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LMPS - Laboratoire de Mécanique Paris-Saclay,
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Abstract

An equiatomic Nickel-Titanium shape memory alloy specimen subjected to a uniaxial tensile

loading undergoes a two-step phase transformation under stress, from Austenite to Rhombo-

hedral phase (R-phase) and further to Martensite variants. The pseudo-elasticity that goes

along the phase transformation induces spatial inhomogeneity. To unravel the spatial distri-

bution of phases, in-situ XRD analyses are performed as the sample is under tensile load.

However, the diffraction spectra of the R-phase, as well as potential Martensite detwinning,

are not known. A novel algorithm, based on a Proper Orthogonal Decomposition, (POD), and

incorporating inequality constraints, is proposed in order to map out the different phases, and

simultaneously yield the missing diffraction spectral information. An experimental case study

illustrates the methodology.

PREPRINT: Journal of Applied Crystallography A Journal of the International Union of Crystallography



2

1. Introduction

X-ray diffraction (XRD) is a popular non-destructive qualitative and quantitative tech-

nique aiming at characterizing crystal lattice parameters (Drickamer et al., 1967), local

strain (Gailhanou et al., 2007), microstructure evolution (Oliveira et al., 2022) or phase con-

stituents proportions (Peng et al., 2005) from analyzed specimens (e.g., metals, polymers and

ceramics ). Although X-ray diffraction has been primarily emphasized as an efficient tool

for qualitative analyses, it is often used to perform quantitative measurements of all phase

concentrations within the material. Rietveld refinement method (McCusker et al., 1999) is

generally applied to conduct quantitative analysis of X-ray diffraction patterns. This method,

however, requires the diffraction profiles for all possible phase constituents to be collected

appropriately during the preparation stage, so that the individual components can be ade-

quately identified afterward. From a practical point of view, this preparation is rather delicate

for (complex) heterogeneous specimens. Moreover, the preferred-orientation effects of X-ray

diffraction measurement (Dickson, 1969; Campbell Roberts et al., 2002) are extremely deli-

cate to be dealt with experimentally.

A metallic specimen, with a pronounced preferred-orientation — especially with a flat-

plate geometry — may exhibit a strong {hkl} intensity dependency when compared to the-

oretical powder diffraction patterns Although many Rietveld refinement software/programs

allow for the identification of an artificial preferred-orientation parameter with respect to a

specific crystallographic vector based on either the March model (Dollase, 1986) or the Gen-

eralized Spherical Harmonic model (Sitepu et al., 2005), it remains a crude approximation

when assessing heterogeneous multi-phase specimens.

In this work, a Proper Orthogonal Decomposition (POD) algorithm, suitably extended to

incorporate inequality constraints, such as positivity, (and referred to as positive-POD or p-

POD) is proposed to circumvent the aforementioned challenges: for all phase constituents

whose diffraction profiles are experimentally available (and denoted as ’the known con-
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stituents’), the POD technique (Chatterjee, 2000) is first applied to construct the experimen-

tal diffraction spectrum while taking the preferred-orientation effect into account. Then, by

enforcing the positivity constraints, the phase concentrations for ’the known constituents’ can

be estimated, through a quadratic minimization with convex positive constraints using the

sub-gradient projection algorithm (Boyd et al., 2003). Finally, the phase concentration and

experimental diffraction data for the unknown constituents can be obtained.

The performance of the proposed algorithm is illustrated using a strip-shaped specimen

made of equiatomic Nickel-Titanium shape memory alloy (NiTinol) subjected to a uniaxial

tensile load. Under stress, the Nickel-Titanium alloys are frequently reported to introduce a

two-step martensitic phase transformation in forms of strain localization bands at ambient

temperature (from Austenite (A) to Rhombohedral (R) and further to Martensite (M)) (Miyai

et al., 2006; Halani et al., 2013; Stebner et al., 2015).

At a given load, the X-rays diffraction profiles are recorded scanning though the speci-

men along the tensile direction, i.e., across the strain localization bands so as to elucidate

the on-going phase transformation(s) from the progressive changes in diffraction spectra. For

NiTi SMA, depending on the forming process and chemical composition, when subjected

to mechanical loads, the R-phase sometimes appears as an intermediate phase in a two-step

phase transformation. It usually co-exists with Austenite at the macroscopic scale (whatever

the stress or thermal loads) which impedes the measurement of its individual diffraction spec-

trum. In contrast, it is possible to find specific conditions under which pure Austenite or

Martensite phases exist in the specimen.

Moreover, the formation of strain localization bands is a macroscopic outcome of the

“Martensite detwinning” process (Ng & Sun, 2006) (or the so-called “Martensite variants

selection”), resulting in a pronounced preferred orientation effect.

The missing R-phase diffraction pattern and the undetermined preferred-orientation of

Martensite variants prevents the Rietveld refinement method to achieve any comprehensive
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results. To overcome this limitation, the proposed p-POD algorithm permits to estimate the

concentration of different phases along the sample and provide an estimated R-phase diffrac-

tion spectrum. The proposed method is extremely versatile since it requires neither the com-

plete knowledge of diffraction data for all constituents nor a delicate experimental processing

to remove the signature of preferred orientations in the specimen.

The paper is organized as follows: Section 2 presents the in-situ XRD-DIC combined mea-

surement setups and the associated strain fields and raw diffraction spectra acquired during

1D tensile loads. The Rietveld processing method is recalled briefly in Section 3. Section 4

introduces the positive POD algorithm to conduct phase field reconstruction. Section 5 applies

the proposed algorithm to the spectra of NiTinol recorded in the scans along the tensile axis

at different stages of loading. Section 6 draws some conclusions.

