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Université Paris-Saclay, CentraleSupélec, ENS Paris-Saclay, CNRS, LMPS laboratoire de Mécanique, 4
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Abstract

The description of the behavior of a material subjected to multi-physics loadings requires the

formulation of constitutive laws that usually derive from Gibbs free energies, using invariant

quantities depending on the considered physics and material symmetries. On the other hand,

most of crystalline materials can be described by their crystalline texture and the associated

preferred directions of strong crystalline symmetry (the so-called fibers). Moreover, among

the materials produced industrially, many are manufactured in the form of sheets or of thin

layers. This article has for object the study of the magneto-mechanical coupling which is

a function of the stress 𝜎𝜎𝜎 and the magnetization 𝑀𝑀𝑀 . We consider a material with cubic

symmetry whose texture can be described by one of three fibers denoted as 𝜃, 𝛾 or 𝛼′, and

which is thin enough so that both the stress and the magnetization can be considered as

in-plane quantities. We propose an algorithm able to derive linear relations between the 30

cubic invariants 𝐼𝑘 of a minimal integrity basis describing a magneto-elastic problem, when

they are restricted to in-plane loading conditions and for different fiber orientations. The

algorithm/program output is a reduced list of invariants of cardinal 7 for the {100}-oriented 𝜃

fiber, of cardinal 15 for the {110}-oriented 𝛼′ fiber and of cardinal 8 for the {111}-oriented 𝛾

fiber. This reduction (compared to initial cardinal 30) can be of great help for the formulation

of low-parameter macroscopic magneto-mechanical models.
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1. Introduction

Since the discovery of the crystalline nature of metals, and of the anisotropic nature of

the associated behaviors, metallurgists have sought to improve thermomechanical treatments

in order to develop the most favorable crystallographic textures. Research is carried out, in

particular, on magnetic materials [6, 23]. In this regard, we can cite the well-known Goss

texture for 3%silicon-iron alloys [29] used as vehicles of the magnetic flux in high power trans-

formers: the magnetic permeability in the rolling direction is greatly improved comparing

to the magnetic permeability of an isotropic 3%silicon-iron polycrystal; the coercive field is

considerably reduced, leading to a drastic decrease of energy losses per magnetization cycle.

References [26, 43, 34] thus report recent developments in this field. On the other hand,

cold rolled and annealed FeNi alloys are known to be able to develop a so-called cube tex-

ture during recrystallization [1, 44], meaning that the crystallographic frame coincides with

the sheet frame: this texture leads to a high magnetic permeability in both the rolling and

transversal (to the rolling) directions. For their part, magnetic shape memory alloys (MSMA)

are generally produced as single crystalline bulk materials since polycrystals exhibit lower

magneto-mechanical and fatigue performances. Recent works show the possibility of produc-

ing hypertextured polycrystalline Ni-Mn-Ga MSMA and possibly in the form of thin layers,

opening a wide new range of applications [28]. Conversely, the crystallographic texture can

be high and uncontrolled. This is frequently observed for very thin magnetic materials used

in high frequency electronic systems [5, 47, 22] (the small thickness allows for a better homo-

geneity of the electromagnetic fields through the thickness at very high frequency, typically

GHz). The textures encountered may vary but generally follow epitaxy rules (depending

on the sublayer orientation): the direction normal to the layer is frequently a direction of

strong crystalline symmetry. Finally, the increasing miniaturization of electronic systems is

pushing for the use of small size –therefore thin– magnetic components. We thus observe an

increasing scale confusion between component and crystals, making behaviors very sensitive

to surface effects [25]. Moreover, just like a magnetic material magnetizes under the effect

of a magnetic field, it deforms. This deformation, called magnetostriction, is the first man-

ifestation of the magneto-elastic coupling [18]. The inverse magneto-elastic coupling is the

effect of a mechanical stress on the magnetic behavior (the Villari effect) [4, 7]. Some mate-
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rials such as 3%silicon-iron or 27%cobalt-iron alloys develop such a sensitivity to mechanical

loading that a non-monotony appears : magnetic permeability increases at low stress level

(in uniaxial condition), then it decreases with increasing stress at higher stress level. Some

few explanations that have been proposed (microplasticity, stress field heterogeneity) are not

tenable because the non-monotony is reversible and the stress levels are insufficient to lead to

a magnetization rotation. The magnetostriction measurements also confirms that it is a fully

coupled magnetoelastic phenomenon that cannot be addressed by classic magnetoelasticity.

The introduction of a second-order (quadratic both in 𝜎𝜎𝜎 and in𝑀𝑀𝑀) magneto-elastic coupling

term in the expression of the Gibbs free energy density makes it possible to account for this

effect (defined as the morphic effect in [17]): simulations and model-experiment comparisons

have been proposed in [24] using a second-order isotropic approximation. The isotropic ap-

proximation is however reductive given the cubic symmetry of the medium. The development

of a cubic second order term however requires the use of a 6th order tensor. Its construction

and handling are difficult. The approach by Invariant Theory and the use of a minimal

integrity basis (see [32, 13]) are the core of a recent article dealing with magneto-elastic cou-

pling in cubic media [42]. It allows for a rigorous construction of Gibbs free energy density

at any order without missing any term.

However, this integrity basis has a large cardinal (= 30), which can make the identification

process very cumbersome, when higher order terms are involved. Indeed, during tests carried

out on thin gauge samples, quantities like strain and magnetic field are not measurable

through the thickness and the full identification of the material constants is not possible. It

joins the idea of mechanically accessible directions for measurements described in [15].

In this paper, we consider thin textured sheets for which the integrity basis given in [42]

can be reduced when only in-plane magneto-mechanical loadings are considered. Indeed, the

magnetization of the material is assumed to remain in the sheet plane due to the strong

demagnetizing fields created by any emergent magnetization [23]. This boundary condition

is completed by the usual plane stress assumption. Finally, small deformation hypothesis is

used in all formulations.

The paper is organized as follows. In section 2, we present the main concepts related to

the definition of a crystallographic texture for materials with cubic symmetry. In section 3,
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we introduce cubic magneto-elasticity energy densities and the fundamental 30 invariants 𝐼𝑘

obtained in [42] which are necessary to formulate them. The mathematical formalism used to

describe in-plane loadings and reduce the number of fundamental invariants for these loadings

is introduced in section 4. The results for the three main material fibers are provided in details

in section 5. Finally, an algorithm and its implementation in Macaulay2 to obtain relations

between the evaluated invariants 𝐼𝑘 for some given crystallographic textures is proposed in

Appendix Appendix A. The output is a minimal list of polynomial invariants that allows for

the most general expression of Gibbs free energy density to be formulated for a large set of

crystallographic textures.

2. Texture and orientation data function of crystalline materials

The crystallographic texture is a simplified description of how the individual crystal-

lites that make up the material are distributed. In materials science, Euler angles are used

to describe a single crystal orientation relative to the axes of the sample (as the reference

orthonormal frame). The following denomination is usually employed and illustrated in Fig-

ure 1: 𝑟𝑟𝑟 =RD for Rolling Direction, 𝑡𝑡𝑡 =TD for Transversal Direction and 𝑛𝑛𝑛 =ND for Normal

Direction indicate the reference orthonormal frame. Such denominations are obviously bor-

rowed from sheets metallurgy and rolling process.
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Figure 1: Illustration of reference (𝑟𝑟𝑟, 𝑡𝑡𝑡,𝑛𝑛𝑛)=(RD,TD,ND) and rotated (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3) frames using (𝜙1, 𝜓, 𝜙2)

Euler angles and Bunge rotation rules.
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The three angles defining the orientation of crystal axes relative to the reference frame

are noted (𝜙1, 𝜓, 𝜙2) using Bunge representation:

• 𝜙1 corresponds to a first rotation operation around ND axis; the new coordinate system

is named (𝑟𝑟𝑟′, 𝑡𝑡𝑡′,𝑛𝑛𝑛).

• 𝜓 corresponds to a second rotation operation around 𝑟𝑟𝑟′ axis; the new coordinate system

is named (𝑟𝑟𝑟′, 𝑡𝑡𝑡′′, 𝑒𝑒𝑒3).

• 𝜙2 corresponds to a third and last rotation operation around 𝑒𝑒𝑒3 axis; the new frame is

denoted (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3).

Associating the cubic crystallographic frame ([100] [010] [001]) to the orthonormal frame

(𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3), it is possible to observe some connection between a crystallographic axis [𝑢𝑣𝑤]

and the principal axes of the reference frame. We thus usually designate by the following

Miller indices combination

{ℎ𝑘𝑙} < 𝑢𝑣𝑤 >

a situation where {ℎ𝑘𝑙} corresponds to ND (for cubic symmetry, ℎ, 𝑘 and 𝑙 also indicate the

components of the vector normal to the sheet plane) and where < 𝑢𝑣𝑤 > corresponds to RD.
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Figure 2: Cut of Euler space for 𝜙2 = 45∘ and highlighting of some major texture components.
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Some remarkable directions do obviously correspond to a given set of Euler angles. It

is thus possible to place some of these remarkable directions in a (𝜙1, 𝜓) plane for a fixed

𝜙2. Figure 2 illustrates a cut of the Euler space for 𝜙2 = 45∘, highlighting some remarkable

orientations. The three main situations colored in red, green and blue are:

• 𝜃 fiber: {100}< 𝑢𝑣𝑤 > - the normal plane corresponding to a cube face;

• 𝛼′ fiber: {110}< 𝑢𝑣𝑤 > - the normal plane corresponding to a cube diagonal plane;

• 𝛾 fiber: {111}< 𝑢𝑣𝑤 > - the normal direction corresponding to a cube trisectrix.

