specified burn date uncertainty in the MCD64A1 product. If
the final ignition location consisted of multiple 500 m grid
cells, we used the center coordinates to produce the ignition
point shapefile. By design, the ignition point filter cannot ad-
just the earliest burn date of a fire and thus has no influence
on estimated fire duration.

To establish the location and date of ignition points, as
well as to track the daily growth and extent of individual
fires, we used a fire persistence threshold that determined
how long a fire may take to spread from one 500 m grid cell
into the next, taking both fire spread rate and satellite cov-
erage into account (Fig. A3). For example, if ignition points
were adjacent to a fire that burned earlier in the season, this
threshold allowed the ignition points to be mapped as sep-
arate local minima despite the presence of adjacent burned
grid cells with earlier burn dates. On the other hand, if an ac-
tive fire is covered by dense clouds or smoke, multiple days
can pass before a new observation can be made, resulting in
a break in fire continuity and increasing the risk of artificially
splitting single fires into multiple parts. Using such a thresh-
old is particularly important to distinguish individual fires in
frequently burning savannas and highly fragmented agricul-
tural landscapes, where many individual small fires may oc-
cur within a relatively short time span. Because there are no
reference datasets on global fire persistence, we used a spa-
tially varying fire persistence threshold that depends on fire
frequency (Andela et al., 2017). We assumed that frequently
burning landscapes are generally characterized by faster fires
and higher ignition densities, increasing the likelihood of
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Figure 1. Flowchart showing the data-processing steps and resulting products. (a) The Global Fire Atlas algorithm tracks individual fires
and their day-to-day behavior based on the MCD64A1 Col. 6 500 m daily burned-area product starting in 2003. (b) Decomposition of burned
area into seven different components of the fire regime in the Global Fire Atlas. The output includes two annual shapefile layers (.shp) of the
ignition location and individual fire perimeters, with corresponding database files (.dbf) providing summary information for each individual
fire, including the seven key characteristics. In addition, four per-fire-year global raster maps on the 500 m sinusoidal MODIS grid (.tif)
provide details on the day-to-day fire behavior. Finally, data are summarized in a monthly 0.25◦ gridded product based on average values of
individual fires. Global Fire Atlas data layers are described in more detail in Table A1.

having multiple ignition points within large burn patches,
while infrequently burning landscapes will generally be char-
acterized by slower fire spread rates and/or fewer ignitions.
In addition, frequently burning landscapes often have a pro-
nounced dry season characterized by low cloud cover, while
infrequently burning landscapes may experience a shorter
dry season with greater obscuration by clouds. Therefore, we
used a 4 d fire persistence threshold for 500 m grid cells that
burned more than three times during the study period (2003–
2016), and a 6, 8 and 10 d fire persistence period for grid cells
that burned three times, twice or once, respectively. These
threshold values broadly correspond to biomes, with shorter
persistence values for tropical regions and human-dominated
landscapes and longer threshold values for temperate and bo-
real ecosystems with high fuel loads (Fig. A3).

Based on the location and date of the established igni-
tion points and the fire persistence thresholds, we tracked the
growth of each individual fire through time to determine its
size, perimeter and duration (Fig. 2f). For each day of the
year, we allowed individual fires to grow into the areas that
burned on that specific day, as long as the difference in burn
dates between two pixels was equal to or smaller than the
fire persistence threshold of the pixel of origin. When two

actively burning fires meet, as on day 255 for the example
fires shown in Fig. 2, grid cells that burned on the day of
the merger were divided based on nearest distance to the fire
perimeter on the previous day.

Burn date uncertainty may also lead to multiple “extinc-
tion points”, outliers in the estimated day of burn along the
edges of a fire. Environmental conditions such as cloud cover
complicate the precise estimation of the date of fire extinc-
tion, as rainfall events extinguish many fires, and pixels at
the edge of the fire may be partially burned and therefore
harder to detect. In addition, the contextual relabeling phase
of the MCD64A1 algorithm increases burn date uncertainty
for extinction points based on a longer consistency threshold
(Giglio et al., 2009). We used a second filtering step to adjust
the burn date for extinction points (if required). Outliers were
adjusted to the nearest burn date back in time if (1) they rep-
resented a cluster no more than one to four grid cells (0.21–
0.9 km2) along the edge of a fire that was as least 10 times
larger, and if (2) the difference in burn dates was larger than
the fire persistence threshold of the adjacent grid cells and
thus mapped as a new fire along the edge of the larger fire. If
these criteria were met, the outliers were adjusted to the near-
est burn date back in time and incorporated within the larger
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Figure 2. Algorithm example accounting for uncertainty in the “day of burn” and identifying individual fires within large clusters of adjacent
burned pixels. (a) The original MCD64A1 Col. 6 day of burn for one burned patch in the Brazilian Cerrado (in the year 2015), and (b) local
minima or “ignition points” identified within the original day-of-burn data layer. (c) Burn date adjustment based on the filter that removes
local minima that do not progress continuously through time and space (positive adjustment), and (d) the corresponding estimate of ignition
points based on the adjusted day-of-burn field. (e) Further burn date adjustment based on the removal of outliers along the edge of the fire
(negative adjustment of extinction points), and (f) the final estimate of ignition locations and dates by the Global Fire Atlas, based on the
combined adjustments shown in (e). In (f), the red and blue lines indicate the final fire perimeters.

neighboring fire. However, if these criteria were not met (e.g.,
for burned areas larger than four grid cells), the original burn
dates and ignition points were left unadjusted, resulting in
separate fires. For the example fires shown in Fig. 2, the ad-
justment of these outliers affected four grid cells (Fig. 2e)
and effectively reduced the number of ignition points (and
resulting individual fires) from five (Fig. 2d) to two (Fig. 2f).
After adjusting these outliers (extinction points) and includ-
ing them within the larger fires, we estimated the size (km2),
duration (d) and perimeter (km) of each individual fire based
on the adjusted burn dates.

2.2 Daily fire expansion: fire line, speed and direction of
spread

The revised day-of-burn estimates were used to track the
daily expansion (km2 d−1) and length of the fire line (km)
for each individual fire. The daily estimates of fire line length
were based on the daily perimeter of the fire, where we as-
sumed that once the fire reached the edge of the burn scar
this part of the perimeter stops burning after 1 d (Fig. 3a).
The expansion of the fire (km2 d−1) is the area burned by
a fire each day. The average speed of the fire line (km d−1)
can now be calculated as the expansion (km2 d−1), divided
by the length of the fire line (km) on the same day. How-
ever, this estimate of fire line includes the head, flank and
backfire, while it is typically the head fire that moves fastest
and may be responsible for most of the burned area. More-

over, fire dynamics tend to be highly variable in space and
time. To understand the spatial variability and distribution of
fire speeds, we therefore used an alternative method to esti-
mate the speed and direction of fire spread for each individual
500 m grid cell.