2. Equi-atomic NiTinol under uniaxial tensile loading

2.1. Tested specimen

A specimen of quasi-equiatomic Ni-Ti alloy (NiTinol) (thin parallelepipedic central zone

of length LAD = 14 mm, width l = 3 mm and thickness h = 0.3 mm) is installed (Figure 1))

in a mechanical testing machine located within the XRD chamber. The specimen surface is

speckled with white paint to provide enough contrast for Digital Image Correlation (DIC)

analyses to measure displacement field under load. Attention was paid to the fact that the

paint did not affect the diffraction pattern over the range of diffraction angles of interest in the

following.

IUCr macros version 2.1.10: 2016/01/28
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A D

B C

A D

B C

Fig. 1. Geometry of the specimen for uniaxial tensile test. The effective zone for XRD mea-
surement is between A and D, of length LAD = 14 mm.

2.2. Experimental setups

As shown in Fig. 2 and 3, the wide-angle X-ray diffractometer equipped with a conventional

X-ray source (Cobalt Kα with a wavelength λ = 1.79Å) and a curved detector (Inel CPS-

120) is used to measure the X-ray diffraction spectrum along diffraction angle 2θ varying

between 20°< 2θ < 140°. An Fe filter is used to suppress the contribution of Co Kβ in X-

rays radiation.

IUCr macros version 2.1.10: 2016/01/28
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Fig. 2. Scheme of the in-situ combined multi-field measurement: XRD and Digital Image
Correlation (DIC). (Top) Angular XRD measurement setup in the Oxz plane (Bottom)
Schematic illustration of DIC setup in the Oyz plane.
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Fig. 3. Different views of in-situ combined XRD and DIC measurement setup

To limit any cross-influence between both setups, a prism is used to redirect the image of

the specimen surface toward a visible-light camera (Camera 1). A displacement-controlled 1D

tensile test is carried out at room temperature T = 300 K with a loading speed U̇ = 1 µm.s−1

(corresponding to a longitudinal strain rate ε̇ = 10−4 s−1). In the stress-free configuration,

an initial XRD scan is conducted; then the mechanical test is interrupted three times along

the loading stage, during which the displacement is held constant (U = 0.3 mm, 0.4 mm,

0.6 mm) and a similar hold time is considered at unloading (U = 0.3 mm) to perform the

IUCr macros version 2.1.10: 2016/01/28
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XRD measurement along a longitudinal profile (referred to as a “scan” in the following). The

corresponding stress / strain curve is reported in Fig 4(a). The DIC-measured deviatoric strain

field and strain rate are plotted in Fig 4(b). Two localization bands are formed, the region

where the strain is above 5%, corresponds to the region which has been transformed into

martensite. The strain rate field highlights the transformation front. The temperature elevation

due to the latent heat released in the phase transformation prevents the propagation of a single

transformation front, hence several bands are observed in the tested specimen.

The geometry of the specimen is given in Fig.1. The designed region of interest is 10 mm

long between points B and C, with B and C marked with very shallow landmarks. However,

points B and C could no longer be seen during the experiment for both DIC and XRD mea-

surements, after spraying the speckle patterns onto the specimen. As a result, the effective

X-ray diffraction region length was 14 mm long, between point A (x = 0) and D (x = 14). At

each of the four interruptions (denoted as Step # 0-3), (shown as red marks in Fig 4a), X-

ray diffraction spectra are recorded, scanning along the load axis in the central part the Ni-Ti

specimen (corresponding to the spatial scanning coordinates 0 mm ≤ y≤ 14 mm).

IUCr macros version 2.1.10: 2016/01/28
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Step 0

Step 1 Step 2

Step 3

Step 4

(a)

(b)

Fig. 4. (a) Stress-Strain curve during the 1D tensile load. The positions where the XRD scans
are recorded are shown as red circles; (b) The (Eulerian) deviatoric strain (left) and strain
rate (right) fields at the first loading stage ( Scan performed at Step # 1), as measured by
DIC, appear to be strongly heterogeneous.
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2.3. Spatial spectra

The raw spectra collected at the four interruption stages are plotted in Fig 5. For the sake of

readability, here and in the following, an offset proportional to the y coordinate of the studied

spot is added to the spectra so that they do not overlap.

2.3.1. Masking and Clipping

As indicated in Fig 5, it should be emphasized that some angular intervals of the recorded

spectra are not reliable:

• The contribution of Co Kβ in experimental X-ray diffraction should be excluded.1

• The Fe filter gives rise to a double absorption in the range of diffraction angles 62°≤

2θ < 65°

• The optical prism obscures the X-rays detector for 2θ ≥ 100° during Step 1-32, as

shown in Fig 3

In order to properly perform the peak indexation of the diffractograms, masking all these three

regions is mandatory. Consequently, all diffraction signals shaded in gray as shown in Fig 5,

within the corresponding range of diffraction angles (that is [44°, 46°]∪ [62°, 65°]∪[100°,

140°]), are discarded from the analysis throughout this paper.

1 The exclusion of Co Kβ grants us with a single dominant wavelength of λ to facilitate the indexation of diffrac-
tion peaks by using diffraction theory.
2 During Step 0, the prism was not installed yet

IUCr macros version 2.1.10: 2016/01/28
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Fig. 5. Diffraction spectra at different spatial coordinates (a) Step 0: Stress-free state (b)-
(c) Step 1-2: (intermediate stages) on-going martensitic transformation inside the region
of interest (d) Step 3: (maximum displacement) the central zone of the sample is fully
transformed into Martensite

IUCr macros version 2.1.10: 2016/01/28
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2.3.2. Qualitative analysis The crystallography of NiTinol alloys has been massively

investigated. With the published crystallographic information (Austenite and Martensite

(Bhattacharya, 2003) and R-phase (Zhang & Sehitoglu, 2004)), it is possible to use the pow-

der diffraction theory (Cullity, 1956) to construct the theoretical diffractograms (as illustrated

in Fig 6), and the qualitative characterization of the phase constituents present at the four

different stages.