When specific planes and directions are considered (and not direction and plane families),

parentheses and brackets are used. We highlight the following classical textures:

• Cube texture, belonging to 𝜃 fiber: (001)[01̄0];

• Goss texture, belonging to 𝛼′ fiber: (110)[001].

Of course, most materials do not present a single {hkl} < 𝑢𝑣𝑤 > orientation but a set of

orientations, corresponding to a set of Euler angles and defining the orientation data function

(ODF). A material is denoted as textured when this distribution is tightened on one or more

particular directions. Otherwise, it is a non-textured material. Magnetic materials obtained

by rolling process or deposit thus often present pronounced textures that can be found in the

above list 1. Some others may be described by a combination of these textures [31, 10]. A

texture can thus represent, beyond a simple assembly of crystals, the material itself, thereby

allowing for a macroscopic modeling, ignoring its multiscale nature. Within the framework

of the development of magnetoelastic constitutive laws of any order, taking into account the

existence of a texture can lead to significant simplifications. We focus our efforts on the three

main fibers listed above.

1Other textures are referenced in literature -so called brass texture, copper texture, 𝛼 fiber, 𝜖 fiber and so

on - but they do not exhibit a single crystallographic direction perpendicular to the sheet plane.
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3. Cubic magneto-elasticity

There are two main manifestations of magnetoelastic coupling in magnetic materials: the

magnetostriction and the variation of the magnetization under stress. The modeling which

is proposed in the literature is generally based either on constitutive tensors (of order 3 and

higher [24, 30]) or on well chosen invariants [19, 9]. Such a modeling can also be carried out

at different scales from microscopic to macroscopic. At the crystal scale, magnetization is

associated with the cubic (octahedral) symmetry group O which is defined by

O = {𝑔 ∈ O(3); 𝑔𝑒𝑒𝑒𝑖 = ±𝑒𝑒𝑒𝑗} ,

where (𝑒𝑒𝑒𝑖) is the canonical orthonormal basis of R3 and O(3) is the orthogonal group. This

group is of order 48 : it contains 24 rotations and 24 orientation-reversing isometries leav-

ing the cube invariant [45]. The stress tensor 𝜎𝜎𝜎 and the magnetization pseudo-vector 𝑚𝑚𝑚

(with ‖𝑚𝑚𝑚‖ = 𝑚𝑠 the saturation magnetization) are almost homogeneous at this scale. The

macroscopic behavior, i.e., at the representative volume element (RVE) scale of volume 𝑉 , is

obtained by an homogenization process [11]. The macroscopic magnetization is, for example,

given by

𝑀𝑀𝑀 = ⟨𝑚𝑚𝑚⟩ = 1

𝑉

∫︁
𝑉

𝑚𝑚𝑚𝑑𝑣. (3.1)

A direct description of the macroscopic behavior by using a well chosen expression of the

Gibbs free energy density is an alternative approach. For instance, isotropic energy densities

have been proposed in [38, 36], transversely isotropic ones in [8] and orthotropic ones in [35].

Cubic invariants of the pair (𝑚𝑚𝑚,𝜎𝜎𝜎) [39, 42], fully relevant at the magnetic domains scale, may

also be relevant at the macroscopic scale, by considering the macroscopic magnetization 𝑀𝑀𝑀

in place of the local magnetization𝑚𝑚𝑚, if cubic symmetry applies at the macroscopic scale. As

extensively explained in the introduction of this paper, this situation is encountered in single

crystals, or when the material, consisting of an assembly of cubic crystals, is highly textured.

Classical Invariant Theory [41, 33] is a robust and efficient tool which helps to formulate

Gibbs energy densities that respect the material symmetry, the key points of this theory

being

1. the choice of the relevant group 𝐺 for the material symmetry/physics [27, 3],
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2. the determination of an integrity basis {𝐼𝑘} or, more generally, of a functional basis [46].

Therefore, each magneto-elasticity Gibbs free energy density which is 𝐺-invariant can be

expressed as

Ψ = Ψ(𝐼𝑘). (3.2)

In the following, we consider a cubic microstructure, i.e., a microstructure which is in-

variant by the octahedral symmetry group 𝐺 = O, and where the set {𝐼𝑘} is the integrity

basis for polynomial cubic invariants in𝑀𝑀𝑀 and 𝜎𝜎𝜎 provided in Table 1.
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deg(𝑀𝑀𝑀) deg(𝜎𝜎𝜎) Formula Tri-graded notation

0 1 tr𝜎𝜎𝜎 –

0 2 𝜎𝜎𝜎𝑑 : 𝜎𝜎𝜎𝑑 𝐼002

0 2 𝜎𝜎𝜎𝑑 : 𝜎𝜎𝜎𝑑 𝐼020

0 3 tr(𝜎𝜎𝜎𝑑 3) 𝐼003

0 3 𝜎𝜎𝜎𝑑 2 : 𝜎𝜎𝜎𝑑 𝐼012

0 3 tr(𝜎𝜎𝜎𝑑 3) 𝐼030

0 4 (𝜎𝜎𝜎𝑑 2)𝑑 : (𝜎𝜎𝜎𝑑 2)𝑑 𝐼004

0 4 tr(𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑) 𝐼022

0 5
(︀
𝜎𝜎𝜎𝑑(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
: 𝜎𝜎𝜎𝑑 𝐼014

2 0 ‖𝑀𝑀𝑀‖2 𝐼200

2 1 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑 𝐼201

2 1 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑 𝐼210

2 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑 2 𝐼𝑎202

2 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑 2 𝐼𝑏202

2 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : (𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑) 𝐼211

2 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑 2 𝐼220

2 3 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼203

2 3 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼𝑎212

2 3 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼𝑏212

2 3 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑

)︀
𝐼221

2 4 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
𝜎𝜎𝜎𝑑(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼204

2 4 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑

)︀
𝐼213

2 4 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 :
(︀
𝜎𝜎𝜎𝑑(𝜎𝜎𝜎𝑑 2)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼222

4 0 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 𝐼400

4 1 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 2 : 𝜎𝜎𝜎𝑑 𝐼401

4 1 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 2 : 𝜎𝜎𝜎𝑑 𝐼410

4 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 2 :
(︀
𝜎𝜎𝜎𝑑 2

)︀𝑑
𝐼402

4 2 (𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 2 :
(︀
𝜎𝜎𝜎𝑑𝜎𝜎𝜎𝑑

)︀
𝐼411

6 0 tr
(︀
(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 3

)︀
𝐼600

6 1 tr
(︀
(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑𝜎𝜎𝜎𝑑

)︀
𝐼601

Table 1: A minimal integrity basis [42] of O-invariants for (𝑀𝑀𝑀,𝜎𝜎𝜎).
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A minimal integrity basis of 30 polynomials for cubic invariant polynomials in the pair

(𝑀𝑀𝑀,𝜎𝜎𝜎) has been obtained first by Smith, Smith and Rivlin in [39], and expressed in the

components 𝑀𝑖 and 𝜎𝑖𝑗 of 𝑀𝑀𝑀 and 𝜎𝜎𝜎. Recently [42, Theorem 2.10 and Remark 2.11], we

have proposed an alternative minimal integrity basis of invariants expressed using intrinsic

tensorial expressions, rather than components. They are provided in Table 1. To obtain

these invariants, the following decomposition of the stress tensor, which was introduced in [2]

for cubic symmetry,

𝜎𝜎𝜎 = 𝜎𝜎𝜎𝑑 + 𝜎𝜎𝜎𝑑 +
1

3
(tr𝜎𝜎𝜎)1,

has been used. In the canonical cubic basis (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3),

𝜎𝜎𝜎𝑑 =

⎛⎜⎜⎜⎝
0 𝜎12 𝜎13

𝜎12 0 𝜎23

𝜎13 𝜎23 0

⎞⎟⎟⎟⎠ , 𝜎𝜎𝜎𝑑 =

⎛⎜⎜⎜⎝
𝜎′
11 0 0

0 𝜎′
22 0

0 0 𝜎′
33

⎞⎟⎟⎟⎠ .

This decomposition is stable under the action of the octahedral group O. In particular, for

cubic materials, the deviatoric stress tensor 𝜎𝜎𝜎′ = 𝜎𝜎𝜎 − 1
3
(tr𝜎𝜎𝜎)1 splits into

𝜎𝜎𝜎′ = 𝜎𝜎𝜎𝑑 + 𝜎𝜎𝜎𝑑.

Remark 3.1. The introduction of the following two fourth order tensors P𝑑
O and P𝑑

O = J−P𝑑
O,

where

P𝑑
O :=

1

2

∑︁
𝑖<𝑗

e𝑖𝑗 ⊗ e𝑖𝑗, e𝑖𝑗 := 𝑒𝑒𝑒𝑖 ⊗ 𝑒𝑒𝑒𝑗 + 𝑒𝑒𝑒𝑗 ⊗ 𝑒𝑒𝑒𝑖 (𝑖 ̸= 𝑗).

and J = I− 1
3
1⊗1 is the deviatoric projector, removes the dependency of this decomposition

to the canonical basis (𝑒𝑒𝑒𝑖). Indeed, P
𝑑
O and P𝑑

O correspond to the two orthogonal projectors

of 𝜎𝜎𝜎 onto the O-irreducible components 𝜎𝜎𝜎𝑑 and 𝜎𝜎𝜎𝑑 [37, 16] in any orthonormal frame:⎧⎪⎨⎪⎩𝜎
𝜎𝜎𝑑 := P𝑑

O : 𝜎𝜎𝜎

𝜎𝜎𝜎𝑑 := P𝑑
O : 𝜎𝜎𝜎

This result is axis (𝑒𝑒𝑒𝑖) independent.
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4. In-plane stress and magnetization for plates with strong crystallographic tex-

tures

General three-dimensional magneto-elasticity laws have been proposed in [42] for alloys

composed of cubic symmetry crystals. Due to the quite high (= 30) cardinal of the minimal

integrity basis {𝐼𝑘}, recalled in Table 1, a large number of material parameters —quantified

for polynomial energy densities in Table 2— has been introduced.

deg(𝑚𝑚𝑚)

deg(𝜎𝜎𝜎)
0 1 2 3 4 5 6 7 8 9 10

0 1 1 3 6 11 18 32 48 75 111 160

2 1 3 9 20 42 78 138 228 363 553 819

4 2 6 19 44 95 180 323 540 867 1330 1980

6 3 10 32 78 168 324 585 984 1584 2442 3640

8 4 15 49 120 263 510 963 1560 2517 3885 5802

10 5 21 69 172 378 738 1338 2268 3663 5663 8463

Table 2: Number of material parameters [42] for polynomial energy densities (with ‖𝑀𝑀𝑀‖ ≠ 0) with given

bi-degree in (𝑀𝑀𝑀,𝜎𝜎𝜎).