To estimate the speed and direction of spread (Fig. 3), we
calculated the most likely path of the fire to reach each in-
dividual 500 m grid cell based on shortest distance. More
specifically, for each grid cell we estimated the shortest route
to connect the grid cell between two points: (1) the near-
est point on the fire line with the same day of burn and
(2) the nearest point on the previous day’s fire line. This route
was forced to follow areas burned on the specific day. For
each point on this route, or “fire path”, the speed of the fire
(km d−1) was estimated as the length of the path (km) di-
vided by 1 d (d−1) and the direction as the direction of the
next grid cell on the fire path. Since each grid cell is sur-
rounded by eight other grid cells, this resulted in eight possi-
ble spread directions: north, northeast, east, southeast, south,
southwest, west and northwest. For ignition points that repre-
sented a cluster of 500 m grid cells with the same burn date,
we assumed that the fire originated in the center point of the
cluster (pixel with largest distance to the final fire perimeter
by the end of day 1) and spreads towards the perimeter of the
fire by the end of day 1 over the course of 1 d. For single pixel
fires, we assumed the fire burned across 463 m (1 pixel) dur-
ing a single day, and we did not assign a direction of spread.
Similarly, fires of all sizes that burned on a single day were
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Figure 3. Sub-daily estimates of fire progression can be used to estimate spatiotemporal variation in fire speed and direction of spread.
(a) Daily progression of the fire line, (b) interpolated estimates of sub-daily time of arrival, (c) fire speed (km d−1) and (d) direction of
spread. The light gray areas in (a) are burned areas between fire lines and correspond to areas of relatively high fire speed. White areas were
not burned.

not assigned a direction of spread. We corrected estimates of
both speed and direction for the orientation between 500 m
grid cells on the MODIS sinusoidal projection that vary with
location. When a particular grid cell formed part of multiple
fire paths, the earliest time of arrival or the highest fire speed
and corresponding direction of spread were retained. This as-
sures a logical progression of the fire in time and space and
corresponds to fires typically moving fastest in a principal
direction and then spreading more slowly along the flank.

2.3 Preliminary accuracy assessment

Few large-scale datasets are available on daily or sub-daily
fire dynamics, highlighting the novelty of the Global Fire At-
las dataset but also posing challenges for validation. Here, we
used four alternative datasets to carry out an initial accuracy
assessment. First, we used active-fire detections to assess the
temporal accuracy of the Global Fire Atlas burn date. Sec-
ond, we compared fire perimeters to independent fire perime-
ter data for the continental US. Third, we combined the in-
dependent data on fire perimeters with active-fire detections
to evaluate the Global Fire Atlas fire duration estimates. Fi-
nally, we compared Global Fire Atlas data to a small (man-
ually compiled) dataset of daily fire perimeters from the US
Forest Service.

To evaluate burn dates in the Global Fire Atlas, we used
the 375 m resolution active-fire detections (VNP14IMGML
C1) derived from the Visible Infrared Imaging Radiometer

Suite (VIIRS) instrument aboard the Suomi National Polar-
orbiting Partnership (Suomi-NPP) satellite (Schroeder et al.,
2014). Active-fire detections provide accurate information
on the burn date, particularly in ecosystems with low fuel
loads where fires will typically be only active during a sin-
gle day in each particular grid cell. We compared the date of
active-fire detections from VIIRS within each larger 500 m
MODIS grid cell (based on VIIRS center point) to the ad-
justed MCD64A1 day of burn to understand the temporal
precision of the derived Global Fire Atlas products. If sev-
eral active-fire detections were available for a single 500 m
MODIS grid cell, we reported the day closest to the temporal
mean. We compared all 500 m MODIS grid cells with cor-
responding active-fire detection during the overlapping data
period (2012–2016) for four different ecosystems globally:
(1) forests (including all forests), (2) shrublands (including
open and closed shrublands), (3) woody savannas, and (4) sa-
vannas and grasslands, with the land cover type derived from
MODIS MCD12Q1 Col. 5.1 data for 2012 using the Univer-
sity of Maryland (UMD) classification (Friedl et al., 2002).

We compared fire perimeters from the Global Fire At-
las to fire perimeter estimates from the Monitoring Trends
in Burn Severity (MTBS) project during their overlapping
period (2003–2015). The MTBS project provides semiauto-
mated estimates of fire perimeters based on 30 m Landsat
data for fires with a minimum size of 1000 acres (405 ha)
in the western US and 500 acres (202 ha) in the eastern
US (Eidenshink et al., 2007; Sparks et al., 2015). To deter-
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mine overlap between MTBS and Fire Atlas perimeter esti-
mates, we rasterized the MTBS perimeters onto the 500 m
MODIS sinusoidal grid, including all 500 m grid cells with
their center point within the higher-resolution (30 m) MTBS
fire perimeter. For all overlapping fire perimeters, we com-
pared the original MTBS fire perimeter information with the
Fire Atlas estimates of fire perimeters. In cases with multi-
ple overlapping perimeters, fires with the largest overlapping
surface area were compared.

We also combined MTBS fire perimeters with VIIRS
active-fire detections to derive an alternative estimate of fire
duration (2012–2015). To estimate fire duration from these
products, we first determined the median burn date of each
fire according to the MCD64A1 burned-area data. Subse-
quently, we included all VIIRS active-fire detections before
and after the median or “center” burn date until a period of
three fire-free days was reached. Any active-fire detections
that occurred outside this timeframe were excluded to avoid
overestimation of the fire duration due to smoldering or pos-
sible false detections before or after the fire. Two thresholds
were used to select a subset of MTBS and Fire Atlas perime-
ters to assess the accuracy of estimated fire duration. Fires
were first matched based on perimeters, with a maximum
tolerance of a threefold difference in length between perime-
ters. Second, we further selected MTBS perimeters with VI-
IRS active-fire detections for at least 25 % of the 500 m Fire
Atlas grid cells. These thresholds excluded 51 % of the over-
lapping fire perimeters but reduced errors originating from
cloud cover or differences in the underlying burned-area es-
timates (e.g., resolution, methodology) to evaluate estimated
fire duration. Similar to the assessment of burn date accu-
racy, comparisons of fire perimeters and fire duration with
MTBS data over the continental US were grouped into four
land cover types: (1) forests, (2) shrublands, (3) woody sa-
vannas, and (4) savannas and grasslands.