Fig. 6. Theoretical X-ray diffraction profiles (Integrated intensities) for Austenite, R phase
and Martensite

• Step 0: At ambient load-free state (σ = 0MPa,T = 300K), NiTinol is usually consid-

ered as pure Austenite. The {hkl} diffraction peaks at different spatial coordinates in

Fig 5(a) at 2θ =49° and 92° correspond to A{110} and A{211}, which are consis-

tent with the theoretical X-ray diffraction diagrams. {200} peak is not visible in the

experimental spectra because of the pronounced crystallographic texture of this lami-

nated material (Chang et al., 2020). Therefore, at this stage, the collected experimental

diffraction spectra are taken as the data profile for pure Austenite.

IUCr macros version 2.1.10: 2016/01/28
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• Step 3: Experimental pure Martensite diffraction spectra can be collected when the

external loading has reached the end of stress-strain transformation plateau — at the

point “Step 3” marked with a red circle as shown in Fig 4. The corresponding diffrac-

togram Fig 5(d) can be considered as pure Martensite with a typical double Martensite

peak between 90°≤ 2θ ≤ 100°.

• Step 1 and 2: When comparing the diffractograms at different spatial locations as illus-

trated in Fig 5(b)-(c), pronounced differences can be observed. For example, focusing

on the range of 48°≤ 2θ ≤ 52°, a large shift of the peak position and of its broadening

characterized by its Full Width at Mid-Height (FWMH) can be seen along the sample

axis. For all spectra acquired in the range 2mm≤ y≤ 4mm (within the high strain band

as illustrated in Fig 4.b) the spectra appear as pure Martensite, characterized by their

typical double Martensite peaks between 90°≤ 2θb ≤ 100°. Outside the transformed

region, the co-existence of Austenite and R-phase can be verified by the secondary

peak at 2θ = 51° which can be unambiguously attributed to the R-phase {202} crystal

lattice diffraction plane.

From Fig 5, a series of raw spectra D(2θ ,y) is obtained, each of which is composed of

the three phases of NiTinol: Austenite (A), Martensite (M) and R-phase (R). For the proper

identification of phases, it is possible to prepare the specimen to obtain pure A and M phases

with either a load-free state at high temperature (Austenite), or under load after a full transfor-

mation (Martensite) with a representative anisotropy along the tensile axis due to the variants

selection. However, it is not the case for R-phase: in a previous study (Chang et al., 2020), by

conducting a Differential Scanning Calorimetry measurement over the Nitinol specimen, it is

shown that R phase is present only at intermediate stages, and never uniformly.

With a careful sequential Rietveld refinement, thermal-induced Martensite detwinning

diffraction profiles and associated concentrations can be accurately estimated, as reported

in the work of (Oliveira et al., 2021). However, in the present case, the combination of the

IUCr macros version 2.1.10: 2016/01/28
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missing knowledge of R-phase diffraction profiles and possible preferred-orientation effect

due to ’Martensite detwinning’, makes it very delicate to use the Rietveld refinement method

to conduct any reliable quantitative analysis. To better highlight these difficulties, and how we

propose to circumvent those difficulties with the “Positive POD” (or p-POD) algorithm, the

Rietveld method and its limitations are briefly recalled in the following section.

3. Rietveld method

The original presentation of the Rietveld method (Rietveld, 1969) is followed in the sequel.

3.1. The integrated intensities and estimated diffraction profile

For Bragg diffraction peak, the integrated intensities, I{hkl}, can be written as follows

I{hkl} = K p{hkl}Lθ Pθ Aθ T{hkl}E{hkl}F
2
{hkl} (1)

where K is the scale factor; p{hkl} is the multiplicity factor to account for the symmetry in

the reciprocal lattice; Lθ , Pθ , and Aθ represent respectively the Lorentz’, the polarization, and

the absorption factors; T{hkl} stands for the preferred orientation factor; E{hkl} designates the

extinction factor; and F{hkl} the structure factor.

Various effects generate a Gaussian-like broadening of each peak, so that the estimated

diffraction profile for a given pure phase α can be approximated as

Scalc
α (2θ) = ∑

{hkl}
Iα,{hkl} exp

(
−4ln(2)

H2
{hkl}

(2θ −2θ{hkl})
2

)
+Dbg(2θ) (2)

where H{hkl} represents the full width at the half maximum (FWHM) for a given {hkl} peak

and Dbg(2θ) represents the background of X-ray diffraction.

3.2. Rietveld refinement

Several assumptions are made here: diffraction profiles between different phase con-

stituents follow a natural mixture law, and other X-ray diffraction parameters are known
IUCr macros version 2.1.10: 2016/01/28
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(e.g., background, FWHM, asymmetry parameters, unit cell dimensions, preferred orienta-

tion, etc.). Rietveld refinement aims to determine the phase concentration through a non-linear

least square fitting

Cα = argmin
Cα

∑
2θ

{Dexp(2θ)−∑
α

CαScalc
α (2θ)}2 (3)

where Dexp represents the experimental diffraction profile.

Despite the widespread usage of Rietveld refinement in X-ray diffraction characterization,

three major limitations need to be specifically addressed:

1. Noise: the quadratic cost function implemented in Rietveld refinement rest upon the

assumption that the noise in the X-ray diffraction measurement follows a Gaussian

distribution with a uniform variance (in 2θ ) for C to be optimal. However, for X-ray

detectors, it is commonly reported that noise follows a Poisson distribution. In such a

case, the chosen quadratic cost function in Rietveld refinement is not “wrong” but not

optimal. Hence the nature of measured noise needs to be first characterized, and the

cost function needs to be adapted accordingly, with a weight proportional to the inverse

intensity.