The constitutive laws linking strain 𝜖𝜖𝜖 and magnetization𝑀𝑀𝑀 to stress 𝜎𝜎𝜎 and magnetic field

𝐻𝐻𝐻 derive from the Gibbs free energy density Ψ:

𝜖𝜖𝜖 = −𝜕Ψ
𝜕𝜎𝜎𝜎

, 𝐻𝐻𝐻 =
1

𝜇0

𝜕Ψ

𝜕𝑀𝑀𝑀
. (4.1)

These laws can of course be evaluated for any loading, including 3D loading. However, the

question of the invariants truly involved arises in a context of material constants identification.

As an illustrative example, let us consider a material whose behavior is ruled by a free energy

density Ψ function of 3 invariants 𝐼1, 𝐼2, 𝐼3 assumed of the same degree, to which 3 material

constants to be identified are associated, namely 𝑎, 𝑏 and 𝑐. Such a function writes:

Ψ(𝑀𝑀𝑀,𝜎𝜎𝜎) = 𝑎𝐼1(𝑀𝑀𝑀,𝜎𝜎𝜎) + 𝑏𝐼2(𝑀𝑀𝑀,𝜎𝜎𝜎) + 𝑐𝐼3(𝑀𝑀𝑀,𝜎𝜎𝜎). (4.2)
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The associated strain 𝜖𝜖𝜖 is given by:

𝜖𝜖𝜖 = −𝜕Ψ
𝜕𝜎𝜎𝜎

= −𝑎𝜕𝐼1
𝜕𝜎𝜎𝜎

− 𝑏
𝜕𝐼2
𝜕𝜎𝜎𝜎

− 𝑐
𝜕𝐼3
𝜕𝜎𝜎𝜎

. (4.3)

Now assume that a linear relationship exists between invariants in the case of plane loading,

Considering 𝑛𝑛𝑛 as a unit vector normal to the plane, the following relationship is for example

obtained:

𝐼3(𝑀𝑀𝑀 · 𝑛𝑛𝑛 = 0,𝜎𝜎𝜎 · 𝑛𝑛𝑛 = 000) = 𝑚𝐼1(𝑀𝑀𝑀 · 𝑛𝑛𝑛 = 0,𝜎𝜎𝜎 · 𝑛𝑛𝑛 = 000) + 𝑛𝐼2(𝑀𝑀𝑀 · 𝑛𝑛𝑛 = 0,𝜎𝜎𝜎 · 𝑛𝑛𝑛 = 000). (4.4)

This means that invariants are linked by:

𝐼3(𝑀𝑀𝑀,𝜎𝜎𝜎) = 𝑚𝐼1(𝑀𝑀𝑀,𝜎𝜎𝜎) + 𝑛𝐼2(𝑀𝑀𝑀,𝜎𝜎𝜎) +𝒪(𝑀𝑀𝑀,𝜎𝜎𝜎) (4.5)

where the function 𝒪(𝑀𝑀𝑀,𝜎𝜎𝜎) is written as a sum of terms in which an out-of-plane component

is involved as a multiplicative factor. Thus,

𝒪(𝑀𝑀𝑀 · 𝑛𝑛𝑛 = 0,𝜎𝜎𝜎 · 𝑛𝑛𝑛 = 000) = 0, (4.6)

for the considered plane loading.

The strain then writes:

𝜖𝜖𝜖 = −𝜕Ψ
𝜕𝜎𝜎𝜎

= −(𝑎+ 𝑐𝑚)
𝜕𝐼1
𝜕𝜎𝜎𝜎

− (𝑏+ 𝑐𝑛)
𝜕𝐼2
𝜕𝜎𝜎𝜎

− 𝑐
𝜕𝒪(𝑀𝑀𝑀,𝜎𝜎𝜎)

𝜕𝜎𝜎𝜎

= −𝑎′𝜕𝐼1
𝜕𝜎𝜎𝜎

− 𝑏′
𝜕𝐼2
𝜕𝜎𝜎𝜎

− 𝑐
𝜕𝒪(𝑀𝑀𝑀,𝜎𝜎𝜎)

𝜕𝜎𝜎𝜎
.

(4.7)

Its in plane expression simplifies into:

𝜖𝜖𝜖𝑖𝑝 = −𝑎′ 𝜕𝐼1
𝜕𝜎𝜎𝜎𝑖𝑝

− 𝑏′
𝜕𝐼2
𝜕𝜎𝜎𝜎𝑖𝑝

. (4.8)

Out-of-plane expression gives:

𝜖𝜖𝜖𝑜𝑝 = −𝑎′ 𝜕𝐼1
𝜕𝜎𝜎𝜎𝑜𝑝

− 𝑏′
𝜕𝐼2
𝜕𝜎𝜎𝜎𝑜𝑝

− 𝑐
𝜕𝒪(𝑀𝑀𝑀,𝜎𝜎𝜎)

𝜕𝜎𝜎𝜎𝑜𝑝

. (4.9)

It can be remarked first that the in-plane deformation involves now two constants instead

of three. The expression may seem simple and the strategy which consists of a degradation

of a 3D problem into a 2D problem may seem the easiest. The operation becomes much

more complicated when the Gibbs free energy density involves higher degree invariants and
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when in-plane and out-of-plane terms are mixed. Directly selecting a 2D integrity basis then

becomes more relevant.

Note also that, although the function 𝒪(𝑀𝑀𝑀,𝜎𝜎𝜎) is zero for the in-plane terms, its derivative

with respect to the out-of-plane terms may be not and may participate in the out-of-plane

deformation. Thus, the 2D restriction of the integrity basis forbids a complete description

of the out-of-plane deformation since part of the energy terms (of their derivative) is miss-

ing. Only 2D fields are addressed with a 2D description of integrity basis. This

drawback is however of little importance since out-of-plane strain is assumed not accessible

to measurement, making this part of strain tensor finally unusable. It can be noticed finally

that the discussion that has been proposed for strain applies for the derivation of magnetic

field too.

We now return to a more general approach. A beforehand rewriting of Ψ, involving only

the invariants that cannot be rewritten when evaluated for the considered in-plane loading,

as functions of some other 𝐼𝑘 is then necessary for an efficient (low-parameter) modeling.

These relations depend on the crystallographic texture of the sheet, i.e., on the considered

fiber (𝜃, 𝛼′ or 𝛾, see Figure 2).

It is obvious that the form of the stress 𝜎𝜎𝜎 and of the magnetization 𝑀𝑀𝑀 that satisfy the

in-plane conditions are

𝜎𝜎𝜎 · 𝑛𝑛𝑛 = 0 and 𝑀𝑀𝑀 · 𝑛𝑛𝑛 = 0. (4.10)

We note stress and magnetization: 𝜎𝜎𝜎𝜃, 𝑀𝑀𝑀 𝜃 (for 𝑛𝑛𝑛 = 𝑛𝑛𝑛𝜃), 𝜎𝜎𝜎𝛼′ , 𝑀𝑀𝑀𝛼′ (for 𝑛𝑛𝑛 = 𝑛𝑛𝑛𝛼′) and 𝜎𝜎𝜎𝛾, 𝑀𝑀𝑀𝛾

(for 𝑛𝑛𝑛 = 𝑛𝑛𝑛𝛾), for the three fibers 𝜃, 𝛼
′ and 𝛾. More precisely, the following equations describe
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the in-plane hypothesis (4.10) for these three cases,

𝜎𝜎𝜎𝜃 =

⎛⎜⎜⎜⎝
𝜎11 𝜎12 0

𝜎12 𝜎22 0

0 0 0

⎞⎟⎟⎟⎠ , 𝑀𝑀𝑀 𝜃 =

⎛⎜⎜⎜⎝
𝑀1

𝑀2

0

⎞⎟⎟⎟⎠ , (4.11)

𝜎𝜎𝜎𝛼′ =

⎛⎜⎜⎜⎝
𝜎11 𝜎12 −𝜎12
𝜎12 −𝜎23 𝜎23

−𝜎12 𝜎23 −𝜎23

⎞⎟⎟⎟⎠ , 𝑀𝑀𝑀𝛼′ =

⎛⎜⎜⎜⎝
𝑀1

𝑀2

−𝑀2

⎞⎟⎟⎟⎠ , (4.12)

𝜎𝜎𝜎𝛾 =

⎛⎜⎜⎜⎝
−𝜎12 − 𝜎13 𝜎12 𝜎13

𝜎12 −𝜎12 − 𝜎23 𝜎23

𝜎13 𝜎23 −𝜎13 − 𝜎23

⎞⎟⎟⎟⎠ , 𝑀𝑀𝑀𝛾 =

⎛⎜⎜⎜⎝
𝑀1

𝑀2

−𝑀1 −𝑀2

⎞⎟⎟⎟⎠ . (4.13)

Expressions are given in the canonical cubic symmetry basis (𝑒𝑒𝑒1, 𝑒𝑒𝑒2, 𝑒𝑒𝑒3) of Figure 1, with

𝑛𝑛𝑛𝜃 = 𝑒𝑒𝑒3, 𝑛𝑛𝑛𝛼′ = 1√
2
(𝑒𝑒𝑒2 + 𝑒𝑒𝑒3) and 𝑛𝑛𝑛𝛾 = 1√

3
(𝑒𝑒𝑒1 + 𝑒𝑒𝑒2 + 𝑒𝑒𝑒3).