For specific large wildfires across the western US, the US
Forest Service National Infrared Operations (NIROPS; https:
//fsapps.nwcg.gov/nirops/, last access: 1 September 2018)
estimates daily fire perimeters for fire management purposes
by collecting aircraft high-resolution infrared imagery. This
imagery is manually analyzed by trained specialists to ex-
tract the active fire front. Although these data provide a
wealth of information, only a small number of fires are com-
pletely and precisely documented. We were able to extract
15 large fires from the NIROPS database for which daily
perimeter information was available. Although insufficient
for full-scale validation, the comparison with NIROPS data
provides valuable insights into the strengths and shortcom-
ings of the Global Fire Atlas estimates of individual fire size,
duration and expansion rates. In addition to per-fire averages,
we compared day-to-day expansion rates (km2 d−1) of indi-
vidual large fires across both datasets. If multiple Global Fire
Atlas perimeters overlapped with a single US Forest Service
fire perimeter, we compared the fires with the largest over-
lapping surface area.

3 Results

3.1 Preliminary accuracy assessment

At the pixel scale, estimated burn dates from burned-area and
active-fire products were comparable (Fig. 4), with greater
variability across biomes than from minor burn date adjust-
ments in the Global Fire Atlas algorithm. Burn dates esti-
mated from MODIS burned-area and VIIRS active-fire de-
tections were least comparable in high-biomass ecosystems
with lower fire spread rates. In forests and woody savannas
24 % and 35 % of burned pixels were detected on the same
day and 54 % and 67 % within±1 d, respectively (Fig. 4a and
c). With decreasing biomass, the direct correspondence be-
tween burn dates from burned-area and active-fire detections
increased to 41 % (same day) and 80 % (±1 d) in shrublands
(Fig. 4b) and 40 % (same day) and 75 % (±1 d) in savan-
nas and grasslands (Fig. 4d). These differences likely stem
from the combined increase in the uncertainty of burn date in
higher-biomass ecosystems and the influence of fire persis-
tence (multiple active-fire days in a single 500 m grid cell) on
the ability to reconcile the timing of burned-area and active-
fire detections in these ecosystems. Several factors may ac-
count for the positive bias in the 500 m day of burn from
burned-area compared to active-fire detections, including or-
bital coverage, cloud and smoke obscuration, and different
thresholds between burned-area and active-fire algorithms re-
garding the burned fraction of a 500 m grid cell. The adjust-
ments we made to the burn date in the Global Fire Atlas,
required to effectively determine the extent and duration of
individual fires, had a relatively small effect on the overall
accuracy assessment but tended to reduce the negative bias in
burn dates and increase the positive bias compared to the un-
derlying MCD64A1 Col. 6 product (see red and black lines in
Fig. 4). In line with these findings, we found good agreement
between a 3 d running average of the Global Fire Atlas and
US Forest service estimates of daily fire expansion but re-
duced correspondence for daily estimates of fire growth rates
due to uncertainty in the day of burn of the burned-area prod-
uct (Fig. B1 in Appendix B).

For fire perimeters, the best agreement between the Global
Fire Atlas and MTBS was found in forests and shrublands,
where the Global Fire Atlas reproduced 65 % and 61 %
of the observed variance in MTBS fire perimeters, respec-
tively (Fig. 5). Less agreement was found for woody savan-
nas (38 %) and savannas and grasslands (41 %). Overall, the
Global Fire Atlas underestimated fire perimeter length in all
of the vegetation classes. However, uncertainty exists in both
datasets. Orthogonal distance regression (ODR) accommo-
dates uncertainties in both datasets and generally resulted in
slopes closer to the 1 : 1 line, indicating closer correspon-
dence, on average, in absolute perimeter estimates for the
two datasets. An in-depth comparison of the performance
of the Global Fire Atlas and the MTBS datasets for sev-
eral grassland fires in Kansas (US) suggested that differences
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Figure 4. Global comparison of burn dates derived from the
MCD64A1 burned-area product, the Global Fire Atlas and VI-
IRS active-fire detections (2012–2016). (a) Forests, (b) shrublands,
(c) woody savannas, and (d) savannas and grasslands. Negative val-
ues indicate pixels with a burned-area day of burn earlier than the
corresponding VIIRS active-fire detection, zero indicates no differ-
ence in day of burn between both datasets, and positive numbers
indicate a delayed detection of burned-area compared to active-fire
detections.

originated both from the underlying burned-area datasets and
the methodologies (Fig. B2). For this particular grassland in
Kansas, the MCD64A1 product estimated less burned area
compared to the Landsat-based MTBS dataset, resulting in
fragmentation of larger burn scars into disconnected patches.
However, the daily temporal resolution of the MCD64A1
burned-area product allowed for recognition of individual ig-
nition points within larger burn patches of fast-moving grass-
land fires that cannot be separated using infrequent Land-
sat imagery (Fig. B2). In addition, the 30 m spatial resolu-
tion of the MTBS perimeters may result in more irregular-
ity and therefore in longer fire perimeter estimates compared
to the 500 m resolution Fire Atlas perimeters. Combined,
these trade-offs in spatial and temporal resolution resulted
in less agreement between fire perimeters in woody savannas
(Fig. 5c) and savannas and grasslands (Fig. 5d).

Initial assessment of the accuracy of fire duration esti-
mates from the Global Fire Atlas highlighted differences in
the sensitivity of satellite-based burned-area and active-fire
products to fire lifetime (Fig. 6). Similar to fire perimeters,
the best agreement in fire duration estimates was found for
forests, where the Global Fire Atlas reproduced 51 % of the
observed variance of the fire duration estimates based on
combining MTBS fire perimeters with active-fire detections.

Shrublands, woody savannas, and savannas and grasslands
had lower correlations, with 27 %, 30 %, and 33 % of the
variance explained, respectively. The orthogonal distance re-
gression resulted in slopes close to the one-to-one line for
shrublands and savannas and grasslands, indicating reason-
able agreement. Fire duration was clearly underestimated for
forested ecosystems with high fuel loads, as fires may con-
tinue to smolder for days (resulting in active-fire detections)
after the fire has stopped expanding.