2. Correlated parameter fitting: to the best of the authors’ knowledge, most commercial

codes using Rietveld refinement require a sequence of parameter refinement (back-

ground, unit cell crystal parameters, asymmetry parameters, preferred texture factor,

etc) to reach the sought phase concentration. Therefore, when dealing with data from

a mixture of different phases with a pronounced texture preference, the non-linear

least square fitting is prone to secondary minima trapping, and the set of correlated

parameters (concentration, preferred orientation) are ill-estimated. Thus, simplifying

the Rietveld refinement protocol and determining the phase concentration with fewer

model parameters is appealing.

3. The effect of preferred orientation: this question is further discussed in subsection 3.3.

IUCr macros version 2.1.10: 2016/01/28
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3.3. The effect of preferred orientation

In this subsection, addressing the role of preferred orientation for a single phase, α , it is

assumed that other parameters remain constant in the entire experiment.

3.3.1. Case 1: Single crystal If the crystal lattice orientation of the phase is unique and

represented using a rotation quaternion denoted as n1,the diffraction profile is denoted as Sn1
α ,

which can be seen as the set of intensities of the different {hkl} Bragg diffraction peaks.

For a single crystal having a different crystal orientation, say n2, its diffraction profile is

related to the former from a matrix transformation, T (n1,n2), such that

Sn1
α = T (n1,n2)Sn2

α (4)

3.3.2. Case 2: A single crystallographic phase with a strong texture When a strong texture

is present in the tested specimen, it is possible to use a reduced basis, (n1,n2), to represent

the distribution of possible crystal lattice orientation. The concentration of any experimen-

tal diffraction profile from phase α , can be approximated with the corresponding diffraction

profiles (Sn1
α ,Sn2

α ).

Dα =
2

∑
i

Sni
αCni

α (5)

∑Cni
α = 1,Cni

α ≤ 0

Sni
α = Sei

αT (ni,ei)

3.3.3. Case 3: A single crystallographic phase but following a statistical distribution of orien-

tations for multiple grains Recall that only three directions (for example, one of the most con-

ventional choice is the 〈100〉,〈110〉,〈111〉 orientation used for the Pole figure), are required to

map the entire crystal orientation of specimen. Consequently, as a natural expansion of Equa-

tion 4, any experimental diffraction profile of the polycrystal can be expressed as a linear

IUCr macros version 2.1.10: 2016/01/28
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combination

Dα =
3

∑
i

Sei
αCei

α ,∑Cei
α = 1,Cei

α ≤ 0

where Sei
α and Cei

α represent respectively the X-ray diffraction profile following a given direc-

tion of the crystallographic lattice plane ei, and its associated concentration. {e1,e2,e3} rep-

resents any basis of the diffracting crystal plane orientation.

Several remarks are to be made here:

1. Equation 6 can be considered as the generalized formulation of the experimental

diffraction profiles of a pure phase (either single crystal or polycrystal with a pro-

nounced texture preference are its particular cases).

2. Hereafter, Sei
α(2θ), is used to represent the X-ray diffraction profile for a single phase

with a particular orientation ei (after the convolution accounting for instrumental acqui-

sition). In this respect, other model parameters are no longer to be identified indepen-

dently for phase concentration determination. Thus the number of unknowns in refine-

ment is drastically reduced.

3. When the preferred orientation effect is present in the tested sample, it requires at least

two (and at most three) sets of preferred orientation factors; hence two or three diffrac-

tion profiles for the same phase are needed to guarantee a trustworthy phase concen-

tration estimation. The preferred orientation correction implemented in the Rietveld

refinement method is a first-order correction considering the principal crystal lattice

orientation.

4. Moreover, let us emphasize that the non-unicity of the (reduced) basis ei is very ben-

eficial. Taking highly textured specimen as an example, one could select any reduced

basis (n1,n2) and its corresponding diffraction profiles (Sn1
α ,Sn2

α ) to calculate the corre-

sponding amplitudes (Cn1
α ,Cn2

α ).

IUCr macros version 2.1.10: 2016/01/28
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The positive POD algorithm is introduced in the following section, and a proof of concept

is given to construct a reduced basis from experimental data.

4. p-POD algorithm

The analysis consists in 5 steps:

1. Correction of background contribution;

2. Evaluation of XRD acquisition noise;

3. Preparation of the experimental diffraction data for each constituting phase for which

spectra are experimentally available;

4. Estimation of the optimal set of phase concentrations for each ‘known’ phase by enforc-

ing positivity constraints;

5. Estimation of the diffraction profiles for the remaining phase constituent.

4.1. Background correction

In addition to the sought diffraction peaks, a non-zero background signal is present in all

spectra as a result of diffuse scattering, and unavoidable experimental imperfections (Cullity,

1956). It is therefore necessary to estimate this background signal Dbg(2θ ,y) and subtract it

from the raw spectra Draw(2θ ,y) prior to any further analysis.

D(2θ ,y) = Draw(2θ ,y)−Dbg(2θ ,y),∀y ∈ y (6)

A 4-th order polynomial function is chosen to account for the spectrum background. It should

be such that the resulting D(2θ ,y) should always be ’positive’ after the background removal.