The assumption of plane stress leads to the reduction of the number of independent

components 𝜎𝑖𝑗 from 6 to 3. The assumption of plane magnetization reduces the number of

independent components𝑀𝑖 to 2 instead of 3. We denote by ℳℬ = {𝐼𝑘} the initial integrity

basis given in Table 1. The set ̃︂ℳℬ of restrictions of polynomial functions 𝐼𝑘 to the subspace

of (𝑀𝑀𝑀,𝜎𝜎𝜎) which satisfy (4.10) spans a new algebra 𝒜 of polynomial functions in 5 variables.

Our goal is to reduce this set ̃︂ℳℬ of 30 invariants into a smaller generating set 𝒢 =
{︁
𝐼𝑙

}︁
of

𝒜.

5. Reduced sets of generators for the different fibers

Several algorithms/programs, able to check whether or not a set ℬ = {𝐼𝑗} of homogeneous

polynomial invariants 𝐼𝑗 is an integrity basis, are available in the literature [20, 12, 14]. In

the case of finite groups, these algorithms require the knowledge, a priori, of a bound on

the total degree of the generators. Moreover, these algorithms also allow for reducing an

integrity basis ℬ into a minimal integrity basis ℳℬ, by checking linear relations among the

invariants. In the present problem, a minimal integrity basis ℳℬ = {𝐼𝑘} is already known

and recalled in Table 1. Then, we evaluate all the 𝐼𝑘 for a given stress/magnetization state

(here for 𝑀𝑀𝑀 · 𝑛𝑛𝑛 = 0 and 𝜎𝜎𝜎 · 𝑛𝑛𝑛 = 0). The restrictions of the function 𝐼𝑘 to this subspace,
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denoted by 𝐼𝑘, are however not linearly independent: they satisfy some linear relations. An

algorithm to compute these relations is provided in Appendix Appendix A, as well as its

implementation in Macaulay2 [21], a software system devoted to computations in algebraic

geometry and commutative algebra.

Finally, a minimal set of generators 𝒢 =
{︁
𝐼𝑘𝑙

}︁
of 𝒜 can be produced, removing redun-

dant generators from ̃︂ℳℬ =
{︁
𝐼𝑘

}︁
. This has been done for each in-plane magneto-mechanical

loading (4.11), (4.12) or (4.13). Corresponding minimal sets of generators are denoted re-

spectively by 𝒢𝜃, 𝒢𝛼′ , and 𝒢𝛾. The results are summarized in Table 3. The cardinalities of

these sets are small (compared to the initial 30 invariants in Table 1). In terms of modeling,

this means that the Gibbs free energy density can be expressed, with no lack of generality, as

a function of invariants 𝐼𝑘 such that 𝐼𝑘 belongs to 𝒢 when in-plane stress and magnetization

are considered:

Ψ = Ψ(𝐼𝑘1 , . . . , 𝐼𝑘𝐿), 𝐼𝑘𝑙 ∈ 𝒢, 𝐿 = card𝒢.

Remark 5.1. Plane constitutive laws can be deduced either by restricting first the energy

density to the plane state variables and then, by deriving them with respect to these variables

to get the dual plane variables (a) or by selecting the in-plane terms of 3D constitutive laws

restricted to a 2D loading (b). This is mathematically justified by the fact that the pullback

and the exterior derivative commute [40, theorem 5.3].

Reduced basis Cardinal 𝐿 List of O-invariants

𝒢𝜃 7 tr𝜎𝜎𝜎, 𝐼002, 𝐼020, 𝐼200 𝐼201, 𝐼210, 𝐼400

𝒢𝛼′ 15
tr𝜎𝜎𝜎, 𝐼002, 𝐼020, 𝐼003, 𝐼030, 𝐼200, 𝐼201, 𝐼210,

𝐼𝑎202, 𝐼211, 𝐼220, 𝐼400, 𝐼401, 𝐼410, 𝐼600

𝒢𝛾 8 tr𝜎𝜎𝜎, 𝐼020, 𝐼030, 𝐼200, 𝐼210, 𝐼220, 𝐼410, 𝐼600

Table 3: Reduced generating sets 𝒢 =
{︁
𝐼𝑘𝑙

}︁
for the different textures.

5.1. 𝜃-fiber

This is the most favorable texture orientation for a reduction of the integrity basis evalu-

ated with in-plane conditions. The direction {001} is indeed the normal 𝑛𝑛𝑛𝜃 = 𝑒𝑒𝑒3 to the cubic

15
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crystal network (a symmetry plane of the microstructure). Because of the presence of null

coefficients in (4.11) (especially on the off-diagonal part of 𝜎𝜎𝜎), 12 evaluated invariants in ℳℬ

vanish, namely

𝐼003 = 𝐼004 = 𝐼014 = 𝐼𝑏202 = 𝐼203 = 𝐼𝑏212 = 𝐼204 = 𝐼402 = 𝐼222 = 𝐼401 = 𝐼411 = 𝐼600 = 0.

In addition, we get the following 11 relations.

𝐼012 =
1

6
𝐼002 tr𝜎𝜎𝜎, 𝐼030 =

1

18

(︀
9𝐼020 tr𝜎𝜎𝜎 − 2(tr𝜎𝜎𝜎)3

)︀
,

𝐼022 =
1

18

(︀
2𝐼002(tr𝜎𝜎𝜎)

2 − 9𝐼002𝐼020
)︀
, 𝐼211 =

1

6
𝐼201 tr𝜎𝜎𝜎,

𝐼𝑎212 =
1

6
(𝐼002𝐼210 − 2𝐼𝑎202 tr𝜎𝜎𝜎) , 𝐼221 =

1

18

(︀
2𝐼201(tr𝜎𝜎𝜎)

2 − 9𝐼020𝐼201
)︀
,

𝐼213 =
1

36
𝐼002𝐼201 tr𝜎𝜎𝜎, 𝐼𝑎202 =

1

6
𝐼002𝐼200,

𝐼220 =
1

18

(︀
6𝐼210 tr𝜎𝜎𝜎 + 3𝐼020𝐼200 − 2𝐼200(tr𝜎𝜎𝜎)

2
)︀
, 𝐼410 =

1

6
𝐼400 tr𝜎𝜎𝜎,

𝐼601 =
1

18

(︀
9𝐼201𝐼400 − 4𝐼2200𝐼201

)︀
.

5.2. 𝛼′-fiber

𝑛𝑛𝑛𝛼′ is normal to another symmetry plane of the crystal network. This explains why the

number of useful invariants is drastically reduced (this reduction is however smaller than for
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the 𝜃 fiber). For this configuration, we get the following 15 relations.

𝐼012 =
1

54

(︀
−18𝐼003 − 18𝐼030 + 9𝐼002 tr𝜎𝜎𝜎 + 9𝐼020 tr𝜎𝜎𝜎 − 2(tr𝜎𝜎𝜎)3

)︀
𝐼004 =

1

72

(︀
9(𝐼002)

2 + 6𝐼002𝐼020 − 3(𝐼020)
2 + 12𝐼003 tr𝜎𝜎𝜎

−12𝐼012 tr𝜎𝜎𝜎 + 12𝐼030 tr𝜎𝜎𝜎 − 2𝐼002(tr𝜎𝜎𝜎)
2 − 2𝐼020(tr𝜎𝜎𝜎)

2
)︀

𝐼022 =
1

18

(︀
−6𝐼002𝐼020 + 3(𝐼020)

2 − 12𝐼030 tr𝜎𝜎𝜎 + 2𝐼020(tr𝜎𝜎𝜎)
2
)︀

𝐼014 =
1

18

(︀
6𝐼020𝐼003 + 9𝐼002𝐼012 + 3𝐼020𝐼012 + 6𝐼002𝐼030 − 2𝐼002𝐼020 tr𝜎𝜎𝜎 − 2𝐼012(tr𝜎𝜎𝜎)

2
)︀

𝐼𝑎212 =
1

36

(︀
3𝐼002𝐼210 − 3𝐼020𝐼210 + 12𝐼220 tr𝜎𝜎𝜎 − 2𝐼210(tr𝜎𝜎𝜎)

2
)︀

𝐼𝑏212 =
1

36

(︀
−9𝐼002𝐼201 + 72𝐼203 + 18𝐼221 − 12𝐼𝑏202 tr𝜎𝜎𝜎 + 12𝐼211 tr𝜎𝜎𝜎 + 2𝐼201(tr𝜎𝜎𝜎)

2
)︀

𝐼204 =
1

18

(︀
6𝐼003𝐼210 + 9𝐼002𝐼

𝑎
202 + 3𝐼020𝐼

𝑎
202 + 6𝐼002𝐼220 − 2𝐼002𝐼210 tr𝜎𝜎𝜎 − 2𝐼𝑎202(tr𝜎𝜎𝜎)