The comparison of Global Fire Atlas data to a small
dataset (n= 15) of daily perimeters of large wildfires in pri-
marily forested cover types mapped by the US Forest Service
yielded good correspondence between estimates of fire size,
duration and expansion rate (Fig. 7). The improved compar-
ison of fire size (cf. Figs. 5a and 7a) could be related to the
US Forest Service data being more accurate than MTBS but
likely also represents the good performance of the Global
Fire Atlas (e.g., compare Fig. 7a, b, and c to d, e, and f)
and underlying burned-area products (Fusco et al., 2019) for
relatively large fires. In contrast to the suggested underesti-
mate of fire duration shown in Fig. 6a, these data suggest
the Global Fire Atlas may slightly overestimate fire duration.
This difference may reflect the fact that active-fire detections
may be triggered by smoldering while the burned-area prod-
uct will only register the initial changes in surface reflectance
from fire. Both comparisons (Figs. 6, 7b and e) suggest the
Global Fire Atlas may overestimate the duration of smaller
fires with relatively short duration, likely based on the un-
certainty in underlying burn dates. Based on a small under-
estimate of overall burned area and an overestimate of fire
duration by the Global Fire Atlas, the average daily fire ex-
pansion rates based on US Forest Service data were higher
than estimates based on Global Fire Atlas data (Fig. 7c and
f).

3.2 Characterizing global fire regimes

Over the 14-year study period, we identified 13 250 145 in-
dividual fires with an average size of 4.4 km2 (Table 1) and
minimum size of one MODIS pixel (21 ha or 0.21 km2). On
average, the largest fires were found in Australia (17.9 km2),
boreal North America (6.0 km2) and Northern Hemisphere
Africa (5.1 km2), while Central America (1.7 km2), equato-
rial Asia (1.8 km2) and Europe (2.0 km2) had the smallest
average fire sizes (Table 1). Spatial patterns of the number
of ignitions and fire sizes were markedly different and often
inversely related (Fig. 8). Burned area in agricultural regions
and parts of the humid tropics, particularly in Africa, resulted
from high densities of fire ignitions and relatively small fires,
consistent with widespread use of fire for land management.
Large fires accounted for most of the burned area in arid re-
gions, high latitudes, and other natural areas with low pop-
ulation densities and a sufficiently long season of favorable
fire weather (Fig. 8).
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Figure 5. Comparison of fire perimeter estimates based on the Global Fire Atlas and MTBS for the continental US (2003–2015). (a) Forests,
(b) shrublands, (c) woody savannas, and (d) savannas and grasslands. Red lines indicate the slope between both datasets based on ordinary
least squares (OLS) with corresponding r2 values, while blue lines are based on orthogonal distance regression (ODR). For the scatterplots,
darker gray or black indicates a greater density of points.

Global patterns of fire duration and expansion rates pro-
vide new insight about the occurrence of large fires, as the
size of each fire (km2) is the product of fire duration (d)
and daily fire expansion rate (km2 d−1). Individual fires that
burned for a week or more occurred frequently across the
productive tropical grasslands and in boreal regions (Fig. 9a,
Table 2). In these regions, fire duration exerted a strong con-
trol on fire size and total burned area. On average, human-
dominated landscapes, such as deforestation frontiers or agri-
cultural regions, experienced smaller and shorter fires com-
pared to natural landscapes (Table 2). Fire duration was also
relatively short in semiarid grasslands and shrublands char-
acterized by high daily fire expansion rates, based on the
development of long fire lines (Fig. 9b and c) and high
velocity. In these semiarid regions, fire duration and size
were likely limited by fuel availability and connectivity. In
line with these findings, the largest average daily expan-
sion rates were found in Australia (1.7 km2 d−1), Northern
Hemisphere Africa (0.9 km2 d−1) and Southern Hemisphere
Africa (0.9 km2 d−1), and the smallest expansion rates were

found in Central America (0.3 km2 d−1), equatorial Asia
(0.3 km2 d−1) and Southeast Asia (0.4 km2 d−1; Table 1).

The fastest fires occurred in arid grasslands and shrub-
lands (Fig. 10a), where fuel structure, climate conditions
and emergent properties of large wildfires contribute to high
fire spread rates. Relatively high fire speeds were also ob-
served in some parts of the boreal zone, particularly in cen-
tral and western Canada. The lowest fire velocities were ob-
served in infrequently burning humid tropical regions where
fire spread was influenced by higher fuel loads and humid-
ity (Table 1). At all scales, estimated fire direction exhibited
considerable complexity (Fig. 10b). With some regional ex-
ceptions, no clear dominant spread direction was found in
South America or Africa. Based on the underlying 500 m
data layers, landscape structure and drainage patterns played
an important role in controlling individual fire spread direc-
tion in the humid tropics. Fire spread direction also varied
considerably within individual fires, and the dominant direc-
tion typically represented less than half of the pixels. Fire
spread direction was more consistent in the arid tropics, as
demonstrated by the northwest and southeast orientation of
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Figure 6. Comparison of fire duration estimates from the Global Fire Atlas and the combination of VIIRS active-fire detections within MTBS
fire perimeters for the continental US (2012–2015). (a) Forests, (b) shrublands, (c) woody savannas, and (d) savannas and grasslands. Red
lines indicate the slope between both datasets based on ordinary least squares (OLS) with corresponding r2 values, while blue lines are based
on orthogonal distance regression (ODR). For the scatterplots, darker gray or black indicates a greater density of points. This comparison was
made for a subset of MTBS and Global Fire Atlas perimeters using selection criteria for perimeter overlap and VIIRS active-fire detections
described in Sect. 2.3.

fire spread in Australia, consistent with the dominant wind
directions. At midlatitudes, we found evidence for more east-
ward and westward fire progression in Europe and Asia and a
northwest and southeast spread direction in North America,
broadly consistent with the orientation of mountain ranges
and other topographic features within the key biomass burn-
ing regions.