Thus Dbg is computed from the minimization of the following cost function, C

C = ∑
θ

(P(Dbg(2θ ,y)−Draw(2θ ,y)))2−βDbg(2θ ,y),∀y ∈ y (7)

IUCr macros version 2.1.10: 2016/01/28
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where P is the ‘positive part’ function (P(y) = y if y ≥ 0, and P(y) = 0 if y < 0), and β is

a scalar. The “Penalty” term, ∑
θ

(P(Dbg(2θ ,y)−Draw(2θ ,y)))2 , promotes the positivity of

D(2θ ,y) so that the background should remain below the raw spectrum, while the second

term favors a high background, with a uniform “pressure”, β , to line up to the minimum

values of the spectrum. Because of the presence of XRD noise, the chosen parameter β is

to be set so that some negatives values are tolerated in the resulting signal D(2θ ,y) (after

background correction). In quantitative terms, β is tuned so that the negative values in the

residuals have a distribution compatible with the characterized Poisson noise (discussed in

the following section). Because of the truncation to negative values, the mean square value of

those negative residuals should be half the noise variance.

Fig. 7. (a) Raw diffraction spectrum plotted in blue and estimated background signal plotted
in red (b) Corrected diffraction spectrum after background correction

In the following, a similar methodology is applied to determine the unknown R-phase spec-

trum : assuming that at this stage the Austenite and Martensite spectra are already known, by

selecting the proper ratio between pressure and penalty terms, the Austenite/Martensite XRD

contributions can be extracted from the experimental diffraction spectrum while the residual is
IUCr macros version 2.1.10: 2016/01/28
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expected to be ‘positive’. Thus the residual can be further interpreted as the missing R-phase

spectrum weighted by its concentrations.

4.2. Uncertainty analysis

In order to evaluate the noise associated to XRD analysis, it is proposed to conduct

5 scans over a single-phase specimen by varying the XRD acquisition time (e.g., t =

5,10,15,20,25min). Processing those acquisitions led to the conclusion that noise is Poisson-

like, with a distribution that could not be distinguished from a Gaussian, and a variance that

varies linearly with the mean count and thus the accumulation time. The motivation of this

prior study is to allow assessing that the residual spectrum (difference between measured and

estimated spectra) is compatible with the observed noise. In practice, this is done by estimat-

ing differences, and normalizing them (for all angles) by the local standard deviation (itself

proportional to the square root of the mean signal and acquisition time). Comparing residual

with noise thus consists in observing that this scaled residual is uniform over all angles, and

its distribution is a Gaussian of zero mean and unit variance.
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U

Fig. 8. Uncertainty analysis: (a) Experimental Austenite spectra collected with different acqui-
sition times; (b) Eigenvalues of each POD modes ranked in decreasing order; (c) Angular
shape functions for the first two POD modes. The second mode has been offset by -0.1 for
readability
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Fig. 9. (a) Characterized noise follows a Poisson-type distribution (b)-(c) Angular/Temporal
stationarity for re-scaled noise τ

2/D after Anscombe transformation

4.3. Experimental diffraction data for pure phase constituents

In order to collect pure diffraction data while taking potential preferred orientation effects

into account, it is recommended to collect diffraction spectra at N different spatial coordinates

y and rearrange them into a matrix form, D(2θ ,y), onto which a POD analysis is performed

D(2θ ,y) =
N

∑
n=1

dnUn(2θ)Vn(y) (8)

where the Un(2θ) represents the n-th POD angular modes and Vn(y) is the corresponding spa-

tial amplitude, dn represents the energetic contribution of n-th POD mode into the diffraction

matrix, as a result of the normalization of each mode, ‖Un‖θ = 1 and ‖Vn‖y = 1 (the subscript

after the norm symbol recalls that these two norms operate in different spaces).

In the following, the discussed test case is such that three phases and only three are expected

in this material. With the additional assumption that their orientation is transversly isotropic,

then it would be expected that no more than three modes are needed to account for the entire

set of data. This obviously does not mean that the angular modes, Un(2θ) for n = 1, 2 or 3,

should coincide with pure phase spectra, but rather that the linear combinations of these three

modes should be sufficient to match any composition of the three phases.

This simple presentation rests on the assumption of a unique type of orientation distribution
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per phase. Here transverse isotropy is the most likely, but a single orientation, or an isotropic

distribution would also lead to the same result that no more than three mode are needed to

account for all acquired experimental spectra (at the exception of noise that can be considered

as an additional mode). In the case where orientation, or orientation distribution is evolving

along the loading, then more modes should be added with a maximum of three modes per

phase, as above discussed (neglecting symmetries than can reduce this number).

It should however be emphasized that, one of the key properties of POD analysis is that

modes are ordered along a specific hierarchy, according to their relative power contributions3

in decreasing order. Hence, the analysis has the potential to proceed with simple assumptions

(such as no more than three modes), and test from the residuals (the unexplained data) whether

they are compatible with noise and hence the initial three phase assumption is deemed satis-

factory or if the basis should be enriched to account for preferential orientation effects. (Note

that when the residual is within the noise level, it does not mean that the assumptions are

correct, but simply that their further refinement can not be obtained from the currently avail-

able noisy XRD data). It is important also to stress that because modes are not spectra of

pure phases, some work is needed to perform a physically meaningful conversion. This is the

motivation of the following section.

4.4. Positive POD algorithm

For powders, any diffractogram obtained at a given spatial coordinate, D(2θ ,y), should

be equal to the sum of each pure i phase spectrum Si(2θ) weighted by its volume fraction

Ci(y). For Austenite, due to its crystalline symmetry (with a BCC crystalline structure), its

experimental XRD spectrum is unique regardless of its crystal orientation. On the contrary,

assuming that R-phase and Martensite (with a much lower crystalline symmetry compared to

Austenite) are subject to potential variant-selection during 1D tensile load; a different combi-

3 More precisely, the power of n-th mode is proportional to its squared eigenvalue, d2
n .
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nation of variant-selection induces a modulation of different peak intensities for XRD spectra,

consequently the experimental diffraction patterns for R-phase and Martensite are not unique

D(2θ ,y) = ∑
α

CαSα +τ (2θ),α = A,Ri,M j (9)

∑
α

Cα =CA(y)+∑
i

CRi(y)+∑
j

CM j(y) = 1, ∀y (10)

where SRi(2θ) denotes the i-th R-phase diffraction spectrum, SM j(2θ) represents the j-th

Martensite phase diffraction spectrum and τ denotes the Poisson-noise of the raw signal.