2
)︀

𝐼213 =
1

18

(︀
3𝐼003𝐼201 + 3𝐼012𝐼201 − 3𝐼020𝐼

𝑏
202 − 12𝐼203 tr𝜎𝜎𝜎 + 2𝐼𝑏202(tr𝜎𝜎𝜎)

2
)︀

𝐼222 =
1

18
(3𝐼002𝐼211 − 2𝐼020𝐼201 tr𝜎𝜎𝜎 + 3𝐼020𝐼211 + 3𝐼003𝐼201 + 6𝐼012𝐼201

+6𝐼030𝐼201 + 2𝐼𝑏202(tr𝜎𝜎𝜎)
2 − 2𝐼211(tr𝜎𝜎𝜎)

2 − 12𝐼203 tr𝜎𝜎𝜎
)︀

𝐼𝑏202 =
1

18
(3𝐼002𝐼200 + 3𝐼020𝐼200 − 18𝐼𝑎202 − 36𝐼211 − 18𝐼220 + 6𝐼201 tr𝜎𝜎𝜎

+6𝐼210 tr𝜎𝜎𝜎 − 2𝐼200(tr𝜎𝜎𝜎)
2
)︀

𝐼203 =
1

72
(12𝐼003𝐼200 + 24𝐼012𝐼200 + 12𝐼030𝐼200 + 9𝐼002𝐼201 + 3𝐼020𝐼201 + 3𝐼002𝐼210 − 3𝐼020𝐼210

−4𝐼002𝐼200 tr𝜎𝜎𝜎 − 4𝐼020𝐼200 tr𝜎𝜎𝜎 − 12𝐼𝑎202 tr𝜎𝜎𝜎 − 24𝐼211 tr𝜎𝜎𝜎 + 2𝐼201(tr𝜎𝜎𝜎)
2 + 2𝐼210(tr𝜎𝜎𝜎)

2
)︀

𝐼221 =
1

18
(−6𝐼003𝐼200 − 18𝐼012𝐼200 − 12𝐼030𝐼200 − 6𝐼020𝐼201 + 3𝐼020𝐼210 + 2𝐼002𝐼200 tr𝜎𝜎𝜎

+4𝐼020𝐼200 tr𝜎𝜎𝜎 + 6𝐼𝑎202 tr𝜎𝜎𝜎 + 6𝐼𝑏202 tr𝜎𝜎𝜎 + 12𝐼211 tr𝜎𝜎𝜎 − 2𝐼201(tr𝜎𝜎𝜎)
2 − 2𝐼210(tr𝜎𝜎𝜎)

2
)︀

𝐼402 =
1

72

(︀
9𝐼2201 + 6𝐼201𝐼210 − 24𝐼200𝐼211 + 3𝐼020𝐼400 + 12𝐼401 tr𝜎𝜎𝜎 − 2𝐼400(tr𝜎𝜎𝜎)

2
)︀

𝐼411 =
1

144

(︀
−9𝐼2201 − 6𝐼201𝐼210 − 24𝐼200𝐼

𝑏
202 − 24𝐼200𝐼211 + 12𝐼002𝐼400 + 9𝐼020𝐼400

+8𝐼200𝐼201 tr𝜎𝜎𝜎 + 12𝐼401 tr𝜎𝜎𝜎 − 6𝐼400(tr𝜎𝜎𝜎)
2
)︀

𝐼601 =
1

18

(︀
−4𝐼2200𝐼201 + 6𝐼201𝐼400 − 3𝐼210𝐼400 + 6𝐼200𝐼410 + 𝐼200𝐼400 tr𝜎𝜎𝜎 − 3𝐼600 tr𝜎𝜎𝜎

)︀
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5.3. 𝛾-fiber

In this configuration, stress tensor and magnetization do not have vanishing compo-

nents (see (4.13)). However, useful relations appear between the invariants involving the

off-diagonal part of 𝜎𝜎𝜎. We get for this fiber the following 22 relations.
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𝐼002 =
1

6

(︀
12𝐼020 + (tr𝜎𝜎𝜎)2

)︀
𝐼012 =

1

12
(−6𝐼003 − 𝐼002 tr𝜎𝜎𝜎 + 9𝐼020 tr𝜎𝜎𝜎)

𝐼003 =
1

6
(12𝐼030 − 𝐼002 tr𝜎𝜎𝜎 + 5𝐼020 tr𝜎𝜎𝜎)

𝐼004 =
1

6

(︀
3𝐼2002 − 18𝐼002𝐼020 + 27𝐼2020 + 2𝐼003 tr𝜎𝜎𝜎

)︀
𝐼022 =

1

6

(︀
−2𝐼2002 + 13𝐼002𝐼020 − 18𝐼2020 − 2𝐼003 tr𝜎𝜎𝜎

)︀
𝐼𝑎202 =

1

3
(−3𝐼220 + 𝐼210 tr𝜎𝜎𝜎)

𝐼𝑎212 =
1

6
(4𝐼002𝐼210 − 9𝐼020𝐼210 − 2𝐼𝑎202 tr𝜎𝜎𝜎)

𝐼𝑏212 =
1

12

(︀
−3𝐼002𝐼201 + 3𝐼020𝐼201 + 12𝐼203 − 𝐼𝑏202 tr𝜎𝜎𝜎 + 6𝐼211 tr𝜎𝜎𝜎

)︀
𝐼203 =

1

12
(+2𝐼002𝐼201 − 𝐼020𝐼201 − 6𝐼221 − 4𝐼211 tr𝜎𝜎𝜎)

𝐼204 =
1

6
(2𝐼003𝐼210 − 6𝐼002𝐼

𝑎
202 + 18𝐼020𝐼

𝑎
202 + 3𝐼002𝐼210 tr𝜎𝜎𝜎 − 9𝐼020𝐼210 tr𝜎𝜎𝜎)

𝐼213 =
1

24
(2𝐼003𝐼201 − 32𝐼002𝐼211 + 72𝐼020𝐼211 + 3𝐼002𝐼201 tr𝜎𝜎𝜎 − 3𝐼020𝐼201 tr𝜎𝜎𝜎 − 16𝐼203 tr𝜎𝜎𝜎)

𝐼402 =
1

36

(︀
4𝐼020𝐼

2
200 + 9𝐼2201 − 12𝐼2210 − 12𝐼200𝐼

𝑎
202 − 3𝐼002𝐼400

−6𝐼020𝐼400 + 4𝐼200𝐼210 tr𝜎𝜎𝜎 − 12𝐼410 tr𝜎𝜎𝜎)

𝐼222 =
1

54

(︀
8𝐼002𝐼201 tr𝜎𝜎𝜎 + 9𝐼002𝐼

𝑏
202 − 108𝐼002𝐼211 − 45𝐼020𝐼

𝑏
202 + 216𝐼020𝐼211

+3𝐼003𝐼201 − 12𝐼012𝐼201 − 36𝐼203 tr𝜎𝜎𝜎)

𝐼014 =
1

12

(︀
6𝐼002𝐼003 − 14𝐼020𝐼003 + 𝐼2002 tr𝜎𝜎𝜎 − 6𝐼002𝐼020 tr𝜎𝜎𝜎 + 9𝐼2020 tr𝜎𝜎𝜎

)︀
𝐼201 =

1

6
(12𝐼210 + 𝐼200 tr𝜎𝜎𝜎)

𝐼𝑏202 =
1

6
(−4𝐼002𝐼200 + 9𝐼020𝐼200 − 12𝐼𝑎202 + 3𝐼201 tr𝜎𝜎𝜎)

𝐼211 =
1

12
(𝐼002𝐼200 + 12𝐼𝑎202 − 𝐼201 tr𝜎𝜎𝜎)

𝐼221 =
1

36
(−6𝐼003𝐼200 − 12𝐼002𝐼201 + 24𝐼020𝐼201 + 𝐼002𝐼200 tr𝜎𝜎𝜎 + 12𝐼𝑎202 tr𝜎𝜎𝜎)

𝐼400 =
1

2
𝐼2200

𝐼401 =
1

12

(︀
6𝐼200𝐼201 − 24𝐼410 − 𝐼2200 tr𝜎𝜎𝜎

)︀
𝐼411 =

1

72

(︀
𝐼002𝐼

2
200 − 6𝐼2201 + 12𝐼200𝐼

𝑎
202 + 6𝐼401 tr𝜎𝜎𝜎

)︀
𝐼601 =

1

36

(︀
𝐼2200𝐼201 − 6𝐼200𝐼401 − 6𝐼600 tr𝜎𝜎𝜎

)︀
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5.4. Combination of 𝜃, 𝛼′ and 𝛾 fibers

As explained in introduction of this work, it is usually possible to find a set of fibers that

describes the texture of a material. If the three previous fibers are combined to form the

texture of a thin layer material subjected to an in-plane magneto-mechanical loading, the

invariant generators in this situation is the union of the invariant generators of each fiber.

Then it can be noticed that the list of O-invariants of the reduced generating sets of 𝜃 and

𝛾 fibers are included in the list of O-invariants of the reduced generating set of the 𝛼′ fiber.

This means that the list of 15 invariants associated with the reduced generating set 𝒢𝛼′ is

the reduced generating set of any combination of the three preceding fibers.