3.3 Fire extremes

The world’s largest individual fires were mostly found
in sparsely populated arid and semiarid grasslands and
shrublands of interior Australia, Africa, and Central Asia
(Fig. 11a). Strikingly, fires of these proportions were nearly
absent in North and South America, possibly due to higher
landscape fragmentation and different management prac-
tices, including active fire suppression. In arid regions of
Southern Africa and Australia, large fires typically followed
La Niña periods (e.g., 2011 and 2012), when increased rain-
fall and productivity increase fuel connectivity (Chen et al.,

2017). The largest fire in the Global Fire Atlas occurred
in northern Australia, burning across 40 026 km2 (about the
size of Switzerland or the Netherlands) over a period of 72 d
with an average speed of 19 km d−1, following the 2007 La
Niña. The longest fires burned for over 2 months in sea-
sonal regions of the humid tropics and high-latitude forests
(Fig. 11b). Drought conditions in 2007 and 2010 caused mul-
tiple fires to burn synchronously for over 2 months across
tropical forests and savannas in South America. The highest
fire velocities typically occurred in areas of low fuel loads.
While fires larger than 2500 km2 were nearly absent from
arid grass and shrublands in North and South America, pat-
terns of extremely fast-moving fires in arid grass and shrub-
lands were similar to other continents. Fast-moving fires also
show evidence of synchronization, for example with several
extremely fast fires that burned across the steppe of eastern
Kazakhstan during 2003 (Fig. 11c).
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Figure 7. Comparison of Global Fire Atlas (GFA) and US Forest Service (FS) data for a selected number of large wildfires in the US.
Comparison of (a) fire size, (b) duration and (c) average daily expansion rate for all fires (N = 15); (d), (e) and (f) are like (a), (b) and (c) but
for fires smaller than 250 km2 (N = 12). Correlation coefficients are provided based on linear regression with (yellow) and without (green)
an intercept, assuming a nonzero intercept could indicate a structural offset between both datasets. Root-mean-square deviations (RMSD)
are reported in blue.

Table 1. Fire attributes for each Global Fire Emissions Database (GFED) region during 2003–2016. Ignitions are the summed ignitions over
the study period (2003–2016). For size, duration, expansion and speed we report the mean values for individual fires and also the mean
weighted by fire size (the latter estimate is provided in parentheses). For ignitions, regions with over a million ignitions are shown in bold
font and lower values in italic font. For other fire aspects, values equal to or above the global average are shown in bold font and below the
global average in italic font. A map of the GFED regions is shown in Appendix B (Fig. B3a).

GFED region Ignitions (2003–2016) Size (km2) Duration (d) Expansion (km2 d−1) Speed (km d−1)

World 13 250 145 4.4 (395.9) 4.5 (14.7) 0.6 (14.5) 0.9 (3.2)

Boreal North America 57 613 6.0 (202.8) 5.4 (23.3) 0.5 (6.8) 1.0 (4.3)
Temperate North America 137 900 2.9 (136.7) 4.7 (13.4) 0.5 (8.8) 0.8 (3.7)
Central America 229 245 1.7 (28.3) 4.3 (12.2) 0.3 (1.5) 0.7 (1.4)
Northern Hemisphere South America 242 359 3.1 (50.1) 5.1 (12.4) 0.5 (3.3) 0.8 (2.1)
Southern Hemisphere South America 1 320 177 3.0 (90.6) 4.7 (13.8) 0.5 (4.8) 0.7 (2.3)
Europe 71 233 2.0 (30.7) 4.6 (10.3) 0.4 (2.7) 0.7 (2.0)
Middle East 86 783 2.3 (22.0) 4.0 (9.8) 0.5 (2.1) 0.8 (1.9)
Northern Hemisphere Africa 3 517 808 5.1 (186.2) 4.4 (14.7) 0.7 (8.6) 0.9 (3.0)
Southern Hemisphere Africa 5 000 436 4.3 (232.5) 4.5 (13.5) 0.7 (9.6) 0.9 (2.6)
Boreal Asia 363 279 3.7 (116.8) 4.5 (15.6) 0.5 (6.8) 1.0 (4.1)
Central Asia 807 739 3.2 (339.7) 4.2 (11.5) 0.5 (22.7) 0.8 (5.6)
Southeast Asia 937 810 2.2 (27.8) 4.1 (13.2) 0.4 (1.8) 0.7 (1.8)
Equatorial Asia 117 870 1.8 (13.5) 5.5 (16.4) 0.3 (0.8) 0.7 (1.3)
Australia and New Zealand 358 807 17.9 (2030.6) 5.0 (20.5) 1.7 (59.5) 1.2 (6.1)

www.earth-syst-sci-data.net/11/529/2019/ Earth Syst. Sci. Data, 11, 529–552, 2019



540 N. Andela et al.: The Global Fire Atlas

Table 2. Fire attributes by GFED fire type during 2003–2016. Ignitions are the summed ignitions over the study period (2003–2016). For
size, duration, expansion and speed we report the mean values for individual fires and also the mean weighted by fire size (the latter estimate
is provided in parentheses). For agriculture, we only included fires with greater than 90 % of burned area classified as cropland. For ignitions,
fire types with over a million ignitions are shown in bold font and lower values in italic font. For other fire aspects, values equal to or above
the global average are shown in bold font and below the global average in italic font. A map of the GFED fire types is shown in Appendix B
(Fig. B3b).

GFED fire type Ignitions (2003–2016) Size (km2) Duration (d) Expansion (km2 d−1) Speed (km d−1)

All 13 250 145 4.4 (395.9) 4.5 (14.7) 0.6 (14.5) 0.9 (3.2)

Boreal forest 197 124 5.2 (149.2) 5.4 (20.1) 0.6 (6.5) 1.0 (4.2)
Temporal forest 178 909 2.5 (84.1) 4.1 (14.0) 0.4 (4.2) 0.8 (2.8)
Deforestation 909 826 1.4 (28.7) 3.8 (13.7) 0.3 (1.4) 0.6 (1.4)
Savanna 9 809 719 5.1 (447.5) 4.6 (14.9) 0.7 (16.2) 0.9 (3.4)
Agriculture 1 631 918 1.4 (26.4) 3.4 (10.3) 0.3 (2.0) 0.7 (1.9)

Figure 8. Average global burned area (MCD64A1), ignition den-
sity and fire size over the study period 2003–2016. For any given
location, burned area in panel (a) can be represented as the product
of ignitions per year shown in (b) and fire size shown in (c).