As earlier discussed, the diffraction patterns for Austenite and Martensite variants can be

experimentally obtained, whereas the R-phase diffraction profile is yet unknown. After elimi-

nating the entire signal contribution from all ’known’ phase constituents, ∑
α

CαSα (α denotes

Austenite and Martensite spectrum), the remaining diffraction signal at any given diffraction

angle is expected to remain positive for each angle. However, because of the presence of XRD

noise, one may tolerate some negative values (as for the case of background signal removal)

when consistent with our prior knowledge on its statistical characteristics.

In the following, at each position y, an optimum set of local phase concentrations Cα(y) =

[CA,CM j ] can be obtained through the quadratic minimization of the primary cost function

F (Cα) = ∑
2θ

P
(

∑
α

CαSα(2θ)−D(2θ ,y)
)2

−∑
α

βαCαSα(2θ), α = A,M j (11)

where P is the positive part function, and βα is a positive scalar. Similarly to the back-

ground correction, the so-called “Penalty” term, ∑
2θ

P
(

∑
α

CαSα(2θ)−D(2θ ,y)
)2

, promotes

the positivity of the residual signal, ρ(2θ ,y) = D(2θ ,y)−∑
α

CαSα(2θ) so that the total con-

tribution of all known phase constituents, CαSα , should remain below the local diffraction

signal. In contrast, the second ’pressure’ term, ∑
α

βαCαSα(2θ), favors a large contribution

for each known constituent, which is increased as much as possible (similar to the “penalty”

and “pressure” terms introduced for the background).

It also should be emphasized that the minimization of the primary cost function should be

carried out under the following convex inequalities constraints:
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• Each phase concentration is expected to be positive,

Cα(y)≥ 0, α = A,M j (12)

• The sum of all concentrations is expected to be lower than 1.

CA(y)+∑
j

CM j(y)≤ 1, ∀y (13)

In the following, it is proposed to group all the above physical inequalities constraints on

the concentrations(12- 13) into a single matrix form

EC−F≥ 0 (14)

4.5. Sub-gradient projection

Finding the optimum set C with respect to all positive constraints is a typical convex

inequality constrained problem, which consists in minimizing the cost function, F (C), sub-

ject to EC−F≥ 0. The sub-gradient projection method is frequently used to handle con-

strained optimization problem. First, the dual cost function (or the so-called Augmented

Lagrangian), G (C,λ ), is introduced

G (C,λL) = F (C)+λL(EC−F) (15)

where λL is the classical Augmented Lagrange multiplier to ensure that all physical concen-

trations constraints are fulfilled. The minimization of the dual cost function not only pushes

the residual ρ close to 0 while remaining ’positive’, but also grants the physical admissibility

of phase concentrations.

With an initial guess of C(k), the sub-gradient can be computed

Tk(C(k),λL) = [∂C(k)G ,∂λLG ]> (16)

Here Tk(C(k),λL) is a positive and monotonous operator. The solution C(k) is updated via the

sub-gradient projection.

C(k+1) = C(k)−ηT(k) (17)
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where η is the step length. A relatively small step length is applied to prevent numerical

oscillations, η = 1. The value of η could be further optimized for a faster convergence rate.

However, because computation time was not critical, this optimization was not investigated.

The sub-gradient projection is repeated until C(k) reaches a stationary value

|C
(k+1)−C(k)

C(k) | ≤ 10−4 (18)

It should be emphasized that sub-gradient method is not a descend method, the primal and

dual cost function values can (and often do) increase before reaching convergence.

5. Positive POD algorithm applied to the case of nickel titanium alloys

5.1. Background correction

One example of background correction procedure is illustrated in Fig 7 using a local spec-

trum at step 1. The missing channels due to experimental artifact (Kβ , double absorption

of Fe filter, prism obscuration), makes the 4-th order polynomial background signal fitting

even more difficult. To overcome this problem, it is proposed to add additional information

of diffraction signals over 2θ ∈ [35◦,45◦]∪ [125◦,135◦], which are away from any relevant

diffraction peaks; and these channels are expected to be centered around zero after the back-

ground removal. The presence of ’zero’ channels at the boundary of spectrum instead of

diffraction peaks, improves greatly the stability of background correction algorithm.

After choosing the proper ratio β = 0.12 between the pushing force and the penalty term

(see Equation 7), the background signal has been properly estimated (after background cor-

rection, for 2θ channels away from {hkl} diffraction peaks, the diffraction counts are mostly

centered at 0). The differences between the background signals at different spatial positions

are very small, therefore the average of background signal was used in this study to minimize

uncertainty. In the following of this section, for all four loading stages where XRD scan have

been carried out, raw diffraction spectra have received the same background removal as a

pre-processing before launching the p-POD analysis.
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5.2. Uncertainty analysis

The uncertainty analysis is carried out over the fully austenitic NiTinol at room tem-

perature. Five XRD scans are carried out with corresponding acquisition time intervals

t = 5,10,15,25,30min (Fig 4.2a) and the differences between each XRD scan are then com-

puted (Fig 4.2b).

The identified noise follows a Poisson-type distribution (the variance scales with the ampli-

tude of the diffraction signals at each channel, see Fig 9a). When a signal is affected by a

Poisson noise, its Anscombe transform exhibits a stationary Gaussian noise of uniform vari-

ance (Anscombe, 1948) as soon as the noise amplitude is small compared to the signal. In

the present case, the Anscombe transform simply consists in taking the square root of the sig-

nal. The re-scaled noise after Anscombe transformation indeed shows the expected variance

uniformity over angle and time (see Fig 9b and c respectively).