6. Application to a quadratic energy density

Let us consider a material described by a free energy density composed of three terms:

a first coupled term linear in stress Ψ𝜇𝜎
1 (𝑀𝑀𝑀,𝜎𝜎𝜎), a second coupled term quadratic in stress

Ψ𝜇𝜎
2 (𝑀𝑀𝑀,𝜎𝜎𝜎) and a purely magnetic term of order 6 in magnetization Ψ𝜇(𝑀𝑀𝑀). The purely

mechanical part (quadratic in stress in the framework of linear elasticity) has no influence on

magnetic field or magnetostriction, and is not considered here. A constant 𝑐𝑘 is associated

to each polynomial invariant 𝐼𝑘 constitutive of Ψ. Thus, from the integrity basis in Table 1,

the free energy density writes:

Ψ(𝑀𝑀𝑀,𝜎𝜎𝜎) = Ψ𝜇𝜎
1 (𝑀𝑀𝑀,𝜎𝜎𝜎) + Ψ𝜇𝜎

2 (𝑀𝑀𝑀,𝜎𝜎𝜎) + Ψ𝜇(𝑀𝑀𝑀)

= 𝑐210𝐼210 + 𝑐201𝐼201 + 𝑐200,010𝐼200 tr(𝜎𝜎𝜎)

+ 𝑐220𝐼220 + 𝑐211𝐼211 + 𝑐𝑎202𝐼
𝑎
202 + 𝑐𝑏202𝐼

𝑏
202 + 𝑐200,020𝐼200𝐼020 + 𝑐200,002𝐼200𝐼002

+ 𝑐210,010𝐼210 tr(𝜎𝜎𝜎) + 𝑐201,010𝐼201 tr(𝜎𝜎𝜎) + 𝑐200,010,010𝐼200 tr(𝜎𝜎𝜎)
2

+ 𝑐200𝐼200 + 𝑐400𝐼400 + 𝑐600𝐼600.

(6.1)

This general 3D model uses 15 material constants. In order to illustrate the reduction of this

number in the case of a plane loading, we consider the following assumptions:

• the material is supplied in sheet form;

• the sheet exhibits a 𝜃 texture. Its symmetry axes coincide with those of the cubic

microstructure;
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• the macroscopic magnetization and stress remain in the sheet plane (2D assumption).

Following relations detailed in section 5.1, we can observe that 𝐼𝑏202 = 𝐼600 = 0. The free

energy writes:

Ψ𝜃 = 𝑐210𝐼210 + 𝑐201𝐼201 + 𝑐200,010𝐼200 tr(𝜎𝜎𝜎) +

(︂
1

3
𝑐220 + 𝑐210,010

)︂
𝐼210 tr(𝜎𝜎𝜎)

+

(︂
1

6
𝑐211 + 𝑐201,010

)︂
𝐼201 tr(𝜎𝜎𝜎) +

(︂
1

6
𝑐220 + 𝑐200,020

)︂
𝐼200𝐼020

+

(︂
1

6
𝑐𝑎202 + 𝑐200,002

)︂
𝐼200𝐼002 +

(︂
−1

9
𝑐220 + 𝑐200,010,010

)︂
𝐼200 tr(𝜎𝜎𝜎)

2

+ 𝑐200𝐼200 + 𝑐400𝐼400 + 𝑐211𝒪211(𝑀𝑀𝑀,𝜎𝜎𝜎) + 𝑐220𝒪220(𝑀𝑀𝑀,𝜎𝜎𝜎) + 𝑐𝑎202𝒪𝑎
202(𝑀𝑀𝑀,𝜎𝜎𝜎).

(6.2)

where 𝒪𝑘(𝑀𝑀𝑀,𝜎𝜎𝜎) terms are related to invariants 𝐼𝑘 generating only out-of-plane deformations

and magnetic fields. Consequently, the energy modifying the magneto-mechanical in-plane

quantities simplifies (an arbitrary choice has been made on the remaining independent in-

variants) into:

Ψ𝑝𝑙𝑎𝑛𝑒
𝜃 = 𝑐210𝐼210 + 𝑐201𝐼201 + 𝑐200,010𝐼200 tr(𝜎𝜎𝜎) + 𝑐′210,010𝐼210 tr(𝜎𝜎𝜎)

+ 𝑐′201,010𝐼201 tr(𝜎𝜎𝜎) + 𝑐′200,020𝐼200𝐼020

+ 𝑐′200,002𝐼200𝐼002 + 𝑐′200,010,010𝐼200 tr(𝜎𝜎𝜎)
2

+ 𝑐200𝐼200 + 𝑐400𝐼400.

(6.3)

This formulation involves now 10 material constants instead of 15. Applying equation 4.1,the

magnetostriction tensor (only relevant for 2D terms) is given by:

𝜖𝜖𝜖𝜇 = −
[︁
𝑐210(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 + 𝑐201(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 + 𝑐′210,010

(︀
[(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑]1+ tr(𝜎𝜎𝜎)(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑

)︀
+𝑐′201,010

(︁
[(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑]1+ tr(𝜎𝜎𝜎)(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑

)︁
+‖𝑀𝑀𝑀‖

(︁
𝑐200,0101+ 2𝑐′200,020𝜎𝜎𝜎

𝑑 + 2𝑐′200,002𝜎𝜎𝜎
𝑑 + 2𝑐′200,010,010 tr(𝜎𝜎𝜎)1

)︁]︁
.

(6.4)

The first two terms correspond to the usual magnetostriction terms. Those driven by

constants 𝑐′210,010 and 𝑐′201,010 are second order magnetostriction terms. The last term is

dependent on the norm of the magnetization and acts as a polarization. Note that with a

constant magnetization norm, this part of the magnetostriction cannot be distinguished from

the elastic deformation. The associated material constants are thus often considered to be
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zero when energy is written at the magnetic domains scale [42].

Applying equation 4.1, the magnetic field (only relevant for 2D terms) is given by:

𝐻𝐻𝐻 =
2

𝜇0

(︁
𝑐200 + 𝑐200,010 tr(𝜎𝜎𝜎) + 𝑐′200,010,010 tr(𝜎𝜎𝜎)

2 + 𝑐′200,020𝜎𝜎𝜎
𝑑 : 𝜎𝜎𝜎𝑑 + 𝑐′200,002𝜎𝜎𝜎

𝑑 : 𝜎𝜎𝜎𝑑
)︁
𝑀𝑀𝑀

+
2

𝜇0

(︁
2𝑐400(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 + 𝑐210𝜎𝜎𝜎

𝑑 + 𝑐201𝜎𝜎𝜎
𝑑 + 𝑐′210,010 tr(𝜎𝜎𝜎)𝜎𝜎𝜎

𝑑 + 𝑐′201,010 tr(𝜎𝜎𝜎)𝜎𝜎𝜎
𝑑
)︁
·𝑀𝑀𝑀.

(6.5)

In many materials, magnetostriction takes place at constant volume. Applying this as-

sumption leads to:

𝑐200,010 = 𝑐210,010 = 𝑐201,010 = 𝑐200,010,010 = 0. (6.6)

Magnetostriction expression simplifies into:

𝜖𝜖𝜖𝜇 = −
[︂
𝑐210(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 + 𝑐201(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 +

1

6
𝑐211

(︁
[(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑]1+ tr(𝜎𝜎𝜎)(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑

)︁
+𝑐220

(︂
[
1

3
(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 : 𝜎𝜎𝜎𝑑]1+

1

3
tr(𝜎𝜎𝜎)(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 − 2

9
‖𝑀𝑀𝑀‖ tr(𝜎𝜎𝜎)1

)︂
+‖𝑀𝑀𝑀‖

(︁
2𝑐′200,020𝜎𝜎𝜎

𝑑 + 2𝑐′200,002𝜎𝜎𝜎
𝑑
)︁]︁
,

(6.7)

and magnetic field into:

𝐻𝐻𝐻 =
2

𝜇0

(︂
𝑐200 −

1

9
𝑐220 tr(𝜎𝜎𝜎)

2 + 𝑐′200,020𝜎𝜎𝜎
𝑑 : 𝜎𝜎𝜎𝑑 + 𝑐′200,002𝜎𝜎𝜎

𝑑 : 𝜎𝜎𝜎𝑑

)︂
𝑀𝑀𝑀

+
2

𝜇0

(︂
2𝑐400(𝑀𝑀𝑀 ⊗𝑀𝑀𝑀)𝑑 + 𝑐210𝜎𝜎𝜎

𝑑 + 𝑐201𝜎𝜎𝜎
𝑑 +

1

3
𝑐220 tr(𝜎𝜎𝜎)𝜎𝜎𝜎

𝑑 +
1

6
𝑐211 tr(𝜎𝜎𝜎)𝜎𝜎𝜎

𝑑

)︂
·𝑀𝑀𝑀.

(6.8)

We can observe that strain given in equation (6.7) and strain derived from (6.1) exhibit

the same in-plane components. Out-of-plane components are different as already stated.

Equation (6.7) only applies for in-plane components. The linear stress part of the deforma-

tion, which is derived from the quadratic part of the free energy density, involves 5 material

constants compared to 10 in the 3D model (see Table 2).

Volume conservation is a classic assumption that can be made. Using this assumption

upstream in expression (6.1), the derived deformation depends on 8 parameters (7 if we

take into account the fact that 𝐼𝑏202 = 0) against 6 in expression (6.7). Similarly, the derived

magnetic field depends on 11 constants (9 if we take into account the fact that 𝐼𝑏202 = 𝐼600 = 0)

against 8 in expression (6.8).
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More generally, Table 2 gives the number of additional coefficients depending on the de-

gree in stress. For the same microstructure/fiber orientation, a quadratic energy density

in magnetization implies 3 linear invariants in stress, 9 quadratic, 20 degree-three . . . etc,.

Following our method, an equivalent (for in-plane loading) energy density implies 3 linear, 5

quadratic, and 5 degree-three invariants (coming from the product of tr𝜎𝜎𝜎 with 5 quadratic in-

variants, thanks to relations obtained in section 5). This thus leads to a quite large reduction

in the number of material constants to be identified.