4 Discussion

The Global Fire Atlas is the first freely available global
dataset to provide daily information on seven key fire charac-
teristics: ignition timing and location, fire size and duration,
and daily expansion, fire line length, speed, and direction of
spread based on moderate-resolution burned-area data. Over
the 2003–2016 study period, we identified over 13 million
individual fires (≥ 21 ha) (Table 1). Characteristics of these
fires varied widely across ecosystems and land use types. In
arid regions and other fire-prone natural landscapes, most of

Figure 9. Average fire duration (a), fire line length (b) and daily ex-
pansion (c) over the study period 2003–2016. Fire size (see Fig. 8c)
is the product of fire duration (a) and daily fire expansion (c).

the burned area resulted from a small number of large fires
(Fig. 8). Fire sizes declined along gradients of increasing
rainfall and human activity, with larger numbers of small fires
in the humid tropics or other human-dominated landscapes.
Multiday fires were the norm across nearly all landscapes,
with some large fires in productive tropical grasslands and
boreal regions burning for over 2 months during drought pe-
riods (Fig. 11). The dominant control on fire size also var-
ied across ecosystems: fire duration was the principal con-
trol on fire size in boreal forests, whereas fuels limited the
size of fast-moving fires in arid grasslands and shrublands
(Figs. 9 and 10). Characterizing fire behavior across large
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Figure 10. Average fire speed (a) and the dominant direction of fire spread (b) over the study period 2003–2016. For each 0.25◦ grid cell
the direction was estimated as the dominant fire spread direction of fires larger than 10 km2 within the grid cell. We focused on larger fires
(≥ 10 km2) to determine the dominant spread direction because large fires will generally express a clearer spatiotemporal structure of fire
spread at a 500 m daily resolution. Pie charts show the fraction of individual larger fires (≥ 10 km2) by dominant spread direction for each
continent.

scales is key for understanding fire–vegetation feedbacks,
emissions estimates, fire prediction and effective fire man-
agement, as well as for building mechanistic models of fires
within ecosystem models. Satellite remote sensing has been
widely used to characterize global pyrogeography (Archibald
et al., 2013) and fire–climate interactions (Westerling et al.,
2006; Alencar et al., 2011; Morton et al., 2013a; Field et al.,
2016; Young et al., 2017). Despite this progress, large-scale
understanding of individual fire behavior has remained lim-
ited by the availability of consistent global-scale data prod-
ucts. Analysis and future refinement of the Global Fire Atlas
may be useful in this context, providing new insight about
the response of fires to different global change drivers.

Both climate and human activity exert a strong control on
global burned area (Bowman et al., 2009) and contribute to
rapidly changing fire regimes worldwide (Jolly et al., 2015;
Andela et al., 2017; Earl and Simmonds, 2018). Moreover,
increasing human presence in fire prone ecosystems requires
increased efforts to actively manage fires for ecosystem con-
servation and human well-being (Moritz et al., 2014; Knorr
et al., 2016). The ignition location, spread and duration of
individual fires can be used to address new questions in the
field of fire–climate interactions and the changing influence
of human activity on fire behavior, as each of these metrics
may respond differently to variability or change. For exam-
ple, recent studies have suggested that climate warming and
drying may increase fire size and burned area in the tropics
(Hantson et al., 2017) and at higher latitudes (Yang et al.,

2015). Our findings suggest that an increase in the length
of the fire season may be the dominant driver for increases
in fire activity in these ecosystems, as fire duration was a
strong control on eventual fire size and burned area (Figs. 8,
9 and 11). Investigating fire–climate interactions and human
controls on burned area using the Fire Atlas data layers will
benefit management efforts and scientific investigations, as
fire alters vegetation structure (Bond et al., 2005; Staver et
al., 2011), biogeochemical cycles (Bauters et al., 2018; Pel-
legrini et al., 2018) and climate (Randerson et al., 2006; Ward
et al., 2012).

The Global Fire Atlas provides several new constraints
that could improve the representation of fires in ecosystem
and Earth system models. Fire models embedded in dynamic
vegetation models are important tools for understanding the
changing role of fires in the Earth system and the impacts
of fires on ecosystems (Hantson et al., 2016; Rabin et al.,
2017). Most global models of fire activity are calibrated us-
ing satellite-derived estimates of total burned area or active
fires (Hantson et al., 2016), rather than individual fire char-
acteristics such as fire size. As a result, many of these fire
models capture the spatial distribution of global fire activ-
ity but not burned-area trends (Andela et al., 2017) or the
interannual variability that may occur as a consequence of
changes in fire spread rate or duration. Models range from
simple empirical schemes to complex, process-based repre-
sentations of individual fires (Hantson et al., 2016; Rabin et
al., 2017). Process-based models estimate burned area as the
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Figure 11. Location and year of the largest, longest and fastest fires
over the study period 2003–2016. (a) Fires larger than 2500 km2,
(b) fires longer than 60 d and (c) fires with an average veloc-
ity higher than 25 km d−1. The background image depicts mean
MODIS normalized difference vegetation index (NDVI, 2003–
2016), an indicator for large-scale vegetation patterns and available
fuels.

product of fire ignitions and size, while many models in-
clude a dynamic rate of spread to determine eventual fire
sizes (e.g., SPITFIRE; Thonicke et al., 2010) but use arbi-
trary threshold values for key parameters such as fire dura-
tion (Hantson et al., 2016). We found that global patterns of
fire duration, ignition, size and rate of spread (i.e., speed) var-
ied widely across ecosystems and human land management
types, and thus these Global Fire Atlas data products provide
additional pathways to benchmark models of various levels
of complexity. While only a few models include multiday
fires (e.g., Pfeiffer et al., 2013; Le Page et al., 2015; Ward
et al., 2018), we found that multiday fires were the norm
across most biomes and that fire duration forms an important
control on eventual fire sizes and burned area in many natu-
ral ecosystems with abundant fuels. Similarly, many models
assume relatively homogeneous fuel beds, while our results
suggest that landscape features and vegetation patterns result
in highly heterogeneous fuel beds that form a strong con-
trol on fire spread (speed and direction). Large differences in
fire behavior across ecosystems and management strategies
may improve fire emissions estimates and emission forecast-
ing, particularly when combined with active-fire detections
to better characterize different fire stages including the smol-
dering phase (Kaiser et al., 2012). Recent studies have shown
that fire emission factors may vary widely depending on fire

behavior (van Leeuwen and van der Werf, 2011; Parker et
al., 2016; Reisen et al., 2018), while improved knowledge of
fire–climate interactions is crucial for emissions forecasting
(Di Giuseppe et al., 2018).