5.3. Experimental diffraction data collection

5.3.1. Austenite diffraction spectrum After a thermal heating to completely transform the 1D

NiTinol strip into full Austenite state, the experimental Austenite diffraction data can be col-

lected in the stress-free state at room temperature at 8 different spatial locations (as shown in

Fig 5a). The POD analysis (Figure 10) indicates that for Austenite diffraction profiles, the first

POD mode with highest eigenvalue can be interpreted as the diffraction pattern of Austenite

and higher order POD modes (without any significant peak or structure) are compatible with

noise, and will be treated as such in the following.
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Fig. 10. POD analysis applied to the Austenite diffraction matrix (a): eigenvalue of each POD
mode ranked in decreasing order (b): first two POD angular modes.

5.3.2. Experimental Martensite diffraction spectra collection The experimental Martensite

diffraction data can be collected when the NiTinol specimen has been fully transformed into

Martensite (e.g., the end of transformation plateau corresponding to Step #3 in Fig 4(a)).

In order to take into account potential preferred orientation effect, spectra are acquired at

8 different spatial coordinates in the region of interest (y = 7, 7.5, 8, 8.5, 9, 9.5, 10 and

10.5mm). After rearranging the 8 different diffraction spectra into a matrix form, a POD

analysis is performed (see Fig 11). Plotting eigenvalues against POD modes, it is clear that at

least two POD modes are needed to faithfully describe all spectra.
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Fig. 11. POD analysis applied to experimental Martensitic diffraction spectra (a) : eigenvalue
of each POD mode ranked in decreasing order; (b) The first three POD modes are shown.
For clarify, successive modes are offset by -0.15; (c) first three spatial POD modes, Vn(y),
as a function of the spatial coordinate y.
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Fig. 12. (a) Two proposed set of different Martensite diffraction patterns where an offset of
100 counts is applied at SM1 for readability; (b) Associated phase concentrations for two
different martensite spectra at different spatial coordinates

The 1st POD angular mode represents the principal diffraction pattern of Martensite. In

the range 48° ≤ 2θ ≤ 53°, multiple Martensite diffraction peaks do contribute: M{111}
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(2θ = 48.3°), M{020} (2θ = 51.4°), M{111}(2θ = 52.4°) and M{012}(2θ = 52.9)°). In

the range 92° ≤ 2θ ≤ 98°, one finds the characteristic Martensite diffraction peaks M{023}

(2θ = 93.4°) and M{220} (2θ = 98.9°)). Meanwhile higher order POD modes, even though

very noisy, can be seen as the underlying undulation in {hkl} intensities due to spatial hetero-

geneity of ’martensite detwinning’ across the Martensite localization band.

When confronted with the non-unicity of Martensite diffraction data due to ’Martensite

detwinning’, it is possible to enrich the Martensite diffraction profiles by introducing multiple

different Martensite diffraction patterns. In the present case, two Martensite patterns were

chosen. The optimum set of two Martensitic diffraction spectra (SM1(2θ),SM2(2θ)) should

satisfy the constraint of physical admissibility, namely, the corresponding phase concentration

for each diffraction profile should obey

D(2θ ,y) =CM1(y)SM1(2θ)+CM2(y)SM2(2θ)+ τ(2θ ,y) ∀(2θ ,y) (19)

CM1(y)+CM2(y)≤ 1, ∀y (20)

One possible example set (this set is not unique) (SM1(2θ),SM2(2θ)) is illustrated in

Fig 12(a). The first experimental Martensite diffraction spectrum promotes the M{020}

diffraction peak while the second shows an enhanced intensity for the M{111} peak. The

two proposed Martensite diffraction data consistently represent the entire diffraction matrix,

given that the overall sum of these two phase constituents at different spatial coordinates y

equals almost 1 while each individual concentration remains physically admissible. The rea-

son for which the sum of concentrations does not strictly equals 1 may be due to the fact

that two spectra are not enough to exhaustively describe the Martensite orientations, but the

residual data is so small that adding a third phase would make the problem much less robust,

and it was decided not to enrich this description.

Note that the experimental profiles for Austenite and Martensite are now set to the above

spectra, S = [SA(2θ),SM1(2θ),SM2(2θ)]. Hence hereafter it is possible to estimate the opti-

mum set of phase concentration for Austenite and Martensite for Step #1 and #2 in Fig 4(a)
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and eventually characterize the R-phase diffraction spectrum and its concentration.

5.4. Positive POD algorithm applied to scans #1 and #2

Two local spectra are selected as examples to illustrate the performance of the proposed

algorithm. The first spectrum, D12, is selected for an acquisition positioned inside the trans-

formed bands (with the presence of a strongly preferred orientation effect) while the second

spectrum, D4, is selected at a point which is located at the interface between the Austenite

matrix and a Martensite band.

40 50 60 70 80 90 100

-400

-200

0

200

400

600

D

D

S

S

S

Fig. 13. Two investigated local XRD scans and known XRD diffraction data for Austenite and
Martensite, each spectrum has been offset by 200 counts for readability

5.4.1. First case: Acquisition within the transformed band At convergence of the p-POD

algorithm where both the primal and dual cost functions reach a stationary value (Fig 14(b)),

each constituent concentration is physically admissible and they sum up to a value close to 1

(∑Cα ' 0.95, see Fig 14(a)). Furthermore, the final residual almost vanishes when compared

to the initial spectrum. When re-scaled by the standard deviation of XRD noise, it does not

show any significant angular dependency. Thus it can be concluded that the p-POD algorithm
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is reliable and efficient to account for the preferred orientation effect by introducing physical

constraints and two representative Martensite diffraction patterns.