This reduction applies of course for other fibers: from Table 3, it can be shown that a

quadratic energy density involves 8 constants for a 𝛼′ fiber and 5 for a 𝛾 fiber, instead of 9

in the 3D formulation. The higher the degree, the more significant the reduction.

7. Conclusion

The magneto-elasticity of cubic ferromagnetic materials is described using a Gibbs free

energy density Ψ = Ψ(𝐼𝑘) defined as a function of well-chosen cubic invariants 𝐼𝑘 of the

stress 𝜎𝜎𝜎 and the magnetization 𝑀𝑀𝑀 . It is relevant to take these cubic invariants into account

for every crystallographic texture/fiber, with the drawback that the corresponding minimal

integrity basis is constituted of a quite large number (30) of invariants [39, 42].

The magneto-mechanical coupled behavior of textured (cubic) ferromagnetic materials

subjected to in-plane magneto-mechanical loadings has been streamlined. We have shown

that for such loadings, and for specific textures/fibers, the Gibbs free energy density can be

written as a function of a lower number of invariants

Ψ = Ψ(𝐼𝑘1 , . . . , 𝐼𝑘𝐿), 𝐿 < 30.

Indeed, we have computed relations among the fundamental cubic invariants 𝐼𝑘 which arise

when they are restricted to plane magneto-elasticity problems. We have obtained, this way,

some reduced (minimal) sets of cardinal 𝐿 of cubic generators 𝐼𝑘𝑙 for three major fibers,

namely 𝜃 (𝐿 = 7), 𝛼′ (𝐿 = 15) and 𝛾 (𝐿 = 8) and their combination (𝐿 = 15). To do so, we

have adapted an algorithm initially proposed to prove the minimality of an integrity basis

in [42]. An implementation of this algorithm in Macaulay2, a software devoted to algebraic

geometry and commutative algebra [21], has also been provided.
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Appendix A. Reduction algorithm and implementation

Appendix A.1. Algorithm

The algorithm we propose here generates all the relations between the homogeneous

polynomials
{︁
𝐼𝑘

}︁
in ̃︂ℳℬ, the set of cubic invariants {𝐼𝑘} restricted to plane loadings (plane

defined by the normal unit vector 𝑛𝑛𝑛). For instance, for the fiber 𝜃 (𝑛𝑛𝑛𝜃 = 𝑒𝑒𝑒3), 𝑀3 = 0 and

𝜎13 = 𝜎23 = 𝜎33 = 0. If we choose ̃︀𝑒𝑒𝑒1 = 𝑒𝑒𝑒1, ̃︀𝑒𝑒𝑒2 = 𝑒𝑒𝑒2 as a natural basis of the subspace 𝑀3 = 0

of vectors𝑀𝑀𝑀 and

̃︀eI = eee11 =

⎛⎜⎜⎜⎝
1 0 0

0 0 0

0 0 0

⎞⎟⎟⎟⎠ , ̃︀eII = eee22 =

⎛⎜⎜⎜⎝
0 0 0

0 1 0

0 0 0

⎞⎟⎟⎟⎠ , ̃︀eIII = eee12 =

⎛⎜⎜⎜⎝
0 1 0

1 0 0

0 0 0

⎞⎟⎟⎟⎠
as a natural basis of the subspace 𝜎𝜎𝜎.𝑒𝑒𝑒3 = 0 of stresses 𝜎𝜎𝜎, we get

̃︁𝑀𝑀𝑀 = ̃︁𝑀1̃︀𝑒𝑒𝑒1 + ̃︁𝑀2̃︀𝑒𝑒𝑒2 and ̃︀𝜎𝜎𝜎 = ̃︀𝜎1̃︀eI + ̃︀𝜎2̃︀eII + ̃︀𝜎3̃︀eIII.
For each considered fiber, the restricted invariants are expressed as polynomial functions of̃︀𝜎𝜎𝜎 and ̃︁𝑀𝑀𝑀 as above. These polynomial functions are homogeneous, both in ̃︀𝜎𝜎𝜎 and ̃︁𝑀𝑀𝑀 . For

such a bi-homogeneous polynomial, we introduce the degree 𝛼 = deg(̃︁𝑀𝑀𝑀) in ̃︁𝑀𝑀𝑀 and the degree

𝛽 = deg(̃︀𝜎𝜎𝜎) in ̃︀𝜎𝜎𝜎. This bi-degree is denoted by (𝛼, 𝛽) and the total degree by 𝑑 = 𝛼 + 𝛽. A

bi-homogeneous polynomial of bi-degree (𝛼, 𝛽) is thus a linear combination of monomials

𝑚𝛼𝛼𝛼,𝛽𝛽𝛽 = ̃︁𝑀𝛼1
1

̃︁𝑀𝛼2
2 ̃︀𝜎𝛽1

1 ̃︀𝜎𝛽2

2 ̃︀𝜎𝛽3

3 (A.1)

with 𝛼𝛼𝛼 = (𝛼1, 𝛼2) (𝛼𝑘 being the degree in ̃︁𝑀𝑘, so that 𝛼 = |𝛼𝛼𝛼| = 𝛼1+𝛼2) and 𝛽𝛽𝛽 = (𝛽1, 𝛽2, 𝛽3)

(𝛽𝑙 being the degree in ̃︀𝜎𝑙, so that 𝛽 = |𝛽𝛽𝛽| = 𝛽1 + 𝛽2 + 𝛽3).

On the set of bi-degrees, we introduce the degree lexicographic order as follows

(𝛼, 𝛽) < (𝛼′, 𝛽′) if 𝛼 + 𝛽 < 𝛼′ + 𝛽′

or 𝛼 + 𝛽 = 𝛼′ + 𝛽′ and (𝛼 < 𝛼′ or 𝛼 = 𝛼′ and 𝛽 < 𝛽′).

Using this order relation, we define (𝛼, 𝛽)1 and (𝛼, 𝛽)𝐽𝑀𝑎𝑥
respectively, as the least and the

greatest bi-degree (𝛼, 𝛽) appearing in the finite list of evaluated bi-homogeneous polynomials
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̃︂ℳℬ, where it is understood that each evaluated polynomial which vanishes is removed from̃︂ℳℬ. We can therefore partition ̃︂ℳℬ into bi-graded sets

̃︂ℳℬ = ̃︂ℳℬ(𝛼,𝛽)1 ∪ · · · ∪ ̃︂ℳℬ(𝛼,𝛽)𝐽Max
,

using the following partition of the integrity basis ℳℬ in Table 1, and where the set ℳℬ𝛼,𝛽

consists in bi-homogeneous polynomials in (𝜎𝜎𝜎,𝑀𝑀𝑀) of bi-degree (𝛼, 𝛽).

ℳℬ0,1 = {tr𝜎𝜎𝜎} , ℳℬ0,2 = {𝐼020, 𝐼002} ,

ℳℬ0,3 = {𝐼012, 𝐼003, 𝐼030} , ℳℬ0,4 = {𝐼004, 𝐼022} ,

ℳℬ0,5 = {𝐼014} , ℳℬ2,0 = {𝐼200} ,

ℳℬ2,1 = {𝐼201, 𝐼210} , ℳℬ2,2 =
{︀
𝐼𝑎202, 𝐼

𝑏
202, 𝐼211, 𝐼220

}︀
,

ℳℬ2,3 = {𝐼210, 𝐼201} , ℳℬ2,4 =
{︀
𝐼203, 𝐼

𝑎
212, 𝐼

𝑏
212, 𝐼221

}︀
,

ℳℬ4,0 = {𝐼400} , ℳℬ4,1 = {𝐼401, 𝐼410} ,

ℳℬ4,2 = {𝐼402, 𝐼411} , ℳℬ6,0 = {𝐼600} ,

ℳℬ6,1 = {𝐼601} .

The set of all bi-homogeneous polynomials in (̃︁𝑀𝑀𝑀, ̃︀𝜎𝜎𝜎) having the same bi-degree (𝛼, 𝛽) is

a finite dimensional vector space and the subspace of such polynomials which belong to the

algebra 𝒜 is denoted by 𝒜𝛼,𝛽. Hence 𝒜 can be written as the direct sum

𝒜 =
⨁︁
𝛼,𝛽

𝒜𝛼,𝛽.

Each finite dimensional vector space 𝒜𝛼,𝛽 is spanned (as a vector space) by ̃︂ℳℬ𝛼,𝛽 (which is

empty if (𝛼, 𝛽) > (𝛼, 𝛽)𝐽𝑀𝑎𝑥
) and the so-called reducible elements of bi-degree (𝛼, 𝛽) which

can be written as products of (at least two) elements in⋃︁
(𝜇,𝜈)<(𝛼,𝛽)

̃︂ℳℬ(𝜇,𝜈).