The Global Fire Atlas methodology builds on a range of
previous studies that have used daily moderate-resolution
satellite imagery to estimate individual fire size (Archibald
and Roy, 2009; Hantson et al., 2015; Frantz et al., 2016; An-
dela et al., 2017), shape (Nogueira et al., 2016; Laurent et
al., 2018), duration (Frantz et al., 2016) and spread dynamics
(Loboda and Csiszar, 2007; Coen and Schroeder, 2013; Sá
et al., 2017). We provide the first fire-progression-based al-
gorithm to map individual fires across all biomes, including
the first global estimates of the timing and location of igni-
tions, fire size and duration, and daily expansion, fire line
length, speed, and direction of spread. Several previous stud-
ies have estimated fire size distributions based on a flood fill
algorithm, where all neighboring pixels within a certain time
threshold are classified as the same fire (Archibald and Roy,
2009; Hantson et al., 2015). Interestingly, we found simi-
lar spatial patterns of fire size (cf. Fig. 8 and Archibald et
al., 2013; Hantson et al., 2015), although absolute estimates
may show large differences based on the “cutoff” value used
within the flood fill approach (Oom et al., 2016) and, to a
lesser extent, based on the fire persistence threshold used
here. Spatial patterns of fire size and duration also compared
favorably with estimates of Frantz et al. (2016) for south-
ern Africa (Fig. 9a) and estimates of fire speed by Loboda
and Csiszar (2007) for Central Asia (Fig. 10a). Here, we
compared our results to fire perimeter estimates from the
MTBS (Eidenshink et al., 2007; Sparks et al., 2015). Moder-
ate agreement was found for forested ecosystems and shrub-
lands, but results differed more in grassland biomes (Fig. 5).
Interestingly, we found that the poor agreement in grasslands
stemmed from differences in the spatial and temporal resolu-
tion of the burned-area estimates (Fig. B2). In line with pre-
vious studies, we found that the coarser resolution (500 m) of
the MODIS burned-area data used to develop the Global Fire
Atlas sometimes underestimated overall burned area (e.g.,
Randerson et al., 2012; Rodrigues et al., 2019; Roteta et
al., 2019), fragmenting individual large fires. However, the
Landsat-based MTBS data at 30 m resolution were unable to
distinguish individual fires within large burn patches of fast-
moving grassland fires based on infrequent Landsat satellite
overpasses (Fig. B2).

An initial accuracy assessment of Global Fire Atlas fire
perimeter estimates for the continental US revealed sev-
eral important limitations and opportunities for further de-
velopment of individual fire characterization using satellite
burned-area data. In addition to the accuracy assessment of
fire perimeters, we also investigated the temporal accuracy
of the Global Fire Atlas (Fig. 4), as well as the fire dura-
tion estimates (Fig. 6) based on active-fire detections. Low
to moderate correlations (r2 ranging from 0.3 to 0.5) were
found between Global Fire Atlas fire duration estimates and
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fire duration estimates based on a combination of MTBS
fire perimeters and VIIRS active-fire detections. Disagree-
ment partly originated from differences in fire perimeter es-
timates as well as differences between the day-of-burn esti-
mates derived from the MCD64A1 burned-area data and VI-
IRS active-fire detections. Moreover, the uncertainty in the
burn date of the underlying burned-area product is typically
at least 1 d, resulting in a large uncertainty in the fire duration
estimates of shorter fires (Fig. 6). The temporal accuracy of
the Global Fire Atlas adjusted burned area, compared to VI-
IRS active-fire detections, ranged from 41 % on the same day
and 80 % within ±1 d in shrublands to and 24 % (same day)
and 54 % (±1 d) in forests. However, in forested ecosystems
the use of active-fire detections for validation purposes is not
ideal, as fires may smolder for days, triggering active-fire
detections after the fire front has passed. Understanding the
temporal accuracy of the Global Fire Atlas products is impor-
tant for linking individual fire dynamics to fire weather, and
we found good agreement between Global Fire Atlas and US
Forest Service fire expansion using a 3 d running average but
less good agreement for individual days based on burn date
uncertainty (Fig. B1). Other parameters, including fire speed
and direction of spread, were not validated during this stage.
However, our comparison to daily fire perimeter estimates
from the US Forest Service showed good agreement in terms
of average expansion rates, suggesting reasonable overall es-
timates of speed (Fig. 7). Overall, there is a need to develop
additional validation methodologies and data products to ad-
vance our understanding of satellite-derived estimates of in-
dividual fire behavior, building on the long-standing efforts
for burned-area (Boschetti et al., 2009) and active-fire detec-
tions (Schroeder et al., 2008).

In addition to the Global Fire Atlas algorithm, the data
quality also depends on the underlying global burned-area
product (MCD64A1 Col. 6). In particular, several recent
studies have shown that moderate-resolution burned-area
products are unable to adequately map the occurrence of
small fires (∼≤ 100 ha) in the United States (Fusco et al.,
2019) and savanna regions of Brazil (Rodrigues et al., 2019)
and Africa (Roteta et al., 2019), resulting in a considerable
underestimate of global burned area (Randerson et al., 2012;
Giglio et al., 2018). Therefore, care should be taken when
using the Global Fire Atlas for cropland regions or other re-
gions dominated by small fires (see Fig. 8c). The quality of
derived parameters in the Global Fire Atlas for these same re-
gions also depends on the fire persistence threshold we used
to identify when fires spread from one grid cell into the next.
The thresholds we used may be more appropriate for analy-
sis of fires in natural landscapes than in croplands with syn-
chronized small fire activity across multiple adjacent fields.
Finally, daily burned-area products do not resolve the diurnal
cycle of fire activity; fire lifetime and fire behavior may vary
widely across fire regimes (Freeborn et al., 2011; Andela et
al., 2015), and sub-daily fire dynamics cannot be resolved
in the Global Fire Atlas. In line with these limitations, we

found that Global Fire Atlas data performed best for large
fires (Figs. 5, 6 and 7). Further development of the Fire At-
las product suite is possible based on improvements in the
underlying burned-area data from multiple satellite sensors
as well as new active-fire products at higher spatial resolu-
tion (e.g., VIIRS). The Global Fire Atlas algorithm provides
a flexible framework that can be easily adjusted to work at
different spatial or temporal resolutions.

5 Data availability

The data are freely available at http://www.
globalfiredata.org (last access: 9 August 2018) and and
https://doi.org/10.3334/ORNLDAAC/1642 (Andela et al.,
2019) and in standard data product formats, and updates for
subsequent years will be distributed pending availability of
MCD64A1 burned-area data and associated research fund-
ing. Global per-fire-year shapefiles of the ignition locations
(point) and individual fire perimeters (polygon) contain
attribute tables with a unique fire ID, ignition location,
start and end dates, size, duration, and average values of
the daily expansion, fire line length, speed, and direction
of spread (Fig. 1, Table A1). In addition, gridded 500 m
global maps of the Global Fire Atlas adjusted burn dates,
daily fire line, speed and direction of spread are available
in GeoTIFF format. A monthly gridded GeoTIFF product
is also available at 0.25◦ resolution. Global Fire Atlas data
products can also be visualized and evaluated using an
online tool at http://www.globalfiredata.org (last access:
9 August 2018) to explore individual fire characteristics for
a selected region of interest.