Fig. 14. (a) Phase concentrations for Austenite and Martensite constituents (b) The pri-
mal/dual cost functions against iteration number
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Fig. 15. (a) Comparison between raw spectrum, initial residual and final residual (b) Initial
and final re-scaled residual

5.4.2. Second Case: Acquisition at the interface between matrix and transformation band In

the second case, the Austenite and Martensite concentrations stabilize at convergence (see

Fig 16) where the sum is well below 1 (0.6). The remaining signal after removing Austenite

and Martensite contributions (Fig 17(a)), still shows a pronounced angular dependency after

Anscombe transformation that cannot be attributed to noise. After considering the locations

of the diffraction peaks, and their indexation, it is concluded that they do correspond to the

R-phase.
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Fig. 16. (a) Phase concentration for Austenite and Martensite (b) Primal/Dual cost function
against the iteration number

40 60 80 100
0

50

100

150

200

250

300

40 60 80 100
-100

0

100

200

300

400

500
D

D

Fig. 17. (a) Comparison between the raw spectrum, initial and final residual (b) Re-scaled
residual
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5.4.3. R-phase diffraction pattern reconstruction The p-POD algorithm is applied to the

entire set of spectra collected during scan 1. After removing the diffraction contributions from

Austenite and Martensite, the residual, (remaining signal), ρ(2θ ,y) in the diffraction signal

is displayed in Fig 18(a). A POD analysis over ρ(2θ ,y) shows that at least two POD modes

are required to account for the remaining diffraction signal (Fig 18(b)). The first POD angular

mode corresponds consistently with R-phase powder diffraction peaks, with features such as a

double peak (R{112} and R{112}) at 2θ = 49.3° and 2θ = 49.6°, several secondary diffrac-

tion peaks R{202} at 2θ = 52.7°, or R{222} at 2θ = 73.6°. Meanwhile higher order POD

modes can be seen as underlying {hkl} intensity undulations due to heterogeneous R-phase

detwinning at different spatial positions (Fig 18(c)-(d)).

Similarly to the case of Martensite detwinning, it is possible to use two different R-phase

diffraction patterns to take into account a preferred orientation effect (see Fig 19a). The two

R-phase diffraction profiles correspond well to the theoretical R-phase diffraction peaks, but

with different {hkl} peak weights. With the complete diffraction pattern, the phase concen-

trations for each constituent as functions of the scan position are illustrated in Fig 19b. All

concentrations are always bounded between [0,1], and their sum never exceeds 1. At several

points, where the sum of concentrations is slightly less than 1 (∼ 0.95), it can be inferred that

detwinning introduces multiple R-phases and Martensite diffraction patterns (not only limited

to 2). Additional R-phase and Martensite diffraction profiles could be further introduced to

improve phase field reconstruction, but the small signal-to-noise ratio becomes limiting.
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Fig. 18. POD analysis applied at ρ : (a) Residual diffraction signal after removing Austenite
and Martensite contributions (b) Eigenvalues of each POD mode ranked in decreasing order
(c) First three POD angular modes (d) First three POD spatial modes
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Fig. 19. (a) The diffraction patterns for Austenite, R-phase and Martensite, each has been
offset by 200 for readability (b) The phase concentration for each constituent at different
spatial positions (c) The phase concentration for A, R , M at different spatial positions.

Fig. 19 (c) shows that the central part of the specimen has been transformed to martensite

almost completely, whereas the aisles are composed of a mixture of A and R-phase. Thus

it appears that from pure Austenite, a R-phase is nucleated under load, coexisting with the

Austenite, and these two phases eventually turn completely into Martensite. This is consistent

with the DSC characterization where A is transformed into M in a two step process with an

R-phase as an intermediate phase because of the thermal heterogenity during 1D tensile load.
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6. Conclusions

Quantitative XRD analysis remains a great challenge when aiming to a quantitative evaluation

of heterogeneous materials. Classical Rietveld method and its generalizations are not adequate

when dealing with incomplete database of diffraction patterns for each phase constituent, or

undetermined spatial heterogeneous texture distribution for one or several constituents.

When assessing a pure phase with strong spatial heterogeneity in texture distribution,

instead of using one unique artificial texture as implemented in the March model, the pro-

posed approach used Proper Order Decomposition to capture the diffraction patterns at dif-

ferent spatial coordinates. This allowed for the reconstruction of one or several experimental

diffraction patterns, which are much more flexible to account for the entire diffraction spectra

including limited orientation modulations.

Moreover, by including inequality constraints into convex minimization, the herein intro-

duced ‘positive-POD’ algorithm can seamlessly remove diffraction contributions from known

phase constituents and make it possible to reconstruct diffraction patterns for the unknown

constituent afterwards. Additionally, the accuracy of the reconstructed unknown constituent

can be justified by powder diffraction indexation. This algorithm, can be considered as a step

forward compared to the March model. Its extreme versatility appears as a promising tool in

quantitative XRD analysis for complex heterogeneous materials.

.1. Crystal orientation of equatomic NiTinol

As shown in Figure 20, the equiatomic Nitinol exhibits a very pronounced anisotropy in its

crystal lattice orientation, as due to its lamination. The texture orientation is along the 〈111〉

direction, underlining its transverse isotropic texture.
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Fig. 20. Inverse pole figure (top) and pole figure (bottom) for the equiatomic Nitinol

.2. The Differential Scanning calorimetry

The differential scanning calorimetry measurement of equi-atomic NiTinol is shown in

Figure 21. The presence of R-phase is manifest along cooling as an intermediate step between

Austenite and Martensite.
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Fig. 21. DSC measurement, the two-step phase transformation during thermal loading con-
firms the presence of R-phase.
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