Hence, a minimal set of generators 𝒢 of 𝒜 can be extracted from ̃︂ℳℬ by choosing a vectorial

basis in each 𝒜(𝛼,𝛽)𝐽 (1 ≤ 𝐽 ≤ 𝐽𝑀𝑎𝑥) and by eliminating arbitrarily some generators ̃︀𝐼𝑘.
This can be done, bi-degree by bi-degree (𝛼, 𝛽), once one knows exactly the linear relations

between the ̃︀𝐼𝑘 and the reducible elements of bi-degree (𝛼, 𝛽).
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To do so, we proceed recursively as follows. Given 1 ≤ 𝐽 ≤ 𝐽𝑀𝑎𝑥, let (𝑃1, . . . , 𝑃𝑁)

be the 𝑁 elements 𝑃𝑗 in ℛ𝐽 ∪ ̃︂ℳℬ(𝛼,𝛽)𝐽 , where ℛ𝐽 is the set of reducible elements of bi-

degree (𝛼, 𝛽)𝐽 . Then, let 𝑚1, . . . ,𝑚𝑀 be the monomials which appear in the family of

bi-homogeneous polynomials (𝑃1, . . . , 𝑃𝑁). Each of these monomials is written 𝑚(𝛼𝛼𝛼,𝛽𝛽𝛽) with

|𝛼𝛼𝛼| = 𝛼 and |𝛽𝛽𝛽| = 𝛽 (see (A.1)). We can thus write

𝑃𝑗 =
∑︁
𝑖

𝐴𝑖𝑗𝑚𝑖,

where 𝐴 := (𝐴𝑖𝑗) is an 𝑀 × 𝑁 matrix. The computation of a basis 𝑢𝑢𝑢𝑘 :=
∑︀

𝑖 𝑢
𝑘
𝑖𝑚𝑖, where

1 ≤ 𝑘 ≤ 𝑁 −𝑅 and 𝑅 := rank(𝐴), furnishes all the independent linear relations between the

𝑃𝑗, which are written ∑︁
𝑗

𝑢𝑘𝑗𝑃𝑗 = 0, 1 ≤ 𝑘 ≤ 𝑁 −𝑅. (A.2)

Thanks to the knowledge of these relations, we are able to extract, by hand, a minimal set

𝒢(𝛼,𝛽)𝐽 ⊂ ̃︂ℳℬ(𝛼,𝛽)𝐽 ,

which spans (together with ℛ𝐽) the vector space 𝒜(𝛼,𝛽)𝐽 . The union

𝒢 = 𝒢(𝛼,𝛽)1 ∪ · · · ∪ 𝒢(𝛼,𝛽)𝐽 ∪ · · · ∪ 𝒢(𝛼,𝛽)𝐽Max
,

is then the sought minimal set of generators of the algebra 𝒜.

For a given in-plane loading defined by a normal 𝑛𝑛𝑛, and given by (4.10), the following

algorithm produces the expected finite list of relations ℒ among the set of restricted invariants̃︂ℳℬ =
{︁
𝐼𝑘

}︁
.

• Input: The set ̃︂ℳℬ =
{︁
𝐼𝑘

}︁
of restricted invariants.

• Output: A list ℒ𝐽Max
of polynomials relations between these restricted invariants 𝐼𝑘.

• Initialization: 𝐽 = 0, ℒ0 := ∅.

• For 1 ≤ 𝐽 ≤ 𝐽𝑀𝑎𝑥:

1. Generate the family ℛ𝐽 of all reducible homogeneous polynomials of bi-degree

(𝛼, 𝛽)𝐽 ;
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2. Compute a basis (𝑢𝑢𝑢𝑘) (1 ≤ 𝑘 ≤ 𝑁 −𝑅) of the kernel of the matrix 𝐴;

3. Update the list ℒ𝐽 :=
[︀
ℒ𝐽−1, [

∑︀
𝑢1𝑗𝑃𝑗, . . . ,

∑︀
𝑢𝑁−𝑅
𝑗 𝑃𝑗]

]︀
;

• Return ℒ𝐽𝑀𝑎𝑥
.

Appendix A.2. Implementation in Macaulay2

The code presented here is in the Macaulay2 language (see [21]) and can be run using a

friendly web interface of Macaulay2 at

https://www.unimelb-macaulay2.cloud.edu.au/#home.

The invariants in Table 1 are computed for a particular form of 𝜎𝜎𝜎 and𝑀𝑀𝑀 . This is the Input

step of the algorithm detailed above. The bounds dMax = 7 and 𝛼Max = 6 correspond

respectively to the highest total degree and the highest partial degree in magnetization in

the list ℳℬ of invariants 𝐼𝑘. The increment k is associated to the total degree and 𝛼 to the

degree in 𝑀̃𝑀𝑀 .

-------------------------------------Input--------------------------------------

--definition of the algebra Alg of evaluated polynomials

Alg = QQ[sig1, sig2, sig3, m1, m2, Degrees=>{{0,1},{0,1},{0,1},{1,0},{1,0}}]

--off-diagonal part

dbar=(b)->(matrix{{0,b_(0,1),b_(0,2)},{b_(1,0),0,b_(1,2)},{b_(2,0),b_(2,1),0}});

--deviatoric diagonal part

ddev = (b)->(matrix{{b_(0,0) - 1/3*trace(b), 0, 0},{0, b_(1,1) -

1/3*trace(b), 0},{0, 0, b_(2,2) - 1/3*trace(b)}}) ;

--magnetization and stress bases for fiber theta

e1=matrix({{1_Alg},{0},{0}}); e2=matrix({{0},{1_Alg},{0}})

eI=matrix{{1_Alg,0,0},{0,0,0},{0,0,0}}

eII=matrix{{0,0,0},{0,1_Alg,0},{0,0,0}}

eIII=matrix{{0,1_Alg,0},{1_Alg,0,0},{0,0,0}}

--vectors and matrixes are omitted for others textures

--stress and magnetization for a given fiber

M = m1*e1+m2*e2

sig = sig1*eI+sig2*eII+sig3*eIII ; sigd = ddev(sig) ; sigdbar = dbar(sig)

--evaluation of the invariants
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I010 = trace(sig)

I002=trace(sigdbar^2)

I020=trace(sigd*sigd)

I003=trace(sigdbar*sigdbar*sigdbar)

I012=trace(sigdbar^2*sigd)

I030=trace(sigd*sigd*sigd)

I004=trace(dbar(sigdbar^2)*dbar(sigdbar^2))

I022=trace(sigdbar*sigd*sigdbar*sigd)

I014=trace(sigdbar*dbar(sigdbar^2)*sigdbar*sigd)

I200=trace(transpose(M)*M)

I201=trace(dbar(M*transpose(M))*sigdbar)

I210=trace(ddev(M*transpose(M))*sigd)

I202a=trace(ddev(M*transpose(M))*(sigdbar^2))

I202b=trace(dbar(M*transpose(M))*dbar(sigdbar^2))

I211=trace(dbar(M*transpose(M))*sigdbar*sigd)

I220=trace((ddev(M*transpose(M)))*(sigd^2))

I203=trace(dbar(M*transpose(M))*dbar(sigdbar^2)*sigdbar)

I212a=trace(ddev(M*transpose(M))*ddev(sigdbar^2)*sigd)

I212b=trace(dbar(M*transpose(M))*dbar(sigdbar^2)*sigd)

I221=trace(dbar(M*transpose(M))*sigd*sigdbar*sigd)

I204=trace((ddev(M*transpose(M)))*sigdbar*dbar(sigdbar^2)*sigdbar)

I213=trace(dbar(M*transpose(M))*ddev(sigdbar^2)*sigdbar*sigd)

I400=trace(dbar(M*transpose(M))*dbar(M*transpose(M)))

I401=trace(dbar(M*transpose(M))*sigdbar*dbar(M*transpose(M)))

I410=trace(dbar(M*transpose(M))*sigd*dbar(M*transpose(M)))

I402=trace(dbar(M*transpose(M))*dbar(sigdbar^2)*dbar(M*transpose(M)))

I411=trace(dbar(M*transpose(M))*sigd*sigdbar*dbar(M*transpose(M)))

I600=trace(dbar(M*transpose(M))*dbar(M*transpose(M))*dbar(M*transpose(M)))

I601 = trace(ddev(M*transpose(M))*dbar(M*transpose(M))*ddev(M*transpose(M))*sigdbar)

I222=trace(dbar(M*transpose(M))*sigd*dbar(sigdbar^2)*sigd)

--creation of the list of evaluated invariants

MBtilde=new HashTable from {"I010"=>I010,"I002"=>I002,"I020"=>I020,"I003"=>I003,

"I012"=>I012,"I030"=>I030,"I004"=>I004,"I022"=>I022,"I014"=>I014,

"I200"=>I200,"I201"=>I201,"I210"=>I210,"I202a"=>I202a,"I202b"=>I202b,

"I211"=>I211,"I220"=>I220,"I203"=>I203,"I212a"=>I212a,"I212b"=>I212b,

"I221"=>I221,"I204"=>I204,"I213"=>I213,"I400"=>I400,"I401"=>I401,
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"I410"=>I410,"I402"=>I402,"I411"=>I411,"I600"=>I600,"I601"=>I601,

"I222"=>I222}

--removal of vanishing invariants

MBtilde=delete(0_Alg,MBtilde)

--list of bi-degrees of MBtilde

MBtildeValues=values(MBtilde)

listDeg =apply(MBtildeValues,degree)

MBtildeIndex=keys(MBtilde)

--------------------------------------------------------------------------------

bound={7,6}

dMax=bound_0

alphaMax=bound_1

--definition of the free algebra FreeAlg

FreeAlg=QQ[MBtildeIndex,Degrees=>listDeg]

LJ={}

for k in 1..dMax do (

for alpha in 0..alphaMax do (

if k-alpha >= 0 then (

------------------------------------Step 1--------------------------------------

Base=toString(basis({alpha,k-alpha},FreeAlg)),

Pj=Base,

------------------------------------Step 2--------------------------------------

for i in 0..length(MBtildeIndex)-1 do (

Pj=replace(toString(MBtildeIndex_i),concatenate("

(",(toString(MBtildeValues_i)),")"),Pj)

),

Pj=value Pj,

if Pj!=0_Alg then (

mi=monomials(Pj),

(m,A)=coefficients(Pj,Monomials=>mi),

uj=generators(ker A),

------------------------------------Step 3--------------------------------------

ujPj=(value(Base))*value(toString(uj)),

if ujPj!=0 then (

LJ=append(LJ,ujPj)) ,

)
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)

)

)

"LJMax"<<toString(LJ)<<close
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