6 Conclusions

The Global Fire Atlas is a new publicly available global
dataset that includes data on seven key fire characteristics:
ignition location and timing, fire size and duration, and daily
expansion, fire line length, speed, and direction of spread.
Over the 2003–2016 study period, we identified 13 250 145
individual fires (≥ 21 ha) based on the moderate-resolution
MCD64A1 Col. 6 burned-area data. Striking differences
were observed among global fire regimes along gradients
of ecosystem productivity and human land use. In general,
in ecosystems of abundant fuel and low human influence,
large fires of long duration dominated the total burned area,
with small fires contributing most to overall burned area
in human-dominated regions or areas too wet for frequent
fires. Fires moved quickly through arid ecosystems with low
fuel densities, but fire sizes were eventually limited by fu-
els from natural or human landscape fragmentation. The
dataset enables new lines of investigation for understanding
vegetation–fire feedbacks, climatic and human controls on
global burned area, fire forecasting, emissions modeling, and
benchmarking of global fire models.

www.earth-syst-sci-data.net/11/529/2019/ Earth Syst. Sci. Data, 11, 529–552, 2019
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Appendix A: Supporting material for the methods

Table A1. Overview of the Global Fire Atlas data layers. The shapefiles of ignition locations (point) and fire perimeters (polygon) contain
attribute tables with summary information for each individual fire, while the underlying 500 m gridded layers reflect the day-to-day behavior
of the individual fires. In addition, we provide aggregated monthly layers at a 0.25◦ resolution for regional and global analyses.

Shapefile attributes* 500 m daily gridded 0.25◦ monthly gridded

Ignitions location and timing – sum
Perimeter (km) per fire – –
Size (km2) per fire – average
Duration (d) per fire – average
Daily fire line (km) average per fire yes average
Daily fire expansion (km2 d−1) average per fire – average
Speed (km d−1) average per fire yes average
Direction of spread (–) dominant per fire yes dominant
Day of burn – yes –

* Vector data are derived from the underlying 500 m MODIS data.

Figure A1. Burn date adjustment to remove local minima that are not associated with ignition points. (a) MCD64A1 burn date estimate for
the 2015 example fires in the Brazilian Cerrado ecosystem; (b) local minima within (a). (c) Burn date adjustment after the first iteration of
the ignition point filter and (d) resulting local minima. (e) Burn date adjustment after the second iteration and (f) resulting local minima.
(g) Burn date adjustment after the third iteration and (h) resulting local minima. Note that for these particular fires there was no difference
between (e, f) and (g, h), and the final iteration has no added value here. We found that multiple iterations were particularly beneficial for
slow-moving fires in forested ecosystems.
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Figure A2. Trade-offs between reducing local minima not associated with ignition locations and adjustments made to the global burned-area
product. (a) Local minima (ignitions) detected within the daily 500 m global burned-area data for 2015 after different number of iterations of
the ignition point filter, (b) corresponding fraction of burned-area pixels with adjusted burn date and (c) corresponding number of burned-area
pixels adjusted divided by the reduction in ignition count. In this study, we used three iterations of the ignition point filter (indicated with the
dotted lines in panels a, b and c), and “0 iterations” refers to the original MCD64A1 Col. 6 burned-area data.

Figure A3. Average fire persistence threshold at 0.25◦ resolution. The fire persistence threshold determines how long a fire may take to
spread from one 500 m grid cell into the next. We used a 4 d fire persistence threshold for 500 m grid cells that burned more than three
times during the study period (2003–2016), and a 6, 8 and 10 d fire persistence period for grid cells that burned three times, twice or once,
respectively.
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Appendix B: Supporting material for the results and
discussion

Figure B1. Comparison of daily Global Fire Atlas (GFA) and US Forest Service (FS) data for a selected number of well-characterized
wildfires in the US. (a) The accumulated daily fire size (for all fires, N = 15) illustrates the ability of the Global Fire Atlas to reproduce
individual large fire sizes at any specific day over the fire lifetime (each blue dot indicates the size of a specific fire on a specific day). (b) A
3 d running average of the daily growth or “expansion” of each fire (km2 d−1) and (c) the daily expansion on each day of each fire. Panels
(d), (e) and (f) are like (a), (b) and (c) but for US Forest Service fire sizes smaller than 500 km2 or expansion rates lower than 250 km2 d−1

and corresponding Global Fire Atlas estimates (see dotted boxes in a, b and c).
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Figure B2. Comparison of Global Fire Atlas perimeters and ignition locations to estimates based on MTBS and VIIRS for frequently burning
grasslands in Kansas, US. (a) Global Fire Atlas adjusted burn dates from MCD64A1, (b) per-pixel comparison of adjusted burn dates used
within the Global Fire Atlas (GFA) to the day of the active-fire detection from VIIRS, (c) ignition points as estimated by the Global Fire Atlas,
(d) manually interpreted ignition locations (red circles) based on VIIRS active-fire detections on top of MTBS fire perimeters, (e) individual
fires as estimated by the Global Fire Atlas and (f) the MTBS burned area and individual fires. Here, MCD64A1 data underestimated the total
burned area compared to the visual interpretation of Landsat data within the MTBS project, resulting in fragmentation of individual large
fires. However, the daily temporal resolution of MODIS imagery allowed the Global Fire Atlas to distinguish individual fires and ignition
points within larger burn scars that cannot be resolved from infrequent Landsat observations used to delineate fire perimeters within the
MTBS project. Broad patterns of ignition locations identified by the Global Fire Atlas were confirmed by manual interpretation of patterns
inferred from VIIRS active-fire detections (d).
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Figure B3. Global Fire Emissions Database (GFED) regions and dominant GFED fire types used for Tables 1 and 2. (a) GFED regions used
in Table 1, and (b) GFED dominant fire type as used in Table 2. Abbreviations of the GFED regions shown in (a) are as follows: boreal North
America (BONA), temperate North America (TENA), Central America (CEAM), Northern Hemisphere South America (NHSA), Southern
Hemisphere South America (SHSA), Europe (EURO), Middle East (MIDE), Northern Hemisphere Africa (NHAF), Southern Hemisphere
Africa (SHAF), boreal Asia (BOAS), Central Asia (CEAS), Southeast Asia (SEAS), equatorial Asia (EQAS), and Australia and New Zealand
(AUST). Abbreviations of the GFED fire types shown in (b) are as follows: boreal forest (BOAF), temperate forest (TMPF), tropical forest
deforestation (DEFO), savanna (SAVA) and agriculture (AGRI).
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